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1 Introduction

The phenomenon of locking, or parametric error amplification, is a well-
known problem arising when trying to solve parameter dependent elliptic
problems with a low-order finite element method when the parameter value
is close to a limit value. Typical problems suffering from locking include the
plate-bending problem [19], the problem of anisotropic heat conduction [2],
and perhaps the most challenging one: the shell problem of linear elasticity
[16, 17].

Among the above three problems the anisotropic heat conduction and the
shell problem are similar in that they both admit two different asymptotic
states depending on the constraints imposed on the boundary of the domain.
The varying behavior reflects the fact that for the same problem some phys-
ical quantities can be distributed in different ways in different situations.
In the case of anisotropic heat conduction the heat flux is dominant in the
direction of low conductivity in the “hot” state whereas in the “cool” state
the main heat conduction occurs in the direction of high conductivity as one
would normally expect.

In shells the deformation energy can be associated either to bending of
the shell or to stretching of the shell membrane. In the former case the
deformation state is called bending-dominated and in the latter membrane-
dominated. It is also worth noting that some bending-dominated states are
inextensional in the sense that all the deformation energy is due to bending
of the shell and no stretching is present.

The “hot” and the bending-dominated states suffer from locking at pa-
rameter values close to the limit value whereas the “cool” and the membrane-
dominated states can be resolved in an optimal way for the entire parameter
range using the elementary finite element scheme. Typical examples of the
“hot” and “cool” states are shown in Figure 1 where the only difference be-
tween the two figures is in the conditions imposed at the boundary of the
domain. Figure 2 displays a bending-dominated state of deformation of a
cylindrical shell. In the locking states, typically very little energy is asso-
ciated to large amplitudes of the unknown quantities so that the standard
finite element scheme — being an energy-based method — fails to pinpoint the
essential characteristics of the solution thus leading to very unsatisfactory
results.

Technically locking can be viewed as a problem of finding a suitable fi-
nite element approximation to a solution of a problem posed in Uy, a closed
subspace of the energy space U. In an extreme case the intersection of the
subspace Uy and the finite element space U, may consist only of the zero
function, so it is clear that locking can lead to a severe approximation failure
if the classical finite element scheme is employed.

Probably the most common way to circumvent locking is to commit a
variational crime on the associated bilinear form A(u,v) thus ending up
with a modified, usually mesh dependent, form A, (u,v). The aim of this
procedure is to allow the solution to be sought for in a larger space Uy, C U,



which is not any more a subspace of the space Uy. This approach for plates
is discussed thoroughly in [19].

However, a modification to the original bilinear form entails a consistency
error component that can be considered negligible in the “hot” or bending-
dominated state but by no means in the “cool” or membrane-dominated state.
The result is that one is faced with a conflict when trying to design a ro-
bust general-purpose low-order element for problems exhibiting such a dual
character: On one hand the modification should be significant to remove the
locking effect, on the other hand too large a modification causes a large con-
sistency error component in the state free of locking. Given these conditions
it can be anticipated that the path in between is narrow — if any exists.

In fact, the quest for simple and efficient low-order finite element, applica-
ble to problems of both asymptotic types in the linear theory of thin, elastic
shells has been going on for years. The most prominent elements belonging
to the MITC-family [3] have been a subject to several studies [4, 5], and only
recently it was shown [14] that this formulation is equivalent to a modified
formulation of a classical shell model due to Reissner and Naghdi [15].

In this thesis both the problem of anisotropic heat conduction and the
shell problem are studied within the context of bilinear elements. The former
is regarded as a simple model problem capable of revealing the essential
aspects associated with the use of reduced finite element schemes, whereas
the main question posed for the latter problem is: Under which hypothesis —
if any — the lowest order MITC-type element, MITC4, can serve as a general-
purpose shell element? It turns out that in both cases it is necessary to make
heavy assumptions on the mesh and on the regularity of the solution, but
under these assumptions it can be shown that

e Locking can be avoided in the “hot” or bending-dominated state.

e The consistency error component in the “cool” or membrane-dominated
state is of acceptable magnitude.

However, the behavior of the modified schemes under discussion in a
more general setup and their response to boundary layers commonly present
remains a wide open question available for further study.

2 The phenomenon of locking

When the parameter € in a parameter dependent elliptic problem approaches
a certain limit value ¢ difficulties in the finite element approximation of the
solution may arise. In this case the variational problem: Find v € U s.t.

A(u,v) =o(v) Yvel
turns into a constrained problem: Find ug € U s.t.

A(u,v) = ¢(v) Yo € Up.
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Figure 1: “Hot” and “cool” states in the problem of anisotropic heat conduc-
tion. In the former the heat flux across the boundary vanishes whereas in
the latter the temperature is zero on the boundary of the domain.
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Figure 2: A bending-dominated deformation of a cylindrical shell.



