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1 Introduction

Operator-valued Fourier-multipliers acting on vector-valued functions, and
the applications of such multiplier theorems to prove maximal LP-regularity
for abstract differential equations, have been studied extensively in recent
times. It is now known that the general geometric setting in which strong
multiplier theorems are valid is the UMD property (see [17]) of the underlying
Banach spaces B;, and that appropriate R-boundedness (see |7, 20]) of the
operator families involved is the right condition for them to give rise to
bounded operators from LP(R"; By) to LP(R"; By) for p € (1,00). A Mikhlin-
type theorem for operator-valued multipliers acting between LP(R; By) and
LP(R; By) was first obtained by Weis [20] in 1999, inspiring numerous results
on related problems by various other authors. We refer to Denk, Hieber and
Priiss [9] for a collective treatment of and more references on some of the
progress up to summer 2001.

However, convolutions with kernels taking values in B(B;; B2) (bounded
linear mappings from B; to Bs) were already considered in 1962 by Benedek,
Calderon and Panzone [2]| from a somewhat different point of view. (Recall
that convolution operators and Fourier-multipliers are essentially represen-
tations in the position space and in the frequency space, respectively, of the
same linear transformations.) Benedek et al. imposed no geometric condi-
tions on the Banach spaces B;, neither do their assumptions involve any
R-boundedness, which was not invented until much later; what they do as-
sume, in addition to a condition on the convolution kernel, is the a prior:
boundedness of the operator T in question from LP(R";B;) to LP(R"; By)
for some p € (1,00). They then show that the boundedness is actually true
for every p in this range. The proof is based on a weak-type L!-estimate,
interpolation, and a duality argument.

Under the same assumptions as those imposed by Benedek et al., we
will show that T is actually bounded from HJ (R"; By), the atomic Hardy
space of By-valued functions to be defined below, to L'(R"; By) and also from
L>*(R"; B;) to BMO(R™; By). By interpolation, this also gives another, and
in a sense more direct, proof of the theorem in [2].

We then proceed to consider a more restrictive class of operator-valued
kernels for integral operators, for which we can derive boundedness from
HE (R"; By) to HE(R™; By), 0 < p < 1. Such kernels were studied by Kurtz
and Wheeden [14] in 1979 in connection with weighted LP-spaces of scalar-
valued functions, and the techniques were later applied by Stromberg and
Torchinsky [19] in 1989 to weighted Hardy spaces. Although we will not be
concerned with the weighted spaces here, we note that the same techniques
provide insight and new results into our non-weighted but vector-valued set-
ting.

The theorems in [14] and in [19] are actually stated for the multipliers, but
the proofs are really worked out using convolutions. A lemma central to this
argument deduces properties of the kernel from those of the corresponding
multiplier, and the same argument also applies in the vector-valued situation.



Using this, we obtain multiplier theorems as a direct consequence of the
results proved for convolution operators.

Our theorems fall into two categories. First, there are results of the
Benedek—Calderén—Panzone-type, where boundedness on one L? is assumed,
and the boundedness for other p and for the extreme cases is deduced from
this. Second, combining these theorems with results such as the Mikhlin—
Weis theorem for the LP(R"; B;)-spaces, B; UMD, we then obtain sufficient
conditions also for HE (R"; B)-boundedness without any a priori bounded-
ness assumptions. For n > 1, we need to assume a little more than the as-
sumptions of the Mikhlin—Weis theorem to get boundedness from H}, (R"; B;)
to HY (R"; By) for p < 1, but in the one-dimensional setting we obtain a gen-
uine extension of the Mikhlin-Weis theorem to HJ (R"; B;) with the same
assumptions.

Results involving the properties of the multiplier are convenient in view
of applications, since the transformed domain is often the natural place to
work in, and multipliers related to certain differential equations have a rela-
tively simple structure to analyze. As an application of our results, we prove
maximal regularity of certain equations on B-valued HY,, 0 < p < 1. This
gives, e.g., results similar to those of Cannarsa and Vespri [6] concerning the
abstract Cauchy problem, and some other equations are also considered.

Acknowledgements. 1 wish to thank sincerely Philippe Clément for pro-
posing this research and for numerous fruitful discussions and suggestions
during its progress. I am also grateful to Stig-Olof Londen for many helpful
conversations and encouragement, and for proof-reading my manuscripts.
Moreover, my thanks go to Stefan Geiss for sharing his knowledge on the
UMD-spaces (cf. § 2.1) and for providing some very useful references, and to
Hans-Olav Tylli, who brought Ref.[16] to my knowledge.

2 Preliminaries

2.1 Miscellaneous concepts

Notation. Lower case n will consistently denote the dimension of the Eu-
clidean space R” on which we are working. A positive real number in the
subscript will denote the dilation of a function, ¢,(z) :=t "¢(¢t 'x).

An integral without limits refers to integration over the whole space R”.
The Fourier transform of f is denoted by f or Ff and the inverse Fourier
transform by f. The reflection about the origin is f(z) := f(—z), and we
recall that F2f = J? is always true when the transforms are understood in
the sense of (tempered) distributions. In the vector-valued setting, these
are defined by §'(R"; B) := B(S(R"); B), where S(R") is the conventional
scalar-valued Schwartz space with its usual topology.

We use |-| both for the absolute value of a real or complex quantity, the
Euclidean norm on R", and for the Lebesgue measure of a subset (usually



a ball) of R*. The meaning should, however, be obvious from the context.
The norm of a Banach space B is denoted by || 5; double lines are reserved
for norms of function spaces, such as || f|| ., gn)-

The set of natural numbers is N := {0,1,2,...} and that of positive
integers is Z; = {1,2,...} € N. For ¢/ > 0, we denote by |¢| the greatest
integer at most ¢, and by /]| the greatest integer strictly less than ¢. Thus
both functions give the integer part of a non-integer ¢, but |[m| = m — 1,
|m| =m form e Z,.

Constants in some estimates are denoted by ¢ and C, which may be
different from one occurrence to another.

A standard partition of unity. We will define one “canonical” partition
of unity, which will be considered fixed throughout this paper. The constants
in some estimates will depend on the choice of this partition; we shall not
bother about any such dependence.

Let € D(R") be non-negative, equal to unity in B(0,1) and supported
in B(0,2). Let ¢(z) := n(z) — n(2x) and ¢;(r) = ¢(27'x). Then ¢; is
supported in the annulus 27! < |z| < 27! and > ¢ _ ¢(z) =1 for z # 0.

Moreover, we have n(z) + >~ ¢:(x) = 1 at every x, and substituting
27Nz in place of x and using the definition of the ¢;, we get (27 Vz) +
>N ®i(z) = 1. Comparing the two series it follows that 7(2 Nz) =
() + 20, ¢ilx).

A partition of unity of this kind appears almost everywhere in harmonic
analysis nowadays. Kurtz and Wheeden [14] attribute it to Hormander.

The Fourier-type of Banach spaces. We recall that a Banach space B
is said to have Fourier-type p, if the Hausdorff-=Young inequality

i < Clfllo(esm) 1)

is true for every f € (L' N LP)(R; B) with some finite C. Obviously every
Banach space satisfies this inequality with p = 1, and by interpolation the
inequality holds for ¢ € (1, p) if it holds for some p > 1. B is said to have a
non-trivial Fourier-type, if it has a Fourier-type p > 1. Note that once (1) is
true, the corresponding inequality with R replaced by R" also holds due to
the tensor nature of the Fourier transform.

This notion is due to Peetre [15]. It is proved in [15], e.g., that ev-
ery space LP(2, X, ) (of scalar-valued functions) has Fourier-type min(p, p').
Kwapien [13] has shown that B has Fourier-type 2 if and only if it is isomor-
phic to a Hilbert space.

Because of the significant role of the UMD-spaces in the theory of multipli-
ers, it is useful to know that every UMD-space has a non-trivial Fourier-type.
This is a consequence of the following results: (This argument was shown to
the author by S. Geiss.)

LY (R;B)

1. A UMD-space does not contain uniformly the spaces ¢} = (C", |-|,),
r € ZLy.



2. A Banach space B does not contain uniformly ¢}, r € Z, if and only
if B has a non-trivial Rademacher-type.

3. B has a non-trivial Rademacher-type if and only if it has a non-trivial
Fourier-type.

The first assertion is easy to prove, since the non-reflexive sequence space
¢y is not UMD (UMD-spaces being even super-reflexive, see [17, p.205]),
and so has infinite UMD-constants M, (¢;) = oo. By approximating ;-
valued martingales by their projections to the r first coordinate directions,
it follows readily that the UMD-constant of /] is larger than any preassigned
M > 0 once 7 is large enough, i.e., M,(¢]) — oo as r — oo, which proves the
assertion.

The second and in particular the third claim above are deeper, and we
refer to |16, Th.’s 4.4.7 & 5.6.30] and the references cited there, also for the
definition of the Rademacher-type. These results are originally due to Pisier
and Bourgain, respectively.

2.2 A short review of vector-valued Hardy spaces

There are good reasons why the natural continuation of the family of spaces
IL?, 1 <p< oo, for 0 < p<1should consist of the Hardy spaces H?, where
many important operations of (harmonic) analysis, well-behaved on L? for
1 < p < 0o but blowing up in L', retain their good character.

