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1 Introduction

The Korteweg—de Vries equation is the simplest wave equation involving both
a non-linearity and dispersion effects. Several elementary variants appear in
the literature, the simplest of which is

U + Uy + Ugpy = 0. (1)
Substituting u = %’U + g and t = 7, a family of equivalent equations

Uy + QUUL + BUg + YUpze = 0 (2)

is obtained.
The equation first occured in the study of solitary (water) waves, the
profile ((x, t) of which, as shown by Korteweg and de Vries in 1895, satisfies

the equation
oc _3(g\*(2,0¢ o¢ 1 9%
ot 2<h> <368X+ 8X+308X3 ’ ()

which is readily seen to be of the form (2). Here y is a spatial coordinate
chosen to be moving (almost) with the wave, ¢ is time, g is acceleration due
to gravity, h is the undisturbed depth of water, € is an arbitrary parameter
and o is related to the surface tension 7', the density p of the liquid and
other parameters by o = %h3 — %. The historical background and physical
meaning of the equation are discussed in more detail by Drazin and Johnson
[4, Ch. 1]. Later, the same equation has also occured in plasma physics and
in studies of anharmonic non-linear lattices. References to these applications
and some others are found in Miura [11].

Of the various approaches to this problem found in literature, we will
treat the initial value problem u(0, ) = ¢(z) for the equation (1) on the real
line R as an abstract evolution equation in a Banach space and employ the
theory of Cy semigroups. Another tool that has been applied in the analysis
of the Korteweg—de Vries equation by various authors is the inverse scattering
method. The book of Drazin and Johnson [4] is written in this spirit, as is
the article of Murray [13] (which we will cite for an interesting comparison to
our theory). A classical treatment (as opposed to the semigroup approach of
more modern mathematics) of the Korteweg—de Vries equation is found e.g.
in Bona and Smith [2].

A semigroup theory study of the Korteweg-de Vries equation was first
done by Kato [8], who introduced a unified theory applicable to various kinds
of quasi-linear partial differential equations. This theory was based on the
results for linear evolution equations (the abstract Cauchy problem), a field
also strongly contributed to by Kato [6, 7].

Kato considered the problem in a somewhat generalized form

Ut + Uggzy + a(u)um - 07 (4)

where a € C*(R), and obtained the following result:



Theorem 1 (Kato). The initial value problem for (4) with the initial data
¢ € H*(R), s > 3, has a unique solution

u € C([0,7]: H*(R)) N C([0,T]: H**(R)) (5)
for some T > 0, and u(t,-) depends continuously on ¢ in the H*(R) norm.

Kato also noticed the possibility to obtain similar results with the third
order derivative 88—;3 replaced by a more general polynomial P(%) of the
differentiation operator.

In later work [9], Kato strengthened the previous theorem to cover the
Sobolev spaces of order % < s < 3, in which case we have a unique solution
in the space C([0,T] : H*(R)) N C'([0,T] : L*(R)). Furthermore, under an
additional assumption, a global existence theorem was obtained.

Definition 2. An initial value problem on R for a differential equation (e.g.
of type (4)) is said to satisfy Kato’s global growth condition if there are real
numbers s; > sg > % and a monotone increasing function g : [0, oc[— [0, o0]
such that for any T > 0 and any u € C([0,T[: H*") satisfying (4), one has

lu(®)llsy < g (Ju(0)]ls) Vvt €[0,TT. (6)

Theorem 3 (Kato). If Kato’s global growth condition is satisfied by (4),
then Theorem 1 holds for s > sq with T = oc. The proper Korteweg—de
Vries equation (1) satisfies this condition with sq = 2.

The aim of the present paper is to extend these theorems to cover a
wider range of partial differential equations. In doing so, we try to reveal
what exactly are the properties of the Korteweg—de Vries equation, which
give rise to the above mentioned existence and regularity properties of the
solutions. The semigroup approach gives a good ground for this, since the
abstract theorems of Kato [8, Th.’s 6, 7| behind the above applications are
given in a rather general setting. Therefore, it suffices to seek the range of
applicability of these abstract results in order to apply their full strength,
but the computations will nevertheless get somewhat involved.

Some preliminary results deal in particular with the characterization of
infinitesimal semigroups on L?*(R) and the uniformity of such conditions for
operator families, extensions of commutativity from generators to the semi-
groups, and Sobolev norm estimates. We will cite some results in particular
from the theory of semigroups; the reference for many of these will be the
book of Pazy [15].

More precisely, we will carry out the extension to Theorem 1 as suggested
by Kato [8], with a slight modification, which proves to be necessary. In this
spirit we define Kato’s polynomial condition (Definition 7), which turns out
to give a necessary and sufficient condition for a polynomial P() of the
differentiation operator 2 to generate a semigroup on L*(R). The condition
only sets restrictions on the even part of P, and thus the proper Korteweg—de
Vries equations satisfies this condition rather trivially.



A wider class of equations, to which the Korteweg-de Vries equation
belongs, consists of quasi-linear equations where only odd order derivatives
are involved. This class appears every now and then throughout our analysis,
and strictly stronger results are obtained than for more general equations.
In fact, most of the theorems of Kato concerning the equations (4) extend
more or less directly to this class of equations.

In order to find the maximal class of partial differential equations that
could be viewed as being of the Korteweg—de Vries type, and also to get a
grasp of the full strength of the abstract theorems, we allow for time depen-
dent coefficients in the equations of interest. This is certainly not uncommon
in applications, and already in the original context of the Korteweg-de Vries
equation (3), time dependence of some of the coefficients could be of inter-
est if the liquid in question is involved in some industrial process, say. For
such a generalization (with some more technical assumptions), we are able
to prove existence, regularity and continuous dependence results (Theorems
28, 30) analogous to Theorem 1. This result, in particular the explicit time
dependence, appears to be new.

Somewhat sharper results (Theorem 32) are obtained for the equations
with only odd order derivatives without time dependent coefficients, and a
subset of this class of equations even gives us global solutions. Even with
these additional restrictions, the coverage of this result appears to be new.
Unfortunately, this class of equations does not include the proper Korteweg—
de Vries equation, for which Theorem 3 on global existence is nevertheless
valid, but derives from rather individual properties of (1) to be discussed
shortly.

As a whole, we investigate the properties of the Korteweg—de Vries equa-
tion crucial to the existence theory of solutions, and attempt to view the
equation in a more general setting as a member of a class of equations with
these properties. We derive results analogous to the ones cited above for the
range of equations sharing some or all of these properties.

1.1 Notation

The notation is mostly standard, and follows in particular conventions similar
to those of Kato [8, 9] and Pazy [15]. An important difference worth pointing
out lies in the notation for infinitesimal generators of Cy semigroups. Here
we follow the lines of Pazy to denote by A € G(X, M,w) the fact that A is an
infinitesimal generator of a Cy semigroup of a certain kind, whereas Kato has
used a somewhat indirect definition, where the same notation indicates — A
being the infinitesimal generator. This latter approach has some advantages
in removing minus signs that we cannot avoid in the treatment of abstract
evolution equations, but we nevertheless stick to the direct notation. This
also affects the sign in the definition of the resolvent operator.

The most frequently occuring symbols are summarized in the following
table. All function spaces are understood to be on the real line R, unless the
contrary is made explicit; thus H* = H*(R), L? = LP(R) etc.



i Lebesgue integral (over R unless otherwise stated)
o Composition of functions in the spatial variable
1s Indicator (characteristic function) of the set S

A* Adjoint operator of A

[A, B Commutator AB — BA
B(X),B(X,Y) Bounded linear operators of X into itself and into ¥’
c,cr Continuous and n times continuously differentiable
functions
D Spatial differentiation operator a%
D(A) Domain of operator A
]/”\ Fourier transform of f
f!, First and nth spatial derivatives of f

G(X, M,w) Set of infinitesimal generators of Cy semigroups
T(t) on X for which ||T'(¢)|] < Me*t

H Sobolev space of order s of L? type, W*?2
1 Identity operator
Lp Lebesgue space of order p, WP
A® The isometric isomorphism of H* onto L2,
N f(@) = 7= [ €™ (1 + )3 F(€)dg
M; Operator of (pointwise) multiplication by f
O(f) Functions increasing no faster than f as x — +oc
p(A) Resolvent set of operator A
R()\ A) Resolvent operator (Al — A)~!
Rz Real part of z
WP Sobolev space of order s of LP type
z Complex conjugate of z
IINCD L? norm and inner product
I|-|lx,(-,-)x  Norm and inner product of the space X
|| 1ls; (-,-)s  H?® norm and inner product

P —

(f,9)s = J(1+)°F(©)g(&)d¢

Il llsps | lsp ~ W*P norm and seminorm (Definition 21)

I+ [loo L* (essential) supremum norm
lller Cl=ryr] nomm s = maxise, /(o)
| ||00,7",n C"[=r,r] norm ||f||00,'r,n = MaXge{o,....n} ||f(k)||oo,r

2 Semigroups Generated by Differential Oper-
ators

2.1 Polynomials of the Differentiation Operator

In this section we seek conditions under which polynomials P(D) of the dif-
ferentiation operator D with constant real coefficients generate certain types
of semigroups to which the general theorems concerning abstract evolution
equations apply. In two of the main propositions the statement of our results
will be two-fold: In addition to giving the “useful” result to be applied later,



we also construct counter-examples to show that the setting of the results is
in some sense the most general possible.

