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1 Introduction
Consider the nonlinear diffusion problem

U — Ugg = f(u), z e (=L1), te(0,7),
u(z,0) =ug(x), €11, (1.1)
u(xl,t) =1, te€l0,7),

where the initial function satisfies 0 < ug(x) < 1 and uo(£l) = 1. Here T' and
[ are positive constants. We assume that the reaction term f(u) is singular
at u = 0 in the sense that lim, o f(u) = —oc. For u > 0 we take f(u) to be
smooth and to satisfy (—1)*f®)(u) < 0; k = 0,1, 2.

This type of reaction diffusion equation with singular reaction term arises
in the study of electric current transients in polarized ionic conductors [17].
The problem can also be considered as a limiting case of models in chemi-
cal catalyst kinetics (Langmuir-Hinshelwood model) or of models in enzyme
kinetics |7, 21].

The equation (1.1) has been extensively studied under assumptions im-
plying that the solution u(z,t) approaches zero in finite time. The reaction
term then tends to infinity and the smooth solution ceases to exist. This
phenomenon is called quenching. We say that a is a quenching point and
T is a quenching time for u(z,t), if there exists a sequence {(z,,t,)} with
x, — a and t, T T, such that u(x,,t,) — 0 as n — oc.

In most of the papers that deal with the quenching problem for the equa-
tion (1.1), the reaction term is a power singularity i.e. f(u) =—u"?, p> 0.
In this case it is well-known that for sufficiently large [ quenching occurs in
finite time [1, 2, 19]. It is also known that the set of quenching points is finite
[13]. See also detailed review articles [18, 20)].

An interesting field of inquiry concerning (1.1) with a power singularity
has been the analysis of the local asymptotics of the solution as ¢ 17" in the
neighborhood of the quenching point. In particular, it has been shown that
the quenching-rate satisfies

limn u(x, £)(T - t) VAP — (1 4 p)/(FP), (1.2)
uniformly, when |z — a| < C/T —t for every C' € (0,00). This result was
first established by Guo [13| for p > 3, and subsequently generalized to p > 1
by Fila and Hulshof [5]. For the weaker singularity 0 < p < 1, (1.2) has been
shown in [15|. The result (1.2) for higher dimensions has been obtained in
[14] (when p > 1) and in [6] for the cases p > 0.

In [22] the equation (1.1) was studied in the case where we have only
a logarithmic singularity, i.e., f(u) = In(au), « € (0,1). It was shown
there that despite of this weakening of the singularity, quenching still occurs
for sufficiently large [ and that the set of quenching points is finite. The
main result in [22] concerns the asymptotic behavior of the solution in a
neighborhood of a quenching point. In particular, it was shown that the



quenching-rate satisfies

1 u(@t) g
li 14+ — — | = 1.
(e [ i) =0 =

uniformly, when |z — a| < C/T —t for every C € (0, 00).

Note that (1.2) and (1.3) are equivalent if we substitute f(u) = —u~? in
(1.3).

The proof of (1.3) is not based on earlier results on quenching. It uses
similarity variables and energy estimates. This method of proof is different
from that of earlier approaches where the corresponding quenching-rate esti-
mate (1.2) has been obtained. (see Giga-Kohn [11, 12|, Bebernes-Eberly [3],
Guo [13, 14, 15])

In this paper the purpose is to extend the result (1.3) to a wider class of
weak singularities. More precisely, we assume that f(u) satisfies

" f* ()| = o(|f(w)]), n=1,2, (1.4)
as u | 0. Furthermore we define f(s) = —e- %, and assume that

fls(T+0(1))) = (1 +0(1))f(5), (1.5)
as s — oo. This definition means that for a(s) — 0, as s — oo there is
b(s) — 0, as s — oo such that f(s(1 + a(s)) = (1 +b(s))f(s), as 5 — oc.
Note that (1.4) implies f(s) — 00, as § — 0.

For example the reaction terms f(u) = —|In(u)|?, p > 0 or f(u) =
—In(|In|In|--- (]In(u)|) - - - |||) satisfy the conditions (1.4) and (1.5) (in
neighborhood of the origin). Note also that the conditions (1.4) and (1.
hold for the reaction terms: f(u) = —|In(u)|” — |In(u)|9, (p,q > 0), f(u)
—|In(u)[” — In(| In(u)[), (p > 0), and f(u) = —In(|In(x)]) — In(In(| In(u
Stronger singularities, like f(u) = —u™, p>0or f(u) = %, p >
do not satisfy (1.4).

The main result of this paper is (1.3) for the equations (1.1) with the
conditions (1.4) and (1.5). We formulate this in Theorem 3.1. The proof is
further commented and given in Section 3. Before that we introduce some
preliminary material in Section 2.