As is well-known in the scalar-valued setting, there exist various equiv-
alent characterizations of the spaces H?, 0 < p < 1. In the vector-valued
situation, not all of these equivalences remain valid, and we must be more
careful about the definition. Here we are concerned with the atomic Hardy
spaces

H}(R"; B) :=
{Z Aray (in 8'(R™; B)) : ax an HP-atom, A\, € C, Z |AR]P < oo, }

equipped with the “norm”

o
Hf”I;Igt(R”;B) = ian IAel?
k=0

where the infimum is taken over all atomic decompositions of f € HE, as in

the definition of the atomic Hardy space. Of course, this is really a norm only

when p =1, but for 0 <p <1, oyr (f,9) == f - gll%» defines a translation
a at

invariant metric on H? (R"; B).

Atoms. The definition of the atoms appearing above is the same as in the
scalar-valued context: We say that a € LY(R™; B) is a (p, ¢, N)-atom, where
0<p<l<g<ocand N €N, provided that



1. @ is supported in a ball B,
2. Jlall. < |B|* 7", and
3. [x%a(z)dz = 0 for all @ € N* with |a], < N.

The three requirements above are referred to as the support condition, the
size condition and the moment condition, respectively.

We say that a is a (p, ¢)-atom if it is a (p, ¢, N)-atom for some N € N,
and that a is an HP-atom of Li-type if it is a (p, ¢, N)-atom for some N >
n(p~! — 1). Finally, a is an HP-atom, if it is an HP-atom of some Li-type,
g > 1. In the definition of HE, above, we require that the a; are (p, ¢)-atoms
for some fixed ¢ > 1. The spaces obtained with different values of ¢ coincide
and the norms are equivalent.

Dense subsets. It immediately follows from the definition that the conver-
gence of the atomic series, initially taken in the sense of B-valued tempered
distributions, actually takes place with respect to the metric of HE (R"; B).
As a consequence, the space of finite linear combinations of atoms is dense
in HE (R"; B).

The following density result will also be exploited. We will give a proof for
completeness, since the result is perhaps not so familiar in the vector-valued
setting.

Lemma 1. The elements of (HY, N L' N LY)(R"; B), ¢ > 1, with compactly
supported Fourier transform are dense in HEY (R™; B).

Proof. By the density of finite combinations of atoms, it suffices to approxi-
mate a give atom a of HY, (R"; B) of Li-type, supported in B(zg,), as closely
as desired by functions of the asserted form. (Observe that every atom au-
tomatically belongs to the asserted space HY, N L' N L4.) To this end, fix a
¢ € D(R?) with 1(0) = [(z)dz = 1. Then ¢)(e-)a = 1 * a has compact
support. Our intention is to prove that ¢, x a — a in H? (R"; B) as € | 0.
Note that ¢ *a € L' N L9, since ¥, € L' and a € L' N LY.

To this end, we recall our standard partition of unity from § 2.1 and write
= dn(r ) + X (1) = Y v moreover let Y = SV 4. So

let us write

Yo% a(2) — a(z) = / eV (e ) (alz — y) — alz)) dy

All the terms above (as functions of ) have at least the same number of van-
ishing moments as a; furthermore, the first term is supported in B(zq, (1 +
2N+1e)), while the term in the summation indexed by i is supported in
B(zq,7(1+427€)). These terms are therefore, up to multiplicative constants,
atoms of H? of Li-type, and it remains to estimate the constants.



With & denoting either 1" or 1);, we have, changing the variables from

e 'y toy,
q 0
dx)
B

(/ \ [ Hw)ata ~ )~ atw)ay
< [ ([ 1ote - - ator dw); b)) dy

< SUP|y|<aN+1 ||a(- - E?J) - a(y)”Lq(R";B) ||77/)||L1(R") k= ZZ)N
B 2 ||a||Lq(R”;B) ||1/)Z||L1(Rn) k — ¢1

Taking (2) as an atomic decomposition of ¢, * a — a, recalling the atomic
size condition and the balls in which each of the terms in (2) is supported,
we then have the norm estimate

||77Z)e*a a”HP (R";B)

§‘81|1<135|| a(- = y) = allfu @,y 10117 ny (L +6))"0 /0
Y=

+ Z 2 (|l 19l oy (r (L 427N )P/,
i=N—+1

where we took € = 27V=1§.

We observe in the summation that ¢; = ¢(2 'r 1.)¢ is the part of the
Schwartz function ) in the annulus 2" 'r < |z| < 2"y and the integral of
this is multiplied by a factor proportional to a power of 727, i.e., to a power
of |z|. Since 1 decreases at infinity faster than any polynomial increases, we
see that the sum can be made as small as desired when N is chosen large
enough.

As for the rest of the estimate, we note that translation is strongly con-
tinuous on LY(R"; B), and therefore supj, <, [la(- — y) — al| j4(gn, ) can also
be forced smaller than any preassigned positive number with an appropriate
choice of §. This completes the proof. O

The vector-valued BMO. The definition of the space of vector-valued
functions of bounded mean oscillation is the same as that of the scalar-valued
one, with absolute values replaced by norms of the underlying space.

The dual space of H)(R"; B) can be identified with BMO(R"; B*) (in
the way familiar from the scalar-valued context) if and only if B* has the
Radon-Nikodym property. This result is proved in Blasco [3] for the spaces
on the unit-circle (i.e., R* replaced by T), but one can also give a proof
for the Euclidean spaces. In fact, working with the atomic definition of the
Hardy spaces, the continuous embedding BMO(R"; B*) C H}(R"; B)* is
almost immediate (without any assumptions on the structure of the Banach
spaces), and the converse can be proved with pretty much the same reasoning
as in the scalar-valued proof e.g. in [18, pp. 142-6], exploiting the classical



duality result saying that LP(R"; B)* = L” (R"; B*) when B* has the Radon—
Nikodym property (see [10]).

In the general situation, Blasco [3] has shown that the dual of the B-
valued H), can be described in terms of a space of certain B*-valued measures,
which he calls BMQO, and this coincides with the usual BMO under the
assumption of the Radon—Nikodym property.

Remarks. In the scalar-valued setting, another characterization of the H?-
spaces is in terms of a class of tempered distributions, certain maximal func-
tions of which are in L? (see e.g. Stein [18] for details). We should note
that the same proof given there for the equivalence in the scalar-valued sit-
uation works also for vector-valued distributions with straightforward mod-
ifications, and therefore the maximal characterization gives the same Hardy
space H2 (R"; B) = HP(R"; B). This has already been pointed out by
Blasco [3] in the case p = 1. On the other hand, in [3] it is shown, concerning
the Hardy spaces on the torus T, that the space
Heo(T; B) = {f € L\(T; B) : Hf € L'(T; B)}

defined in terms of the Hilbert transform (or conjugation) #, is in general
different (smaller) than H), (T; B), and agrees with it if and only if B is UMD.

3 Extremes of the Benedek—Calder6n—Panzone
theorem

Let k € L] (R"; B(By; By)). We consider the convolution operator

loc

Tf(z) = / k(e — ) f(y) dy,

initially defined for f € L®(R"; By) (i.e., essentially bounded functions with
compact support). For such f and z ranging in some compact set K we have

()], < / (2 = ) sy 4 1l

supp f

<[ Wl 1l
K —supp f

where K —suppf = {2z —y : 2 € K,y € supp f} is a bounded set, so the
integral is finite, and we see that T'f € L2 (R"; By).
In the spirit of Benedek, Calderén and Panzone [2], we will assume that

k either satisfies the strong operator condition

/ Ve =) — k(@))uly, 4 < C 3)



for some ¢ > 1, C' > 0, for all u € By, or the similar norm condition

/| =) k@ 2 £ (4)
z|>cly

which obviously implies (3).
We then have the following:

Theorem 1. Suppose the operator T defined above satisfies ||Tf||Lp0(Rn;BQ) <
C N fll oo gn.p,y for some py € (1,00). If the kernel k satisfies (3), then T has
a bounded extension from HL(R"; By) to L'(R"; By), and thus by interpola-
tion from LP(R™; By) to LP(R"; Bs) for p € (1,p0). If, in addition, k satis-
fies (4), then T has a bounded extension from L*(R"; By) to BMO(R™; By),
and thus from LP(R"; By) to LP(R"; By) for allp € (1,00).

Proof. Let us first study the lower end, i.e., the H' case. Consider f €
L*>®(R"; B;) supported in a ball B = B(z,r) and with zero average. Then

Tf(z) = / Ko —y)f(y) dy = / k(z — ) — Kz — 0]/ () d,

B

and thus

[ @i, 4
|z—zo|>cr

<[] ) ko)), dedy
- / /| Vb = (= 20) = K0y, drdly
<c / W), A < C B 1l ogans,

where the assumption (3) with y — z¢ in place of y and f(y) in place of u
was applied in the second to last inequality; note that |y — zq| < 7 there.
On the other hand,

1 1
L L

TfHLPO(R”;Bz) <cC ‘B‘li

— 11—
[ @l <clB Fllogenson
z—xg|<cr

by the assumed boundedness on LP.
Now if a is an atom of H' of LPo-type, supported in B, then a has zero
_ 1
average like f above, and moreover ||| gn,x) < |B|" ' It follows that

|Tal|;: < C uniformly in atoms a of H* of LP°-type, and this implies that T
extends to a bounded mapping from H), (R"; B;) to L'(R"; By).

10



The upper end. We now invoke the stronger assumption (4), and our
aim is to show boundedness of T' from L*(R"; B;) to BMO(R"; By). Since
L*>®(R"; B;) lacks convenient dense subspaces, we need to define what we
mean by T'f for a general f € L>®(R"; B;). There is a slight problem, since
the integrand in the original definition is not in general Bochner integrable
over the whole space. However, the differences

Tf(z) — Tf(w0) = / (h(x — y) — k(xo — 9))f(y) dy

B </|y>c|x—mo| ! /yﬁcm—:vo> (M=) = Ko =) dy

are well-defined, as the integral over the bounded domain above converges
by the local integrability of k£, and for the unbounded domain we can invoke
the estimate (4). Since a BMO element is only defined up to an additive
constant, we are satisfied with the differences.