Our first result, Proposition 6, concerns polynomials consisting only of
terms with odd powers. In the verification of Proposition 6, we need two
results from the theory of semigroups, which are stated below without proof.
The proofs may be found in Pazy [15, Th.’s 1.10.8, 2.5.5].

Proposition 4 (Stone). A is the infinitesimal generator of a Cy group of
unitary operators on a Hilbert space if and only if A is skew-adjoint.

Proposition 5 (Crandall-Pazy—Tartar). Let A be the infinitesimal gen-
erator of a Cqy semigroup T(t). Then T(t) is analytic if and only if there are
constants C > 0 and A > 0 such that

C
[JAR(N : A)" | < — for A > nA, nezt.
n n
Proposition 6. A polynomial of the differentiation operator D generates a
Cy semigroup of unitary operators on H*, in particular on L?, if and only
if it is of the form P(D?*)D, where P is a polynomial. A polynomial of this
form does not generate an analytic semigroup on L?.

Proof. A = D* is skew-adjoint, i.e. A* = —A, if and only if & is odd, since
(Au,0), = [ (1+ € (ie) AT
= (1) [ @+ @ RUOTOREE = (-1 (0. 40),.

Now clearly any finite sum (with coefficients) of odd powers of D is also
skew-adjoint, whereas no sum containing even powers of D can satisfy this
condition. Thus the first assertion of Proposition 6 follows immediately from
Proposition 4.

In order to validate the second assertion, we show that the necessary (and
sufficient) condition of analyticity given in Proposition 5 fails to hold for the
operator P?(D)D. Indeed, let some constants C' > 0, A > 0 be given. We
may well assume A > 0, since the condition of Proposition 5 clearly holds for
any A > Ag, if it holds for some Ay. We will investigate the operators in the
Fourier domain, where D corresponds to multiplication by £, and thus

||P(D2)DR(>\:P(D2)D)"+1f||2:/‘ A—Zi’(( 5;)))"“?(5) dg

L eree) :
= | Grr e @re

To find a contradiction with the condition of Proposition 5, it is sufficient to
show that for some A > nA, say A = 2nA, this expression will exceed

4C’2A2
2)\2”/|f (©)Id 5_ 2(n+1) /|f )[de. (7)




We now take f = 1. For 0 <z < ’\72 = 4nA?, the mapping x +

W is increasing, and for large enough &, so is £ — £2P?(—£?). Thus
taking b > a > 0 large enough, but so that b*P?(—b?) < 4nA? (which is

possible for sufficiently large n), we ensure that

t/ &P (=)
((2nA)? + £2P2(—€2))

a2 P%(—a?)
((271]\)2 + a2P2(—a2))

—|f(©)2de > —(b—a),

(8)
If the condition of Proposition 5 were to hold, we should now have, com-
paring equations (7) and (8),

2p2(_ 2
TP cyern, 9)
a2P2(—qa2) 2
1 + ( 2nA )
But we have the limit
2\ " 2
lim <1 + <1> ) = exp <lim l) =1,
n—oo n n—oc M

and therefore, for a>P?(—a?) > 2CA and sufficiently large n, the inequality
in (9) clearly fails, and the proof is complete. a

We now define a condition that turns out to be convenient in generalizing
the Korteweg-de Vries equation. A condition of this kind was already pro-
posed by Kato [8] (thus the name) with somewhat larger generality, but the
second assertion of the following Proposition 9 shows that the condition as

given below is the most general to allow us to apply the theory of semigroups
on L2

Definition 7. A polynomial P(x) of real coefficients is said to satisfy Kato’s
polynomial condition if either the sign of the coefficient of the highest even
power 2™ of x in P(x) is (—1)%, or if the even powers of x are absent in

P(x).

With this definition at hand, we are ready to formulate a result on polyno-
mials of D, where even powers are allowed. In view of the proof we state
here the general characterization of infinitesimal generators of Cjy semigroups
in the following proposition, which is found together with proof e.g. in Pazy
[15, Th. 1.5.3 (& 1.2.2)].

Proposition 8 (Feller—-Miyadera—Phillips). Let A be a linear operator
on X. Then A € G(X, M,w) if and only if

1. A is closed and the domain of A is dense in X.
2. Jw, 00[C p(A) and

M



Furthermore, any infinitesimal generator of a Cy semigroup on X is in
G(X, M,w) for some M > 1, w € R.

Proposition 9. Kato’s polynomial condition for —P is necessary and suf-
ficient for a polynomial P(D) to generate a Cqy semigroup on L*. In more
detail, we have the following:

1. If —P satisfies Kato’s polynomial condition, then there exists an w
such that P(D) € G(L?,1,w). In this and only in this case, RP(i&) is
bounded above, and one can take any w > maxecg RP(i€).

2. For w < maxger RP(i€), P(D) ¢ G(L* M,w) for any M. In particu-
lar, if —P does not satisfy Kato’s polynomial condition and thus R P (i€)

is not bounded above, then P(D) does not generate a Cy semigroup on
L?.

Proof. The first condition of Proposition 8 is satisfied by any P(D), and we
hence concentrate on the validity of the second condition.
P(D) can be separated into its even and odd parts:

P(D) = Pi(D*) + P(D*)D.
The Fourier transform of P(D) is the multiplication operator
P(i§) = Pi(—€%) +iP(—&)¢,
1

and (A — P(D))~! corresponds to multiplication by s—pag 0 the Fourier

domain. Here, obviously, RP(i&) = P,(—£?). We have

[ 7 i < max 111
A= Pi(=€2) — iPy(=€)¢| T R (A= Py (=€) + (Po(—€2)6)°
2
< [1£1] 5 for A > max P, (—¢?)
(A — maxger P1(—€?)) ¢eR
The second condition of Proposition 8 now follows for M = 1, w >

maxger P1(—&?) (upon application of the result about estimating the norm
of products) provided that the maximum in question exists. This happens
if and only if —P satisfies Kato’s polynomial condition, since in that case
the term of highest order in Py(—¢2) is —c(—£2)2 = —|c|¢™, since ¢ has sign
(—1)%. Here m is even, and thus P,(—¢%) — —oo as & — +oo. Thus Py
has a maximum, which is also trivially true, if Kato’s polynomial condition is
satisfied by the lack of even powers in P. Similarly, we see that P;(—£?) — oo
as & — +oc if the condition is not satisfied. This completes the proof of the
part 1 of Proposition 9.

Assume then that an w < maxeeg Pi(—&?) and some M are given. By
continuity it follows that we can take an interval [a, b] such that w < P;(—£?)
for all £ € [a,b]. Let f= 1j44- Then

-~

/ (&) Pdg _ b—a
(= Pi(—)* + PH-)&)" (0 - A=) + B2 (—))"




for some ¢ € [a, b], and this should not exceed

(%) GRS (%)nw—a).

For (10) to hold, we should hence have

1 M= 1
2 < 7 7 2
A= P (=) "+ P2 (=)~ (A —w)” nmoe (A —w)

and the inequality should also hold in the limit. Taking a common denomi-
nator and simplifying, the final inequality is equivalent to

2 (Pi(—¢") —w) A < P(=c*) —w? + Py (—c*)c. (11)

Now Pi(—c?) > w by assumption. Furthermore, for a fixed interval [a, b],
the right-hand side of (11) is bounded for ¢ € [a,b] due to continuity of the
polynomials. But we can now choose A as large as we like, and thus (11)
fails, justifying the failure of P(D) to generate a Cy semigroup on L?. O

2.2 Perturbations by Multiplication Operators

Our next goal is to show that a result similar to Proposition 9 remains valid,
when certain terms involving multiplication operators by suitably bounded
functions are added to P(D). Such operators are easily transformed into
so-called dissipative operators, for which a variety of results is known. The
definition of dissipativeness given below may be stated in more general terms
in a Banach space (as in Pazy [15, Def. 4.1]), but the somewhat simpler form
in a Hilbert space is sufficient for us.

Definition 10. A linear operator A in a Hilbert space X is said to be dissi-
pative if for every x € D(A) we have R(Az,x)x < 0.

A useful condition in terms of dissipativeness that is sufficient for a linear
operator to generate a semigroup of contractions is cited in Proposition 11;
the proof is found in Pazy [15, Cor. 1.4.4]. (The result we cite is a corollary of
the actual Lumer—Phillips theorem.) The device to handle the perturbations
by dissipative operators will then be the following Proposition 12. We also
require some estimates on the L? norms of derivatives, and for this purpose
we have Proposition 13. These pave the way for the main result of this
section, Proposition 14.

Proposition 11 (Lumer—Phillips). Let A be a closed linear operator with
dense domain in X. If both A and A* are dissipative, then A € G(X,1,0).

Proposition 12 (Trotter—Gustafson). Let A € G(X,1,w) and B be a
dissipative linear operator on X such that D(B) D D(A) and

|Bz|| < af|Az|[ + Bl|z|| V2 € D(A), (12)
where 0 < a <1 and > 0. Then A+ B € G(X,1,w).

