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1 Introduction

By now it is understood that R-boundedness of the pointwise values of an
operator-valued function is intimately connected with the boundedness of the
related Fourier-multiplier between LP-spaces of vector-valued functions. To
be more precise, let m € C(R\ {0}; B(X;Y)) and 1 < p < oo, and consider
the following three statements:

A. The collection {m(t) : X — Y| ¢ # 0} is R-bounded.

B. The function m is C'! away from the origin and {¢tm/(t) : X — Y|t # 0}
is R-bounded.

C. The multiplier operator T}, : f — F~'[mf] is bounded from L?(R; X)
to LP(R;Y).

If X and Y are UMD spaces, the following implications hold:
ANB = C = A.

The first one is due to L. Weis [W| and the second (which is true for gen-
eral Banach spaces) was shown by Ph. Clément and J. Priiss [CP]. Analo-
gous results for Fourier-multipliers in the periodic case have been proved by
W. Arendt and S. Bu [AB].

It was shown by the author in [H| that the implication AN B — C
remains valid also with the Lebesgue-Bochner spaces LF(R; X), LP(R;Y)
replaced by the atomic Hardy spaces H} (R; X) and H) (R;Y ). The purpose
of this paper is to establish the partial converse C' = A in this setting
(again, with arbitrary Banach spaces X, Y), i.e., to show that R-boundedness
is a necessary condition for the boundedness of Fourier-multipliers also on
H'.

The paper is organised as follows: The main theorem stated in the title
is precisely formulated and proved in §2, whereas the implications of this
result to maximal regularity are considered in §3. In §4 we give a simpler
proof of the main result for the one-dimensional domain and in §5 we briefly
consider some related ideas in the periodic situation, including an interesting
necessary condition for bounded multipliers from L>°(T; X') to BMO(T;Y).

Notations and conventions. We denote by ¢;, j = 1,2,..., a sequence
of independent random variables on some probability space (2, ¥, P) which
satisfy P(e; = 1) = P(¢; = —1) = 1/2. E denotes the expectation related to
the probability measure P. The random variables ¢; are referred to as the
Rademacher functions.

We recall [CP, W| that T C B(X;Y) is called R-bounded, the “R” being
short for Rademacher, randomized or Riesz, if for some p € (0,00) and
C <ooandforall NeZ,, x; € X, T; €T the inequality
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holds. It follows from the Khintchine-Kahane inequality that for each fixed
T, the condition in fact holds true either for all p € (0, 00) (with C' possibly
depending on p) or for none. We shall be mostly concerned with the case
p = 1, and we refer to the smallest C' in this inequality as the R-bound of T
and denote it by R(T).

One of the most standard tools related to R-boundedness is the contrac-
tion principle (of J.-P. Kahane) stating that
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forp>1, N€Zy, z; € X and \; € C with |A;| < 1.

In the literature, one usually finds this with the constant 2 in place of
7 /2. Even though the size of constants is quite immaterial for our purposes,
we shall use the inequality in this sharper form, which is proved in [PW,
§3.5.4].

The atomic Hardy space H)(R"; X) consists of those f € L'(R"; X)
which have an atomic decomposition

o o 1
F=Ya  with B [|ag]| o gy < o0,
k=1 k=1
where the a;, € L?(R"; X) have their support contained in the balls B* and
a vanishing integral: [ aj(y) dy = 0. The norm in H}, (R"; X) is the infimum
of the sums above taken over all such decompositions of f.

We note that in the literature it is customary to impose a size condition on
the atoms ay, so that the decomposition involves extra scale factors Ay € C,
such that f =" M\iax, and the H}-norm is defined in terms of Y [\;|. The
present definition is equilvalent and simpler to use for our purposes.

Since [lagll, < |B*[* lawl . it follows that ]l < 1711 oy
thus H!(R"; X) — L'(R"; X). Let us also observe the following dilation
property of the H),-norm, analogous to that of the L'-norm: If f = a; €
HL(R"; X) and r > 0, then r"f(r-) = Y r"ay(r-) =: Y. A;. Here Ay is
supported in r~'B* (the ball concentric with B* and having 7! times the
same radius); thus

|ak||L27

I FO) s oy < D | B k() = Z\B’“
k=1

k=1

and taking the infimum over all decomposition f = > a;, we deduce the
inequality ||Tnf(7"')||H;t(Rn;X) < ||f||H;t(Rn;X)- Writing f = r~"g(r '-) with
g = 1"g(r-) we get the same inequality in the opposite direction, thus in fact
an equality.