For a given ball B = B(xq,7), we should then estimate the averages
|1?| [T f(x) —¢[ dz. We do this in two parts by first decomposing f =

f]-cB + f]-(cB)C = fU + fl-
Then
— 11 — 11
/B|i’jfo(l“)|32 dz < [B|" 7 1T foll proniiyy < C 1B I foll poo .y

<C|B|" " |B|" |Ifll -

and
/|Tfl($)—Tf1(Io)|B2 d
B
< [ =) = B = Dlagoy 1]
B J(cB)¢

_ / /| V= =) K)oy A Sl < 1B
y|>cr

Combining these estimates we find that

1T fllamomn;sy) < C I f 1o @npy) s

as was to be proved.

Interpolation. Marcinkiewicz-type interpolation between the pairs (H', L")
and (LFo, LP0) as well as between (LP°, LP°) and (L*°, BMO) is nowadays quite
standard. There exist rather general interpolation results due to Blasco [4]
(see Remarks after the proof), but actually for the present case where we
have e.g. HL(R"; By) and LP°(R"; B;), with the same Banach space B; at
the one end, and similarly L'(R"; By) and LP°(R"; B;) with the same B,
at the other, we can simply repeat the proofs for scalar-valued functions,
e.g. those in Garcia-Cuerva and Rubio de Francia [12, pp. 307-310] and
Duoandikoetxea [11, Th.6.8]. O

11



Remarks. Concerning the implication “T" is bounded on LP0” = “T' is
bounded on all L? with p € (1, 00)”, the present proof is more direct than that
of Benedek, Calderon and Panzone [2] in the sense that we only work with the
given Banach spaces By and B, and the given operators k(z) € B(By; By),
without considering the dual spaces and adjoint operators. Since we also
obtain boundedness in the extreme cases, our result can be regarded as an
extension of that in [2] under the assumption (4).

However, the duality argument in [2] is still of some interest, since the
boundedness on all L? (although perhaps not from L* to BMO) can be
deduced from assumptions somewhat weaker than (4), namely (3) together
with a dual condition

B dz < Clv

[ RO 5
|z[>cly]

for all v € Bj. Here k*(x) € B(Bj; BY) is the adjoint operator of k(x) for
every xr € R".

In [2] it is also shown that the condition (4) together with boundedness
on one LP° implies boundedness on so-called L¥-spaces, P = (p1,...,pn),
with “mixed” norms.

Concerning interpolation in the vector-valued setting, there is a general
theorem of Blasco [4] stating that
[Ha(R"; By), L (R"; By)]y = LU(R"; [Bo, Bilo),

where ¢! = (1 —0) +0p !, and moreover, provided that By N B is dense in
both By and By, and Bj N Bf in both B and B, we also have

[LP(R"; By), Lg”(R"; B1)] = [L*(R"; Bo), BMO(R": B1)] = L(R"; [By, Bilg),

where ¢7! = (1 — 0)p~! and LY is the closure of simple functions in L.
But as was already pointed out above, and also by Blasco [4], for the case
By = B the classical arguments for scalar-valued functions can immediately
be generalized to give an interpolation result sufficient for the proof above.

4 A class of integral kernels

We say that a function k, with values in B(Bj; Bs), belongs to the class
KS(q,¢) (kernel condition with strong estimates), where 1 < ¢ < oo and
¢ > 0, provided that k € CLU(R" \ {0}; B(B;; By)) and satisfies

1 ‘
<—/ Dk (z)ul’, dx) < RN ),
R» R<|z|<2R

12



for all R > 0, u € By, and o € N* with ||, < |£], and moreover

(% /MMR (D*k(z) — Dk(z — 2))uls, dx) "

AN ’
c(f) R, (¢7,

c% log% R W, teZy

for all R > 0, z € R* with |z| < 3R, u € By, and o € N* with |a|, = [£].

We say that k € KN(q, /) (kernel condition with norm estimates), if &
satisfies conditions similar to the ones above, but with the u removed and
norms of the image space By replaced by the operator norm of B(Bj; By).

The corresponding conditions K S(oo, ) and KN(oc, /) are defined by
replacing the L?-type integrals by essential suprema in the usual way.

These conditions are defined in Stromberg and Torchinsky [19, p. 151] for
scalar-valued functions k. In this case the strong estimates and the norm es-
timates are obviously equivalent. Their notation M (g, £) for these conditions
emphasizes the relation to similar conditions M (g, ) (to be investigated be-
low) for the multiplier m corresponding to the convolution operator on the
Fourier side.

The verification of the following two Lemmata is a routine exercise. We
only note that the monotonicity in ¢ in Lemma 2 is just Jensen’s inequality
and that the last assertion of Lemma 3 is an easy consequence of the other
assertions, which are somewhat more tedious, but still straightforward.

Lemma 2. KS(q,¢) C KS(q1,¢1) and KN(q,¢) C KN(q,01) for ¢ < q
and ¢, < /.

Lemma 3. If k € KS(q,0) (respectively KN(q,t)), then the functions k; :=
t"k(t1), t > 0 satisfy the condition KS(q,f) (resp. KN(q,t)) with the
same constant c. Moreover, if ¢ € S(R"), then Yk € KS(q,0) (resp.
KN(q,!)), with a constant cC (1), q,{), and the functions ¥ (t-)k, t > 0, sat-
isfy the condition KS(q,t) (resp. KN(q,!)) uniformly.

Let us show that the present conditions are stronger than the ones con-
sidered in § 3:
Lemma 4. Fach of the conditions KS(q,l) (resp. KN(q,t)) implies the
condition (3) (resp. (4)).
Proof. In view of Lemma 2, it suffices to do this for ¢ = 1, £ € (0,1) (thus
I4] =0). For k € KS(1,¢), we have

[b2ﬂ@@—yy—ﬂﬂmbﬂh

<

o

- (k(x = ) = b))l
2yl <|a| <2k H]y|

k=1

= (vl -
S c <2k |y|> |u|B1 =cC (Z 2]%) |u|B1 =cC |U|B1 .
k=1

k=1
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The proof for k € KN(1,{) is similar. O

The significance of the conditions KS(q, ¢) lies in the fact that they pro-
vide very satisfactory control over the action of the convolution k- on atoms
of Hardy spaces, as the next result will show. There is hardly anything new
in the proof compared to the scalar-valued situation [19, Lemma 11.2|, but
we nevertheless include the demonstration of this central result for complete-
ness. The formulation of the assertion differs slightly from that in [19], since
the definition of the size condition of an atom is different there. The Lemma
and its proof again involve our standard partition of unity, § 2.1.

Lemma 5. Suppose that k € KS(qq,(), that a is a (po, qo, No)-atom sup-
ported in B := B(xg,7) and that ki(x) = ¢(r 127 22)k(x) for i € Z,.
Then for every i, c;(k; x a) is a (po, qo, No)-atom supported in B(xq,r24),
where
(2i=n(pg ' 1)) if £ < No+ 1 non-integer,
¢ = { 21 D) /i if 0 < Ny + 1 integer,
2iNoH1=n(pg" =1) i p > Ny + 1,

with ¢ = ¢(po, qo, No) an appropriate constant.

Proof. Tt is obvious, after changing the order of integration, that k;xa has (at
least) the same number of vanishing moments as a, and the support condition
is also straightforward. Actually, for the proof, it is useful to observe that
we even have

Clo:r(2™ —1) < |z — 2| <2+ 1)}, (5)

supp(k; * a) = SUPP/ ki(- —y)a(y) dy

as follows immediately from the triangle inequality applied to |y — x| < r
and 2ttt < |z — y| < r2tH3,

In order to estimate k; * a(z) = [ ki(z — y)a(y) dy, consider the Taylor
expansion of order N — 1 of the function R” > y — k;(x — y)u € By (where
u € By) at xg, where N = min(Ny, [ £]):

ki(z — y)u = Z (y_a#)a(—l)MIDo‘ki(x — Zo)u
lal; <N

- Z g(y — 20)*(=1)"h /0 (1= )Y ' D%;i(x — (x0 + s(y — w0)))uds.

lal;=N
Setting u := a(y) and integrating we obtain
1
[ ha=pady= 3 e [ dsr-s
B lal;=N 0
x / dy(zo —y)* (Dki((x — 20) — 5(y — 20)) — Dki(x — 20)) aly),

B
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where the conditions on a concerning moments of orders |a|, < N < N,
made the integrals over the Taylor polynomial vanish, and the conditions
concerning the moments of order |a|, = N were used to introduce the term
(g — y)*D%k;(x — x9)a(y) without affecting the integrals.

Observe that while strong differentiability of k; was sufficient to expand
ki(x — y)u and then set u := a(y), we need to know that the linear operators
D%k;(x — x¢) are closed in order to conclude that

/B(xo —y)*D%;(x — z0)a(y) dy = D%;(z — x¢) /B(xo —y)%a(y)dy =0,
and to get the expression derived above. Since strong differentiability implies
that the domain of the operators D*k;(x — x) is all of By, the requirement of
closedness already implies boundedness by the Closed Graph Theorem. This
is the reason for requiring norm differentiability also in the strong conditions
KS(q,0).