10



Proof. The case w = 0 is shown in Pazy [15, Cor. 3.3.3]. The general case
follows readily: If A € G(X,1,w), then A —wl € G(X,1,0). If (12) holds,
then

|1Bz]| < al[(A = wl)z|| + (aw + B) ||2[],

and (A —wl)+ B € G(X,1,0) by the case w = 0. This is equivalent to
A+ BeG(X, 1,w). O

Proposition 13. For 0 <r < s < oo and u € H* we have

1Dl < [|D*u

s—r s T
ul[ 7 < el|D%ul| + Cle, lfull, (13)

where € > 0 can be chosen arbitrarily and C' is a continuous function of its
arguments in the given range. Moreover, if deg P = n, then

1D ul| < e ([[P(D)ul| + [[ul]), (14)
for some ¢ depending on P.

Proof. Using Holder’s inequality with respect to the non-negative measure
dp = |u(€)|?d€, we obtain

it = [erans ([erzan) ([roea) ™ = (1o

From the AM-GM inequality we deduce

sS—T

) (G977 vr)

T S—T (S \sr T
< 2Dl + 2= (2¢) " [Jull = ellD*ull + C(e, <) lull
S S T S

‘= (Cep*
-

Now let P(D) = >"}_,arD*, where a,, # 0. Then

n 1 ak
10| < 1) |||u||+2 1Dk
1 ak n
< - lIPO + |||u||+2 (e||D ull + Cle, —)||u||)

When e is taken sufficiently small, the terms involving ||D"u|| on the right-
hand side can be absorbed in the left-hand side, and (14) follows. O

Proposition 14. Let a,a’,b € L. Then the following claims hold:
1. M,D+ My € G(L?,1,w) for w > w; = %||a'||oo + 11| 0o-

2. If —P satisfies Kato’s polynomial condition and n = deg P > 2, then
P(D) + M,D + M, € G(L*1,w) for w > wi(||a']|ccs ||0]|s) + wa(P),
where wy 1s as in part 1 and wy depends on P as in Proposition 9.

11



Proof. Our first aim is to apply Proposition 11 to deduce part 1. For both
M,D and M,, we readily obtain the estimates

1
= 3 ‘/aDqux

1
< Sl fecl[ull,

|(M,Du,u)| = ‘/aDu -udx

1 /2
= —|— d
2‘ /au X

|(Myu, u)| = ‘/bquSﬁ

< 18] oo ful .

Since M,, M, are self-adjoint (quite trivially) and D is skew-adjoint (by
Proposition 6) on L?, the same estimates are valid for (M,D)* = —DM, and
My = M,, and thus both M, D+ M,—wI and (M, D+ M,—wI)* are dissipative
for w > 1||@||sc +|b|| 0, and by Proposition 11, M,D+ M, —wI € G(L?,1,0)
for such w, which is equivalent to M,D + M, € G(L* 1,w). Part 1 is now
established.

Now we also have

| (Mo D + My — wI) ul| < |lafloo||Dul| + (|[blloc +w) [[ul[- (15)

Our intention is to apply Proposition 12 to derive P(D) + M,D + M, €
G(L?,1,w) from our previous knowledge that P(D) € G(L?,1,w,) (Proposi-
tion 9). For this we need to work further on the inequality (15) applying the
results of Proposition 13. Indeed, using first (13) and then (14) we have

||Dul| < €[ D"ul| + C(e)|[ul| < ecl[P(D)ul] + (ec + C(e)) [ul]

Substituting back into (15) and taking e sufficiently small, the condition (12)
of Proposition 12 is satisfied. The other conditions of the same proposition
hold rather evidently, and we conclude that P(D) + M,D + M, — w'l €
G(L? 1, w,) for ' > wy. Thus P(D)+ M,D+ M, € G(L?* 1,w) for w > wy =
w1 + wy. This completes the proof. O

2.3 Families of Operators and Uniformity

It is common in applications that the operators involved in evolution equa-
tions do not remain invariant but typically evolve in time producing a con-
tinuum of operators. We thus devote this section to the study of opera-
tor families. Due to the extreme usefulness of Kato’s polynomial condition
above in investigating operators involving differentiation and multiplication
by bounded functions, we now wish to extend this definition. The form of
Definition 15 below gains justification from the fact that the generation of
semigroups by differential operators was completely characterized in terms
of Kato’s polynomial condition in Proposition 9. With a straightforward
generalization, we obtain a necessary and sufficient condition for our uni-
form Kato’s polynomial condition in Proposition 16, and we also seek some
sufficient conditions of simpler nature.

12



Definition 15. A family of polynomials {Py : 0 € ©} of constant real coeffi-
cients is said to satisfy Kato’s polynomial condition uniformly uf there is an
w € R such that —Py € G(L?,1,w) for all 6 € © and this fized w.

Proposition 16. A family of polynomials {Py : 0 € O} of constant real
coefficients satisfies Kato’s polynomial condition uniformly if and only if the
set of maxima of —RPy(i€) is bounded above uniformly in 6 € ©. If each
Py satisfies Kato’s polynomial condition individually, and the degree of the
even part of Py 1s bounded uniformly for 6 € ©, then any of the following
conditions is sufficient for the uniform Kato’s polynomaial condition:

1. The set of zeros, and the set of values of the leading coefficient of
RPy(i€), 6 € © are bounded uniformly for 6 € ©.

2. The set {ZhEHg |con| : 0 € O} is bounded above, and we have the es-
timate |dg| > B ey, [con| where dy is the coefficient related to the
highest even power ™ of x in Py(x) and Hy C 2N is the set of coeffi-

h

cients of those even powers z in Py(x) for which sgn cop, = —(—1)2.
3. The coefficients of even powers in all Py are independent of 6.

Proof. The necessary and sufficient condition stated first is an immediate
corollary of Proposition 9. By the same Proposition, Kato’s polynomial
condition implies the boundedness above of —RP(i£). Part 1 now follows
from the fact that the set of zeros of the derivative of a polynomial, and thus
the set where the maxima are obtained, lies in the convex hull of the set of
zeros of the polynomial itself, and is therefore bounded by the same bounds.
Indeed, let now the set of zeros (and thus the set of points of maximum) be
bounded by 7, Z > 1, the values of the leading coefficients by =C" and the
degree by M. We then have

M
max —R Py (i€) = max +d; H — ) < H (Z+27)=C(22)M
k=1 k=1

and we conclude that the set of maxima is, indeed, bounded.

We note that the sufficiency of condition 3 follows immeadiately from the
sufficiency of condition 2, but emphasizes the fact that Kato’s polynomial
condition is only a matter of even powers. We then concentrate on condition
2.

When substituting = = i into the even part of P(x), the even powers
&M get a sign which is (—1)% times the sign of the corresponding coefficient
of " in P(z), and thus the powers ", h € Hy, referred to in condition 2
are exactly those that get a negative sign in RP(i€). The leading term, by
Kato’s polynomial condition and Proposition 9, gets a positive sign, and the
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signs are reversed in —RP(i€). Then, denoting og =, |conl,

— RP(i€) < —|dpl&™ + Y [conl¢”
heHy
if |¢] < 1
<% ifiel < (16)
—|dg|€™ + ophe, if |€] > 1 and hy = max Hy

Here {0y} is bounded by assumption. For the second case we can find the
maximum by elementary calculus: Dropping the common subscripts and
assuming d > 0 for convenience, the derivative with respect to & of this
expression is —md&™ ! + ho&"1, and in addition to the trivial zero we have

1

a critical point at (%) m-h_ Evaluating the value of the function at this
—h_

point we obtain (%) mh g (1 — %), the last factor of which is bounded by

1, and o is bounded by assumption. Furthermore, % < 1, the exponent is
non-negative and ﬁ <m-—1,and § < % by assumption, so also the first
factor is bounded. By inequality (16), the maximum of —RP,(i{) is no larger
than this bound, and we are done. O

Proposition 16 gives a necessary and sufficient condition of uniform Kato’s
polynomial condition, but this condition is not easy to use in general. Of
course, due to the form of this condition and the limited possibility of solving
the maxima of a polynomial analytically, we do not expect any simple form
for the condition solely in terms of the coefficients of the polynomials FP.
A rather simple but by no means exhaustive condition on the coefficients
is nevertheless given by condition 2 of Proposition 16 and condition 3 is,
of course, quite trivial. However, this is in particular the case with all the
equivalent forms (2) of the proper Korteweg-de Vries equation, even if time
dependence is allowed in the coefficients.

2.4 Commutativity of Semigroups and Generators

The commutativity of objects is a strong property often of remarkable mean-
ing in manipulating expressions. In this section we show how this property is
inherited by semigroups from their infinitesimal generators under appropriate
conditions. This result comes into use, since the purely differential operators
investigated in this chapter (and shown to generate Cy semigroups) certainly
commute with each other. The tools to achieve this result turn out to be
Proposition 17, which was used in a rather different context in Kato’s work
[6], and a simple construction with the graph norm.

The proof of Proposition 17 can be found in Kato [6, Pr. 2.4] (also in
Pazy [15, Th. 5.8|), and it is related to the concept of admissible subspaces
(see Kato [6, Def. 2.1] or Pazy [15, Def. 4.5.3|), which has significance in
the development of the abstract results on evolution equations that we will
cite below (Propositions 27, 29), but does not occur explicitly in the present
work.
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Proposition 17 (Kato). Let S be an isomorphism of Y C X onto X,
where X and Y are Banach spaces and the embedding of X into Y s dense
and continuous. If A and Ay = SAS™! are infinitesimal generators of Cy
semigroups T(t) and Ty(t) on X, respectively, then Ti(t) = ST(t)S™! for
t >0, and T(t) (restricted to 'Y ) is a Cy semigroup also on'Y .