Below we also consider (in the one-dimensional setting) another Hardy
space H! (R; X) defined in terms of the conjugate function, but we postpone
its definition until we need it.



For more information on Hardy spaces of vector-valued functions we refer
to [B]; a short review is also given in [HJ.

2 The main result and its proof

We are going to prove the following theorem:

Theorem 1. Suppose m € LL.(R*;B(X;Y)) is such that the multiplier
operator Tof := F~[mf] acts boundedly from HL(R"; X) to L'(R";Y).
Then m 1s strongly continuous away from the origin and moreover

R({m(y): X - Y] y#0}) <Cp||Th : Hy(R; X) — LYR™ V)|,

where the constant C,, depends only on the dimension n. In particular, m €
L>®(R™; B(X:Y)).

Before we prove this, we need two lemmata. First of all, we require a tool
for estimating the H),-norms we will encounter. Let B, be the ball in R" of
radius r centered at the origin and A, r := Bg \ B, the annulus with inner
and outer radii r and R, respectively.

Lemma 1. Suppose ¢ € S(R";X) satisfies [@(x)dz = 0. Then ¢ €
H.(R"; X), and the norm is estimated by

H(p”Hit(R”;X) < Z |Bk|% HSOIAkak HL2(R";X) +(1+ 2%) Z H(plBi HLI(Rn;X)

It is easy to see that the sum is indeed finite for a rapidly decreasing .

Proof. Let us denote

1 1
= (- — dy)1s = [0+ — dy | 15,
Ok (so Bl s, ©(y) y) By (so B stO(y) y) B,

where it is clear from the first form that [ ¢4(z)dz = 0, and the latter
equality follows from the assumption that the total integral of ¢ vanishes.
Then

e(a) = eu(o)lx < (o)l Log(o) + 50 / oWl do

<max d —>O

thus ¢, — ¢ uniformly as k£ — oo.
We then define ¢, := ¢, and

Ok = pp — pr1 for k> 1 so that Z or = n — ¢ uniformly.
N—oc



Thus we have ¢ = Y 77| ¢, where supp ¢y C By, and [ ¢y(z)dz = 0. This
is hence an atomic decomposition of ¢, and we have

> 1
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k=1

Hence it remains to estimate the L>-norm of
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where the last term is interpreted as 0 for £ = 1, and this yields

||¢’“||L2(R”;X) < HSOIAkakHLQ(Rn;X) + P H‘plBiHLI(Rn;X)
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Multiplying by |Bk|%, observing that |Bk|é/|Bk,1|% = (k/(k—1))> <22
and summing over k£ we obtain the asserted estimate.

O

The following simple result handles the easy part of the main theo-
rem. It is not really crucial for the proof of the assertion concerning the
R-boundedness of the multiplier m, since the strong continuity at y # 0 is
only exploited via the fact that these points are strong Lebesgue points of
m, and in any case we know that almost every point is a Lebesgue point.
Nevertheless, we obtain a somewhat neater form of the theorem without the
need for almost-every-qualifications.

Lemma 2. If m € L (R"; B(X;Y)) defines a bounded multiplier operator
T f = F mf], which maps HL(R"; X) boundedly into L' (R™;Y), then m
is strongly continuous at every y # 0. In particular, every y # 0 is a strong

Lebesgue point of m.

Proof. Let yo # 0. Then there exists a test function ¢ € D(R), which is
supported away from the origin and equals unity in a neighbourhood of .
Then for x € X we have ¢(-)z € S(R*; X) and [ ¢(y)zdy = ¢(0)z = 0.
Hence ¢(-)z € HL(R; X), and thus T,[¢(-)z] € L*(R;Y). The Fourier
transform of this latter function is m(y)@(y)z, and in a neighbourhood of yj,
this is just m(y)x. But the Fourier transform of an L'-function is continuous,
thus y — m(y)z is continuous in a neighbourhood of g, and this being true
for every z € X the assertion is established. O

Now we are ready to prove the main result.