)
)
0,

2 Preliminary results

We first study the possibility of quenching in finite time. There are two rea-
sons why this may not occur. In the first case, we may have u(z,t) > ¢ > 0,
for all £ > 0. This means that there is a solution to the corresponding station-
ary equation, which is a subsolution of the equation (1.1). On the other hand,
it might happen that u(z,¢) > 0 for all ¢ and z, but that minu(z,t) — 0, as
t — oo. This second case is called quenching in infinite time.

Because f(u) is a locally Lipschitz continuous function, we apply Theorem
1 (c) and Theorem 2 (c) in [2] (see the conclusion on p. 7 there), to conclude



that the solution u(z,t) of (1.1) quenches in finite time for [ sufficiently large,
provided that the similar stationary equation does not have a solution. We
show below, that this last fact holds for the equations that have singularities
satisfying (1.4) and (1.5).

Theorem 2.1. Suppose that u(x,t) is the solution of the equation (1.1) and
that the reaction term satisfies (1.4) and (1.5). Then for | sufficiently large,
u(x,t) quenches in finite time.

Proof. The solution u(z,t) with ug € (0,1] is a subsolution of (1.1) with
ug = 1. Therefore by [2| it is sufficient to show that the corresponding
stationary equation to the equation (1.1) does not have a solution that u €
(0,1]. Suppose that u(zx) is this solution. We follow the idea of [16].

By [10] we know that this solution is symmetric with respect to the origin
and that u’'(0) = 0. Therefore

u'(z) + fu(z)) =0, ze(0,1),
u(l) =1, u'(0) = 0.

Substituting v(z) = u(x) — 1, where z = x/l, we get

v"(2) + P f(v(z) +1) =0, z € (0,1),

2.1
v(1) =0, v'(0) = 0. 21)

The corresponding (linear) eigenvalue problem is
Up(2) = —Aptn(2), z €(0,1), (2.2)

un(1) =0, ur (0) = 0.

The eigenvalues and eigenfunctions of (2.2) are A, = 7%(5 +n)? and u,(z) =
cos(vAnz), n=0,1,2,..

We define the inner product by (f, g) = fol f(2)g(2)dz. From (2.1) and
(2.2) it follows that

W up) + P{f(0(2) + 1), up) = (v, ul) + P{f(v(2) + 1), u,) = 0.

Therefore
AV, un) + P{f(v+1),u,) = 0.

Take n = 0. Then uy > 0, when z € (0,1), and v € (—1,0]. Hence

w2 (v, ug)
P=——""1 < M<o.
4 (flv+1),up) ~
The claim follows from this by choosing [ large enough. O

We also know that quenching cannot occur on the boundary:

Theorem 2.2. [4] The set of quenching points is a compact subset of (—1,1).



We can further apply [4] to conclude Theorem 2.3 concerning the asymp-
totics of the solution u(x,t). This Theorem gives a lower bound as a function
of t for u(x,t) (xr € (—e+a,e+a)), when the quenching point is approached.
It also gives an upper bound at a minimum point with respect to the x-
variable.

The main Theorem improves this Theorem by giving a pointwise asymp-
totic behavior of u(x,t) in the region |z| < Cv/T —t, when the quenching
point is approached.

From now on we assume that the initial function satisfies

ug () + f(uo(z)) < 0. (2.3)

We can see by the maximum principle that this technical assumption guar-
antees that u(x,t) is decreasing in time.

In Theorem 2.3 below we need the following definition. Blow-up means
that a solution approaches infinity in finite time. We say that b is a blow-up
point and 7" is a blow-up time for v(z, t), if there exists a sequence {(z,,t,)}
with x,, — b and ¢, T T, such that v(z,,t,) = o0 as n — oc.

Theorem 2.3. Suppose that (2.3) holds and that quenching occurs att =T .
Then there exist positive constants [,l; and t, such that

(a) uy — Bf(u) <0, when x € (=ly,1l1) (the quenching points belong to this
interval) and t € [t;,T).

(b) u; blows up, when u quenches.

(c) w(z,t) — f(u(z,t)) >0, whent € (0,T), and z is a local minimum point
of u(x,t) with respect to x.

Proof. Because we know that quenching happens (Theorem 2.1) and that
the set of quenching points is bounded away from the boundary (Theorem
2.2), we can apply ([4], p. 1053-1054) to conclude the claim (a).

The item (b) follows directly from (a).

By the local existence theorem (|23| p.34) wu,,(z,t) > 0, where z is a local
minimum point of u(z, t) with respect to z, and the claim (c) follows. [

3 Quenching-rate estimate

The main Theorem of this paper is Theorem 3.1. We first formulate the
equation (1.1) with respect to new variables s, y and w(y, s) in the equation
(3.2), and then study the asymptotics of a quenching point by this equation.
We assume that the initial function is symmetric in the sense that ug is even
and uy(r) > 0. Then we know by the uniqueness of the solution and by the
maximum principle that the solution is also symmetric. By choosing [ large
enough in (1.1), we can see by Theorem 2.1 and the symmetry of u(z,t) that
(0,T) is (at least) a quenching point for some T' < cc.