We shall next state the part of the definition of generalized Sobolev spaces
relevant to our present work. Definition 18 could be stated without the
assumption of A being an infinitesimal generator, but the formulation used
here is natural and sufficient in this context. We follow the definition in Engel
and Nagel |5, Sect. I1.5|, but we only need here the first order space, although
the concept is readily generalized to a space of any integral order. (We note
that the first order Sobolev space H! of L? type is constructed in the manner
of Definition 18 by taking X = L?, A = A'.) Some basic properties that we
use are stated in the following Proposition 19; for the proof we again refer
to the above mentioned text [5]. Thereafter we proceed to state and prove
Proposition 20 on the above mentioned commutativity property, which is the
main result of this section.

Definition 18. Let A be the infinitesimal generator of a Cy semigroup on
a Banach space X such that A~* € B(X). The space X, = D(A) with the
norm ||z||a = ||Az||x is called the generalized Sobolev space of first order
related to A.

Proposition 19. The space X 4 is a Banach space, which is embedded in X
densely and continuously, and A : X, — X is an isometric isomorphism of
X4 onto X.

Proposition 20. Let A and B be infinitesimal generators of Cy semigroups,
and let the semigroup generated by B be T'(t). If[A, B] =0, then [A,T(t)] =0
for all t > 0. In particular, if Q(D) is a polynomial of D and T(t) is the
Co semigroup of generated by a polynomial P(D) (where —P satisfies Kato’s
polynomial condition), then [Q(D),T(t)] =0 for all t > 0.

Proof. We have in particular (Proposition 8) A € G(X, M,w), thus A =
A— (w4 p)l € G(X,M,—p), and then 0 € p(A), and A" € B(X). Since
the identity operator commutes with everything, we now also have [A B] = 0.

Now A : X1 — X is an isomorphism of X ; onto X, and B = ABA™ '
the 1nﬁn1tes1mal generator of a Cy semigroup T( ) on X. By Proposition 17
we thus deduce T'(t) = AT (t)A, i.e. [A, T(t)] = 0. Then also [A, T(t)] = 0.

If —(@ satisfies Kato’s polynomlal condition, the particular case of the
Proposition follows immediately from the rest of this Proposition together
with Proposition 9. Otherwise, since Kato’s polynomial condition only in-
volves the sign of one of the coefficients, we can investigate the negative
polynomial, and we still deduce the same conclusion, since clearly Q(D)
commutes with U(t) if and only if —Q(D) does so. O
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3 Estimates on Sobolev Norms

3.1 General Theory

In our study of equations on the H?® type spaces, the core of inequality
manipulations will be in estimating different Sobolev norms. Although we
mainly work with the Sobolev spaces H* of L? type, some of our lemmas
are more conveniently shown under a somewhat more general setting than
the results we actually exploit later. For this we require a characterization
of Sobolev spaces different from the Fourier transform procedure which is
applicable to L? type spaces due to Placherel’s theorem. In a general L”
setting, the spaces can be characterized by integrals over difference quotients
as in Definition 21 below. This definition and the imbedded result are found
(in a more general form) e.g. in Adams [1] and in Lacroix-Sonrier [10, Déf.
I11.4.9].

Definition 21. For p € [1,00[, s €]0, 1], the Sobolev space of order s of L?
type on R is defined by the following condition on the seminorm | - |5,

. |u(z )"
WP = {u € LP:|ulf = // |x1 —x2|1+ dz1dxy < 00 (17)

The Sobolev spaces of order s > 1 are defined by

WP = {uy e Wllr: Dlsly e o=l )
The space W*P becomes a Banach space with the norm

2= Ilullf,), + DMl

s—|s].p

Here the Sobolev spaces and norms of integral order are defined in the usual
way.

The following standard results (which are special cases of significantly
more general theorems, but sufficient for our purposes) often come to use
in estimating Sobolev norms. Proposition 22 is a special case of one of the
Sobolev imbedding theorems found e.g. in Adams [1, Th. 7.57(c)], and
Proposition 23 (Palais [14, Th. 9.5]) is essentially a consequence of these
theorems. A simple proof for Proposition 22 in the case p = 2 (which has al-
ready been applied above) is found in Pazy [15, L. 8.5.1(ii)]. Our formulation
of Proposition 23 is similar to that used by Kato [8, L. A1].

Proposition 22 (Sobolev—Lions). Forp > 1, s > % we have
WP L™ and || flloc < (s, D)[|f]]s5- (18)

Proposition 23 (Palais). For s >t and s > ;7,

few P geW? —  f.ge W' ||f-glly <cls,tp)|lf

g| |t7p'
(19)

$;p
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3.2 Kato’s Commutator

A technical lemma used in Kato’s papers [8, 9] involved a commutator op-
erator of the kind introduced in the following Proposition. A proof given
in [8] for a multidimensional case effectively exploited Proposition 23, and
Pazy [15] followed the same lines. For a special case of the result, we will
present a more elementary proof on the real line R only, which only applies
Plancherel’s theorem and standard integration, with the intention of giving
new insight into the nature of this result. The use of the assumption s > %
appears quite explicitly in the proof more than once. Excluding our restric-
tion to the one-dimensional setting, this was the form in which the result
was originally presented by Kato [8, L. A2|, and it is fully sufficient for our
purposes. However, the extended form [9, L. 2.6] is crucially important in
proving certain results to be cited that lead to global existence theory, and
we will give the short proof of the general case following Kato [8], although
we will not explicitly use it.

Proposition 24 (Kato). Forr > 32, fe H" and |s|,[t| <r — 1, we have
T = A [N MA™ € B(L?) and T < CNf'|]r1-
In particular, for s > %, f € H*, we have
T=[A M} € B(LY)  and |[T]| < ClIf Lo

Proof. Consider first the particular case of the Proposition. The Fourier
transform of 7" is an integral operator with kernel

~ 1—s
2

kEn) =(1+&)7—1+9")2) fE—nl+n)7,

Tu(¢) = / K€ n)a(n)dn.

By the mean value theorem and the fact that the derivative is monotone for
positive reals, we have the estimate

<smax {(1+€)F, (1+7)7 |

(20)
s—1 s—1
< s(1+ 52)71{“75@} + 52 M1 47?2 .

Applying this to the kernel we find that

s—

REm] < s(L+€)7 [G(E —m)(L+17) 7 1, gy + 52 G — )]
= kl(é-: 77) + kQ(f, 77)7

-~

where g(&) = i€ f(€), which is equivalent to g = f'.
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For the boundedness of T, it now suffices to show that the operators T}
and 715 corresponding to the kernels k; and k,, respectively, are bounded.

Indeed,
i< [ ([ |k<5,n>||a<n)|dn)2d§

[l k(e m)a(m)dn|
< f [( / kl(&n)lﬂ(n)ldn>2 (/ k2<§,n)|a<n)|dn)2] de.

where the AM-QM inequality was applied. The previous claim follows by

taking the supremum over all u € L? of unity norm on both sides and ob-

serving that functions whose Fourier transforms are u and |u| are of equal

L?-norm as well as the fact that the supremum taken over all unity-normed

functions with real, non-negative Fourier transform (as on the right-hand

side) is at most equal to the supremum over all functions of unity norm.
The operator Ty = s257' M, is readily estimated by

[Tl = s gl = 52 ([ latayute)as) )

o=

< 527 jg]le ( / |u<x>|2dx>) — 52 lglluollul] < ellgllesllull

where Proposition 22 was used, since s — 1 > %
For T} we have

||T1||2§//|k 2dnd£

/ / (1+ €)1 G(E — )AL +72) '~ dyde

— (/OO /X_E +/0 /X) sP 1+ O+ a0 (1 + n?) ' ~*dndx,

(21)

m|m

‘m

where the Change of variable xy = & — n was performed.
For t > = , — (1 + 2?)! is a convex mapping, and Jensen’s inequality
yields

(L et m?) ™ <o [+ @02 ™+ (1 n?) ]

< 9253 [(1 +X2)s_1 n (1 _H72)s—1] .

N | —

Using this estimate in (21), we see that the integrand is majorized by

S— -1~ 1— §—3 |~
$72%70 (14 2)"7 19001 (L+0%) ~" + 522250 P,
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where the variables in both terms are separated. For the first term we have

/ (1) 500 Pdx = llglles / (1+72)" " dy < oo,

since 1 — s < —%, and for the second

meEA 4 vz o 4 2\s—1 5\ |2
[ lgeoran = IF0OP < 51+ a0 P

min{— %X}

the integral of which with respect to x over all of R is again proportional to
the norm ||g||s_1.
Combining all the estimates we find that, indeed,

T[] < Cllglls—1 = ClIfM]s-1,

and the particular case of the Proposition is established.