Proof of Theorem 1. Let N € Z, and z4,...,xx € X, and let first

Y, .- yv €{y= (', ...,y") €R'| y" >0, y # 0},



i.e., the points are taken from the closed upper half-space, excluding the
origin. Let us choose a (real-valued) test-function ¢ € D(R™) with support
strictly contained in the lower half-space {y € R"| y™ < 0} and such that

P?(y) dy = 1.
R'I’L

This function will be exploited in building an appropriate approximation of
the identity; the reason for the support condition will become clear later.
Since y; is a Lebesgue point of y — m(y)z; by Lemma 2, we have

m(y;)z; = lim [ m(y)z;0° (k(y; — y)k" dy,

k— o0 Rn

the convergence being in the norm of Y. Thus

N
E|Y em(y;)z,
Jj=1 Y
N
= lim k"E /R > eimy)y(k(y; — v)z(k(y; — y)) dy
"=l Y

Note that since the Rademacher functions ¢; are simple random variables,
the expectation E is nothing but a weighted finite sum, and thus it certainly
commutes with limits. (Of course, for more general random variables we
could have simply invoked Fatou’s lemma to yield the above result with
“= lim” replaced by “< liminf”, and the rest of the proof would run in
exactly the same way.)

We then write

m(y)v(k(y; —y))z; = my)FF [ (k(y; — )] (y)
= m(y)Fe2™ O (- [k)a;)(y) /" = FTule™5 (- /k);](y) /K",

and using the duality equality [gfdy = [ gf dy of the Fourier transform we
arrive at
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We now invoke the contraction principle to get rid of the exponential
factors e7¥2™%Y and then the assumed boundedness of the operator T, to
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where the last equality follows from the dilation property of the H] -norm.

So far the proof has been completely parallel to that in [CP| concerning
the L? situation, except for the choice of our auxiliary function ¢, but now
we are faced with the H)-norm, with which the contraction principle can
no longer be applied. Instead, we invoke Lemma 1 for the evaluation of this
norm. Let us first check that the assumptions of the lemma are satisfied by

N

py) = ;™ ui(y)a;

=1

Certainly 1) € S(R") since ¢» € D(R"), and since the exponential factors are
C* with bounded derivatives of all orders, the entire function ¢ belongs to
S(R™; X'). Moreover, recognizing the formula of the inverse Fourier trans-
form, we have

/n e (y) dy = 1 (ky;) = 0,

since k > 0 and y; is in the upper half-space, whereas v is supported in the
lower half-space.

Hence we get, for the H,-norm appearing in (1), the estimate
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Now we are back to LP-norms, and the contraction principle applies again:
1
N 2 3
E Zgjd)lAz—u(')x
=1

oo

(142%)= Z

=

L2(R";X)

N
> eihlp()z;
i=1

o

wlAl—l,l {L“]

™ > 1
=5 > |Bil’
=1

L2(R")

n T 5
22)52\\"“%
=1

Finally, combining (1) with the estimate above and applying the Khintchine—

Kahane inequality \/E|Zajzj|§( < V2E|Y ejz4] (see [PW, §4.1.10]), we

get
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where the constant
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depends only on the dimension n and the choice of the auxiliary function 1,
thus fixing one 1) once and for all, only on the dimension n.

It is clear that we can repeat the same argument for points y,...,yy in
the lower half-space, exploiting another auxiliary function ¢ € D(R") sup-
ported in the upper half-space (e.g., the reflection of 1) about the hyperplane
{y € R*| y™ = 0}). Thus we get the R-boundedness of {m(y)| y # 0} with
an R-bound of the asserted form. 0J

3 New characterization of maximal regularity

It turns out that the main theorem proved above leads directly to some
interesting implications related to the problem of maximal regularity. We
consider the abstract Cauchy problem (ACP)

y'(t) = Ay(t) + f(t), t>0, y(0)=0,



with A the generator of a bounded analytic semigroup on a UMD-space X,
and f a given function taking values in this space. If § is a normed func-
tion space (e.g., § = L? or § = H),), the problem is said to have maximal
S-regularity if for every f € F(R; X) supported on the positive half-line,
the mild solution y (with zero-fill on the negative half-line) of ACP satisfies
y', Ay € §(R; X), and moreover [[Ay|zg.v) < C||fllgg.x) With C' indepen-
dent of f.

