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1. Introduction

In a recent paper, [7], the quasilinear parabolic evolution equation

du
WA= ), uw(0) =z, 1)

was considered in continuous interpolation spaces. The analysis was based on max-
imal regularity results concerning the linear equation

du + Au = f, u(0) = z. (2)
dt
In particular, the approach allowed for solutions having (at most) a prescribed
singularity as ¢ | 0. Thus the smoothing property of parabolic evolution equations
could be incorporated.

In this paper we show that the approach and the principal results of [7] extend, in
a very natural way, to the entire range of abstract parabolic evolutionary equations

DY (u—z) + A(u)u = f(u), u(0) = z. (3)

Here D§* denotes the time-derivative of arbitrary order a € (0, 2).

As in [7], our basic setting is the following. Let Ej, E; be Banach spaces, with
E, C Ey, and assume that, for each u, A(u) is a linear bounded map of F; into Ey
which is positive and satisfies an appropriate spectral angle condition as a map in
Ey. Moreover, A(u) and f(u) are to satisfy a specific local continuity assumption
with respect to u.

Our paper is structured as follows. We first (Section 2) define, and give a brief
treatment of, fractional derivatives in the spaces L?((0,7); X) and then (Section
3) consider these derivatives in spaces of continuous functions having a prescribed
singularity as ¢ | 0. In Section 4 we characterize the corresponding trace spaces at
t = 0 and show how these spaces depend on .

In Section 5 we consider the maximal regularity of the linear equation

Df(u—z)+ Au = f, u(0) = z, (4)

where again « € (0,2) and where the setting is the space of continuous functions
having at most a prescribed singularity as ¢ | 0. To obtain maximal regularity we
make a further assumption on Fy, F;.

In Section 6 we analyze the nonautonomous, A = A(t), version of (4). Here we
assume that for each fixed ¢ the corresponding operator admits maximal regularity
and deduce maximal regularity of the nonautonomous case.

In Sections 7 and 8 we combine our results of the previous sections with a contrac-
tion mapping technique to obtain existence, uniqueness, and continuation results
on

Dy (u—z) 4+ A(u)u = f(u) + h(t), u(0)==. (5)

Finally, in Section 9, we present an application of our results to the nonlinear
equation

D{(u — ug(x)) — (0(ug))z = h(t), =€ (0,1), ¢>0,
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with v = u(t,z), u(0,z) = up(z), « € (0,2), Dirichlet boundary conditions, o
monotone increasing and sufficiently smooth.

Parabolic evolution equations, linear and quasilinear, have been considered by
several authors using different approaches. Of particular interest to our approach
are the references, among others, [1], [2], [8], [10]. The reader may consult [7] for
more detailed comments on the relevant literature.

It should also be observed that we draw upon results of [4], where (4) is con-
sidered in spaces of continuous functions on [0, 7], i.e., without allowance for any
singularity at the origin.

2. Fractional derivatives in Lr

We recall [13, II, pp. 134-136] the following definition and the ensuing properties.
Let X be a Banach space and write

gg(t):ﬁtﬂ_l, t>0, B>0.

Definition 1. Let u € L'((0,T); X) for some T > 0. We say that u has a
fractional derivative of order o > 0 provided u = go * f for some f € L! ((0, T); X).
If this is the case, we write Di'u = f.

Note that if @ = 1, then the above condition is sufficient for u to be absolutely
continuous and differentiable a.e. with v’ = f a.e.

Tradition has that the word fractional is used to characterize derivatives of non-
integer order although « may of course be any positive real number.

If the fractional derivative exists, it is essentially unique. Observe the consis-
tency; if u = g * f, and « € (0,1), then f = Dffu = %(gl_a « u). Thus, if u
has a fractional derivative of order @ € (0,1), then g1_, * u is differentiable a.e.
and absolutely continuous. Also note a trivial consequence of the definition; i.e.,
D (go * u) = u.

Suppose a € (0,1). By the Hausdorff-Young inequality one easily has that if
the fractional derivative f of u satisfies f € L”((O,T);X) with p € [1, é), then
u € LI((0,T);X) for 1 < g < 1_pap. Furthermore, if f € LP((0,T); X); with
p=oa!, thenu e LI((0,T); X) for q € [1,00). If f € LP((0,T); X) with o~ < p,

then u € hﬁ_}f ([O,T];X), [13, II, p. 138]. In particular note that u(0) is now
welldefined and that one has u(0) = 0. (By h_, we denote the little-Holder
continuous functions having modulus of continuity € and vanishing at the origin).

The extension of the last statement to higher order fractional derivatives is ob-

vious. Thus, if u has a fractional derivative f of order @ € (1,2) and f € LP with

(a —1)~' < p, then u; € K377 .
We also note that if u € L'((0,7); X) with Dfu € L*((0,T); X), e € (0,1),
then v € Cg,(([0,7]; X). The converse is not true, for u € C¢,,([0,7]; X) the

fractional derivative of order o of u does not necessarily even exist. To see this, take
v € A, [13, 1, p. 43], then [13, II, Theorem 8.14(ii), p. 136] D}~ %v € ce([0,T); X).
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Without loss of generality, assume Dtl_av vanishes at ¢ = 0. Assume that there
exists f € L*((0,T); X) such that

Di =y =t ok f,

But this implies (convolve by ¢~®) v = 1 % f, which does not in general hold for
v € A, [13, 1, p. 433].

The following proposition shows that the LP-fractional derivative is the fractional
power of the realization of the derivative in L?.

Proposition 2. Let 1 < p < o and define

def

D(L) = WP ((0,T); X),

and
def

Lu = 4, u € D(L).
Then L is m-accretive in LP((0,T); X) with spectral angle . With o € (0,1) we
have
L%y = D, u € D(LY),

where in fact D(L®) coincides with the set of functions u having a fractional deriv-
ative in LP, i.e.,

D(L*) ={u e LP((0,T); X) | g1—a *u € W ((0,T); X) }.

Moreover, L* has spectral angle <.

We only briefly indicate the proof of this known result. (Cf. the proof of Propo-
sition 5 below.)

The fact that L is m-accretive and has spectral angle 5 is wellknown. See, e.g.,
[3, Theorem 3.1]. The representation formula given in the proof of Proposition 5
and the arguments following give the equality of L* and Dg*. The reasoning used
to prove [4, Lemma 11(b)] can be adapted to give that L* has spectral angle %T.