It may very well then happen that Uy N U, = {very small} thus preventing
the normal convergence of the finite element approximation u; to the exact
solution u also for parameter values € near ¢;. In fact, if a standard finite
element method is used for solving such a problem the relative error e in the
energy norm may behave

e~ |e— e *hP. (1)

Here o denotes the severity of the locking and p is the degree of elements used
in the approximation. For instance, in the case of thin shells the parameter
is the thickness of the shell, ¢, the limit value is zero and « € [0, 1] so that in
the worst case e ~ ¢t 'h? and in the best case no locking is present, but the
finite element scheme resolves the problem in an optimal way. In addition
to these extreme possibilities the locking factors @ = 1/2,1/3,1/4 may be
present depending on the shell geometry, the load, and on the constraints
imposed at the boundaries [11, 17, 18].

The general result (1) indicates also that a high-order method may be used
to improve the convergence properties of the finite element scheme [10, 12].
Indeed, in the worst case the mesh needs to be overrefined by a factor ~
t~1/? which becomes quite moderate even for small ¢t when p is large enough.
Also in some special cases a high order method may remove the parameter
dependence of the error when a certain threshold value of p is exceeded [16].
The more general case of the hp-method in this context is discussed in |9, 20].

3 Error analysis principles

The idea of splitting the discretization error into two components, the ap-
proximation error and the consistency error, is not new. In fact, it dates back
to the early days of mathematical finite element analysis [21]. Let us, how-
ever, briefly review the reasoning here. Assume that a variational problem:
Find u € U s.t.

A(u,v) = ¢(v) Yo el (2)

is given in an energy space Y. Assume in addition that the finite element
solution to (2) is given by: Find uy € U, s.t.

Ap(up,v) = ¢p(v) Vv €U,

for a finite element space U, C U and a modified bilinear form A, (u, v). Let
the error indicator be

=l
[l
where ||| - ||| = \/A(-, ) denotes the energy norm and ||| - ||| = V/Ax(, ) is

the modified energy norm. Then it is possible to split u, = 4, + 2, where 1y,
is defined as the best approximation to uy in U, so that

Ap(p,v) = Ap(u,v) Yo €U,



implying that in particular
Ap(u — g, z,) = 0.
This leads to an orthogonal splitting of the error
1w = wnllli, = [1lw = @[5 + |lzalll

or
e? = e + e,

where the approximation error e, is given by

_ e — ]
4=
[Hul]]
and the consistency error ec by
o = Wzl
[Hul]]

It is also worth noting that for every v € U,
An(zn,v) =An(un, v) — Ap(tp, v)
=A(u,v) — Ap(u,v) (3)
=¢(v) — Ap(u, v) = ¥y (v)

so that the consistency error is given by

o= sup (A — Ap)(u,v)

veroz0 | |ulll [[1v][]n

and the element z;, € U, giving the value of ec can be solved from (3) if the
exact solution u € U is known.

The above reasoning extends to the case of the limit parameter value €.
For ug € Uy the approximation error is given by

o = ol

€q =
vetlon |[uoll]

and the asymptotic consistency error by

Ly A A (0)

verp oo [l [lvllln

€c

4 A simple model problem

A simple yet interesting model problem on the phenomena associated with
the use of low-order finite element method in elliptic parameter dependent
problems is the problem of anisotropic heat conduction. The setup was first



discussed in [2] where the failure of the standard finite element scheme was
noted. The problem is given on the unit square Q = (0,1) x (0,1) as

Pu 0%

with
£ = az + fy
n=-—PFx+ay

for some a, 8 # 0, a®> + 2 =1 and f € L*(Q2) or f € D'(2). To get a full
view on the spectrum of the problem it is necessary to consider at least two
different boundary conditions:

A. =0 on 0N
C. d,u = 0 on 09.

Here

0 0
dyu = (an, + 5ny)a—z + *(—fBny + omy)%
(ng, ny) being the outward unit normal to 0€2. The equation (4) leads to the
variational formulation: Find v € U s.t.

u Ov u Qv
Alu,v) =< g_g’g_g > 4e? < g—n, g_n >=¢(v) Yoelu
where constraints ¢(1) = 0 on the load and < u,1 >= 0 on the solution
must be imposed in Problem C to make the problem uniquely solvable. Here
< +,+ > denotes the L? inner product over the domain .

Due to different boundary conditions in Problems A and C the asymptotic
solution may fall into two different states when € — 0. The first one occurring
typically in conjunction with the Problem A has the asymptotic behavior

U~ Uy + €2uy.

In this “cool” state no locking is present and the standard finite element
scheme gives a nicely converging method as long as the solution u meets the
usual regularity requirements.