We now begin to study the local asymptotics of the solution as a quench-
ing point is approached. Define new variables:

T
T—t

y = , s=—In(T —1t),

1

where z € [—1,1],t € [0,T), y € [~lez*,le™2*] and s € [~ InT, 00). Note that
to analyse the asymptotic behavior as ¢ 1 T and |z| < C/T — t corresponds
the situation where s — oo and |y| < C.

The function w is defined by

1 u(@t)  qr

The equation (1.1) can now be written in the form
1
Ws = Wyy = SYWy +w+ F, (3.2)

where F = %f’(u), and (y, s) € (—le?*,le2*) x (—InT, 00).
The initial and boundary conditions are now

( ) 1 ug(yv'T) ( 1 ) Lodr
w(y, —InT :1+—/ —,  w(xle2®,s :1+e‘9/ —
T Jo f(7) o f(7)

where y € [~le2* le™2*] and s > —In T

Remark

Note that in the transformed equation (3.2) the nonlinear term F' cannot
be expressed explicitly as a function of y, s and w. For this reason, in the
following, both the variables z and s, or y and ¢, may sometimes appear in
the same equation. Another reason for this procedure is that in some cases
it simplifies notations.

The goal is to prove:

Theorem 3.1. Assume that ug is even, ug(r) > 0, uo(z) € (0,1] and (2.3)
holds. We assume that the reaction term f(u) is singular at w = 0 in the
sense that lim, o f(u) = —oo, and that the conditions (1.4) and (1.5) hold.
For u > 0 we take f(u) to be smooth and to satisfy (—1)*f®)(u) < 0; k =
0,1,2. Let u(x,t) be the corresponding solution of (1.1). Assume that u(x,t)
quenches at (0,T) for some T < oo. Then for any positive constant C,

(a) w(y, s)—w(0, s)(1—2y*) — 0, as s — oo uniformly with respect to |y| < C,
and

(b) w(0,s) — 0, when s — oco.
Comment on the proof of the Theorem 3.1 The proof of (a) is built

on Lemmas 3.2-3.8 and Corollary 3.9. The statement (b) follows from (a)
and from Lemmas 3.10-3.14.



The first fundamental fact in the proof of (a) is to obtain the limit of
Theorem 3.1 (a) in a weak sense (Lemma 3.4(b)). We observe that F' — 0
uniformly on compact y-intervals for the equation (3.2) (Lemma 3.2). There-
fore, on compact y-intervals the equation h” — 2yh'+h = 0 can be considered
as the stationary equation for (3.2), when s is large. A particular solution of
this equation is hs(y) = (1 — 3%). Both Lemmas 3.2 and 3.3 are essential in
the proof of Lemma 3.4.

The second crucial ingredient in the proof of (a) is to realize that

tim sup(uo(y, 5) — w(0, (1~ 57)) <0,
§—00
uniformly for bounded y. This is a consequence of Lemmas 3.6 and 3.8. The
argument of Theorem 3.1 (a) is based on this uniform upper bound, weak
convergence (Lemma 3.4(b)) and the estimates of w (Lemma 3.3). Lemma
3.5 is needed in the proof of Lemma 3.6, and Lemma 3.7 is needed in the
proof of Lemma 3.8.

The idea of the part (2) (the proof of Theorem 3.1 (b)) is to conclude the
claim from the properties of the nonlinear term F' of the equation (3.2), as
s — 0o. It is known by the part (1), that for large s the solution is formally
w(y, s) ~ w(0,s)hy(y) (for bounded y), and then Lw = wy, — sw, + w &
0. We expect that the nonlinear part will eventually dominate the linear
part in the equation (3.2). Concerning the reaction term F' it is known |,
that it is zero only at the point y = 0 and otherwise positive. Thus for
a large s*, the reaction term F does not have any contribution on w(0, s),
but for a large y it has a small increasing contribution on w(y, s). More
precisely, for large s the reaction term behaves formally as F' ~ fi(y, s) fa(s),
where %fl(y,s) ~ w, > 0 (by the part (a)) and fa(s) = f'(u)(T —t) — 0.
Therefore, somewhat later (s = s* + §), the profile of the solution w(y, s) is
formally w(0, s)[ha(y) + g(s)e(y)], where the function €(y) is non-decreasing
(y > 0) and €(0) = 0. Because the solution w(y,s) has to preserve the
asymptotical form obtained in the part (1), the only possibility is, that w(0, s)
has to be decreasing, and that the limit value has to be zero.

The equation (3.2) is studied as a dynamical system in the space Lf,(R),

where p(y) = exp(—%). Then the eigenvalues and eigenfunctions of the oper-
ator £ are well-known. The scaled Hermite polynomials form an orthonormal
base on that space, and the eigenvalue of the second order polynomial hsy(y)
is zero. By the part (1), it is known that this polynomial is dominant, as
s — 00. So we obtain that the multiplier function as(s) of hy in the Fourier
expansion of the function w is asymptotically equal to w(0, s) (Lemma 3.12),
and that as(s) — 0 (see (3.46)). To obtain (3.46), we first write the equation
(3.2) in the form (3.40). Then we conclude by Lemmas 3.12, 3.13, 3.14, and
part (a) that the first three terms on the right-hand side of this equation
converge to zero, and that the last term leads to (3.46).