We remark that if X has the UM D-property then (in L?((0,7); X) with 1 <

p < 00) we have

D(L®) = D(Df) = [L((0,T); X); Wo* ((0,T); X) -
See [9, p. 20] or [12, pp. 103-104], and observe that % admits bounded imaginary
powers in L?((0,T); X).

3. Fractional Derivatives in BUC,_,

Let X be a Banach space and T' > 0. We consider functions defined on Jy = (0, T
having (at most) a singularity of prescribed order at ¢t = 0.



Let J =1[0,T], p € (0,1), and define

BUC1_,(J, X) =
{ue O(Jo; X)| 7 u(t) € BUC(Jo; X),  lim &'~ u(t) 1x = 0}, (6)

with et
lellmuc, a0 2 sup 74 fu(t) x. @
teJo
(In this paper, we restrict ourselves to the case u € (0,1). The case p = 1
was considered in [4].) It is not difficult to verify that BUC;_,(J;X), with the
norm given in (7), is a Banach space. Note the obvious fact that for T3 > T we
may view BUC1_,([0,T1]; X) as a subset of BUC:_,([0,T5]; X), and also that if
u € BUC1-,([0,T]; X) for some T > 0, then (for this same u) one has

I}%HUHBUQ_“([O,T];X) =0. (8)
Moreover, one easily deduces the inequality
lullze(rix) < cllullsue, ,5x), meE(0,1), 1<p<(1—p),
and so, for these (u,p)-values,
BUC_,(J; X) C LP(J;X), 9)

with dense imbedding. To see that this last fact holds, recall that C(J, X) is dense
in LP(J; X) and that obviously C(J,X) C BUC:_,(J;X).
We make the following fundamental assumption:

a+p>1. (10)

To motivate this assumption, suppose we require (as we will do) that both u
and Dgu lie in BUC,_, and that u(0) (= 0) is welldefined. The requirement

Dfu € BUC,_, implies, by the above, Dfu € Lp((O,T);X); for1 <p< ﬁ

_1
On the other hand, if Dfu € LP with a=! < p then u € hg_ﬂ’]’ and u(0) (= 0)
is welldefined. Thus our requirements motivate the assumption that the interval
(@1, (1 — p)~') be nonempty. But this is (10).
Therefore, under the assumption (10), the following definition makes sense.
BUCY ,(J;X) ¥ {u € BUC_,(J; X)| a1)
there exist z € Xandf e BUC:_,(J;X) suchthat u=z+g.* f}.
We keep in mind that if u € BUCT_ ,(J; X), then (assuming (10)) u(0) = z and u
is Holder-continuous.
We equip BUCY ,(J; X) with the following norm:

def N
lullpucs , (7:x) = llullpue, _,(7:x) + IIDf(w — 2) | Brc, . (7;x)- (12)
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Lemma 3. Let a >0, u € (0,1), and let (10) hold. The space (11), equipped with
the norm (12), is a Banach space.

Proof of Lemma 3. Take {wy, }52; to be a Cauchy-sequence in BUCT_ ,(J; X).
Then, by (12), and as BUC,_,(J;X) is a Banach space, there exists w €

BUC:_,(J; X) such that |[w, —wl|puc, ,(s:x) — 0. Moreover, f, < D&(w, —
wy (0)) converges in BUC_,(J; X) to some function z.

We claim that w(0) is welldefined and that z = D{*(w — w(0)). To this end, note
that

W (t) — wn(0) = ga * fn = ga * 2 + g * [fn — 2]. (13)

We have lim,_,o|[t'7#[f.(t) — 2(t)]||x = 0, uniformly on J. Thus, by (10),
lim,, 00 ||ga * [fn — 2]||x = 0, uniformly on J. So, uniformly on J,

lim [wy, (t) — w,(0)] = gq * 2.

n— 00

For each fixed ¢t > 0, { w,(t) }32; converges to w(t) in X. Thus { w,(0) }52; must
converge in X and by (10) and (13) we must have w, (0) — w(0) as n — co. O

. . . . . N o def
Our next purpose is to consider in more detail differentiation on X =

BUC:—-,(J;X) and to connect the fractional powers of this operation with that
of taking fractional derivatives. First consider the derivative of integer order.
Take a =1 in (11), (12), (thus a + p > 1) and define

D(L) % {u e BUCL_,(J; X) |u(0) = 0}, (14)
and
Lu = u'(t), u € D(L). (15)
We have
Lemma 4.

(i) D(L) is dense in X,

(ii) Lisa positive operator in X , with spectral angle

z.
Proof of Lemma 4. (i) Clearly, Y &t {ue CYJ;X)|u(0) =0} C D(L). It is
therefore sufficient to prove that Y is dense in X. Observe that Y C Co—o(J;X) C
X. It is wellknown that Y is dense in Cy_o(J; X) with respect to the sup-norm
(which is stronger that the norm in X). So it suffices to prove that Co_o(J; X) is
dense in X.
Let u € X. There exists v € Co_o(J; X) such that u(t) = t*~tu(t), t € (0,T].
Set, for n large enough,
1
vn(t):{o, telo,1],
U(t - %), te (%,T],

Un(t) = t* o, (t), t€(0,T], un(0)=0.
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Then u,(t) € Co—o(J;X), and

supse(o,r1 [t T [u(t) — un()]llx = sup [[v(t) — va(t)x
t€(0,T]

1
< sup |lv(t)|[x + sup [[v(t) —v(t - —)lx =0,
0<t<i LT n

as n — oco. It follows that Cy_o(J; X) is dense in X and (i) holds.
(ii). First, note that X C L'(J;X) and that for every A € C and every f €
LY(J; X), the problem
Au+u = f, u(0)=0,

has a unique solution u € W&’l((O,T);X) C Co-0([0,T]; X), given by

t
u(t) = / exp[—A(t — s)]f(s) ds, ted (16)
0
We use this expression to estimate

sup  sup [A[EHH]|u(t)lx,
|argA|<6 t€(0,T]

in case f € X and 0 € [0, )
Let f(t) = t*~'h(t), with h € Cy_0(J; X). Then
t
Ao <6+ [N expl—RAG — s ds 1
0

1
—cosf

N

t
e [ 0N) explRAL — 85~ ds ] 5
0
We write n LERA > 0, 7 def 7ns, to obtain

(cos )11k /0 (RA) exp[—RA(t — s)]s"~L ds

nt
= (cos 0)_1(7715)1_“/ exp[—nt + T]7* "1 dr < cp,
0

where c¢g is independent of n > 0, ¢ > 0. To see that the last inequality holds,
first observe that the expression to be estimated only depends on the product 7t
(and on pu, ). Then split the integral in two parts, over (0, Ig), and over (!'23, nt),
respectively. (Cf. [2, p. 106]).