On the other hand, in Problem C the solution © may behave as

U~ € 2ug+ uy

where ug satisfies the constraint

aU(]

— =0. 5

i )
This “hot” state is prone to locking since due to the rotated coordinate system
the bilinear finite element space is not capable of accommodating enough



functions satisfying the constraint (5). This means that in Problem C the
relative error in the energy norm satisfies only

[l = ualll

[l

even for infinitely smooth deformations w.

In order to avoid locking in the “hot” state a modified bilinear form can
be introduced to reduce the constraint (5). In [I] and [IV] this form is chosen
to be

h
~ min {1, —}
€

ou 8 ou Ov Ju 8v
Ap(u,v) =< Rp— >4 < —, — >+ < (I - Rh)(% %

o&’ 8§ on’ on
where R, is a numerical flux-reduction operator chosen to be the L?-projection
onto elementwise constant functions, i.e.

> (6)

1

(Bnp)(z,y) = arca(K) /Kgo(x',y')dx’dy’ (z,y) € K

for every element K. With the use of (6) the constraint (5) is reduced to

m%—o (7)

and the finite element approximation to ug is sought for in a larger space

dv
23

Indeed, this approach is fruitful and it is shown in [I] that for sufficiently
smooth solutions u the approximation error in Problem C in the “hot” state
can be bounded as

Z/{Oh—{UEZ/{h|Rh 0}

QASCh

on a uniform or piecewise uniform mesh. Also the consistency error stays
bounded in both Problems, A and C. In particular it is shown that

€c S Ch2

in Problem A on a uniform or piecewise uniform mesh for a smooth w.

The above results can be refined to include several different types of
meshes and more general boundary conditions. The analysis is based on
noting that the condition (7) reduces to a difference scheme for a bilinear v €
Uy, on a rectangular mesh. The question of the significance of the regularity
of u is touched in [IV] where the asymptotic consistency error is discussed.
Numerical experiments then show that for non-smooth u the performance of
the reduced scheme can depend very subtly on the underlying mesh.
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5 The shell problem

The two dimensional shell models used in finite element modeling of thin
shells are derived from energy formulations of full 3D-models [15]. The shell
model used in [II] and [III] is of Reissner-Naghdi type with two different
scalings. In this model the scaled total of the shell is given by

Furlw) = 5 (P Ao(u, ) + A ) — Q) ®

in the membrane-dominated case and by

Fp(u) = %(Ab(y, u) + 172 A (u, 1)) — Q(u) 9)

in the bending-dominated case. Here ¢t < 1 is the thickness of the shell,
u = (u,v,w,0,1) is the vector of three translations and two rotations and
@ is the load potential. The bilinear forms A;(u, u) and A,,(u,u) represent
the bending and membrane energies respectively and they are given by

2

Ay(u,v) = / [o(5nn + ) () (s + 5) (@) + (1= ) 3 gy () }day

ij=1

and

An(u,v) = 6v(1 —v) /Q {p1(w)p1(v) + p2(w)pa(v) ydxdy

—|—12/{l/(511 + fa2) () (B11 + Pa2)(v)

1 -V Z 52] 51] }dlEdy

4,j=1

where the integration is taken over the midsurface €2 of the shell. Further,
v is the Poisson ratio of the material, v is a shear correction factor and x;;,
Bi; and p; represent the bending, membrane and transverse shear strains,
respectively, depending on u as

ou 00

fr1 =4 +aw n=s
T

0 0
Ba2 :a—z + bw K22 :8—5

1 ou Ov 1 0
P12 5(8—y+%)+cw = [o1 K12 _5(8_y 8:5) = Ko1

and
_Ow _ 9w

The parameters a, b and ¢ define the shell geometry, and the type of the shell
is given by the discriminant D = ab — ¢®. If D > 0 the shell is elliptic, if

11



D < 0 it is hyperbolic and the case D = 0 leads to a parabolic shell. The
case a = b = ¢ = 0 is excluded, since in this case the shell is totally flat, i.e.
a plate.

The above model corresponds to the Reissner-Naghdi model of a shallow
shell [18] where such a major simplifications are already made that up to
the accuracy the geometry parameters can be taken constants to simplify
the analysis. A relation of the above approach to the engineering practice in
discussed in [7, 14].

The two different energy formulations (8), (9) lead to two different vari-
ational formulations:

(M) Find u € Uy such that
A (u,v) = 2 Ay (u, v) + A (u,v) = Q(v) Vv € Uy,

(B) Find u € Up such that
Ap(u,v) = Ay(u,v) + 12 Ap(u,v) = Q(v) Vo € Up,

where Uy, and Up are the membrane and bending energy spaces, respectively.
In a prototype setting the boundaries are assumed to free in the bending-
dominated case (i.e. no constraints are imposed in Up, except those making
the problem (B) uniquely solvable) and clamped in the membrane-dominated
case (i.e. homogeneous boundary constraints are imposed in Uy ).