Let us first recall what is known so far. The maximal regularity of this
problem is equivalent to the boundedness of the multiplier operator whose
multiplier is m(t) := A(it — A)~'. Indeed, if y satisfies ACP at least in the
sense of tempered distributions, then by taking the Fourier transform one
finds that F[Ay)(t) = A(it — A)~1f(¢), hence Ay = T, f. Thus, if m is a
bounded Fourier-multiplier on the appropriate space, then we immediately
get the desired estimate for Ay. Conversely, if ACP has maximal §-regularity,
then for every f € §(R; X) supported on [0, c0) we know that ||Ayl|zg. ) =
1T fllzex) < Cllfllgwx)- But it is well-known and easy to see that the
multiplier operators commute with translations; thus this implies for § =
L? or § = H),, whose norms are translation-invariant, that 1 Tnfllgm,x) <
Cllfll3w.x) for every f € F(R; X) supported on some half-line [a,0c). But
such functions are dense in LP(R; X) for all p € [1, 00) as well as in H,, (R; X)
(where this density follows, e.g., from the density of finite sums of atoms,
which are compactly supported). Thus T}, is a bounded operator on F(R; X).

A special feature of the particular multiplier m(t) = A(it—A) ! is the fact
that once it satisfies the R-boundedness condition R({m(t)| t # 0}) < oo, it
already satisfies the infinity of the conditions R({#/(D'm)(t)| t # 0}) < oo,
j = 0,1,2,... This follows by a direct computation from the form of the
derivatives. (A similar property is actually shared by various multipliers
related to maximal regularity problems; see e.g. [H|.)

Now that we agree that the question of maximal regularity is a multiplier
problem, we can deduce various facts. In the L? setting, 1 < p < oo, we
know from the theorem of L. Weis that

ACP has maximal regularity if R({m(t),tm’(t)| t # 0}) < occ.
On the other hand, the result of Ph. Clément and J. Priiss shows that
ACP has maximal regularity only if R({m(t)| t # 0}) < cc.

But now that the R-boundedness of {m(t)| t # 0} already implies that
of {tm/(t)| t # 0}, the two statement combine to give

ACP has maximal regularity if and only if R({m(t)|t # 0}) < oc.

So much for the (by now well-known) L? situation. But now we also
have at our disposal analogues of all the theorems quoted above valid for H),
in place of LP; indeed, the necessary condition for a Fourier-multiplier on
H], was just shown in the previous section, and the sufficient condition (the
Mikhlin-type theorem) was proved in [H|. All these combined we can state
the result:

10



Theorem 2. Let X be a UMD-space and A the generator of a bounded
analytic semigroup on X. Then the following conditions are equivalent:

1. ACP has mazimal LP-reqularity for all p € (1, 00).

2. ACP has mazimal LP-regularity for some p € (1,00).
3. ACP has mazimal HJ, -reqularity.

4. The collection {A(it — A)~'| t # 0} is R-bounded.

What appears to be new here is the fact that maximal LP-regularity
is implied by the maximal H)-regularity. That LP-regularity (for some
p € (1,00)) implies H} -regularity was shown in [H|; the characterization
of LP-regularity in terms of the R-boundedness condition above (and simi-
lar equivalent conditions) was obtained independently by N. Kalton and by
L. Weis (see [W]). From the R-boundedness characterization the equivalence
of the various LP-regularities is evident, but several results in this direction
were known even before.

We should note that the treatment of the abstract Cauchy problem only
required the multiplier theorems for functions of one variable (i.e., with do-
main R). However, the necessary condition above was proved for R", and
the Mikhlin-type theorem giving sufficient condition for H-multipliers also
has a version for several variables in [H|. Therefore, there is no obstacle
against treating abstract PDE’s as well. As an example in this direction, let
us mention the abstract Laplace equation

—Auly) + Au(y) = f(y), yeR",

which was also treated in [H|. With the multiplier theorems at hand, it is
straighforward to state and prove a result analogous to Theorem 2 for this
problem.

4 Another necessity proof for n =1

For the one-dimensional domain, the result of Theorem 1, and actually a
little more, can be derived with a simpler argument, which is only a slight
modification of the proof of [CP] for the necessity of R-boundedness for LP-
multipliers.