For the general case we proceed as above, but in (20) it is sufficient to
estimate the maximum simply by the sum of the two values (since thereafter
we will apply the strong results of Proposition 23). The majorizing operators
Tl, TQ will then be

Tl - |S+t+1|AtMgA7t, T2 - |S+t+1|AisMgAs,

which are essentially the same, since both s and £ can attain both positive
and negative values in a symmetric range.
Applying Proposition 23, sincer — 1 >tand r —1 > %, we then have

IA'MA ul| = [lgA~"ulls < Cllglle—alIA ulle = ClLF [l [ull],

and the general form of the Proposition follows. O

3.3 Compositions by Smooth Functions

Here we seek conditions to guarantee that compositions of smooth functions
with functions of a Sobolev space remain in that Sobolev space with the
norm bounded in some sense. This is done in Proposition 25, and a certain
kind of continuity property of the composition operation is established in
Proposition 26.

Proposition 25. Let y € W*?, s > 1, p > 1, and a € C"*l. If a(0) = 0,
then aoy € W*P and in every case (aoy) € W LP. Furthermore,

||a’ © y||87p < g (||a||OO,CR,fS% R7 C) ’ R= ||y S,p

where g is monotone increasing in all arguments and ¢ = ¢(1,p) is the con-
stant in (18).
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Proof. We first note that the second assertion is an immediate consequence
of the first one, since ag(z) = a(x) — a(0) satisfies the conditions of the first
assertion and (aoy)' = (agoy) € W I if qgoy € W5P. We also note that

| flloo < c(t,p)||f]]ep for t > ;7 (Proposition 22), which implies ||y¥||,, <

(1, )|y, < e(1,p)||ylles1ps s0 y© € L® for £ = 0,...,]s| — 1, and
in particular, y € L™ for any s in the range of the given condition, with

ylloo < e(1,P)[[y]]sp-
Using the chain rule, it is readily verified by induction that

m

o)™ =3 (@ oy) Y oo [[00)" wmezt. (@

k=1 =k =1
2 tje=m

where c¢(j,» ~are finite numerical constants independent of a and y. Here
a® oy € L, since a® attains a maximum in the compact set with z <
lloe < e(L,p)l[ylls- Furthermore, for ¢ < [s] — 1, [[y@]|oc < e(1, p)l [yl
and by the conditions under the second summation in (22), this L™ estimate
exists for all except possibly one of the factors ¥ in the product. For any
¢ < m < s, we certainly have y*) € LP with the norm bounded by ||y||s,
and since an LP function stays in L when multiplied by L* functions, with
the norm bounded in an obvious way, the LP norm of each of the terms
appearing in the summation (22) is bounded by a finite expression of the
form ||a™ || o /(1. p)*~ 1||y||sp, and we conclude that (a o)™ € L? for
each m = 1,...,]s|. For m = 0, we note that if a(0) = 0, then a(z) =
:Efo (xt)dt, and we have

ooyl = [laouPds < [ (Il allon)” do < 101 . 11
(23)

Hence (aoy)™ € LP form=0,...,|s], and aoy € Wlsl»,

For integral s, we are now done. Otherwise, we must show that the
expression in (22) is in W*~ls!? for m = |s|. Note that in this case [s] =
|s| + 1.

For the a'® o y part we have

|at®)( — a®(y(22))]"
// |x1 e dzidxs

" ly(z1) — y(zo)]P (k
<Ol ] o g ondee < I il

t,p (24)

Assume for a while that a*)(0) = 0. Reasoning as in (23), a® oy € L?
for k < |s], since a € C*1 = Cl5]+! and we have the estimate of the desired
form, since a**!) exists. By this and (24) we have, according to Definition
21, a® oy € WP for t €]0,1], and we can take t > %. Furthermore, we
certainly have y() € W*=4P where s — £ > s — | 5], and for all factors except
possibly one in the product in (22) we have s — ¢ > 1 > %. Hence we deduce

by Proposition 23 that (a®) o y) - [T)2, (y(?)% € We=lsle,
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If a®)(0) # 0, let al (z) = a® (x) —a® (0). Then (a oy)-TI",(y©) €
Ws=lsl? by the previous part. We also have [[j,(y¥)7¢ € Ws=lsl? by
exactly the same reasoning, and since W55} is a vector space, we conclude
that

(@® o y) [T ) = (ag” o) [T +a(0) [ [ (v )7 € W Lebr.
(=1 (=1 (=1

Thus all the terms in (22), with m = [s], are in W* 15} and we obtain
(aoy)lsl € Ws=lsl» The last assertion of Proposition 25 follows by observing
that all the bounds obtained during the course of the proof are of the form
indicated by that assertion. O

Proposition 26. Let yi,yo € WP, a € C131*2, s > 1 and p > 1. Then

||a Oy —ao y2||s,p S g(||a||oo,cR,LsJ+27R: C)Hyl — Y2||s,ps
R = max{||y

$,ps ||92||8,p}a (25)

where g is monotone increasing in all arguments and ¢ = ¢(1,p) is the con-
stant in (18).

Proof. By Proposition 25, the left-hand side of (25) makes sense, i.e., the
corresponding function is in the space indicated by the norm. The remarks
concerning the L norms of various y® at the beginning of the proof of that
Proposition are applicable here, too.

Using the expression (22) we have that

m m e e
(@om —a0u)™ =3 ¥ o ~a® o] 3 e, [T ()
k=1 S je=k =1
> Llje=m
m m —1
Y Je
+ Z (a(k) oy2) Z Clio)m, Z (H (y§)> ) X
k=1 S je=k n=1 \/=1
> Lje=m
)\ In )\ I - o\ e
()"~ ()] (H () ) 26)
l=n+1

The LP norms of the first term are readily estimated as in the proof of
Jt
Proposition 25, since all factors except possibly one in [[,*, (yg)) have L*®

norms bounded by ¢||y||s, and all factors are in LP with similar bounds on
the norm. The L* norm of the difference term is bounded by

1a® 0 g1 — a™ 0 yalloo < 1A ™| |somas: [sllee |11 — Y2l loo: (27)

and the L* norms of y; are bounded in terms of ||y||s, as before.
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In order to estimate the second term of (26) in L?, we use the factorization

(n)\ " (n)\ " W ) = (@) Jn1-i
(y1"> —~ ( 2") = (?hn — " ) > (yl") (yén)) - (28)
1=0
Now || — 4510, < cllyr — walls, for any n = 1,...,|s] and all other

factors present in the products in the second term of (26) have L* bounds in
terms of |[y1|[¥4][y21%2 [|a®) || o j1ys )| - Indeed, for n < [s] — 1, y™ € L™ as
before, and in the case n = |s|, the summation over products in (26) reduces
to ygsJ) — yéLsJ) € LP? and this is only multiplied by a®) o y € L°°.

For integral s we now only need to bound ||acy; —aoys||,. This is readily
done by raising the following inequality to the power of p and integrating over
R:

(@0 yr —aoys) (@) < [a']oomax; lyilloe | (41 = y2) ()]
Otherwise, we must estimate the W*~L/? norm of (26) as in the proof of
Proposition 25.

To this end, we investigate the numerator of the integrand appearing in

the definition of the Sobolev seminorm in (17):

k) (k)

|(a®) 0y —a™ o yy)(21) — (a 0 ) (w2)]

k+1)(771) (y1 — yo)(z1) — a(k+1)(772) (- y2)($2)‘
(n; between y;(x;) and yo(z;))

= a® D () - [(y1 = v2) (21) = (11 — 1) (w2)] (29)
+ [a(k+1)(771) - a(k+1)(772)] (1 — yz)(ﬁz)‘

< 16" o mas, 4]0 | (W1 = %2) (1) = (51 = y2) (22))]

+ 1" oo s gl 111 = 102 51— 92|

oyl—a

By

By the choice of 17, and 7y we further have

Im = na| < yi(z1) — yu(@2)| + ya (1) — y2(22)] -

We take the power of p, apply the power-mean inequality on the right-hand
side of (29) to convert the power of a sum into a sum of powers, divide by
|21 — 25)™,  €]0,1], and integrate over R2. This yields

p
‘a(k) ol — a® o y2‘t,p < ||a(k+1)||go,maxi llyilloo ly1 — y2|f,p
+ ||a(k+2)||1;o,maxi||yiHoo (|y1 {t),p + [y f,p) 191 = 2lloo,

and we find that a® oy, —a® oy, € W k = 1,...,|s], with the norm
bounded by a similar form as the right-hand side of (25). Since the rest of
the first term on the right-hand side of (26), for m = [s], is in W*~ls}? we
then take ¢ > ;lj,t > s — |s| and conclude (Proposition 23) that all of the

first term of (26) is in W*~l*/:» with the norm bounded as in (25).
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We then have to show the same for the second term on the right-hand
side of (26), but this can be done in a rather straightforward manner, since
exactly the same reasoning as in the proof of Proposition 25 can be used,
except that one factor y is replaced by a difference term yie) — yée) (by
applying the factorization (28)), and this is in the same space and has a
norm bounded in the desired way. This completes the proof. O

4 Local Existence Theorems

4.1 Existence of Solutions for a General Class of Equa-
tions

We now have sufficient knowledge of the operators and norms involved to
apply the general results on abstract evolution equations to the Korteweg—
de Vries type equations. The only machinery lacking is the statement of
those results, which is done in the following. The proofs may be found in
Kato [8, Th.’s 6, 7|, and for the existence theorem under essentially similar
assumptions also in Pazy [15, Th. 6.4.6].