It now follows from Minkowski’s inequality for integrals that

1
ki * al| paoznipy < D ca/ ds(1_5)N1/_ dy |y — o]l
0 B

lael; =N

8 (/r2i<|mm |<roi+a |Dk;i((x — o) — s(y — x0))a(y)

—Dhi(x — zo)a(y)|%, dx) “ . (6)

The quantity in large parentheses is now of the form to which the estimates
coming from the K(qo, ) condition apply. In order to exploit this efficiently,
we need to consider several cases depending on the relation of Ny and /.

Case 1. Recall that N < ¢ by definition. If N = |¢] > ¢ — 1, which is the
case if £ is a non-integer and Ny > |¢] > ¢ — 1, then the expression to be
estimated, with |a|, = N, is the one in the highest derivative condition in
the definition of K(qg,¢). Thus it is bounded by

4 s |y — o] e '
ctrzypiomtes (SBZI) T o)) < im0 o)

(¢ < Ny + 1, non-integer)

where we used s |y — zo| < 7.

Case 2. If N = |¢] = ¢ — 1, which happens when ¢ is an integer and
No > |¢] = ¢ — 1, then we again have the highest derivative condition, but
now with a different bound

: — 2t
o n(qo—n—€]) ° ly ‘$0| 1 r
(r2) o T2 faly)|

< epmlaon=Noitn/ao—n=0; q(y)|, (€ < Ny + 1, integer)
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where we used the monotonicity of z + zlogz™ on [0,e7!] to estimate
zlogr™ < 27log 2’ = 27 for x = % < 27% and moreover the fact that
|4] +1 = ¢. (For the case 1 = 1, we have 27! > e~!, but this problem is
dealt with by simply taking a larger c.)

Case 3. Finally, if N < £ — 1, which is the case when Ny < ¢ — 1, and
thus N = Ny, then the derivatives D® in the norm to be estimated are
not of the highest order in the condition K(qq, £), so we do not have a direct
estimate for the difference. However, writing = in place of x—x( and denoting
2= s(y — xo), u := a(y)we have

1

20
</ |Dki(x)u — Dk;i(x — 2)ul) dx)
. 1
q0
< / </ |(z - D)D k(% — z+zt)u‘g)2 dx) dt
0

n 1 qi
< clz] Z/U (/ | D7 ik;(x — 2(1 — t))u‘g; dx) Y dt
j=1

Now |2(1 —t)| < r, so when x ranges inside the annulus r(2°! — 1) < |z
r(273 4+ 1), the quantity 7 := x — 2(1 — t) satisfies r2! < r(2/*! —2) < |z
r(213 +2) < r27t, so we can still use the K(qo, £) derivative condition, now
for the derivatives of order |a+e¢;|; = |a|, +1 = N+ 1 </, to yield the
bound

| <
| <

c |z| (r2i)n/40—n—(N+1) |a(?J)|31 < cy/@0—n—Noi(n/qo—n—N-1) |a(y)|B1 ’

(£>N0+1)

Here |z| < r was again used, and in addition we recalled that u = a(y).

Conclusion. Having handled all the three cases concerning the L% norm
in (6), we note that the other factors there satisfy the estimates

|z —y|V <V and
[ latwls, v < |B

Note that the estimate of the L%-norm in (6) gives an estimate independent
of s. Thus the integration over s in (6) just produces another constant.
Combining these estimates with the three bounds obtained above for different
values of ¢/ and Ny, we have shown that

Lo 11 -1
9 B‘qo PO :/rn(lfpo )

L _
© llall e < |B

||kz * a||L‘10(R”;B1) S

¢(r2t)nta0 " =po ) iln(ry ' ~1)=0) ¢ < Ny + 1 non-integer
¢(r2i)nta0 " —po ) iln(ry ' ~1)=0); ¢ < Ny + 1 integer
c(r21)nae —po D 2in(ry ~D-No=1) g 5 Ny 41
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This shows that ¢;(k; * a) satisfies the size condition of a (pg, ¢o)-atom in a
ball of radius of the order 2%, and the proof is complete. O

In Lemma 5 we obtained estimates for k; * a, where the k; were parts of
k supported in annuli of increasing radii. In the following, we deal with the
part of kxa not handled there, namely k*a, where kg is the part of £ around
the origin.

Lemma 6. Let k, k;, a and B = B(xg,r) be as in Lemma 5, and ko(x) :=
n(r='27%0)k(z) = k(x) — 2272, ki(x). Suppose further that f v k x f is
bounded from LT (R"™; By) to L©(R"; By). Then there is a constant ¢y such
that co(ko * a) is a (po, qo, No)-atom supported on B(xq, 2%r).

Proof. The moment conditions are again inherited from those of a, and the
support condition is also straightforward, since suppky C B(0,72%) and
suppa C B(xg,7) so in fact supp ko * a C B(z,7(2* + 1)). From (5) we
then find that the supports of ky * a and k; x a are disjoint for ¢+ > 3. Thus
ko* a(r) = k*a(r) — Y -_, ki*a(x) on the support of the left-hand side, and
therefore

ko * a(z)] < |k % a(z)| +Z|ki*a(x)|,

whence taking the L% norms and using the assumed boundedness of k x -
together with the atomic (pg, ¢o) bound for k; * a coming from Lemma 5, we
conclude that

-1 1 -1 -1
||/€0*a||qu SC”aHqu +C‘B‘q0 o SC‘B‘QO o )

where the atomic (pg, o) bound for a was used in the last step. (Note that
there is no need to bother about the i-dependence of the bounds for k; * a,
since there are only two indices involved now.) Now the bound above is, up
to a constant, the size condition required for a (pg, go)-atom with support in
the ball B(xg,2%) = 2*B. O

Now a boundedness theorem of the convolution & * - on HP falls in our
hands.

Theorem 2. Suppose that k € KS(qo,?) and that the convolution operator
f = kxfis bounded from L% (R"; By) to L% (R"; By). Then it is also bounded
from HEY (R™; By) to HE (R"; By) for each p <1 such that

1
1+4/n

(>npt—1), i.e., P>

Proof. Let a, supported in B(xg,r), be an atom of H of L%-type. With k;,
1 € N, as in Lemmata 5 and 6, we have

kxa(z) = ij xa(x) = Z cj_lbj(x),
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where b; := ¢j(k;*a) are atoms of H? of L%-type according to the two above
mentioned Lemmata, and the constants c; are defined as in those Lemmata.
Thus we have, uniformly in H” atoms a of Li-type,

o
|| * a||]’;lgt < Z ;"
=0

A moments look at the definitions of the constants ¢; in Lemma 5 shows
that this series converges to a finite value, in all three cases, if and only if
(>n(pt-1). O

5 Multipliers

5.1 A class of multiplier functions

We now define conditions similar to the KS(g, ¢) and K N(q,{) for the mul-
tipliers m on the Fourier transform side, and analyze the relation of the
conditions satisfied by the multiplier and by the kernel.

We say that a function m € L*(R";B(Bj;B;)) belongs to the class
MS(q,0) (multiplier condition with strong estimates) provided that m €
CUL(R™ \ {0}; B(By; By)) and satisfies

1

1 q
(—n / | Dm(&)ul?, df) < RN ulp, (7)
R R<|¢|<2R -

for all R > 0, o € N* with |a|, < |¢] and v € By, and moreover, if ¢ ¢ Z,

1

q

(g [, 0mm(© = Dot = s, )

|z| £—¢]
<c (E) R |ul g,

for all R > 0, z € R" with |z] < 3R, o € N* with |a|, = |¢] and u € B;.
The condition M N(q, ¢) (multiplier condition with norm estimates) is defined
similarly in a way which should be obvious now. Observe that, contrary to
the case of the kernel conditions, we only require an estimate for the difference
integral when / is a non-integer.

This condition appears in Kurtz and Wheeden [14] for integer values of
¢, and it was known to be related to the boundedness of multiplier oper-
ators even earlier. The classical multiplier theorems in the scalar-valued
situation, namely those of Marcinkiewicz and Hormander-Mikhlin, deduce
the boundedness of the corresponding operators on I, 1 < p < oo, from
the conditions m € M(1,1) (and dimension n = 1) and from m € M(2,/),
¢ > In, respectively. See [14] for more history and references. The defini-
tion of the multiplier condition for general / is taken from Stromberg and
Torchinsky [19].
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As with the kernel conditions, it is routine (and similar) to check the
following:

Lemma 7. MS(q,¢) C MS(q,¢) and MN(q,t) C MN(q,¢,) for ¢1 < q
and ¢; < /.

Lemma 8. If m € MS(q,0) (resp. MN(q,()), then the functions m(t:),
t > 0 satisfy the condition M S(q,t) (resp. M N(q,{)) with the same constant.
Moreover, if v € S(R"), then vm € MS(q,l) (resp. MN(q,¢)) and the
functions ¢(t-)m satisfy the condition MS(q, ) (resp. MN(q,l)) uniformly
mt > 0.

Why these conditions are useful in view of multiplier theorems should be
clear from the following Lemma, which relates the multiplier classes M.S(q, ¢)
to the kernels satisfying K S(q,¢) for which we already know some rather
satisfying properties.

Lemma 9. Suppose m € L®(R"; B(B1; By)) satisfies MS(q,t), where
1 < q < the Fourier-type of Bs.
If we define

mo(§) = n(E)m(&), mi(§) = dQ27Em(S), fori €Ly, and ki =1,

then the kernels k" := Zfil k; satisfy the condition KS(q',€—n/q) uniformly
in N.

Proof. The proof is based on estimating separately the quantities appearing
in the condition KS(¢, /), { := ¢ —n/q, for each of the k; and adding the
estimates. Observe that m; is a bounded function with compact support,
and thus the same is true for each £*m;(£), @ € N*. In particular, these
functions are integrable, and it follows that k; € C*°(R";B(By; By)) with
bounded derivatives of all orders. The same is obviously true for any finite
sum of the k;’s.