Here we consider the Hardy space H'  defined in terms of the conjugate
operation or the Hilbert transform A, which is the Fourier-multiplier operator
with multiplier —isgn(&). We set

He (R X) = {f € L'(R, X)| #f € L'(R; X)}

con

equipped with the graph norm

||f||HC10n(]R;X) = ||f||L1(R;X) + ||%f||L1(R;X) :

11



Our assumption in the following will be the boundedness of a multiplier oper-
ator T,,, from H!  (R; X) to L'(R; X), and we shall show the R-boundedness
of {m(t)| t # 0}. This result reproduces Theorem 1 in the case n = 1 and
is a slight extension of it for non-UMD Banach spaces. Namely, in general
we have H! (R;X) < H)(R;X), and if X is UMD, there is an equality
of spaces with equivalence of norm. This has been shown by O. Blasco [B|
for the unit circle T in place of the real line R, but the two results quoted
are proved by methods which have direct analogues in the case of the line.
Thus the assumption that T, be bounded from the smaller space H}  (R; X)
to L'(R;Y) is clearly weaker than the boundedness from the possibly larger
space H), (R; X).

What makes the one-dimensional proof for H! so simple, is the existence
of a large class of functions for which the evaluation of the graph norm of
the Hilbert transform is particularly easy: If the Fourier transform of f is
supported only on the positive (resp. negative) half-axis, then #f is simply
—if (vesp. if), and therefore || fll ;1 r.x) = 2[1fll1 @x)

Now let us state and prove the result:

Proposition 1. Suppose m € L (R;B(X;Y)) is such that the multiplier

loc
operator T,, f := Fmf] acts boundedly from H. (R, X) to L*(R;Y).
Then m is strongly continuous away from the origin, and the collection
{m(t)| t # 0} is R-bounded in terms of an absolute constant times the oper-

ator norm of T,,.

Proof. Let N € Z, t1,...,txy > 0 and x1,...,xxy € X. The fact that m
is strongly continuous outside ¢ = 0 follows from Lemma 2 and the above
mentioned embedding, or one can also give a direct proof parallel to Lemma 2.
Indeed, if ) # 0 and ¢ € D(R) is equal to unity in a neighbourhood of ¢,
and supported on one half axis only, it is clear that ¢(-)z € H! (R; X) for
all z € X, and the rest of the proof is just like Lemma 2.

We choose a real-valued test-function ¢» € D(R) supported on (—oc,0)
and with the same integral condition as in the proof of Theorem 1. The proof
runs in exactly the same fashion as there until we reach the estimate

N
E|) emi(t))z;
Jj=1 Yy
T 1 N . N
< 5|9, T s Hegy — L' lim inf - E ;gjelmw(-/k)zj

HY,\\ (R;X)

We then observe that the Fourier transform of the function whose H} -norm
is to be evaluated is given by > k¢ (k(t;—&))x;, and for this to be non-zero,
recalling the support condition imposed on 1, we must have ¢; — £ < 0, i.e.,
E>1t;>0.

Thus the support of the Fourier transform is contained on (0, 00), and

so the H! mnorm is just twice the L' norm. Using this and the contraction

12



principle, which is valid once we get back to L', we have

3 (5) o, et
<2(5) 0] Il Vi inf

Zgj@@('/k)mj

LY(R:X)
2 N
= ) ) .7l ) 1 (.
_7 1, Hd) 1 HTm'Hcon(RaX) — L (R,Y)H]E Zé‘]zj ,
j=1 X
and a parallel argument can be used to handle the negative half-axis. O

Of course, one should note in Proposition 1 that the origin has to be
excluded. Indeed, for A € B(X;Y)\ {0}, the operator A maps H!  (R; X)
boundedly into L'(R; Y), but the corresponding multiplier —isgn(t)A is cer-
tainly not even weakly continuous at ¢ = 0; the origin of the frequency
domain has a genuinely special meaning in the spaces H}  (R; X). Whereas
it is trivial to derive a shifted version of the Mikhlin theorem, say, in the L?
setting, with the possible discontinuity at a point other than the origin, the
very construction of the space H), is made so as to allow for bad behaviour
of multipliers at the origin, but not elsewhere. For this reason one should not
regard the method of proof of the above result, with one half-axis handled
at a time, as something artificial, but rather it is intimately connected with
the structure of the space H)  (R; X).

The proof of Proposition 1 does not seem to be easily generalized to
conjugate Hardy spaces of several variables. Namely, the n Riesz transforms
R;j, 7 = 1,...,n, which play the same role on H)  (R"; X) as the Hilbert
transform H has on H}  (R; X), have multipliers £;/ |£|, which are not locally
constant like the multiplier of H, and thus do not allow us to use the trick
that was here employed to overcome the difficulty of dealing with the H_, -
norms.