The problem of locking is associated with the bending-dominated scaling
(B). Namely, if the set of inextensional deformations

Z/{(] = {Q € Z/{B|Am(yay) = 0}

has nonzero elements and Q(v) # 0 for some v € Uy the standard finite
element scheme suffers from locking. Also, letting t — 0 in (B) leads to the
inextensional formulation of the problem: Find u € U, such that

Ap(ug,v) = Q(v) Vv € Up.

To avoid locking a modification of the membrane and transverse shear
strains is needed. Several attempts in this direction mainly based on the
mixed formulation of the problem include [1, 6, 8]. The difficulty does not lie
in circumventing the locking effect, but in designing an element that has a
good performance in both states, bending- and membrane-dominated. The
following straightforward interpretation of the MITC4-element [14] is used
in [II] and [III]. Let

Al (u,v) = 67(1 — v) /Q{ﬁl (w)pr(v) + po(u)po(v) }dady

+12 /Q{I/(BH + BzQ)(H)(BH + ﬁgz)(ﬂ)

+(1-v) Z Bij(w) By (v) Ydady

ij=1

12



where . .
B = Hﬁﬁu, Baa = Hzﬁm, p= Hﬁpla P2 = Hng.

Here II# and II} are L2-projections onto spaces Wi and W consisting of
functions elementwise constant in x and linear in y or elementwise constant in
y and linear in z. For the term (5 two different possibilities arise. The most
natural one is to set By = 1,312 where IIY = IIZT1Y is the L%-projection
onto the space W,¥ of elementwise constant functions. The other alternative
is a bit more complicated in nature as shown in [14], but leads to similar
results.

The above definitions lead to two different finite element schemes for finite
element spaces Uy, C Uy and Up ), C Up:

(M) Find u, € Upry, such that

AL (up,v) = P A (uy, v) + A (wy,0) = Q(v) Yo € Ungp,

(Bp) Find u, € Up, such that

AL (uy,,v) = Ay(uy,v) +t 2A" (w,,0) = Qv) Yo € Upy,

together with the limit problem when ¢ — 0: Find w, € Uy, s.t.
Ap(uy,v) = Qv) Vv € Uy

where

Upp = {v € Upy | AL (v,v) = 0}.

The different variational formulations also give rise to different norms: ||| -

larn = /AR () and ([ || = /AR5 -) = 72(I] - |l[arn- The discretiza-
tion error can again be split into the approximation error and the consistency
error. In [II] and [III] two questions obtain the main attention:

1. In the bending-dominated case, how well the functions in U, can be
approximated by the functions in U, i.e. given u, € Uy how large

0 .
e, = inf |||lug — vl|||BA
=it {llug = ol
is? Answer to this question reveals how well the formulation can avoid
locking.

2. How large is the consistency error

Ak
eori= sup Au—Auw)w)
0EUg £ 2] a2,

in the membrane-dominated case? Answer to this question gives in-
formation on how well the formulation can be used in the case of a
membrane dominated deformation.

13



The performance of the modified finite element scheme depends on several
properties of the domain {2 and the mesh. In this thesis the intention has been
to find out the limits of the scheme under “optimal” conditions. Therefore
the following assumptions are made:

1. The domain €2 is assumed to be of rectangular shape and periodic in one
variable. This is required by the Fourier-methods used in the analysis
of the deformation field u.

2. The mesh is assumed to be rectangular and to have a constant mesh
spacing in the periodic direction. This is necessary since the analysis
relies on making a Discrete Fourier Transform of the functions in the
finite element space.

Under these assumptions the main results in [II| and [III]| state that

1. For uy € Uy
e% < Chhlug|s + Coh3¢ Vjygl,, 2 <5< 3

where Cy = 0 if the shell is elliptic, or if the mesh is aligned with
the characteristics of the problem. Here |- |, denotes the kth Sobolev-
seminorm over (2.

2. In the membrane-dominated case when b # 0 the consistency error
satisfies

eert < Cr(u)h + Cy(t, s, u)h*™ + C3(t,u)h?, s>0

where

Cl(u) =C E |ﬁij(@)|27m
ij
02(tﬂ S,Q) =Ct! E |ﬁij(ﬂ)|1+s
ij

Cs(t,u) =Ct Z |pi(w)]s-

Here m = 0 in the elliptic case and m = 1 in the parabolic and hyper-
bolic cases.

When interpreting the result for the consistency error e. s it should be
noted that the transverse shear strains p; are typically very small at small ¢
under smooth deformations so that the constant ('3 is not very likely to blow
up when ¢ — 0.

Finally, in [V] a numerical performance of the modified scheme is con-

firmed using a well-known benchmark problem suffering from locking, the
Morley shell [13].
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