The domain of the solution w(y,s) of the equation (3.2) is not (with
respect to y) the whole R. Therefore, the above properties of L?) and £ cannot
be applied directly to the equation (3.2). This difficulty can be avoided by



first extending the equation (1.1) to all z € R, and observing that the solution
of this equation in the region {(z,t) € R?|x € (=1,1),t € (0,T)} is the same
as the solution of the original equation (1.1). Then the transformed solution
w(y, s) corresponding to the extended solution (z,t) is also defined for all
y € R.

The assumption (1.4) is needed in Proof of Theorem 3.1 (a), and thus
also in Proof of (b). But the assumption (1.5) is used only in the part (b).

Before we start to prove Theorem 3.1, we emphasize that the following
analysis does not exclude the possibility of quenching on an entire interval.
In fact we can quarantee that the set of quenching points is finite for the
equation (1.1) that satisfies conditions (1.4) and (1.5) only for f(u) = In(au)
by [22]. We don’t know, can a further weakening of singularity in (1.1) lead to
quenching on a whole interval. However, by Theorem 2.2, quenching points
are bounded away from the boundary, and this observation is sufficient in
what follows.

3.1 Proof of Theorem 3.1 (a)

We begin by introducing the inequalities (3.3), (3.4) and (3.5), which will be
useful in the sequel.

From (1.4) with n = 1 we can first verify that f(u) € L'(0,1), and then
by this fact that lim,_,ouf(u) = 0. Therefore we can obtain by (1.4) (n =1
and by partial integration that

/0 " () = uf(w) + o / " f(r)dr) (3.3)

“odr
im0 (34)
as u — 0.

By Theorem 2.3 (a) and (c) we have the inequalities u, — f(u) > 0 and
— Bf(u) <0,in (x,t) € (=4,0) x (T' = §,T). Hence there is C' > 0 such
that

and

“odr odr “odr
- m<T tg—Comg—Com. (3.5)
Lemma 3.2.
(a) u(z,t) = 0 uniformly, when t 1T and |zv| < C/T — 1.
(b) F is uniformly bounded, when (z,t) € [—1,1] x [0,T).
(¢) F — 0 uniformly, when t +T and |z| < C/T —t.

Proof. By Theorem 2.1, the conditions (2.3), (1.4) (when n = 1) and (3.3)
we can see that to conclude this Lemma it is sufficient to show the inequality:

(z,t)
P(z,1) éf% (z,t)2+/( t f(r)dr <0, (3.6)

u(0,t)



in the region A = {(xz,t)|x € (=1,1),t € (0,T)}.

Because the initial function wug is symmetric, then u,(0,¢) = 0 for all
t €10,7), and thus P(0,¢) = 0 for all ¢ € [0,T"). Differentiating the function
P with respect to z, we get P, = Uz, + uyf(u) = uzuy, by the equation
(1.1). Tt follows from the symmetry that P, < 0 (r = |z|). So we have
obtained the inequality (3.6). O

Lemma 3.3. There exist positive constants ci,co and &, independent of vy
and s, such that for all s > —InT,

(a) —c1 < wyy(0,s) <O0.

(b) —co < wyy(y,s), when —lez® <y < lez.

(c) —cay < wy(yi s) <0, when 0 < y < les®, Furthermore, 0 < w,(y,s) <
—coy, when —le2® <y < 0.

(d) 0 <w(0,s) <1—0.

(e) —%czyQ <w(y,s) <1—140, when e < y < le3*.
Proof. The claims can be verified from the symmetry of the solution, Defini-
tion (3.1), Theorem 2.3(a),(c) and Lemma 3.2. See the detailed calculations
in [22]. O

Lemma 3.4. Let p(y) = exp(=-), and let a(s) be a bounded function for

s> —InT. Let ho(y) = (1 — 3y?) be the second order Hermite-polynomial.
Then

(a) folejs w(y, s)p(y)dy — 0, when s — 0.

() Jy" (wly, s) = a(s)ha(y))ply)dy — 0, when s = oc.
Proof. Multiply the equation (3.2) by p to obtain

(1w, — w)p = (wyp), + Fp.

and define I(s) = fms

o w(y,s)p(y)dy. Then we get

]_ 1 1 1 1 leis
I'(s) —I(s) = (§le§sw(leis, s) +wy(le2®, s))p(le2?) +/ Fpdy. (3.7)
0
Because, by Theorem 2.2, quenching on the boundary is impossible, it follows

from the boundary conditions and Lemma 3.3 that the first two term on the

right-hand side converge to zero in (3.7). Furthermore, foms Fpdy — 0 by
Lemma 3.2, and therefore I'(s)—I(s) — 0, as s — oc. The statement (a) can
be obtained from this. Suppose that for some £ > 0 there exists a sequence
{s;} such that |I(s;)| > €. Then |I(s;)| — oc, as s; — oc. This contradicts
Lemma 3.3.