We present Kato’s results in a slightly simplified form sufficient for our
purposes. On the other hand, we have also made some refinements following
the formulation of these theorems in a later paper of Kato [9], but these are
rather straightforward. The very last assertion of Proposition 27 follows by
observing the restrictions placed on the interval of existence [0,7}] in the
proof of the rest of Proposition 27 [8, Th. 6|. In the original formulation of
Proposition 29 [8, Th. 7], the continuous dependence is not guaranteed to
hold for every T, < T}, but only for some 75. However, this T5 only depends
on the Lipschitz constant L’ in (38) and the radius r of the ball B, considered
in the theorems. With this knowledge, it is easy to extend the continuous
dependence to any given T, < T} in a finite number of steps by the standard
argument.

The abstract theorems of Kato would also allow us to consider “forced”
equations with a non-homogenous term f(t) = f(¢,x) added (with appro-
priate conditions; see Kato [8]), and it would be possible also to establish
continuous dependence of the solution not only on the “data” (the initial
value ¢), but also on the “model” (the coefficients of the differential equa-
tion). However, no new ideas would be involved, so we do not consider these
extensions here any further, but proceed to state the above mentioned results.

Proposition 27 (Kato). Let the following assumptions be satisfied:

1. X and Y are reflexive Banach spaces, and Y C X is embedded in X

densely and continuously. There is an isometric isomorphism S 1Y —
X.

2. —A(t,v) € G(X,Lw) forallt € [0,T],ve B, ={yeY :||ylly <r}
and a fized w € R.
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3. [S, A(t,v)]S™! € B(X) and is uniformly bounded for t € [0,T], v € B,.

4. Forallt € [0,T], v,v1,v9 € By, A(t,v) € B(Y, X) is continuous in t in
the operator norm and satisfies uniformly in t the Lipschitz condition

[|A(t, v1) — A(t,v2)||Bv,x) < Ll|vr — o] x. (30)

Then the evolution equation

% + A(t,u)u=20 vt € 10,77, u(0) = ¢ € B, (31)

has, for some Ty =€]0,T)|, a unique solution
uwe C([0,T1]: B,)NC'Y([0,T1] : X). (32)
Ty has a lower bound depending continuously on ||@||y.

Theorem 28. Let P(t,D) = .} ck(t)D*¥ be a polynomial in the dif-
ferentiation operator D, the coefficients of which are functions of t. Let
{P(t,) : t € [0,T]} satisfy Kato’s polynomial condition uniformly, and
e, € C[0,T]. Let s > n > 2 and a,b € C([0,T] : Cl*l[—cr,cr]) where
¢ = c¢(1,2) is the constant in (18) and r > 0. Then the initial value problem

d
d_QZ + P(t,D)u+ a(t,u)Du+b(t,u)u =0 Vit e [0,T], (33)
u(0) =g € H*, |lg|[; <7
has, for some Ty €]0,T|, a unique solution
u € C([0,T1] : H¥)NnC'([0,Ty] : H*™™). (34)

Ty has a lower bound depending continuously on ||@||s.

Proof. By Proposition 27, it suffices to verify the conditions of that Proposi-
tion for an appropriate choice of the operators and spaces. We will actually
use Proposition 27 to establish the somewhat weaker result with H*~" in (34)
replaced by L?. The exact claim of the Theorem then follows by solving for
@ in (33) and noting that the other terms are in H*~" for each t and u € H*
satisfying the equation. Indeed, P(t, D)u € H*™"™ and Du € H*™' quite
obviously, and Proposition 25 implies that ag(t) ou € H* C H* !, where
ao(t, z) = a(t,z) — a(t,0), and thus a¢(t) ou- Du € H*"! by Proposition 23.
Now a(t) ou-Du € H*' C H* ™ follows from the vector space property,
since clearly a(t,0)Du € H*™'. A similar reasoning, of course, applies to
b(t) o u - u.

We now verify the conditions of Proposition 27 concerning the operator
A(t,v) = P(t, D) + My(,0) D + My ).

1. X = L? and Y = H? are reflexive Banach spaces, with H* C L?
densely and continuously embedded. A® : H® — L? is an isometric
isomorphism.
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2. By Proposition 14, each —A(¢,v) individually is in G(L?, 1,w), where
w = wi([[(a(t) o v)'[|cc ||(b(t) 0 v)||cc) + w2(P(t)). The assumption of
uniform Kato’s polynomial condition ensures that wy(P(t)) is uniformly
bounded in ¢ (Definition 15, Propositions 14, 9). We also verify readily
that

[la(®) v v'l|o < [alt)[oojol1co 0]l

< 0t et ael vl < ma [[a(®)]|oerircr.

35)

Similar reasoning holds for ||b() 0v|| s, and w; was monotone increasing
in both arguments (Proposition 14). Thus we find a fixed w such that
—A(t,v) € G(L?* 1,w) for all t € [0,T], v € B,.

3. Since D and thus P(¢, D) commute with A® for each ¢, we have
(A%, A(t,0)]AT° = [A°, Muo)|AT°D + [A°, Myg ) |A™° (36)
Using Propositions 24 and 25 we find that
1A%, Maggup] A~ Dul| < [J[A*, My} A1 - 1A D

< Cll(a(t) o v)'|ls=alfull < g(lla(®)llso.eljols 17, [[2]ls: €)

< g(max ||a(t T,C).
< g(max [la()lsoen g 720
The same reasoning applies to the second term on the right-hand side
of (36) with the only exception in the second estimate where we only
have |[|A~'u|| < ||u]|. This establishes condition 3.

4. We certainly have D (A(t,v)) D H*, with A(t,v) : H* — L* a bounded
operator, since the differentiation operators are bounded from H* to L?
in an obvious way and the multiplicant functions a(t,v) and b(t,v) are
in L*°, since, for fixed ¢, they are continuous functions in v € B,, which
varies by Proposition (18) over a finite interval only. The continuity in
t follows from the continuity in ¢ of the time dependent coefficients in
the maximum norm, since this clearly gives a bound for the operator
norm of a point-wise multiplication operator on L2.

In the verification of the Lipschitz condition (30), we only need to
bother about the part M, ) D + My ), since the rest is independent
of v. We have

|| (A(t, 01) — A(Z, v2)) |

< la(t, vi) — a(t, v2) | - ||t/ [|oc + [[b(t, v1) = b(t, v2)[] - [l (37)

< C (la@®)loo.er + [16(t) [|oo.er) o1 = w2 | - [Julls,
where a result derived by integrating over R the inequalities of type
|f(vi(z)) = f(va(2))]? < max|f'|? - |v1(x) — v (x)|* was applied to pro-
duce the second inequality. By the continuity of ¢’ and &' in ¢ in the

spatial maximum norm on a compact interval, we deduce that a bound
uniform in ¢ can be found for the maximum norms of derivatives in

(37).
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By Proposition 27, and the observations in the beginning of the proof,
the verification of Theorem 28 is complete. 0

Proposition 29. In addition to the conditions of Proposition 27, assume
the commutator Lipschitz condition

IS, At,v1) = A(t,v2)]S HIx < Loy — v ly (38)

for vi,v9 € B,. Then, if ¢, = ¢ in'Y and Ty, < Ty, we have a unique
solution u, of (31) with ¢ replaced by ¢, such that u,, is in the same class
as u in (32) for all sufficiently large n, and u,(t) — u(t) in Y uniformly in
t€0,Ty).

Theorem 30. Let a,b € C([0,T] : ClI*2[—cr, cr]) (with mazimum norm of
appropriate derivatives) and let the assumptions of Theorem 28 be satisfied.
Then, if ¢, — ¢ in H* and T, < Ty, we have a unique solution u, of (33)
with ¢ replaced by ¢y, such that u, is in the same class as u in (34) for all
sufficiently large n, and u,(t) — u(t) in H® uniformly in t € [0, T].

Proof. Tt clearly suffices to verify the condition (38) of Proposition 29. It
follows as in verification of condition 3 in Theorem 28 that the operators
P(t, D), which are independent of v in A(¢,v) and commute with A*, cancel,
and it suffices to establish the bounds for the terms involving multiplication
operators:

A", Mageon)=atan)] AN Dul| < ef| (a(t, v1) = a(t, v2))"[[sa ||ul]

< 13 oo,cr,| s s Iy -
< g(max lla()loc.er s+, )l|vr = ol [lu]
where Proposition 24 was used for the first inequality and Proposition 26 for
the second, with the fact ||vi||s,||v2||s < r. An analogous estimate holds for
the similar term involving b, and the Lipschitz condition (38) is established.
U

4.2 Improved Results for Equations with Only Odd Or-
der Derivatives

We next prove a stronger existence theorem with a larger range of valid s
as the order of the Sobolev space H?, but to achieve this, following closely
the ideas of Kato [9], we are forced to make more restrictive assumption on
the polynomial P(D) in the evolution equation. Indeed, we now want to
apply Proposition 6 to obtain a Cy group of unitary operators U(t) and are
therefore restricted to odd polynomials P(D). We also give away the time
dependence of coefficients in order to use the time ¢ as the group parameter
for a particular transformation that we require.