We conclude that the spectral angle of L is not strictly greater that 7.

s
2" -
an analytic semigroup . To obtain a contradiction, observe that L is the restriction
to X of L; considered on L((0,7); X), where D(L;) = W&io((O,T);X); fiu®

u'; u € D(L1). Thus the analytic semigroup T'(t) generated by —L would be the

restriction to X of right translation, i.e.,

(T(#)f)(s) =

Finally, assume that the spectral angle is less than Then —L would generate

{f(s_t)a OStSS,
0, s<t.

But X is not invariant under right translation. By this contradiction, (i) follows
and Lemma, 4 is proved. [

Proceeding next to the fractional powers and fractional derivatives we have:



Proposition 5. Let a,pu € (0,1). Then
D(L*) =D (DO‘)dﬁf {ueX|u=gqx*f for some f e X},
and Lu = D%u, for u € D(L*). Moreover,

Dy¥ is positive, densely defined on X, and has spectral angle %. (17)

Proof of Proposition 5. We first show that
(L™HY%f = ga * f, for f € X. (18)

Observe that 0 € p(L), and that L is positive. Thus

(L)ef=E7f == 1_a)/ o(sI + L)~ f ds,

where the integral converges absolutely. But

(sI+L)"'f = /0 exp[—s(t —o)]f(o)do, 0<t<T,

and so, after a use of Fubinis theorem,

Hef= /Ot (/OOO ms%‘ exp[—so] ds)f(t — o) do.

To obtain (18), note that the inner integral equals g, (o).

Let u € D(D&). Then u = go * f, with Du = f € X. So, by (18), u = (L=,
which implies u € D(L%) and L%u = f.

Conversely, let u € D(fﬁ‘). Then, for some f € X, L% = f, and so u = (f/a)_lf.
By (18), this gives u = g, * f and so u € D(Dg).

We conclude that D(L*) = D(D¢) and that L®u = D@u, u € D(L%).

To get that Df is densely defined, use (i) of Lemma 4 and apply, e.g., [11,
Prop.2.3.1]. The fact that the spectral angle is %* follows, e.g., by the same argu-

2
ments as those used to prove [4, Lemma 11(b)].

]

Analogously, higher order fractional derivatives may be connected to fractional
powers. We have, e.g., the following statement.

Proposition 6.
Let a,p € (0,1). Define

© {ue BUCL,([0,T); X) | u(0) = 0, u; € D(D§) },

D(Dl-l-a)
and D{t%u = D@uy, for u € D(D;+®). Then

LYoy = D®u;, we D(DiFe).
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Moreover, Lite g positive, densely defined on X with spectral angle % and
with (c.f. (18)), } }
(L) f = gipax f, for f € X.

For the proof of Proposition 6, first use Proposition 5 and the definition Dtl“'o‘u =
D%uy, u € D(D+®). To obtain the size of the spectral angle one may argue as in
the proof of [5, Lemma 8(a)].

4. Trace spaces

Let E1, Ey be Banach spaces with E; C Ey and dense imbedding and let A be
an isomorphism mapping F; into Ey. Take a € (0,2), u € (0,1). Further, let A as
an operator in Fy be nonnegative with spectral angle ¢4 satisfying

da<m(l-3). (19)

Assume (10) holds and write J = [0, T.
We consider the spaces

od def

E()(J) = BUCl_M(J;Eo), (20)
Ev(J) ¥ BUCI_,(J; E1) N BUCY.,(J; Eo), (21)
and equip F1(J) with the norm
def —
[ull g,y = sup £ F )5 + lu®)] 2], (22)
t€(0,T

where f is defined through the fact that v € F;(J) implies u = & + gq * f, for some

f e Ey(J).
Without loss of generality, we take ||y||g, = ||Ayl|x,, for y € E1, and note that
by Lemma 3, E;(J) is a Banach space. We write

f f
Ey dé (EO,E1)9 dé (E07E1)g,oo’ XS (O’ 1)’

for the continuous interpolation spaces between Fy and F7. Recall that if 5 is some
number such that 0 < n <7 — ¢4, then

z € Ey iff lim IN AN + A)Lz||g, =0, (23)
|A|=o0, larg A|<n

and that we may take

def -
lzlle = sup  IAPAN + A) a5,
larg A|<n,A#0

as norm on Fjy.
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Our purpose is to investigate the trace space of Ej(.J).
We define
v:E1(J) > Ey by v(u) =u(0),

def

and the trace space y(FE1(J)) = Im(y), with

def

||$||7(E1(J)) = inf{ ||v||E1(J) KIS El(J)a Y(v) =z}

It is straightforward to show that this norm makes v(E;(J)) a Banach space.

Define 1
X —
=1--—- 24
i = (24)

for p € (0,1), a € (0,2) with & + o > 1. Observe that this very last condition is
equivalent to fi > 0 and that o < 1 implies i < u, whereas « € (1,2) gives u < fi.
Thus

O<p<p<l, a€c(0,1); O0<p<i<l ac(l,2). (25)

Obviously, if o = 1, then g = p.
We claim

Theorem 7. For p € (0,1), a € (0,2), a+p > 1, one has

V(E1(])) = Ej.

Proof of Theorem 7. The case @ = 1 is treated in [7]. Thus let o # 1 and first
consider the case a € (0,1).
Let x € E;. We define u as the solution of

Uu—x+gaxAu=0, teJ, (26)
or, equivalently, as the solution of

Dif(u—2z)+Au=0, teJ (27)
By [4, Lemma 7], u is welldefined and given by

_ 1
2w

u(t) / exp[M](A*T + AN 1z d), t >0, (28)
I‘lyw

Here 1 € (%, min(m, Z=24)) and

Try < {re [t <} U{pe™ |7 < p<oo}U{pe ™ |r<p<oo}.