The claim (b) follows from the item (a) and from partial integration:

/ " ha(y)ply)dy = / " o)y + (o)) (o0) — / " o(y)dy = 0.

10



Lemma 3.5. There ezist constants C' € (0,00), l; € (0,1) and t; € (0,T)
such that 0 < —uy(x,t) < —Cf(u(0,1)), when x € [0,1;] and t € [t;,T).

Proof. We first show that there exist constants v € (0,00), {; € (0,/) and
t1 € (0,7 such that
Upy — YUug 2> 0, (3.8)

when = € [—l,l1] and t € [t;,T). Let J(r,t) = up(r,t) — yuy(r,t). Differen-
tiating this, we get
Jy— Jop — f1(w)J = wpug f ().

The right-hand side of this equation is non-negative, by the facts that u, > 0,

up < 0 and f"(u) < 0. Because of Theorems 2.3 and 2.2, we can choose [;

and t¢; such that |u,| < M and u; € [—c1, —c2] on the parabolic boundary of

[—l1, 1] x [t1,T). Then we can take ~ sufficiently large such that J > 0 on

that parabolic boundary. Now we obtain (3.8) from the maximum principle.
We can now conclude by (3.8) that

T

—u(0,%) = ' +(n,t)dn > ,t)dn =
i) = 0.0 = [ wsln.in = [ w0y
[ a1, 0)+ Fu ) = ) + 2 (0(0.).
and because we know by Theorem 2.3 that u,(0,t) — f(u(0,t)) > 0, then

_ut(ma t) < _ut(oat) - fo(u(oat)) < _f(u(oat))(l + ’71‘)7

and therefore 0 < —uy(x,t) < —C'f(u(0,1)).
U

Lemma 3.6. For 0 <y < C, we have limsup,_, . Wy, (y, s) < 0 uniformly.

Proof. Differentiating the definition (3.1), we get by (1.1) after some calcu-

lations that A
Wyyy = Z Gi,
i=1

where
Uyt

flu)’
Uy Uy /
fi(u),
Fp!
Uy , U
Gs(z,t) = —2VT — t— ("2 — F) f'(u),
[ 2
Gy(z,t) = —VT — t(—=)" f"(u)u,.
We shall prove that limsupyur Gi(2,t) < 0, and that G; — 0 uniformly
for bounded y, as s — oc and i = 2, 3, 4.

Gl(.iE,t): T—1t

Gg(flf,t) =—vT -1t

11



1. 1—1:

By (3.8), vT — t;‘(’ﬁf) < WT — t%, when z > 0. So it suffices to show

that (T — )iy — 0, as t + T. From (1.4) (when n = 1), (3.4), (3.5),
Lemmas 3.2 and 3.5 it follows that

2. 1=2
Using (3.1), we obtain 0 < G = —w, (T — t)(—u;) f}(&))‘ Applying (3.4),
(3.5), Lemmas 3.3 and 3.5, we get

u 0
— (= f(u :
' g
The claim follows from (1.4) and Lemma 3.2(a).

3. 1=3:

The function G3(z,t) can be written in the form:

G3 = 2Gy + 2w, (1 + F)(T —t) f'(u).

0<G, <C

By the case i=2, Lemmas 3.2 and 3.3 it is sufficient show that (7 —
t)f'(u) — 0. Using (3.4), (3.5) and (1.4), we deduce

uf'(u)
0<(T-t)f'(u)<C — 0.
-0 < ot
4. i—4: Y
By a simple modification we get 0 < G4 = —wy“sz(u()“) (T'—t). The
inequality (3.6), the formulas (3.3) and (3.5) yield
u?|f" (u)]
0< Gy < —Cwy—=——.
T f(w)]

The claim follows from Lemmas 3.2 and 3.3, and (1.4) (when n = 2). O

Lemma 3.7. There exists a positive constant M such that (T — t)uy < M
in some neighborhood N = (—a,a) x (T — §,T) of (0,T).

Proof. Let H = (T —t)uy — M, where the constant M > 0 will be determined
later. Then

Hy — Hyy, — bH = (T —t) f" (u)u? + Ti_t(f’(u)(T — 1) —1),

where b = f'(u) — 7 is a locally bounded function. We can see as in the
proof of Lemma 3.6 that f'(u)(T —t) — 0, and therefore there exists a
neighborhood N = (—a,a) x (T — 6, T) of (0,T), which is independent of M,
such that

Ht_Hmm_bHSO:

on N. When M is chosen big enough, then, by Theorem 2.2, H < 0 on
the parabolic boundary of N. The claim now follows from the maximum
principle. U
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Lemma 3.8. Let w(y, s) be the solution of (3.2). Then lim_,, w4(0,s) = 0.
Proof. Differentiating the equation (3.1), we get by (1.1) that

L{ Ll Cw L [ Q{L}jL
T — ¢ o T g T W U = TS T ) () 9)

2
Ut Ut

T Fw) T Fw)y

f(w).