Establishing proper estimates for the kernel conditions of the k;’s consists
of several cases, and we shall not go into the details, which are just the
same as in the scalar case worked out in [19, Lemma 11.1]. We point out,
however, that the assumption concerning the Fourier type of By comes to use
when applying the Hausdorff-Young inequality (1) to pass from estimates on
the LI(R"; By) norm of R* 5 & — m;(§)u € By and its derivatives to the
LY (R"; By) estimates on k;(x)u. We should also note that the uniformity
of the MS(q,¢) condition of the m; guaranteed by Lemma 8 is extensively
exploited.

Due to the dilation invariance of the conditions M.S(q,¢) and KS(q, /)
the proof can be reduced to showing the appropriate KS(q’,E) conditions
when R =1, and there we have, quoting [19],

L

=0
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when |a|, < :=(—n/q, and

Zzo.; </1<:1:<2 [(D%ki(e) = Dhilw = z))u|q dx)
- {c|z|”"ﬂ uly 0 ¢ 2.,

c|z| logﬁ “Jul g, (e,

U

for |al, = |£].
From these, the uniform estimates for the k% := Zf\il k; follow by the
inequality of Minkowski. O

5.2 Multiplier operators in the lower extreme

Before stating our multiplier theorem, it is useful to make some remarks on
the definition of these operators. Formally, given m € L°(R"; B(By; Bs)), the
corresponding multiplier operator is T' = T,, := F 'mJ, where the function
m is identified with a pointwise multiplication operator in an obvious way.

One often initially defines (cf. e.g. [8]) T as an operator acting on the
rather restricted function class FD(R"; B;) (Fourier transforms of test func-
tions, or equivalently, Schwartz functions whose Fourier transforms have com-
pact support). This has the advantage that one can even consider multipliers
m which are only locally integrable; indeed, for ¢ € FD(R™; B;), we have
1/) € D(R™; By) and so m1/) is integrable with compact support. The inverse
Fourier transform is then defined even in the usual L' sense as a convergent
Bochner integral, and it gives a bounded, infinitely differentiable function.

However, a result of Clément and Priiss [8, Prop. 1] shows that for m €
L .(R"; B(By; By)) to be a multiplier between any of the spaces L?(R"; By)
and LP(R"; By), with 1 < p < oo, it is necessary that the set of operators
{m(t) : t Lebesgue-point of m} be R-bounded, thus uniformly bounded, so it
is very reasonable to restrict the study to multipliers m € L*°(R"; B(By; Bs)).

We can then define T' on all functions f € LY(R"; By), with 1 < ¢ <
the Fourier-type of By (thus at least on L'(R"; By)), by the formula T'f :=

“L(mf), interpreted as follows: The Fourier transform f is a well-defined
function in LY (R"; By), and thus we have mf € LY (R"; B,) C S'(R"; By).
The inverse Fourier transform can then be taken in the sense of (tempered)
distributions, and we end up with a T'f € §'(R"; By).

The problem is then to determine conditions under which this distribution
coincides with an element of one of the function spaces we have studied,
for all f in (a dense subset of) an appropriate space, and moreover the
conditions under which the map 7' is bounded between these spaces. Note
that (L' N LP)(R™; B) is dense in LP(R"; B) for all p € (1, 00), and moreover
(L' N HY)(R™; B) (even (L' N LY N HE(R™; B)) for any ¢ > 1) is dense in
HE (R™; B) for p € (0,1] (Lemma 1), and all these dense subsets remain dense
even if we impose the additional restriction that the Fourier transforms of
the functions have compact support.
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Thus for all these spaces, it suffices to prove the boundedness of T" on
such subsets, where the initial definition of 7" is valid, and then obtain the
extension to the whole space by continuity. However, in the upper extreme
with the “large” spaces L>™ and BMO, which will be considered in §§ 5.3-5.4,
no convenient dense subsets exist and we must restrict ourselves to a subspace
in order to even have T properly defined. For this reason, we wanted to make
the initial definition on a function class as large as possible.

Now we state the multiplier theorem.

Theorem 3. Suppose that m € L°(R"; B(By; Bs)), and that the correspond-
ing multiplier operator T is bounded from L (R"™; By) to L% (R"; By) for some
qo € (1,00). Suppose further that m € MS(q, ) for some q such that

1 < q < the Fourier-type of Bs, q < q; and (> n/q.

Then T extends to a bounded mapping from HE (R™; By) to HY (R"; By) for

all p in the range
1

> ——.
1/¢"+¢/n

Observe that 1/¢'+¢/n > 1/¢' +1/q = 1 under the assumptions, so that
the asserted range of p is non-empty. Also note that only the Fourier-type
of the image space Bj is relevant, and moreover the theorem always contains
the case ¢ = 1, without any geometric conditions on the Banach spaces in
question.

1>p

Proof. By Lemma 9, the kernels £V defined there satisfy the kernel condition

KS(¢',t —n/q) =: KS(¢',£) uniformly in N. By the monotonicity of the
kernel conditions (Lemma 2), they therefore satisfy K S(qo, f) (uniformly) as
well, since ¢’ > qo. Moreover, k™ corresponds to the multiplier n(2="-)m,
so Tnf := kY % f = 5j,-~ x T'f is bounded from L% (R"; B;) to L% (R"; By)
uniformly in N (by the assumed boundedness of T' and an easy estimate for
the convolution operator with an integrable kernel).

Thus by Theorem 1, the operators Ty are uniformly bounded from the

Hardy space HE (R"; By) to H. (R"; By) for p satisfying

o1 1 1
1+0/n  1+(=n/g)/n  1/q +t/n

1>p

For v € (HY,NL'NL%)(R"; B;) with compactly supported Fourier transform
we have (at least in the sense of distributions) Tyt (&) = 7(2-NE)m(€)(€) =
m(€)(€) = Ty(€), whenever N is large enough so that B(0,2Y) contains
the support of ¢. Thus for such 1) we have

||Tw||H§t(R”;B2) = ]\}I_I)I;o ||TN1/)||H§t(Rn;BQ) <C ||¢||H§t(R”;Bl) ’
and the assertion follows from the density in HZ, of the functions of the type

considered (Lemma 1). O
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The formulation of our multiplier theorem in the strongest possible setting
is somewhat technical. In the applications in § 6, the multipliers will satisfy
the conditions MS(q, /) (in fact, MN(q,¢), and even more) for arbitrarily
large (. It is therefore convenient to state the following obvious consequence
of the Theorem:

Corollary 1. If m € L®°(R";B(By; Bs)) satisfies MS(1,¢) for arbitrarily
large ¢, and the corresponding operator T is bounded from L% (R™; By) to

L®(R™; By) for some qq € (1,00), then T extends to a bounded mapping
from HE(R™; By) to HY.(R™; By) for all p € (0,1].

Next we examine consequences of Theorem 3 in spaces with additional
geometric structure.

The Hilbert space case. It might be illuminating to see what this theo-
rem gives in a Hilbert space setting, where the boundedness from L?*(R"; 3 )
to L*(R"; 3y) already follows (by Plancherel’s formula) from the assumption
m € L>®(R"; B(By; Bs)). Moreover, the Fourier-type of 3, is of course 2.
With ¢y and the Fourier-type equal to 2, we could in principle take 1 < ¢ < 2,
but let us for simplicity just consider ¢ = 2. This gives

Corollary 2. Let Hy and Hy be Hilbert spaces, and suppose that the mul-
tiplier m € L*°(R"; B(Hy;Hy)) satisfies the condition MS(2,0) with ¢ >
%n. Then the corresponding operator T extends to a bounded mapping from
HY(R™; 3y) to HE(R™; Hy) for 1 > p > (1/2+ £/n)~Y, in particular from
HL(R™; 3,) to H (R"; Hy).

By interpolation, we also get boundedness from LP(R™; H;) to LP(R™; Hs)
for all p € (1,2). Boundedness from LP(R"; H;) to LP(R"; H,) for p € (2, 0)
can be achieved if we also assume that m* € MS(2,/), where the point-
wise values of m* € L®(R"; B(Hy; H;)) are given by the adjoint operators of
corresponding pointwise values of m (cf. Remarks in § 3; in a Hilbert space
setting, the duality argument is particularly easy to make). A stronger as-
sumption which implies both of these is the condition m € MN(2,¢). This
is the Hilbert space version of the Hormander—Mikhlin theorem, but we also
automatically get boundedness on some of the spaces H?, for p not too small.

The UMD-space case with R-boundedness. A possibly more interest-
ing application of Theorem 3 appears in combination with the n-dimensional
version of the Mikhlin—Weis theorem [9, Th. 3.25].

The statement of the theorem involves explicitly the concept of R-bound-
edness. This notion was first used by Bourgain |5, Lemma 7| without giving
the concept a name. Since then the notion has been formalized, and many of
its properties are explored in Clément, de Pagter, Sukochev and Witvliet 7|
and in Weis [20]; we also refer to these papers for the definition. The R-bound
of a collection T C B(By; Bs) is denoted by R(T). We recall here that an R-
bounded collection T is always uniformly bounded, and sup;cq |T|B(BI;BQ) <
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R(T), but the converse is only true under special conditions on the geometry
of By and By (see [1, Prop. 1.13]).
Now let us state the result:

Theorem 4. Let By and By be UMD-spaces, and suppose m € C™(R" \
{0}; B(By; By)) satisfies

R ({|§|'°“1 Dm(€) : € € R \{0}}) <oo  forallac{0,1}" (8

Then the corresponding operator T is bounded from LP(R™; By) to LP(R"; By)
for every p € (1,00).