Note that limgo||u(t) — z||g, = 0. We assert that lim;o||t'=# D (u — 7)||g, = 0,
i.e., that

t—0

lim #1 4 /F exp[MJANYT + A)~ A1z d)r =0 (29)
1,9
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in Fy. To show this assertion, we take ¢ > 0 arbitrary and rewrite the expression
in (29) (déf I) as follows:

I =i+ / exp[M]AAYT + A) 1A 1z d)
Iy
o (30)
:/ expls] ((5)*A{(G)oT + A} "0) s ds
I

The first equality followed by analyticity; to obtain the second we made the variable

transform s % At and used the definition of /i.
Now recall that z € Ej; and use (23) in (30) to get (29). Observe also that by
the above one has
sup [|t' T Df (u — )| g, < cllz|5,, (31)
teJo

where ¢ = ¢(u, 1) but where ¢ does not depend on T
By (27), (29), (31),

sup [[t" " Au(t)|| g, < cl|z| B, lim ||t ~* Au(t)||g, = 0. (32)
teJo t10

Continuity of Au(t) and Dg*(u — z) in Ey for ¢t € (0,T] follows from (28). One
concludes that 5
By € v(Eo(J). (33)

Observe that we also have:
If z ¢ Ej, and u solves (26), then u € By (J). (34)

Conversely, take z € v(E1(J)) and take v € E1(J) such that v(0) = z. Then

Ho(t) €' D2(v — z) € BUCqy_y0(J; Eo),

def (35)
Hy(t) St 7+ Av(t) € BUCy_0(J; Ep).
Tt follows that, with H < Hy + H;,
D¥(v — z) + Av(t) = t*LH(t). (36)

We take the Laplace transform (A > 0) of t*~"1H(t) (take H(t) = 0, t > T), to
obtain, in FEy,

/000 exp[—At]t* T H(t) dt = A7H /000 exp[—s| s"_lﬂ(i) ds = o(ATH), (37)

for A\ — oo. For the last equality, use H € Cy_o(J; Eyp).
Obviously, (37) holds with H replaced by Hy. Hence, by the way Hy was defined

and after some straightforward calculations,

7 — A"z = A"%(A7H), for A — oo. (38)
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Take transforms in (36), use (37), (38) to obtain
AT + Atz = A1 %(A7H),

and so, in Fy, )
ABEANT + A~z — 0, A — oo.

Hence z € Ey.

The case a € (1,2) follows in the same way. Again, define u by (26) (or (27))
but now use [5, Lemma 3] instead of [4, Lemma 7]. Note that one in fact takes
u¢(0) = 0. The relations (28)-(32) remain valid and (33) follows. The proof of the
converse part also carries over from the case where a € (0,1). O

We next show that u € E;(J) implies that the values of u remain in Ej;. In
particular, we have:

Theorem 8. Let p € (0,1), a € (0,2) and let (10) hold. Then

Ey(J) C BUC(J; Ep).

Proof of Theorem 8. Take u € E;(J). By Theorem 7, u(0) € E;. We split u in two
parts, writing u = v + w where v, w satisfy

D (v —wu(0)) + Av(t) =0, v(0) =u(0) € E, (39)

D&w + Aw(t) = t*~1h(t), w(0) = 0. (40)

The function h € BUCy—0(J; Ep) is defined through the equations (39), (40).
We consider the equations separately, beginning with the former. The claim is
then that v € El(J) N BUC(J, Eﬂ).
Take transforms in (39), use analyticity and invert to get, for ¢ > 0,
1
v(t) —u(0) = exp[M] ATTAAYT 4+ A) " u(0) dA,

o
F%,w

and so

Al + A)~ (v(t) — u(0))
- _% exp[AM] ATT AT + A) "It A(nT + A) " u(0) dA.
e Pl,w

Thus, using u(0) € Ej

I AT + A~ (t) — u(0))|1m, < € / exp[MIA~] d]|

Ly

—c [ lesplrlliri " dir| < ce,
Tiy

where € > 0 arbitrary, and n = 7(e) sufficiently large.
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The conclusion is that [v(t) — u(0)] € E, for all ¢ > 0. Moreover, |[u(t) —
w(0)|| 5, < cl[u(0)]| s, and so

[z, < llv(®) = u(0)lm; + [[w(0)]z, < [c+1[[w(0)]|5,-

Continuity in E; follows as in the proof of [4, Lemma 12f]. We infer that v €
BUC(J; Ep).

The fact that v € Ey(J) is stated in (34).

We proceed to (40).

By assumption, u € F;(J). Hence, w = u — v € E;(J). We claim that w €
BUC(J; E;). To show this, first note that w € Ey(J), w(0) = 0, implies that

D&w = t*~1h(t), where h € BUCy_o(J; Ep), (41)

and where sup,¢;||h(t)||E, < [[wllg,(s)- So, after convolving (41) by t~1+2 and
estimating in Fy,

t
lw(®)] 2, < ||w||E‘1(J)/O (t— )7 s T ds < T w5, gy (42)

Moreover,
[w(t)|e, = [[Aw®)l|z, <t Hwllz, (- (43)

We interpolate between the two estimates (42), (43). To this end, recall that

def .
K(rw(t), Bo, )< |l (lals, +rlbs,),

w(t), b= 228 Then, by (42), (43),

fix ¢, and choose a = Trte -

T+t°‘

27t trt

K(r,w(t), Eo, E1) < W”wHEI(J)'

So, without loss of generality,

lwt)llg, = sup 77HK(r,w(t), Eo, Ex)

T€(0,1]
A 0
< sup ———||[w||z (-
re  THI® B

It is not hard to show that from this follows
lwle, <2[lwllgz, s, te (45)

Finally observe that the same estimate holds with J = [0, T'] replaced by J; = [0, T1]
for any 0 < 71 < T, and recall (8). Thus w(t) is continuous in £y at ¢t = 0.
To have continuity for ¢ > 0 it suffices to observe that since w € Ey(J), then
w € BUC,_,(J; D(A)), and so, (with D(A) = E) a fortiori, w € C((0,T], Ey).
Thus w € BUC([0,T]; Ey).
Adding up, we have u = v +w € BUC(J; E;). Theorem 8 is proved.
O
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Corollary 9. For u € E1(J) with v(u) =0 one has

lullBuc,ss) < 2llullg, (s)- (46)

Proof of Corollary 9. It suffices to note that if u € E;(J), with (u) = 0, then v in
(39) vanishes identically and v = w, (w as in (40)) and to recall (45).

O
Next, we consider Holder continuity.

Theorem 10. Let p € (0,1), @ € (0,2), a« + pu > 1. Then

Ey(J) c BUC—l-U=ul(J E) 0<o<j.

Note that if @ + u > 2, then the Holder exponent exceeds 1, provided o > 0 is
sufficiently small.