In the one-dimensional setting, however, the result can be slightly gener-

alized:

A sharpened necessary condition for LP-multipliers, p > 1. The
method of proof of Proposition 1 also applies to give a slightly sharpened
form of the original result of [CP| concerning the LP-multipliers. To see how
this comes out, consider the spaces
Hi, (R X) = {f € L"(R X)| Hf € L"(R; X)}

with the graph norm, in analogy with the case p = 1. Of course, for a
UMD-space X, we have H? (R; X) = LP(R; X) with equivalence of norms
for 1 < p < oo, and this condition actually characterizes UMD-spaces, but
our intention is now to provide a piece of insight into the multiplier theory
in non-UMD Banach spaces.

Now we observe the following: The proof of the result concerning the R-
boundedness of {m(t)| t # 0 a strong Lebesgue point of m} goes through with

13



the assumption T, : H! (R; X) — L'(R;Y) replaced by T, : H?, (R; X) —
LP(R;Y'). We just use the (equivalent) definition of R-boundedness in terms
of the pth moment rather than the first, so that we can freely interchange the
order of the LP-norm with respect to the Lebesgue measure on the real line
and the probability measure related to the Rademacher variables. Where

we extracted the L®-norm of ¢ from the integral, we now invoke the Holder

., so that in place of the L' norm of the rest of the
Lp

integrand we now have the L? norm and we can apply the assumption. (This
is also what was done in [CP].) Due to the choice of the auxiliary function
1, the evaluation of the H?. -norm also reduces to that of the LP-norm, and

con

‘Z/A)H ) in the constant. We formulate this result as a corollary, but it
L

inequality to extract H@/A)

instead of

we arrive at a similar conclusion as before but with H¢

‘..
LOO

is a consequence of the proof rather than Proposition 1 itself.

' Lp

Corollary 1. If m € L (R B(X;Y)) gives rise to a bounded multiplier

loc
operator T, = F'mTF : H? (R, X) — LP(R;Y) for some p € (1,00), then

con

R({m(t)| t # 0 a strong Lebesgue point of m})
< C|[T: B2

on

(R X) = (R Y)]].

Very roughly speaking, this result could be interpreted as follows: Even
if we restrict the action of our multipliers to a function class on which non-
trivial scalar-valued multipliers act boundedly (according to the condition
of the boundedness of the Hilbert transform, which lies at the heart of
HE  (R; X)), we cannot help the fact that operator-valued multipliers will
not be bounded unless the multiplier function is R-bounded.

5 Some variations and further results

The periodic case. Let us have a brief look at the analogue of Proposi-
tion 1 in the periodic case, i.e., with the unit-circle T in place of R. The
space H.  (T;X) is defined simply by replacing R by T throughout above,
and the observations concerning the computation of the norm are equally
valid.

The periodic case is instructive in the sense that it contains all the main
ideas but there are less technical points to be considered. We note that
whereas the proof of Proposition 1 was nothing but an adaptation of the
proof of [CP| and a trick, the periodic proof below is nothing but the proof

of [AB] plus the same trick.

Proposition 2. Suppose the collection of operators m(k) € B(X;Y), k € Z,
define a multiplier T,, by

T ( Z eik'xk> = Z e*m (k) (2)

k=—oc k=—o00
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which is bounded from H) (T;X) to L'(T;Y).

con
Then this collection is R-bounded, and more precisely

R{m(k) : X = Y| ke Z}) < (7°+1)||Tn : Ho(T; X) = L'(T;Y)||,

Proof. Let first N € Z,, x1,...,xy € X and ky,...,ky € Z, be given. Let

us write

and we recognize m(k;)z;efit as T, [x;e*i’](t). Now first an application
of the contraction principle and then the assumed boundedness of T,
H! (T;X) — LY (T;Y) give

con

dt

ikt ik;e| 94t
27r’

m LEJG

Y

ikjt

— HT H (T; X) — LY(T; Y i

Heon (T X)

Finally, by the assumption k; > 0, the function whose H} -norm appears

above contains only positive frequencies, so the H!  -norm is simply twice the
L'-norm. With this observation and one more application of the contraction

principle we get

||T | 2

b

X

T 2
Zej 2(3) ITull E

N
E :53'553‘
j=1

LV(T;X)

and hence we have shown that

R ({m(k): X = Y]k >0}) < %HT (T X) = LT Y]