If moreover m € MS(q,(), where 1 < q < the Fourier-type of By, and
¢ > n/q, then T is also bounded from HE (R™; By) to H. (R™; By) for 1 >
p>(1/d +/n) .

Proof. The first paragraph of the Theorem is a restatement of the n-dimen-
sional Mikhlin—Weis theorem [9, Th. 3.25]. This gives us boundedness on the
spaces LP as stated, so the assumptions of Theorem 3 are satisfied, and we
get boundedness on HE, with p in the asserted range. O

A few words about the conditions in Theorem 4 are in order. First, with
¢ € (n/qg,n+1), we have [£| < n, and thus the differentiability conditions
required by the condition M S(q, () are already included in the assumption
m € C"(R" \ {0}) of the Mikhlin—Weis theorem, so no extra smoothness is
required. Moreover, the R-boundedness conditions (8) already imply some of
the inequalities (7) in the M S(q, ¢) condition, namely those with o € {0, 1}™.
In general, there are other o’s with |a|; < [¢], so a part of the condition
m € MS(q, /) is not implied by the R-boundedness assumptions and needs
to be included as a separate assumption.

However, as we will next show, in the one-dimensional setting, all the
assumptions we need are already included in the R-boundedness conditions,
and thus we obtain a genuine extension of the one-dimensional Mikhlin—Weis
theorem to H), (R; By ):

Corollary 3. Let By and By be UMD-spaces, and suppose m € C'(R '\
{0}; B(By; By)) satisfies

R({m(E):€#0}) <oc  and  R({Em'(€): € #0}) < ox.

Then the corresponding operator T is bounded from LP(R; By) to LP(R; Bs)
for p € (1,00) and from H) (R; By) to H.(R; By).

Proof. The assumptions are just those of the Mikhlin-Weis theorem |20,
Theorem 3.4|, and the assertion concerning the LP-boundedness is nothing
but the statement of that theorem. For the H) -boundedness, we need to
verify (according to Theorem 4) that m € M S(q, ¢) with 1 < ¢ < the Fourier-
type of By, and ¢ > 1/q.

Since every UMD-space has a non-trivial Fourier-type, let us fix a ¢ > 1,
but not exceeding the Fourier-type of By. Then 1 > 1/g, so let us take
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¢ =1, and it suffices to check that m € MS(q,1). Since the dimension
n = 1, this means checking the inequality (7) with & = 0 and o = 1.
But these inequalities (even their norm versions) immediately follow from

the assumed R-bounds (even the corresponding uniform bounds would more
than suffice). O

Of course, depending on the Fourier-type of By, we also obtain bounded-
ness for some of the HY, (R; B;), with p < 1 but greater than the bound given
in Theorem 3.

It is not surprising that one obtains stronger Fourier multiplier theorems
in spaces with a larger Fourier-type. A very intimate connection of a non-
trivial Rademacher-type (which is equivalent to a non-trivial Fourier-type,
see § 2.1) to the boundedness of multipliers in the periodic case is contained
in Arendt and Bu [1, Prop. 1.12]. It is interesting, however, that there it is
the type of the Banach space B; in the domain of the multiplier operator
that matters, whereas our result shows dependence on the Fourier-type of
the space Bs.

5.3 The upper extreme and interpolation

Let us consider the norm conditions for multipliers now. Again, as in the
proof of Lemma 9, we can simply repeat the argument in [19, Lemma 11.1],
now working directly with the operators k;(z) and m;(x) without the eval-
uation point v € B;. Thus the norms of B, are replaced by the operator
norms of B(By; Bs), and we employ the Hausdorff-Young inequality between
LY (R"; B(By; By)) and L (R"; B(By; By)) (for which no assumption concern-
ing the Fourier-type is required). This leads to a result analogous to Lemma 9
in which m € MN(1,¢) implies k" € KS(oo, ¢ — n) uniformly in N.
However, all we really want to have is the norm condition (4) of Benedek,
Calderon and Panzone. Indeed, we know from Theorem 3 and Corollary 1
that the strong conditions already allow us to reach everything we could
hope for concerning the boundedness of operators in the lower extreme, i.e.,
between the HY -spaces, and for the upper extreme we simply require the
condition (4), as we know from Theorem 1. But we already know from
Lemma 4 that each of the conditions KN(q,¢), ¢ > 1, £ > 0, implies the
condition (4). We can hence formulate the analogue of Lemma 9 as follows:

Lemma 10. Suppose m € L*(R"; B(By; By)) satisfies MN(1,¢) for ¢ > n,
and the m;’s, k;’s and k™ ’s are defined as in Lemma 9. Then kN, N € N,
satisfy (4) uniformly.

This again gives us a multiplier result. The conclusion we obtain in the
extreme case of L*° and BMO is perhaps somewhat unsatisfactory, since the
lack of a convenient dense subspace, like the one exploited at the end of the
proof of Theorem 3, prevents us from repeating the arguments leading to the
final result there. Nevertheless, as we shall see below, the result we obtain is
strong enough to get the LP-boundedness for 1 < p < oo by interpolation.
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Proposition 1. Suppose m € L (R"; B(By; By)) and the corresponding op-
erator T is bounded from L (R"; By) to L®(R"; By) for some gy € (1,00).
Suppose further that m € MN(1,¢) for some £ > n. Then the operators Ty,
N € N, with multipliers n(2~~-Ym are uniformly bounded from L>*(R"; By)
to BMO(R"; By).

We then give the promised multiplier result for LP. This is analogous to
Theorem 1 in that the boundedness of an operator on all I? is deduced from
its boundedness on one, but now we make the assumptions on the multiplier
m acting on the Fourier transform side.

Corollary 4. Suppose m and T are as in the assumptions of Proposition 1.
Then T has a bounded extension from LP(R"; By) to LP(R™; By) for every
p € (1,00).

Proof. Since the norm condition M N (1, ¢) implies the corresponding strong
condition M S(1,¢), T is bounded from H. (R"; B;) to H.,(R"; By) by Theo-
rem 3. Hence the operators f — T f = 15—~ % T f are also bounded between
these spaces, uniformly in N.

By Proposition 1, the T’s are also uniformly bounded from L*°(R"; B;)
to BMO(R"; By). It follows thus from interpolation that these operators are
uniformly bounded from LP(R"; B;) to LP(R"; By) for every p € (1, 00).

Now the same argument as at the end of the proof of Theorem 3 can
be used to settle the matters, since the set of those f € LP(R"; B;) whose
Fourier transform is compactly supported is dense in L?P(R"; By). O

5.4 Duality arguments

We briefly consider another way of reaching the upper extreme by means of
the duality of H), (R"; B) and BMO(R"; B*), which holds given that B* has
the Radon—Nikodym property, which will be assumed here.

Duality arguments between LP(R"; B) and L” (R"; B*) in connection with
the operator-valued convolution operators were already used in Benedek,
Calderén and Panzone [2], and also commented on in Remarks in § 3. They
exploited the fact that a convolution operator as in § 3 with kernel k£ €
Ll (R*; B(By; By)) is bounded from LP(R"; B;) to L” (R"; B,) if and only if
the convolution operator with kernel £* (adjoint taken pointwise) is bounded
from LP (R"; B3) to L” (R*; Bf). One can also show that a multiplier op-
erator with multiplier m € L*®(R"; B(By; By)) is bounded from L?(R"; By)
to LP(R™; By) if and only if the operator with multiplier m* (adjoint taken
pointwise) is bounded from L? (R*; B}) to LP (R*; Bf). Such duality argu-
ments are fairly standard and easy to make in the setting of the LP spaces,
1 < p < o0, since we can exploit, e.g., the very convenient dense subspace D
of Schwartz functions with compactly supported Fourier transform.

We shall concentrate on the duality in the extremes of H}, and L' at one
end and L* and BMO at the other. We only consider the case of multipliers
here. Convolution operators can be treated in a similar and even somewhat
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simpler fashion, since one avoids the problem of having to switch between the
non-transformed and transformed domains. When dealing with multipliers,
this is essential, and the Fourier-type of the underlying Banach spaces will
be of significance.

We will use the duality equality [ <f(x),g(x)> dz = [(f(z),g(x)) dz,
which is easily verified for f € L'(R"; B*), g € L'(R"; B), and can be ex-
tended by continuity to f € LI(R"; B*), g € L(R"; B) given that B and
B* have Fourier-type ¢. We denote by FLI(R"; B) the image of LY(R"; B)
under the Fourier transform. Since F2f = f := f(—-), at least in the sense of
distributions, this is equivalently the set of those f whose Fourier transform
belongs to LY(R"; B). Let T,, be the multiplier operator with multiplier m.

We start with the following duality lemma:

Lemma 11. Let q € (1,2] and suppose that
g € (L'NFLYR"; By), fe(LNFLY)R"; B;),
and that
T € B(LY(R"; By); LY(R"; By)), T € B(LY(R"; By); LY(R"; BY)),

where B; and B}, 1 = 1,2, have Fourier-type q. Then

[ T @), 9@ do = [ (7o), T(@)) o

Proof. Using the duality equality for the Fourier transform and the definition
of the multiplier operators, we compute

LHS = /(Tm*f(x),?[g](z)) da = /<5”[Tm*f](€),§(§)> d¢
= [ (m©7©.00) a = [ {fe1m(e)a(0)) ae
- [{#©.512.31©) dé = [ (317iw). Tu3(a)) do = RES.