Proof of Theorem 10. The case @ = 1 was in fact covered in [7]. The case o = i
was already considered above. In case o = 0, the claim is

Ey(J) € BUCYTH=Y(J, Ey).

To see that this claim is true, note that if u € E1(J), then D& (u—wu(0)) = t*~h(t),
where h € BUCy—0(J, Ey) and supye,||h(t)[ 5, < [[u(t)l 5, (s)- Then

[u(t) — u(0)l|5, < t**H|ull g, ((0,0)- (47)

So we have the desired Holder continuity at ¢ = 0 for ¢ = 0. The case t > 0 is
straightforward and left to the reader.

There remains the case o € (0, fi). By the Reiteration theorem, E, = (Ey, E;)<
and by the interpolation inequality,

o
1-2 2
[u(t) = u(s)lz, < cllult) —u(s)llg, * lut) = uls)ll g,
Hence, for s = 0, using (47) and the fact that ||u(t)||z, is bounded,

lut) — u(0)|| 5, < ctlotrUR=F] = goll—al-[1-u],

We leave the case 0 < s < t to the reader.
O

5. Maximal Regularity

Let E1, Ey, A be as in Section 4. Let p € (0,1), @ € (0,2), a +p > 1. We have
shown that given u € E4(J) we have u(0) € E;. Also, by definition, if u € Eq(J),
then

7Y D2(u — u(0)) + Au € Eo(J).
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We now consider the converse question, i.e., the maximal regularity. We ask
whether there exists ¢ > 0 such that

lll g,y < LAl + lellm],

where u solves Df*(u — z) + Au = f.
By (34) and linearity we may obviously take z = 0. Thus we let u solve

Difu+ Au=f, u(0)=0, (48)

with f € Eo(J), and claim that v € Ey(J). This will follow only under a particular
additional assumption on Fy, F1.
We first need to formulate some definitions. We write, for w > 0,

Hao(Er, Bo,w) € {A€ L(E1, Ey) | A, © wI + A

is a nonnegative closed operator in Ej with spectral angle < 7(1 — %) }.

and

def

%Q(EhEo) - U 7_[()l(-Ela-E'07“‘))'

w>0

Note that as Ho(E1, Eo,w1) C Ha(E1, Ey,ws), for wi < we, then we may as well
take the union over, e.g., w > 0. Also note that #H,(E1, Fp) is open in L(Eq, Ey).
Furthermore, we let

Map(B1, Eo) ¥ { A € Ho(Br, Bo)| DPu+ Au= |

has maximal regularity in Ey(J) }.

Observe that using the assumption o + g > 1 one can show that if Df*u + Au = f
has maximal regularity in Eo(J), then Dfu+ (wI+A)u = f has maximal regularity
in Ey(J) for any w € R.

We equip M, (F1, Ey) with the topology of L(E4, Ey) and make the following
assumptions on Fy, F1.

Let Fi, Fy be Banach spaces such that

E, C Fy C Ey C Fy, (49)

and assume that there is an isomorphism A : F; — Fj such that A (as an operator
in Fy) is nonnegative with spectral angle ¢ ; satisfying

a
bx<n(l-), (50)

and such that for some 6 € (0, 1),
Eo=Fy & (R, 1))™ (51)

and such that 5
Az = Az, for z € E;. (52)

Our claim is that if f € Eo(J) = BUC1_,(J, Fp), then Aw lies in the same space
and we have a norm estimate. Specifically:
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Theorem 11. let € (0,1), v € (0,2), a +p > 1. Assume (49), let A be as in
(50) and suppose (51), (52) hold. Then A € My, (E1, Ep).

Proof of Theorem 11.
We define 5 5
F() :BUC&_”(J;F()); Fl :BUC’1_H(J;F1).
Then o ~
(Fo, Fl)g = BUCl_N (J, (F(), Fl)g) = BUCl_u(J; Eo) = E()(J)
To get the first equality above one recalls the characterization of Fy, Fi, and that
by [4, Lemma 9(c)] the statement holds for 4 = 1. The cases u € (0,1) follow by
an easy adaptation of the proof of [4, Lemma 9(c)]. The second equality above is
(51), the third is the definition of Ey(J).
Write, for a € (0,1),
(Au)(t) < Au(t); uweDA) Y R,
(Bu)(t) = Dfu(t); wue€ 'D(B) def {u|u e BUC{"_M([O,T]; Fo);u(O) =0}.

For a € (1,2), add »/(0) = 0 to what is required for membership in D(B). One
then has, using (17), (50),

A is positive, densely defined in Fy, with spectral angle < (1 — %),

B is positive densely defined in Fy with spectral angle = %.

Moreover, the operators A, B are resolvent commuting and 0 € p(A) N p(B).
Consider the equation 3 }

where f € E’O(J ). By the Da Prato-Grisvard Method of Sums (in particular see [6,
Theorem 4]) there exists a unique u € D(A) N D(B) such that (53) holds, and such
that Au, Bu € Ey with 3

[Aull g, < el fll 2, (54)
where ¢ is independent of f. Thus, recall (52), the function u satisfies (48), u €
E;(J), and there exists ¢ such that

lull 2,7y < cllfll zo(a- (55)

Observe that ¢ = ¢(T) but can be taken the same for all intervals [0,T}], with
T, <T.
(]

6. Linear nonautonomous equations

As earlier, we take p € (0,1), @ € (0,2), a+ p > 1, and define i = 1 — 1—;H
Consider the equation

U+ go * B(t)u = up + gqo * h. (56)
We prove
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Theorem 12. Let Ey, Ey be as in Section 4, let T € (0,00), J = [0,T] and assume
that
B € C(J; Mau(E1, Eo) N Ha(E1, Eo,0)), (57)

uo € Bz,  h € Eo(J). (58)

Then there exists a unique u € E1(J) solving (56) such that B(t)u(t) € Eo(J) and
there exists ¢ > 0 such that

lullBuc, e + 1DF (4 = wo)l gy sy < cllvollz, + 1Rl gysy)-  (59)

Proof of Theorem 12. From (57) it follows that the norms

2|5, < sup|| A" B(s) (A + B(s)) 'z 5,
>0

are all uniformly equivalent for s € [0, 7.
Fix s € [0,T], T € (0,T], and write J’ = [0,T']. Let u(® = u(®(t) be the
solution of
DX (u® —ug) + B(s)u'® =h, on J'.