In (3.9), take y = 0 to obtain

utt(O, t) ut((], t)2 ’
Wes(0,8) —wg(0,8) = (T — 1 — f(u(0,t))}.
0:2) =02 = =005 u0,1) ~ Fugo, ! OO
Here the last term of the right-hand side converges to zero by Theorem 2.3
(c) and by the fact that (7" —¢)f’(u(0,¢)) — 0. Thus, applying Lemma 3.7,
we have

lim inf{w(0, s) — w4(0,s)} > 0. (3.10)
§—00

We prove next that liminf_, . w,(0,s) > 0.

By Lemma 3.6, for every ¢ > 0 and C' > 0, there exists s; > —InT such
that wy,, < e, when s > s, and 0 <y < C < oo. Integrating this inequality
three times with respect to y, we get

Wyy (Y, 5) — wyy (0, 5) < ey, (3.11)
1
wy (Y, 5) — ywy,(0,5) < §6y2, (3.12)
1 1
w(y,s) —w(0,s) — §y2wyy(0, s) < 65y3, (3.13)

when y € [0, C]. Because w(0,s) = wy,(0,s) + w(0,s), it follows from the
inequality (3.13) that

lim sup{w(y, s) + wy, (0, s)(1 — %gf) — w,(0,5)} <0, (3.14)

§— 00

uniformly, when 0 < y < C' < oc. Let g(y,s) = w(y, s) + wy, (0, s)(1 — 312,

2
and consider the function

leZ®
G(s) = [ (90.5) = w0, 9)p(n)d
0
An application of (3.14) to this definition gives that

limsup G(s) < 0. (3.15)

§—00

We can see, by Lemmas 3.3 and 3.4 (b), that

G(s) + ws(0, s) /0 ) p(n)dn — 0, (3.16)

13



as s — 0o. Using the formulas (3.15) and (3.16), we get

lim inf w, (0, s) > 0. (3.17)

§—00

Suppose now that for some ¢ > 0 there exists a sequence s; — oc such
that ws(0,s;) > €. From this it follows by (3.10) that w,(0,s;) — oc. This
contradicts Lemma 3.3. Hence limsup,_, . w;(0,s) < 0. The claim follows
from this and from (3.17). O

After these preliminary Lemmas we turn to the proof of Theorem 3.1 (a).
Let g be as in the proof of Lemma 3.8. By this Lemma, and by (3.14),

limsup g(y,s) <0 (3.18)

§—00

uniformly, when 0 < y < C' < oco. Furthermore, by Lemma 3.4(b) (where
a(s) = —wyy (0, 5))

1
le2®

lim 9(n, s)p(n)dn = 0. (3.19)

§—00 0

By Lemma 3.3 it holds that |g,| < Cly|. Therefore it follows from (3.18),
(3.19) and the symmetry of the solution that

lim g(y,s) =0, (3.20)
uniformly, when |y| < C' < co. By Lemma 3.8, wy,(0,s) + w(0,s) — 0, as
s — 00, and so Theorem 3.1 (a) follows from the equation (3.20).

Corollary 3.9. For |y| < C < oo, we have limg_, o w4(y, s) = 0 uniformly.

Proof. By Lemma 3.8, w,(0,s) = wy,(0,s) + w(0,s) — 0. Combining this
with inequality (3.12), we have

lim sup{w, (y, s) + yw(0,s)} <0, (3.21)

§— 00

uniformly, when 0 <y < C' < co. Writing

1 y
W) = w(0.5)(1 = 357 = [ (wy9) + (0, 5))dn
0
we obtain, by Theorem 3.1 (a), (3.21) and Lemma 3.3, that

lim (w,(y, 5) + yw(0, s)) = 0, (3.22)
§—00
uniformly for bounded y. Correspondingly, we can conclude by (3.11),(3.22),
Lemmas 3.3 and 3.8 that lim,_, (wy,(y, s) +w(0,s)) = 0. Finally we obtain
the claim from this, (3.22), Theorem 3.1 (a) and Lemma 3.2(c). See the
detailed calculations in [22]. O
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3.2 Proof of Theorem 3.1(b)

We will now replace the equation (1.1) by an extended one, defined on the
entire real line with respect to x. This equation of course admits the same
solutions as (1.1) on the original interval (—[,1). The technical construction
is done similarly as in [24] or in [8]. Without loss of generality, we may
assume that [ = 1 in the equation (1.1). So let > 1, and define the kernels:

1 T
V($,t) = ﬁexp(—él—t),
l‘2
W(:Eat) = e eXp(_E)a

when x € R and ¢t > 0.
Differentiating these, we can see that V, = —W, V, =V, and W, = W,.
Define the extension u(z,t) of u(x,t), when x > 1 and ¢ > 0 by

T 1) = (x— 1) /UtW(x Lt Pu(Lr)dr 1. (3.23)

Here u,(1,1) is obtained from the equation (1.1) (uy(1,t) = lim4y uz(2,1)).