COII

The assertion now follows, once we observe that analogous reasoning
proves the R-boundedness of {m(k)| k& < 0} with the same bound, and
moreover, since the constant function z is mapped into m(0)z, it is clear
that [|m(0) : X = Y| < ||T,n|]. (We recall that the R-bound of a union of
sets is at most the sum of the individual R-bounds, and the R-bound of a
singleton coincides with the operator norm. This yields the overall constant

w2+ 724+ 1=n*+1.) O

A necessary condition for L*°-—BMO-multipliers. Before concluding,
we would like to mention one more necessary condition for multipliers, this
time for those acting boundedly between L*°(T; X) and BMO(T;Y"). Al-
though the (rather modest) argument does not give R-boundedness here, it
is still in the same spirit as the results above; namely, we once again see that
a collection of operators giving rise to a bounded Fourier-multiplier needs to
be more than just bounded.
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More precisely, we find that the collection in question must satisfy an
R-boundedness type condition but with the maximum norm instead of the
pth moment. This also implies a condition of unconditional boundedness or
U-boundedness, due to N. Kalton and L. Weis [KW|, which is defined by the
requirement that, for some C' < oo, we have

N

§ :ij]

J=l1

N

Z €Y

=1

ZKTSEW?JJH < Cmax

j=1

max
ej=%x1

Y/
foral NeZ, , allTy,..., Ty € T, 2q,...,xx € X and yl,...,ij in the dual
space Y.

We have the following result:

Proposition 3. Suppose that the sequence m(k) € B(X;Y), k € Z, de-
fines a Fourier-multiplier T,, as in (2) acting boundedly from L*®(T; X) to
BMO(T;Y). Then the collection {m(k)| k # 0} satisfies the inequality

N

> emik;)a;

J=1

max
ej=%1

Y

< % I = L°°(T: X) = BMO(T;Y)|| max

In particular, this collection is U-bounded.

Proof. Proceeding as with H. (T; X) and L'(T;Y), now with ky,...,ky # 0

con
but otherwise arbitrary integers, we get

T K
< 5 max /
2 e=+1 |

Y
We then observe that the above integral without the norm would vanish,
since each of the terms in the sum vanishes

/ Trnleje™ z;)(t) dt :/ ;e itm(k;)x; dt = 0.

—T -

N

> emik))z;

i=1

max
ej=%1

Thus the integral is of the form (27)~" [ [F(t) — Frly dt < |[F|lgyocr.y) -
where Frp denotes the average of F' over T, which now vanishes. By the
assumed boundedness of T,,, we then have

N
max > emlk;)z;
Jj=1 v
T N
5 | Ty : L(T; X) — BMO(T; Y)|| max Z‘fjeikj'xj
j=1

Lo (T;X)

b

N
5 1ax > €

=1

T\ 2
< (5) ITl) max
€j=%

X
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where the last inequality is proved by a similar convexity argument as the
usual contraction principle with p-norm (p < oo) instead of the maximum
norm. (The constant 7/2 instead of 2 is obtained using [PW, §4.11.5].)

U-boundedness follows readily from the stronger condition (3) estab-
lished; indeed, for appropriate a;; € C of unit length,

N N N N
Z (Tizj,y5)| = Z (Tjzj, 05y;) = E <Z€T~T Zga‘aa‘y}>
7j=1 Jj=1 =1 J=1
N

Z e 1ix;

i=1

N

§ : !
GjOéjyj

Jj=1

max
ej=%1
X

< max

€, ==%1 ’

Y/

and then we can apply the inequality already established to the first factor
and the contraction principle to the second. O

One should observe that the type of boundedness established for the
operators T; = m(k;) above is just like that of R-boundedness, except
that we have the L°°-norm instead of an LP-norm with p < oco. As was
mentioned above, in the linear span of constant vector multiples of the
Rademacher functions, all the LP-norms are equivalent for 0 < p < oo (by the
Khintchine-Kahane inequality), which gives great flexibility to the notion of
R-boundedness and makes it quite compatible with the various LP-spaces.
However, this equivalence does not extend to p = oo. (For z; = =, the
oo-norm grows like N, whereas the p-norms for p < oo grow like VN as
N — 0.)

Nevertheless, the R-boundedness of L>®-type encountered here appears to
be to a large extent similar to the usual R-boundedness. Indeed, it is easy
to see that the same proofs of the contraction principle (which was already
applied above), the convexity property etc. go through for this new kind of
notion of boundedness.
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