We claim that there exists ¢; > 0, independent of s,T’, such that
IDg (" = wo)ll gy sy + I1B()ul D)l 5y < e1(lluollss + -l y(sr)-  (60)

To prove (60), write u(®) = ugs) + ués), where

D2 (ul® —uo) + B(s)ul® = 0;  u{®(0) = uy, (61)
Df‘ugs) + B(s)ugs) = h; ugs)(O) =0. (62)

By (31),
IDg(u$” — o)l 5, (1) < €lluoll 2, (63)

where ¢ = ¢(u,9(s)). By (57), ¢(s), hence ¢, can be taken independent of s.
By the fact that B takes values in M, (E1, Ep) one has

I1DuS | 5,y + 1B 5, 5y < ElBl gy (0 (64)

and from the fact that B € C(J; L(E1, Eo)) one concludes that ¢ can be taken
independent of s. Hence the claim (60) holds.
Choose n > 1 such that with ¢ = n~1T one has

B(t)—B((7 -1 <
01j:1,...n;r(rjlﬁ)1()q§t§jq” () = B((7 = ollz(&: B0 <

: (65)

DO | =

where ¢; as in (60). Fix j € {1,2,...n}, and assume we have a unique solution
Gj—1 of (56) on [0, (7 — 1)q]. (For j =1, take %y = up). Then define (recall (21))

Z; = {u € Ey([0,7q)),u(0) = uo | u(t) = aj_1(t), 0<t<(j—1)q}
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Given an arbitrary v € Zj, we let u; be the unique solution of
u +ga * B((] - 1)Q)u = Up +ga * h +ga * [B((] - 1)q) - B(t)]v

on [0,jq]. Clearly, [B((j — 1)g) — B(t)]Jv € BUC1_,([0, jql; Eo). By uniqueness,
uj € Z;. Denote the map v € Z; — u; € Z; by Fj. By (60), (65), and observing
that v1 = vz on [0, (7 — 1)q],

1
|1 F(v1) — Fj(Uz)HEl([o,jq]) < 5”“1 - U2||E1([o,jq])-

Observe that Zj is closed in E1([0, jq]), hence it is a complete metric space
with respect to the induced metric. Consequently we may apply the Contraction
mapping Theorem and conclude that there exists a unique fixed point of Fj in Zj.
Denote this fixed point by @;. Clearly @, solves (56) on [0, jq].

Proceeding by induction we have the existence of a solution u € Ey(J) of (56).
The induction procedure also gives ¢ > 0 such that (59) holds.

[l

7. Local Nonlinear Theory

We consider the quasilinear equation
D (u — ug) + A(u)u = f(u) + h(t), t>0, (66)
under the following assumptions. Let
pe(0,1) ae(0,2), a+p>1, (67)

and define /i as earlier by i = a~!(a+u—1). For X, Y Banach spaces, and g a map-
ping of X into Y, write g € C1=(X,Y) if every point z € X has a neighbourhood
U such that g restricted to U is globally Lipschitz continuous.
Let FEy, F; be Banach spaces such that F; C FEy with dense imbedding and
suppose
(A, f) € C'~(Ea, Mou(E1, Eo) x Ep), (68)

uo € Bz, h € BUCy_,([0,T); Eo), for any T > 0. (69)
. Observe that by (68), for & € Ej; there exists w(@) > 0 such that

Ay (@) " A®@) + w(@)I € Ho(Er, Eo,0) N My, (B, Eo).

We define a solution u of (66) on an interval J C RT containing 0 as a function
u satisfying v € C(J, Ey) N C((0,T]; E1), u(0) = up, and such that the fractional
derivative of u — ug of order « satisfies D§*(u — ug) € C((0,T]; Ep) and such that
(66) holds on 0 <t < T.

Our result is:
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Theorem 13. Let (67), (68), and (69) hold, where Ej;, = (Eo,El)g’oo is a contin-
uous interpolation space. Then there exists a unique maximal solution u defined on
the mazimal interval of existence [0,7(ug)), where T(up) € (0,00], and such that
for every T < 1(ug) one has

(i)u € BUC1_,([0,T]; Ey) N BUC([0,T]; Ex) N BUCY_ ([0, T}; Eq),
(1)) u+ go * A(u)u = up + go * (f(u) +h), 0<t<T,
(#13) If T(uo) < oo, then u ¢ UC([0,7(uo)); Ep),
(1v) If T(ug) < 0o and Ey CC Ey, then

lim sup||u(t)||g; = oo, for any d € (fi, 1).

tTT (uo

We recall that u defined on an interval J is called a maximal solution if there does
not exist a solution v on an interval J’ strictly containing J such that v restricted
to J equals u. If u is a maximal solution, then J is called the maximal interval of
existence.

In this section, we prove existence and uniqueness of u satisfying (), (i7) for some
T > 0. The continuation is dealt with in Section 8.

Proof of Theorem 13 (i), (ii).

Choose w such that A, (uo) € Ha(E1, Eo,0). Then A, (uo) € Ma(E1, Eo) and
there exists a constant ¢, , independent of F', such that if F' € Ey(J) and u = u(F)
solves

Du+ A, (ug)u=F(t), 0<t<T, (70)
with u(0) = 0, then
lull 2, (0,27 < CuollFll 2o (- (71)
Define
B(u) = A(uo) — A(w), u € Ey. (72)

Then B € C'~(E,, L(E1, Ey)), and so, by (68) there exists pg > 0, L > 1 such that

(B, f)(z1) — (B, f)(22)l (&, ,Bo)x Bo < Lll21 — 22| B, (73)

for z1,29 € BEﬁ(uo, po), and such that

1 _
1B(2)||L(E:,B0) < ; 2z € Bg,(uo,po). (74)
12¢y,

Define b by

||f(z) +w(u0)z||Eo < b’ z € BEa(u07p0)> (75)
and .

€p — min(pg, w) (76)

Let u solve

D (u —wo) + Ay (ug)a =0, on [0,T]. (77)
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Take 7 > 0 small enough so that (% as in (77))

5 €

||u - UOHEQ S 501 te [OaT]a (78)

- €0
4l g, 7,y < 5 (79)

1

L= < mnin(— 80
T mm(12cuOb’ 124, (L +w(u0)))’ (80)

€0
12l (s, < (81)

12¢y,’
where J, = [0, 7]. Define

Wao () = {v € E1(J:) | v(0) = uo, v — uollo(s,,5,) < €0} N B, (7,0, €0) (82)

and give this set the topology of F;(J;). Then W, (J;) is a closed subset of E; (J;),
and therefore a complete metric space. Moreover, W, (J;) is nonempty, because
w € Wy, (Jr).