Lemma 3.10. The function u satisfies:

t
m—ﬂm:QMOﬁﬁ“x—Lﬂ+2/‘“x_Lt—TWmuﬁmﬂ
0

when © > 1.
Proof. The claim follows directly by differentiating (3.23) O
Correspondingly in the extension of u to the left of #+ = —1 the term

u,(1,%) in the equation (3.23) is replaced by the term u,(—1,¢).
An extended equation is now defined

Uy — Uy = f(U(x,t));  x€ R\{£1}, 0<t<T

where (2.0 ]
- u(z,t), when |z| <1,
;) = { u(z,t), when |z| > 1,
o f(u), when |z| <1,
) = { g(x,t), when |z| > 1,
and

g(z,t) = 2u,(1,0)V(z — 1,t) + 2 /t V(e —1,t —1)u,- (1, 7)dr.  (3.24)

We can see that @ € C'(R) (fixed t), but f is not continuous at z = +1, and
therefore u is not twice continuously differentiable.

Because u(z,t) cannot quench at z = £1, then the functions u,(1, ) and
ugz(1,t) are uniformly bounded.
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Lemma 3.11. The functions u(x,t) and g(x,t) satisfy
1 <u(z,t) < ¢ < oo,

and
0 <g(z,t) < ey < 00,

when || >1 and 0 <t < T.

Proof. This Lemma can be obtained from (3.6), (3.23) and (3.24). O

From (3.23) one may also obtain
[t < ¢4 < o0, (3.25)

for [z >1and 0 <t <T.

Define, when y € R (y = \/%) and s > —InT:

1 a(@t)  qr
0 =14 — _— . 3.26
i =1+ [ (3.20

Differentiating the definition (3.26), we get

1 .

@, — iy, + Sy, — @ = F, (3.27)
where ' = F, when y € (—e2® e2%), and at intervals (—oo, —e2®) and
(2%, 00):

n g(l‘,t) EQ I

@ e 529

where ¢ is defined by the equation (3.24) and f by the equation (1.1). Using
(3.25), (3.26), (3.28) and Lemma 3.11, we obtain, when |y| > le2* and s >
—InT,

[w(y,s)| < Cly* +1), (3.29)
|wy(ya S)| S C|y|:
and )
|F| <M < cc. (3.30)

Consider now the extended equation (3.27) as a dynamical system in the
space

LR) = {g € (R [ 9(0pla)dy < o).
R
We use from now on the notation w = w. Then wy — Lw = F, where

Lw = wy, — syw, + w, on the set R x [—InT, 00).
The space Lf, is a Hilbert space with an inner product

(f, g = / F)g)p(y)dy.
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Concerning the linear operator £ it is known that (see [9]), it is self-
adjoint, i.e., that
<£f7 g>L% = <f7 £g>L%7 (331)

with spectrum A\, = 1— %k; k =0,1,2,... The corresponding eigenfunctions
are hy(y) = ayHy(5y), where Hy, are the (standard) Hermite polynomials and

aj = (7225+1k1) 2. The first three eigenfunctions are

- 1 - ~ 1 - ~ 1 11
hOZ—TTl, hlz—TTI?J, hQZ—WTI(_?Jz_l)-

V2 2 2 2

The Fourier-expansion of w with respect to this base is:

Then one has

Lemma 3.12. Let as(s) = —im 1 ay(s). Then as(s) — w(0,s) — 0, as

2
s — 0Q.

Proof. Let ¢(y,s) = w(y,s) —w(0, s)ha(y), where hy is defined as in Lemma
3.4. Projecting the function ¢ to the subspace generated by the function ho,
we get

(0, BQ>L% = de(s)@k, Bg)L% —w(0, s)(ha, BQ>L% = —27r%(a2(s) —w(0,s)).

Applying Holder’s inequality to this, it follows that

|@@—wmmsod

1
(w(y. ) = w0, 5)ha)*p) 7 [ hal| 3, — O,
R

by Theorem 3.1(a) and the inequality (3.29). O

In the following we replace — In(T'—t) (used in the proof for f(u) = In(au)
in [22]) by g(—In(T —t)), where the function g is defined such that

Y g(—In(u)) = 1. (3.32)

This function satisfies
. °* ds
lim —
=00 Jie g(s)
The formula (3.33) can be deduced directly from (3.32) by writing first

fe™)
f/(e—s)’
as s — oo, and then integrating with respect to s. Note that (3.33) is a

crucial property of g in the proof of Theorem 3.1 (b) (see the formulas (3.45)
and (3.46)).