In view of the proof of Theorem 32, we cite one more result of significance
in the theory of abstract evolution equations: Proposition 31 by Darmois
[3] strengthens the theorem of Kato (Proposition 27) used above, and its
applicability in this context was pointed out by Kato [9] in the proof of
Theorem 32 below for the case (4).
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Proposition 31 (Darmois). Proposition 27 is also true with A(t,v) €
B(Y, X) only strongly continuous in t € [0,T] in the condition 4.

Theorem 32. Let P(D) be an odd polynomial in D. Let s > 3 and a,b €
C([0,T] : CT*l[—er, cr]) where ¢ = ¢(1,2) is the constant in (18) and r > 0.
Then the initial value problem

d
d—;‘ + P(D)u+ a(t,u)Du + b(t,u)u =0 Vte[0,T], )
u(0) =9 € 1>, ||g|[; <7
has, for some Ty €]0,T), a unique solution
ue C([0,Th]: H*) nC*([0,T1] : L?), (40)

which depends continuously on the initial value ¢ in the sense of Theorem

30.

Proof. Let U(t) be the group of unitary operators on L? or H*® generated
by P(D) according to Proposition 6 and perform the transformation v(t) =
U(t)u(t) resulting in the equation

dv + A(t,v)v =0, v(0) = ¢,

dt (41)
A(t,y) = U(t) (Ma(t@D + Mb(t,y)) U(-t), y=U(-t)y.

Our intention is to verify the conditions of Proposition 27 for this transformed
equation, in which the operator A(t,v) is only of the first order in D, unlike
in the original problem (39), where the degree of the polynomial P can be
arbitrarily large. In the verification of condition 4 of Proposition 27 we make
use of the sufficiency of the weaker condition guaranteed by Proposition 31.
The space where we seek the solutions of (41) will be the same solution
space (40) as for the original problem, and the fact that the transformation
operator U(t) is unitary and strongly continuous (Cy) on both L? and H?,
we then have u in the same space as v.

1. Verification of the first condition is exactly as in Theorem 28.

2. By Proposition 14, Z(t,?j) = MaujD + My € G(L?,1,w) for w >
s11(a(t)oy)'l|oc+116(t) 07l |oc, and the supremum norms may be bounded
as in (35), noting that ||y||s = ||y||s, since U(t) is unitary. The fact that
Alt,y) = UBDAW,JU(—t) € G(L%1,w) then follows by observing
that the conditions of Proposition 8 hold for U AU~ if they hold for ;L
when U is unitary. Finally, we note that the sign in +A(¢,y) is quite

irrelevant here, since it can be absorbed in the multiplication operators
by —M, = M_,.

3. Since D and thus P(D) commutes with A®, it follows that P(D) =
A*P(D)A*, and according to Proposition 6, P(D) is the infinitesimal
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generator of the Cy group U(t) on L?. Proposition 17 with A = A; =
P(D) together then implies U(t) = A*U(¢t)A~*. Thus U(t) and A®

commute, and we have
[A%, A(t, y) A = U@)[A, A(t, DA U (—1).
Since U(t) is unitary, it is sufficient to bound the norm of
(A, A(t, 7)]A™ = [A°, My p]A™°D + [A%, My )] A,

but this is exactly the same as in (36) and the calculations used in part
3 of Theorem 28 can be repeated.

4. The fact that A(¢,y) € B(H*, L?) and the Lipschitz condition (30) can
be seen essentially by repeating the argument in part 4 of the proof
of Theorem 28 and using the fact that U(t) is unitary. The strong
continuity in ¢ in the B(H?, L?) norm as required by Proposition 31
results from the following:

(a) D: H® — L? is bounded.
(b) U(t) is a Cy, i.e. strongly continuous, unitary group on L?.
(c) The operator norms of the point-wise multiplication operators on

L? are bounded by the L™ norms of the multiplicant functions
a(t,U(—t)y), b(t,U(—t)y), for which we have

lla(ty, U(=t1)y) = altz, U(=t2)y)]]oo
lla(ty, U(=t1)y) = altz, U(=t1)y)]]oo

+ [la(ts, U(=t1)y) — a(ts, U(—t2)y)||cos

1)y
<

and the first term on the right will approach zero due to the con-
tinuity of a in ¢ in the maximum norm, whereas for the second
term we invoke Proposition 26 and recall the strong continuity of
U(t).

5. Using the commutativity of A® and U(¢) as in part 3 of the proof, the
verification of the Lipschitz condition (38) of Proposition 29 reduces to
the situation in the proof of Theorem 30, and the same argument can
be repeated.

These conditions verified, Propositions 27 and 31 then imply the claim. [

Having proved Theorem 32, we now make further reductions on the class
of equations under consideration, so that we totally drop the explicit depen-
dence on t and also the extra term b(u)u, to get an equation

g + Z cpu® Y 4 a(u)u = 0. (42)
k
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Then we are in the situation considered by Kato [9], except for having a
general odd polynomial P(D) instead of just D?. However, the results of
Kato were established for the transformed equation (41) (with a(t,y) = a(¥y)
and b(t,y) = 0), and thus these theorems are immediately applicable. We
only need to note that an arbitrary odd polynomial P(D) generates a Cj
group U(t) of unitary operators on L? and H® by Proposition 6 as before,
and the commutativity properties required in some algebraic manipulations
with polynomial differentiation operators and the A* follow from Propositions
20 and 17 (the latter in the manner indicated in the part 3 of the proof of
Theorem 32).

With the remarks above, the results of Kato [9, Th.’s I(c), II| extend
more or less directly to the following Theorem 33. The proof of this result is
where Kato uses the general form of Proposition 24. We also note that since
we do not now have the explicit time dependence, the differential equation
(42) may be considered on all of R*.

Theorem 33 (Kato). Let a € C*™. Then for equations of type (42), for
which a local solution of the initial value problem (39) is guaranteed on some
proper interval [0, T1] by Theorem 32, the following hold:

1. The value Ty can be chosen independently of the order s of the Sobolev
space H® in the following sense: If u is a solution satisfying (40) and
the initial value ¢ € H" for some r > %, then u also satisfies (40) with
s replaced by r. In particular, if ¢ € H® = NyH*, then u satisfies (40)
with s = oo.

2. If such an equation satisfies Kato’s global growth condition, then Ty can
be taken arbitrarily large, and we have a global solution

ue C(R" : H)NCYR" : L?), (43)

whenever the initial value ¢ € H® where s > sq and sq is the order for
which Kato’s global growth condition is satisfied.

This completes our survey of the local theory for Korteweg—de Vries type
equations, and also paves the way for the global results.

5 Global Theory

To obtain global solutions of an evolution equation, the basic idea is to show
that a local solution can be extended arbitrarily far in a somehow controlled
manner. Usually this control is established by means of a priori estimates of
the solution, which play a significant part in the theory of partial differential
equations. (See e.g. Bona and Smith [2, Sect. 4].) As asserted in Theorem
33, Kato’s global growth condition, when satisfied, is a sufficient a priori
bound to derive global existence of the solution. It is thus the matter of this
section to seek more explicit conditions for that to hold.
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5.1 Conservation Laws and A Prior: Bounds

The existence of conservation laws plays a central role in establishing a priori
bounds on the solutions of a differential equation. The definition similar to
the following was given by Miura, Gardner and Kruskal [12]; strictly speaking,
our definition concerns what they called a local conservation law.

Definition 34. An identity of the form T, + X, = 0, which is satisfied by
each solution u of a given evolution equation in a given function class, is
called a conservation law. Here the conserved density T and the flux —X
are functionals of u of the form fo (u,u/,...,u"), where f : R* — R. We
also require that X (u)(z,t) — 0 as x — +oo to ensure that the conserved
density is related to a constant of motion [ Tdz, i.e. % [ Tdz = 0.

The following Proposition 35 establishes the existence of three conserved
densities for a class of Korteweg—de Vries type equations. With the original
physical interpretation of the proper Korteweg—de Vries equation, these cor-
respond to the conservation laws of mass, horizontal momentum and energy
(Drazin and Johnson [4, Sect 5.1]|). For the proper Korteweg-de Vries equa-
tion (1) and a similar equation u; + u*u, + Ugee = 0, a countable infinity of
conservation laws has been shown to exist by Miura, Gardner and Kruskal
[12], but nothing beyond the three conserved densities of Proposition 35 can
be shown in the general case; in fact, among the equations

Uy + uPuy + gy = 0 pEeEZ*

the two above mentioned cases p = 1,2 are the only ones possessing more
than three polynomial conservation laws (Miura [11]).

Proposition 35. The generalized Korteweg—de Vries equation (42) with a €

C' has the conserved densities
1 1
u, §u2 and 5 zk:(—l)kck(u(k))z +a? ou, (44)

where antiderivatives of a are taken to have a zero at the origin.

Proof. The first conserved density is obtained directly by integrating (42)
over R. For the second we first multiply (42) by u and then integrate. The
second term vanishes, since [u®"Dudy = (—1)" [u*+Dy™dz and the inte-
grand is now an exact spatial derivative. So is the case for a(u)u - u’ resulting
from the third term, and denoting by « the integral function of z — a(z)x
with a(0) = 0, we have that a(u)u - v’ = (e owu)’, and u(z) — 0 as x — +oo
while a(u) — 0 as u — 0.