Consider now the map

Guo : Wao (J7) = Er(J7) (83)
defined by u = G, (v); v € Wy, (J;), where u solves
D (u — ug) + Ay (uo)u = B(v)v + f(v) + w(ug)v + h(t). (84)
Our first claim is that this map is welldefined. To see this, note that as B €
C'~(Eu, L(E1, Ep)) and v is continuous in Ej;, and by the assumption on f,h it
follows that the right side of (84) is in C((0, 7]; Ey). Also, by (74), (75), (77), (80),
(81), (82),

sup ¢'H(|B(v(t))v(t) + f(v(t) + w(uo)v(t) + h(t)||z,

o<ttt
< sup (tHB(@)] L, [v@®)|E,) + 770+ Bl gy . (85)
0<t<T
1 €0 €0 €0
< — |5 < QO
< e Wlaon + 120 T 120, = 1o

So the right side of (84) is in Eo(J;), and hence, by (34), (71), (77), the map is
welldefined.
Next, we assert that u € W, (J;). We show first

sup [|Gu, (v)(t) — uol| &, < €o- (86)
te[0,7]

Split Gy, (v): i
Guo(v) = G+ G, (v), (87)

where G, (v) solves (zero initial value)

Df‘(éuO (v)) + Aw(uo)éu0 (v) = B(v)v + f(v) + w(ug)v + h(t).
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By (46)’ (71)’ (85),

sup | Guo (0) ()|, < 21|Guo ()l 5, (s,
te[0,7] 88
& € (88)
< 2¢y, || B(v)v + f(v) + w(uo)v + hHEO(JT) < 2¢y, e o

Uo

Combining (78) and (88) we have (86).
Next, we assert that

1Gao ()15, < 0-

To show this, split as in (87) and recall (79), (88). So Gy, (v) € Wy, (J;).-
Finally, we claim that G,,, is a contraction. We have, by linearity and (46), (71),
(73), (74),

|G (v1) — Gu, ("’2)”]2'1(],)
Scuo || Blvr)vr = Blva)vall gy, + Cuoll £ (v1) = Fv2)ll gy (s,
+ cuow(uo)llvr — w2l 5,1,
<cuo [|[[B(v1) = B(v2)]v1ll gy (7,) F Cuo | B(v2)[v1 — 2]l (s,
+ Cugm L+ w(uo)] supl|va(t) — v2(t)]|

Seuo Lllvr = vall g, (1) 2Mvill 5, s, + 5 ll01 — v2ll 0
_ 1
t 2eu, ™ ML+ w(uo)]lvr = vall g, s,y < S llor = v2ll gy s,

where the last step follows by (76) and (80). Thus the map v — G(ug)v is a
contraction and has a unique fixed point.

We conclude that there exists u satisfying (¢), (¢¢), for some T' > 0.

We proceed to the proof of uniqueness. Assume there exist two functions uy, ug,
both satisfying (), (i¢) on [0,T] for some T" > 0 and u4(t) not identically equal to
usa(t) on [0,T].

Define

71 = sup{t € [0,T]| (66) has a unique solution in E; ([0,]) }.

Then 0 < 73 < T. Also, for any 7 € (11, T] there exists a solution u of (66) on

Jr & [0, 7], such that u(t) = ui(t) on [0, 1] but u does not equal u; everywhere on

71 <t < 7. Let, for 7 € (11, T], Jr = [0, 7],
Wul(r]r) = {U € El(JT) | U(t) = Ul(t), 0<t<m,
v —willo@,;E) <€} BEH(L> (u1(t), €o)-
Give this set the topology of E1(J;). Then Wy, (J;) is a complete metric space
which is nonempty because u; € Wy, (J;).

Consider the map G, : Wy, (J;) — Ei(J;) defined bu u = Gy, (v) for v €
W, (Jr), where u solves

D (u = uo) + Au(ua(m))u(t) = Blu()v(t) + f(v(t) + wlui(m))v(t) + h(d),
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with B(v(t)) def A(u1(m1)) — A(v(t)) and where we have chosen w(u(7;)) such that
Ay (ui1(m1)) € Ho(Er, Ep,0). By (68), Ay(u1(71)) € Mau(E1, Ep). Proceed as
in the existence part to show that the map G,, is welldefined, and that for 7
sufficiently close to 71 one has that G,, maps W,, (J;) into itself. Finally show
that the map is a contraction if 7 — 71 is sufficiently small and so the map has a
unique fixed point. On the other hand, any solution of (66) is a fixed point of the
map, provided 7 (depends on the particular solution) is taken sufficiently close to
71. A contradiction results and uniqueness follows.
Thus we have shown that (%), (¢¢), and uniqueness hold for some 7" > 0.

8. Continuation of solutions

We proceed to the final part of the proof of Theorem 13.
Suppose we have a unique solution u of (66) on J, = [0, 7], for some 7 > 0, such
that
u € C(JT;Eﬂ) N EI(JT)

Take T > 7 and let

7 ¥ fw e O([0,T); By |w(t) = u(t), t € [0,7],

(t — 7)1 F DX (w — ug) € BUC((7,T); Ev), ||[t — 7' *D&(w — uo)||g, — 0, t | 7,
[t — 7" "*w € BUC((1,T); E1); ||[t — 7)* “w|g, =0, t L7}
(89)
Choose ¢ sufficiently small. Define

def
Zy = {w € Z|||w = u(r)leqr ) < €05 10l g, (rp) < €0 - (90)

Choose w(u(7)) so that A, (u(7)) € Huo(E1, Ep,0). For v € Z,, consider (0 <t <
T),

Dy (u = uo) + Ay (u(7))u(t) =
Au(r))o(t) = A(v(t)v(t) + f(v(t) + w(u(r))o(t) + h(t)-

Let u,, be the corresponding solution. If u, = v, then we have a solution of (66) on
[0, T, identically equal to u on [0, 7]. This solution may however have a singularity
fort | 7.

We may repeat the existence proof above to obtain a unique fixed point (of the
map v — uy) 4(t), 0 <t <T,in Z, if T is sufficiently close to 7. Clearly, & = u on
[0, 7].