O

Now we can deduce properties of the operator 7,,- in the upper extreme
from those of T,,, in the lower extreme:

Lemma 12. Suppose, in addition to the assumptions of Lemma 11, that
T, € B(H. (R"; By); L'(R"; By)) (resp. B(HL(R"; By); HL.(R"; By)) ),
and that B} has the Radon—Nikodym property. Then T,,- maps

(L® N LN FLY(R"; B) C L=(R"; BY)
(resp. (BMONL!NFLY)(R"; By) C BMO(R"; B;) )
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boundedly into BMO(R"™; BY).

On the other hand, if B3* has the Radon—Nikodym property and if T,
satisfies the assumptions for T, above, then T,, satisfies the conclusions for
T (with obvious modifications concerning the underlying Banach space B;,
By in the statement).

It is perhaps useful to note that the required Radon—Nikodym properties
hold if B; and B, are reflexive (see [10]). Moreover, if the spaces are UMD,
then also a non-trivial Fourier-type ¢ required in the conditions of Lemma 11
(and thus also the present one) is guaranteed to exist (cf. § 2.1).

Proof. We use the duality of H) (R"; B;) and BMO(R"; B;) and the den-
sity in HL(R"; By) of g € (H; N L9)(R"; By) with compactly supported
Fourier transform. In order to apply the duality equation from Lemma 11,
we observe that g € H. (R"; B;) C L'(R"; By) implies g € L*(R"; By), and
this combined with the assumption that g has compact support shows that
g € LY(R™; By). We then obtain

||Tm*f||BMO(R";B* HT f||H1 (Rm; By )*

= [ i
g€(HL NLY)(R™;By)

supp § compact, ||g|\H1 <1

et <[,

-

B i — ooy Wl o

ol ez smy -

BMO(R™;B})

where the first and second cases correspond to the two alternative assump-
tions of the Lemma.

The other way round. Now, if we suppose that T,,- is bounded from
H,.(R"; By) to L'(R"; B}) (respectively H, (R"; B)), then by the first part
of the proof T, is bounded from

(L* N LN FLY(R"; B) C L®(R"; BY)
(resp. (BMONL!NFLI)(R"; Bi*) € BMO(R"; By™) )

to BMO(R"; B3*) = H. (R"; B})*.

But considering B; embedded in B}* in the usual way, we have the identity
m** ()|, = m(§) € B(Bi; By); and thus we conlude that 7, is bounded
between the same function spaces as 71j,--, but with the second duals B;*
replaced by B;’s as the underlying Banach spaces. O

We can then formulate a multiplier result valid at least on some subsets
of BMO(R"™; By):
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Proposition 2. Let m € L*(R"; B(By; Bs)), and suppose the corresponding
multiplier operator T,, is bounded from L®(R"™; By) to L% (R"; By) for some
go € (1,00). Suppose further that

1 < q1 < the Fourier-type of Bo,

m € MS(q, ), where
o a1 < qp, l1>n/q.

and that the pointwise adjoint m* € L= (R"; B(Bj; B})) satisfies

1 < g < the Fourier-type of By,

m* € MS(go, (), where
o ¢ < qo, ly > n/q.

Then T, is bounded from LY(R™; By) to LY(R"; By) for all ¢ € (1,00),
and moreover it maps boundedly (in the BMO-norm)

(BMONLP NFLP)(R"; B;) C BMO(R"; By) into BMO(R"; By)
for every p > 1 for which all of the spaces B;, B} have Fourier-type p.

Note that both of the M S-conditions above are implied by the single
norm condition

1 < ¢ < Fourier-types of By, B,

m € MN(q,¢1), where ‘
q1 S mln(q05q6)7 Kl > n/q17

since m(£) and m*(&) have equal norms.

Proof. By Theorem 3, T, is bounded from H),(R"; By) to H),(R"; By) and
by interpolation from LY(R™; B;) to LY(R"; By) for all ¢ € (1,q0]. Then
by standard duality, T, is bounded from L"(R"; B}) to L"(R"; B}) for all
r € [gh,00).

Applying Theorem 3 to T},-, starting from boundedness from L% (R"; B)
to L%(R"; B?), we get that T},- is bounded from H] (R"; B) to H., (R"; B?),
and thus by interpolation from LY(R"; B}) to LY(R"; B}) for all ¢ € (1, 00).
Then by standard duality, T, is bounded from LY(R"; By) to LY(R"; By) for
all ¢ € (1, 00).

Now, from the fact that T}, is bounded from H) (R"; B}) to H] (R"; B}),
it now follows from Lemma 12 that 7,, is bounded in the BMO-norm in the
way asserted in the statement of the Proposition. O

6 Applications to maximal regularity

We consider applications of the multiplier theorems to the problem of max-
imal regularity of a number of differential equations. This is only a brief
account, and one can certainly consider many other problems as well. We
only state results in the lower extreme, i.e., the Hardy spaces, since our mul-
tiplier theorems in the upper extreme are not so appealing, although partial
maximal regularity results on appropriate subspaces can be obtained there,
too, in the same spirit as the corresponding multiplier theorems.
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6.1 The Cauchy problem v + Au= f, u(0) =0

Given that —A generates a bounded analytic semigroup exp(—tA), ¢ > 0,
this problem is known to have a unique “mild” solution u € L{ (R, ; B) for
every f € LP(Ry; B) (cf. Weis [20]). We say that the problem has maximal
LP-regularity if for every f € LP(Ry; B) the solution u is a.e. differentiable
with values in D(A), and moreover, for some C' < oo, we have

||u’||LP(]R+;B) + ||u||LP(]R+;B) + ||Au||LP(R+;B) <C ||f||LP(R+;B) :

Of course, it suffices to verify the above boundedness for u and, say, Au,
since the similar estimate for u’ is then obtained directly from v’ = f — Auw.
Maximal regularity on H? can be defined similarly in an obvious way.

We now wish to apply the multiplier theory to this problem. To this end,
we observe that, at least in the sense of distributions, the original Cauchy
problem is equivalent to

(i€ + A)aE) = £(€),

where we have extended f to the whole line by setting f(¢) := 0 for ¢ < 0 in

order to take the Fourier transform. Given that (i£ + A) is invertible for all
¢ € R, we find that

(€)= (i +A)'f(§)  and  Au(¢) = A(iE +A) 7' ().
so the problem of maximal regularity involves showing that
m(E) = (1 +A)~"  and  m(g) = AL+ A)7

give rise to a bounded multiplier operator on the appropriate spaces.

A necessary condition for this to be the case on any of the spaces L”, 1 <
p < 00, is, according to Clément and Priiss |8, Prop. 1|, the R-boundedness of
{m(&) : £ a Lebesgue point of m}, which in this case is {m(&) : £ € R}, and
similarly for m. Note, however, that the R-boundedness of {m(&) : £ € R}
already follows from the assumption for m and the invertibility of A: Since

oo

(€+A)7 =D G)FA D, for f¢] < A7 5
k=0

the R-bound of {m (&)} with ¢ sufficiently small is bounded in terms of the
operator norm of A~! (cf. |20, Prop. 2.6]), and for |£| > ¢, we have

R+ 4) ™ < |e] > ) < “R(E(E +4) 2 [¢] > )
<2 (1L+RAAGE+ A Jel > o).

where Kahane’s contraction principle (see |9, Lemma3.5]) was used in the
first inequality.
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Let us now examine the derivatives of m required in the multiplier con-
ditions. We have D/m(&) = (—i)/jlA(i& + A)~17, so

R{E DIm(€) : & # 0})
< JIRHAGE+ A)71 € # ODRIIEEE+ A) 7T € # 0} < jIC(L+CY,

where C = R({A(i+ A)~' : £ € R}). We applied the product rule of R-
bounds [9, Prop. 3.4] in the first step. With m we can compute in a completely
analogous fashion, just omitting the A in front.

Thus, if A is invertible and m(&) satisfies the necessary condition for max-
imal LP-regularity, then m(¢) satisfies arbitrarily many of the conditions of
the type in the assumptions of the Mikhlin—Weis theorem, and consequently
the conditions M(q,¢) for any ¢ and arbitrarily large ¢. This means the
following:

Proposition 3. For the B-valued Cauchy problem
u'(t) + Au(t) = f(t), fort >0, u(0) =0, (9)

with —A an invertible generator of a bounded analytic semigroup, the follow-
ing are equivalent:

e (9) has mazimal LP-regularity for some p € (1,00),

e (9) has mazimal LP-regularity for all p € (1,00) and mazimal HE,-
reqularity for oll p € (0,1].

If B is UMD, then these conditions are further equivalent to

o {A(i¢+ A)7': £ e R} is R-bounded.

Remarks. In Cannarsa and Vespri [6], the maximal regularity of the ab-
stract Cauchy problem is considered on finite intervals [0, 7] instead of R;.
They show that if (9) has maximal L%-regularity for some ¢, then it has
also maximal LP-regularity for all p € (¢,00), and if B is reflexive, for all
p € (1,00). Cannarsa and Vespri also allow for the possibility ¢ = 1 in
the assumptions of their theorem, and they also consider non-zero initial
conditions u(0) = x. Their proof does not exploit any multiplier theorems,
but it is worked out in the concrete setting with the operator A and the
semigroup e 4. Their argument actually goes via the upper extreme, i.e.,
they first prove maximal regularity between L*>* and BMO, and then use
interpolation.