For the third conserved density, we note that a(u)u’ = (a™" o u),
where we use the freedom to choose the antiderivative in such a fashion
that =1 (0) = 0. We first multiply (42) by ¢,u®" and integrate to obtain

/ [(_1)nu(n)u§n) + ch(—l)k+nu(k+")u(k+n+l)
k

+ (a(_l)(u)u@"))l — Y (w)u® Y| dz = 0,

(45)
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where the left-over terms resulting from integration by parts of polynomials
of spatial derivatives of u have been discarded immediately with implicit
understanding that u is in a Sobolev space of sufficiently high order for such
terms to vanish at infinity. Now the second and third terms of the integrand
are also exact spatial derivatives, the first of which is at once seen to vanish in
integration and also the other after noting that a(~" ou(z) — 0 as 2 — +oc,
since u(x) — 0 and a{~") is continuous and has a zero at the origin.
We then multiply (42) by a="(u) yielding

a= (u)uy + Z cra™Y (w)u®* ) 4 oV (w)a(u)u’ = 0, (46)
k

where the last term is found to vanish in integration after writing it in the
form at Y (uv)a(u)u’' = (aV a)ou-u' =1 ((a(*l))Q)'ou-u’ =1 ((a"Y)2o0 u)l
and using, as above, the facts that u(z) — 0 as # — 4oc and a(=)(u) — 0
as u — 0.

The unwanted terms seen to vanish, we then apply > ¢, to (45) and
add it to (46) integrated over R to deduce, after observing the obvious exact
time derivatives,

d 1
i [5 S en(=1)" (@) + 0 o dr =0,

n

which establishes the remaining conservation law. 0

The conserved densities at hand, the following Proposition 36 gives an a
priori bound for the class of equations considered in the previous Proposition
35, with a growth condition imposed on a. In doing so, it generalizes (and is
inspired by) some of the ideas used by Bona and Smith |2, Pr. 2| to derive
a similar result for the regularized proper Korteweg-de Vries equation u; +
Uy + Upre — €Uzze = 0. However, we do not here consider the regularization
term €u,,;, which was related to the method of Bona and Smith to derive
existence and continuous dependence theorems for the proper Korteweg—de
Vries equation via convergence of the solutions of the regularized equation
as € — 0.

Proposition 36. Let 2m + 1 be the order of the highest spatial derivative
with non-zero coefficient in (42) and let |a(z)| increase no faster than |x|”
with r < 4m as x — +oc. Then any solution u of (42) satisfies

[[u(@)]lm < g([[u(0)]lm),
where g : [0, 0o[— [0, 00| is monotone increasing.

Proof. Let us denote u(0) = ¢. From Proposition 35 it follows that 1||u[|*> =
%||¢||2 at any instant and

m m
1
S 0fallu® 4 [ o oude =53l P+ [ oD oods
k=1 k=1

N | —
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which implies

e - ||u(m)||2 < Z ek - ||u(k)||2 + 2/ |a(*2) o u|dx
k<m (47)
+ 3 el - lo®][2 + 2/ a2 o glda.
k

In (47), it is immediately clear that the third term on the right hand side
has a bound of the desired form. Using Proposition 13 on the first term, we
find that [[u®]|? < ||u®]|%|[u]| "5 = [Jul™||7]|g]| "5, where clearly
2k < 2. We then investigate the second term on the right of (47) by making

use of the equality (note that a{=9(0) = a{=2(0) = 0)

1 1 1
= (z) = x/ a7V (zt)dt = z/ a:t/ a(xts)dsdt
0 0 0

and the resulting inequality |2 (z)| < $2%||a||oo s to yield

2 [ 1o oulds < ol [ s = ol |l

(Note the similarity with the estimate in (23).) Using the assumption on the
growth of a and applying the inequality |u*(z)| = | (fivoo - fmoo) wu'dx| <

([ u’dx f(u’)2d:5)% used by Bona and Smith [2, Pr. 2| as well as Proposition

13, we find that

[l oo < exllullie + 2 < calle][F][ullF + e < eal Jul™ |25 |Jul| "5 +
(48)

Substituting ¢ = 0, i.e. u = ¢, we find that the fourth term on the right of

(47) has a bound of the desired form. For the second term we note that we

assumed in the statement of the Proposition that 5— < 2 in (48).

All the estimates so far imply that

™12 <> gl llm) [, (49)

where s in the summation ranges over finitely many values and 0 < s < 2,
and g; are monotone increasing functions. Now the left-hand side of (49)
increases strictly faster than the right-hand side for fixed ||@||,, as |[[u™|| —
oo, which violates the inequality, and thus ||u™|| must be bounded in terms
of a (monotone increasing) function of ||¢||,,. That the same is true for ||u||,
follows from Proposition 13 and the fact that ||u|| = ||¢]|. O

5.2 Global Solutions

We are now only a step away from the global solutions. Proposition 36 shows
that the class of equations considered satisfy Kato’s global growth condition
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when m is sufficiently large. Unfortunately, this is not the case with the
proper Korteweg—de Vries equation (1), so that Proposition 36 is not strong
enough to deduce the existence of global solutions to (1). The fact that these
nevertheless exist (Theorem 3) under certain circumstances must be viewed
as a rather individual property of (1), which seems to be shared only with
another equation of fairly similar form [11], as already mentioned above.

We will shortly present the part of results of Miura, Gardner and Kruskal
[12] that is needed to establish Proposition 38 yielding Kato’s global growth
condition for the two special equations. A result similar to Proposition 38
is found in Bona and Smith |2, Pr. 6] giving a more general result for the
proper Korteweg—de Vries equation.

Proposition 37 (Miura—Gardner—Kruskal). The two equations
Uy + ULy + Uggy = 0, Uy + 020y + Vggy = 0 (50)

have a countable infinity of conservation laws. In particular, the following
densities are conserved

1 4 2, 9 1 6 2,2 "2
—u® —3uu + -u', —v° —dv v +3v.
4 5) 6

Proposition 38 (Bona—Smith). The solutions u of either of the equations
(50) satisfy
lu(®)]l2 < g(|[u(0)]]2),

with g monotone increasing.

Proof. Let v(0) = ¢. Using Proposition 37, we have
1 1
B[["I1” < Gllvllaallol® + Bl 101+ 3116"11° + Slielsl [6]]° + 31115l

Here we can use the bounds ||v|| < ¢||v||1 by Proposition 22 and the obvious
inequalities ||v]], ||v'|| < ||v]|: etc., to get

10117 < ga([v]l1) + g2(1[¢l2).

and then apply Proposition 36 to give ||[v||1 < ||¢|l1 < ||#]]2. The desired
bound follows for ||v||s, since it holds for ||v||; and ||v"||. Note in applying
Proposition 36 that now a(z) = 2?, m = 1 and indeed 2 < 4-1. The reasoning

for w in (50) is quite identical. O

Theorem 39. The following equations have a global solution in the space
(43) for the initial value problem u(0) = ¢ € H*:

U+ Yo kP 4 a(u)u = 0, (51)
em #0, s>m>2, a€O(|z]"), r<4m
w+u" +uPu' =0 s>2, p=1,2. (52)

Proof. For the first class of equations, the claim follows from Theorem 33
and Proposition 36; for the second, use Theorem 33 with Proposition 38. [
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5.3 Irregularities and Nonexistence Results

Now that we have the global existence theorem, a natural question to ask is
whether our assumptions are necessary to get this result. In particular, one
might inquire whether it is possible to replace the Sobolev spaces that have
played a crucial part in our analysis by some function space with sufficient
smoothness assumptions, but no restrictions on the integrability over infinite
intervals. The answer to this question turns out to be “no”, even if the initial
data is C™ smooth, and the answer, essentially the results of Murray [13],
shows, on the other hand, that even certain discontinuous initial function
can yield a smooth solution. In fact, these two facts are very closely related,
owing to the reversibility in time of the equation (1), as will be seen in
Corollary 41. The proofs of the results are found in Murray [13, Th. 1.1].

Proposition 40 (Murray). For initial data ¢ = c1j_,], ¢ # 0, 7 > 0, there
is a solution u(t) € C* for t > 0 of the proper Korteweg—de Vries equation
(1) satisfying the initial condition u(0) = ¢ in the weak sense

l}fgl Au(t,x)dx:/A¢(x)dx

for any interval A C R.

Corollary 41 (Murray). A C* initial data ¢ does not guarantee even a
continuous global solution u to (1).

Proof. Tf u satisfies (1), then so does
w(t,x) =u(T —t,—x), t<T. (53)

Now let u be the C> solution of (1) with initial value c1;_, ), which exists by
Proposition 40. Then w is a solution of (1) with w(0) € C*°, but w becomes
discontinuous in a finite time 7', and thus no unique global solution can exist
in any space of continuous functions. O

We hence know that the Sobolev space setting cannot be weakened to
mere smoothness of any order, at least to obtain global solutions. We also
note that the functions ¢1j_,,) in Proposition 40 are in H* only when s < %

Finally, we refer to Drazin and Johnson [4, Sect. 1.1, Fig. 1.2] for a
discussion of the fact that in the context of non-linear wave equations, the
lack of continuous global solutions may even arise from the physical nature
of the phenomenon and not only computational difficulties with the model.
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