Moreover, a € C([0,T]; E;) and so, by (68), A(u(t)), t € [0,T], is a compact
subset of H(F1, Ep). Now use the arguments of [1, Cor.1.3.2 and proof of Theorem
2.6.1] and [9, p. 10] to deduce that there exists a fixed @ > 0 such that

A (a(t) & A(a(t)) + &I € Hap (B, Eo,0),

for every t € [0, T].
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Also,

As(t) © Ag(a(t) € C([0,T); L(Er, Eo))

and so A(t) satisfies (57). (Recall that o 4+ p > 1 is assumed.) In addition,

ft) € f(a(t)) € BUC([0,T; Eo) C Eo([0,T)),

&i(t) € C([0,T); Ex) C Eo([0,T7).

Then note that 4 solves
D§(u — uo) + Ag (t)u(t) = f(t) + @a(t) + h(t), te0,T), (91)

and that the earlier result on nonautonomous linear equations can be applied. But
by this result there is a unique function @,(t) in BUC_,([0,T]; E1) solving (91)
on [0,T]. Moreover, there certainly exists 77 > 7 such that @, considered on [0, T}]
is contained in Z,. (In the definition of Z,, take T' = T7). Thus we must have
@1 = 4 on [7,T1] and so @ does not have a singularity as ¢ | 7. The solution u may
therefore be continued to [0,7}], for some T7 > 7, so that (i), (i7) are satisfied on
[0, T1].

(i4i) Suppose 0 < 7(ug) < oo, and assume u € UC([0,7(uo)); Ez). Then
limy7(4,) exists in E;. Define

a(t) = u(t), t € [0,7(uo)); a(t) = lim u(t), t = 7(uo).

Then @ € C([0, 7(uo)]; E;). Define, for & sufficiently large,

B(t) = Ap(a(t)), f(t) = f(a(t)) +&a(t), 0<t < 7(uo).

By (68) and the compactness arguments above we have that B(t) satisfies the
assumptions required in our nonautonomous result. Consider then

D (v —ug) + B(t)v = f(t) + h(t), 0<t < 7(up).

By the earlier result on linear nonautonomous equations, there exists a unique v €
FE1([0,7(uo)]) which solves this equation on [0, 7(ug)]. By uniqueness, v(t) = u(t),
0 < ¢ < 7(up). But v € UC([0,7(uo)]; Ez) and so v(r(ug)) = (7 (uo)), hence
v(t) = u(t), 0 <t < 7(up). Thus

Di(v —uo) + A(v(t))v(t) = f(v(t)) +h(t), 0<t<7(uo).

By earlier results we may now continue the solution past 7(ug) and so a contradic-
tion follows.

(iv) Suppose 7(ug) < oo and assume im supy4, (,q)l|u(t)||gs < oo for some & > fi.
Consider the set u([0,7(up))). This set is bounded in Ej, hence its closure is
compact in Ej.

Take any ¢ € (0,7(up)). Consider

Df (u — ug) + Au (u(t)) =
[Au(®)) = A(v(E)]o(t) + f(v(t) +w(u(@)v(t) + (),
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and the solution u (which we have on [0,7(ug))) on [0,¢]. Now let ¢ play the role
of 7 in (89), and define the set from which v is picked as in (90). Then, as in the
considerations following (89), (90), we obtain a continuation of u(t) to [¢,t + 4],
where § = §(u(t)) > 0. (By uniqueness, on [t,7(ug)) this is of course the solution
we already have.) On the other hand, ¢ depends continuously on u(¢). But the
closure of gz, (yo) u(t) is compact in Ej, and so §(u(?)) is bounded away from
zero for 0 < ¢ < 7(up). Hence the solution may be continued past 7(ug) (take ¢
sufficiently close to 7(up)) and a contradiction follows.

9. An Example

In this last Section we indicate briefly how our results may be applied to the
quasilinear equation

UZUO‘l_ga*(U(Um)x‘l_h)a 120, ze€ (0,1), (93)
with u = u(t, z), and
u(t,0) = u(t,1) =0, t>0; u(0,z)=up(x).

We require
o € C*(R), with ¢(0) =0, (94)

and impose the growth condition
0<op<o(y <o1, yE€ER, (95)

for some positive constants og 0.
Take
Fo ={ueC[0,1]|u(0) =u(1) =0},

and _ ‘
Fy = {ue ¢2[0,1]|u®(0) = u®(1) = 0; i = 0,2},

We fix i = %, then p =1— ¢, and v+ p > 1 holds. With 6 € (0, %), let
Eo = (Fo, F1)y™ = {u|u € k**[0,1];u(0) = u(1) =0}, (96)

and
Elz{’U,EF1|U”EEO}. (97)

Then
Ep=E; ={ulue R1+2900,1]; u(0) = u(1) =0 }.

We take, for u € E%, v e E,

A(u)yv = =0 (ug) vy
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Then one has A(u)v € Ey, and, more generally, that the welldefined map v — A(u)v
lies in L(E}, Ey) for every u € Ey.

We claim that this map satisfies A(u) € M, (FEq, Eo) N Ha(E1, Eo,0). To this
end one takes (for fixed u € E 1 )

7 def
Av'= —o'(ug)v", v e Fy,

and observes that this map is an isomorphism F; — Fy and that A, as an operator
in Fy, is closed, positive, with spectral angle 0. Thus Theorem 11 can be applied
and our claim follows.

The only remaining condition to be wverified is that « — A(u) €
Cl_(E%,L(El, Ey)). But this follows after some estimates which make use of the
smoothness assumption (94) imposed on o.

We thus have, applying Theorem 13:

Theorem 14.

Let a € (0,2). Take 6 € (0,%) and Eo, E1 as in (96), (97). Let (94), (95) hold.
Assume h € BUC4 ([0, T]; h?9]0,1]), with h(0) = h(1) = 0. Assume uy € h'1+20[0,1]
with u(0) = up(1) = 0.

Then (93) has a unique mazimal solution u defined on the mazimal interval of
existence [0, T(ug)) where T(ug) € (0,00] and such that for any T < T(ug) one has

u € BUC ([0, T]; A**%°[0,1]) n BUC([0, T]; h***[0,1]) n BUCS ([0, T; h*[0,1]).

If 7(uo) < oo, then Hmsup., (y)l|u(t)llcr+26+5 = 00 for every 6 > 0. In particular,
since 0 € (0,3) is arbitrary, we conclude that if

lim sup||u(t)||cr+s < o0,
tTT(’U.())

for some § > 0, then T(ug) = oo.
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