A characterization of maximal LP-regularity of the Cauchy problem (9)
for B UMD in terms of R-boundedness was obtained in Weis [20]. We also
refer to this work for comments on the assumption of the invertibility of A;
Weis does not use this assumption, but his definition of maximal regularity
is slightly weaker.
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We note that the R-boundedness of operator collections such as the one
in Proposition 3 is nowadays often expressed in terms of the notion of R-
sectoriality, due to Clément and Priiss [8]: An operator A is called R-sectorial
if {A(t+ A)~!:¢ > 0} is R-bounded, and this already implies, by a well-
known power series argument, R-boundedness of some of the sets

{A(z+A)7": |arg 2| < 7 — 6} (10)

with @ < 7. The R-angle ¢% of A is then defined as the infimum of the
6 € (0,m) for which the set (10) is R-bounded. For the R-boundedness
condition in Proposition 3, we have |arg(i€)] = 7, and thus an R-angle
¢t < 1w would imply the condition.

6.2 The Laplace equation —Au + Au = f

On the Fourier transform side this is (|€|* + A)a(€) = £(£), so a(€) = (|&]° +
A)” f(f) provided that [0,00) belongs to the resolvent of A, and Au(€) =
A(|€)* + A~ f(€). Thus proving maximal regularity amounts to showing

that the multipliers

m(€) = (|EF+ A~ and  m(&) = A(I¢F + A"

give rise to a bounded operator on the appropriate space. We will assume
that {m(&) : £ e R"} = {A(t+ A)~! : t > 0} C B(B) is R-bounded, since
otherwise m cannot be a multiplier on any of the LP(R"; B), p € (1,00). As
in § 6.1, the R-boundedness of {m(§) : & > 0} follows from this combined
with the invertibility of A.

One can easily verify by induction that the ath partial derivative of a

smooth radial function g(z) = f(3 |z|?) is given by
Z f |:E| /2 Z C(O!, L) Hxa(l)
i<lal, Lc{i,—lal,} teL
#L=2j|al,

where a(f) :== 1 for 0 < £ < ay, a(l) := 2 for ay < £ < ay + a3 etc., and
c(a, L) € N only depend on « and L.

Since the derivatives of the resolvent (¢+ A)~! have the same form as if A
were just a number and the resolvent thus just an ordinary rational function,
we can also apply the above formula to A(|¢]* + A)' = 1At + 14)!

= L[¢%, to get

DA +A) = Y (=2 AP+ AT Y oo L) [ e

J<laly #L=2j—|al, Lel

To show that the set {|¢[I®" Dam(¢) : € € R"} is R-bounded, we need to
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consider the finite number of R-bounds

R (ﬂfl'“'l AP+ )T [[baw : € € R"})

Lel
<R ({lel*h AP + )7 g7 s g e RYY)

<R{AEP+A) e R R{IEF (P +A) € eRY)
<C(1+0)Y,
where C' = R({A(J¢]* + A)~! : € € R"}). The first inequality employed
Kahane’s contraction principle and the second one the product rule of R-
bounds (see e.g. |9, 3.4-3.5]). For m(&), the computations are just the same,
omitting the A in front.

With the same reasoning as with the Cauchy problem, the above gives
the following:

Proposition 4. For the B-valued Laplace equation
—Au(z) + Au(z) = f(x), (11)
with [0, 0¢) in the resolvent of A, the following are equivalent:
e (11) has mazimal LP-regularity for some p € (1,00),

e (11) has mazimal LP-regularity for all p € (1,00) and mazimal HE,-
reqularity for p € (0, 1].

If B is UMD, then these conditions are further equivalent to
o {A(t+ A)"':¢ >0} is R-bounded.

Note that now the R-boundedness condition is exactly the requirement
of R-sectoriality of A.

6.3 The fractional-order equation D%u + Au = f where
a € (0,2)

Before proceeding, we emphasize that « in this subsection denotes a positive
real number and not a multi-index like elsewhere. The fractional derivative
D% is defined (cf. [21, §12.8]), for 0 < a < 1 and ¢ > 0 by

A1
(D°)(1) 1= D(gra s ule)(0),  g5(t) i= =T, (1),
()
and D'*® := DD®. We assume the initial condition «(0) = 0, and if @ > 1
also the additional condition u'(0) = 0.
In Clément and Priiss [8, p.85|, it is shown that this problem admits
a unique solution u € LP(R,;D(A)) for every f € LY(Ry;B), ¢ € (1,00),
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given that A is invertible and R-sectorial with R-angle ¢%f < 7(1—3a). (The
requirement of this condition gives the natural restriction for the range of
the order of the derivative o € (0,2).) Moreover, this solution satisfies

D%l Loz :m) + 10l Loy + AUl Loy my S Cllfll oy sy - (12)

Let us make these same assumptions and see what happens in HE (R, ; B).

Assume for the moment that o € (0, 1), and consider the modified kernel
g5(t) := gs(t)e™™, u > 0. Then g§ € L'(R ), and the convolution gf * u €
Li(R,; B) given that u € LI(R;; B). Let us now fix a ¢ > 1 such that B
has Fourier-type ¢. Then the Fourier transforms of v and ¢’ _, * u (where
u is extended to the whole line by u(t) := 0 for ¢ < 0) are well-defined
LY (R; B)-functions such that

Flgi—a * ¥](§) = g1-a(O)U(E). (13)
The Fourier transform of g is
o pt ; 1
—(uHOt 44 — . 14
| e e G "

for & = 0, this is the definition of the I'-function and a simple change of
variable, and for general pu + i € C; := {2z € C : Rez > 0}, the result
can be deduced from this special case with the help of Cauchy’s theorem, by
investigating the integrand of the analytic function z + 2°~!exp(—2) over
the path

e, p] U pe'® U [e, ple®” U eell®?,

where 9 = arg(p+1i€) € (—3, 37), and we consider the limit e — 0, p — oco.
Let us then observe that

g3 ) = o (8], < [ s(9) ult = 5)] (1 - ) s

< gp* [ulp (1) - (1—e™),

and thus
Hgﬂ U~ gg * UHLp(o,T;B) < ||gﬂ||L1(07T) ||U||LP(R;B) (1-— eiﬂT)

T
< — T.
— F(ﬁ—F 1) ||u||LP(R;B):U’

Since this bound is only slowly increasing as a function of 7', it is quite easy
to see that gg xu — gg*u (as g — 0) in the sense of the B-valued tempered
distributions S'(R; B). Then also D(gj * u) — D(gs * u) in the same sense,
and moreover the distributional Fourier transforms also converge, since J is
continuous on §'(R; B). But we know from (13) and (14) above, together
with the formula for the transform of a derivative, that

i i

(€)= e 89)%a) — (59)"al6),

F[D(g1" 4 * u)](§) = (itig)ie R
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and it is easy to see that the pointwise convergence above also gives conver-
gence in 8'(R; B). Thus we conclude that

F[D%u](€) = (i) a(§)-

For o > 1, we just invoke the formula for the Fourier transform of the distri-
butional derivative (of usual integer order) again to give the above formula
also for a > 1.

Thus, given f € LR, ; B), we know from Clément and Priiss [8] that
our fractional-order equation has a solution u € LI(R;;D(A)), and by the
considerations above, the Fourier transform of this solution satisfies

(i€) a(€) + Aa(¢) = f(©).
and so the multipliers corresponding to the present problem are

m(€) = ()" +4)~"  and (€) = A((i)" + A)~".

3

Now the assumed R-sectoriality of A implies in particular that {A((i€)*+
A)7t . ¢ € R} is R-bounded, which is a necessary condition for m to be
a multiplier on any LP, p € (1,00). From the maximal regularity result
in 8] quoted above it follows that m is indeed a multiplier on these spaces.
Moreover, from (12) we see that |ul|g,.py < Clfls®,.p) s0 M(&) =
(&)™ + A)~! is also a multiplier.

We then investigate the multiplier conditions satisfied by m and m. For
iterated derivatives of a composition of functions, one can show by induction
that

J J
(fog) P =3 (fPog) > cuy_ [T4")™
i=1 > =i h=1
2o hip=j
where the Clinyi_, D€ numerical constants depending only on the parameters
=1

indicated. We apply this to f(t) = A(t+ A)~ !, g(t) = (it)*, bearing in mind
what was said above about the derivatives of the resolvent in § 6.2.
We obtain

DIm(€)
_ Z(—l)%‘!A((i{)“ + A)" i, U (% (a—h+ 1) )"

where the conditions 327 i, = i and 33)_, hi, = j were used in the last
step.
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The R-bound of {&/Dim(&) : € # 0} is now bounded by a finite number
of R-bounds of the form

R ({EA((i6)" + A) i - ¢ £ 0))
= R ({A((€)" + A) ()" ()" + A) T - € £0}) < C(1+ O,

where C = R({A((i)*+ A)~': £ € R}).

For m we obtain almost the same results, the only exception being the
lack of the operator A in front of the expressions, and we then use the R-
boundedness of the collection {((i£)® + A)~': £ € R}.

Thus m and m satisfy infinitely many of the conditions considered in our
multiplier theorems, and so they also give rise to bounded operators on all
of the spaces HY (R; B). Thus we have the result:

Proposition 5. Let « € (0,2), let B be a UMD-space and A an invertible
and R-sectorial operator A : D(A) C B — B with R-angle ¢%f < (1 — ja).
Then for every f in the dense subspace (L1 N HE)(Ry; B) of HY (R, ; B),
where 1 < q < the Fourier-type of B and p € (0,1], the fractional-order
equation

<

=
SN—

I
o

wW(0)=0 ifa>1,
(15)
has a unique solution u € (LN HY)(R,; D(A)) which satisfies (12) and

D%u(t) + Au(t) = f(t), fort >0, a€(0,2), {

||Dau||H§t(R+;B) + ||u||H§t(R+;B) + ||AU||H§t(R+;B) <C ||f||H§t(R+;B) :
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