= . (3.33)

9(s) = =(L+o(1))e”-
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By the assumption (1.5) we can see that

9(s(1+0(1))) = g(s)(1 + o(1)), (3.34)
as s — 00.
Lemma 3.13. The inequalities
0< J'(u)(T - t)g(—In(T — 1)) < M < 00
hold on the set [, 1] x [0,T).
Proof. By (1.4) (when n = 1), (3.4) and (3.5) we conclude that
—In(T — t) = — In(u)(1 + o(1)).

Recall that f”(u) < 0. Therefore we can estimate, by (3.4), (3.5) and (3.34),
to obtain

0 < f'(u)(T = t)g(— (T = ) < Cf'(u)——g(— In(u)).

—f(u)
The claim follows from (3.32). O
Lemma 3.14. For the solution u(z,t) one has
£l 0)(T = Dg(~ (T — 1)) - T 0

1- w(O: S)hQ(y)
uniformly for bounded y, as t 1T (s — o).
Proof. By Theorem 3.1 (a),
1 Yodr
1 —w(0,s)h 0
+T—t 0 f(T) ’LU(,S) 2(y)_> )

uniformly for bounded y, as t T 7. Dividing this by the function 1 —
w(0, s)ha(y) (# 0 by Lemma (3.3)), we get

U dr

0 @
T =0 = w0, ) " (3.35)

uniformly for bounded y, as ¢t T T. From the properties of the logarithmic
function it follows that

1 “odr

In —In(T —t) — 0,
(1 —w(0, 8)ha(y) Jo —f(T)) ( )
and ( 1 d )
In o
1-w(0,s)h2(y) JO —f(7)
]_ .
In(T — 1) o (339
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uniformly for bounded y, as t T T. It also follows from (3.34) and (3.36) that

1 U dr
g( - ln(lfw(O,S)hz(y) 0 *f(T)))

(= In(T — 1)) — 1, (3.37)
Let
H = (f'(u)(T —t)g(—In(T — 1))
(- 0 =7 9(~ n(Eamy 5?@»)_
(T —)(1 — w(0, 5)h2(y)) 9(—In(T —1))

By Lemma 3.13, and by the formulas (3.35) and (3.37),
H -0, (3.38)

uniformly for bounded y, as ¢t T 7.
Finally we get

1

F@)(T = 0g(=In(T =) - — 5 s)h2( )~

“ (3.39)
0 —f(r)
= 1-— w(O Sha(y) V. flu / —f(r 1n(l — w(0, s)hg))’

where the last bracket can be written, using (1.4), (3.4) and (3.34), in the
form

B f'(u)u B u(l+o(1)) _
e G S )
1—(1+ 0(1))11%1)@(_111(“)).

The right-hand side of this equation converges to zero by (3.32). The claim
follows from this, from (3.38) and (3.39). O

Proof of Theorem 3.1 (b). Projecting the equation ws; = Lw + F' to the sub-
space generated by the function hsy, we obtain

D i (s) ey ha) g = (Lw, ho) iz + (F.ho) iz,

k

Note that (F, hs)p, 7 = 2fle? +fl:§s Fhyp, where the latter integral is less
than C exp(—ee®) by (3.30), and so only the first of these integral is essential
in the equation (3.40), as s — oc. The factor 2 is included in the integrals
below, because the solution is symmetric. We can conclude by (3.31) and
the orthogonality of the base {/;}$2,, that (C' = 4,/7), as s — oo

Catfs) =2 [ )ty =2 [ (0= 07 el
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and
Cy(s)ah(s) = 2 / (T = ) (w)g(— (T — t))wha(y)p(y)dy.
Write this in the form

Cy(s)ay =2 / (T = ) (g (= (T — 1)) (w — w(0, 5297 Yhaly) ply)dy +

2 / ST = 0 (g In(T — 1)) —

Yw(0, 5)%y*ha (y) p(y)dy+

1 —w(0,s)ha(y)

> 1 2 2y, .2
> [ i 0 = e )y

o aa(s)y? B
2/0 1= w(0,5)ha(y) ha()p(y)dy = I(s).

(3.40)

Next we show that I;(s) = 0, as s - oo and j = 1,2,3.

When j = 1, then by Lemmas 3.3 and 3.13, we can apply the Lebesgue
Dominated Convergence Theorem. Writing w; —w(0, 5)*y* = (w, +w(0, 5)y)
(wy —w(0, s)y), we can conclude by Lemmas 3.3, 3.13 and the formula (3.22),
that

lim [, (s) = 0. (3.41)

§—00

Correspondingly, in the case 7 = 2, we obtain from Lemmas 3.3 and 3.14
that

lim Ir(s) = 0. (3.42)
§—00

When j = 3, we obtain, by Lemmas 3.3 and 3.12,
lim I3(s) = 0. (3.43)
§—00

We can also see that there exist positive constants ¢; and ¢y such that
—cray(s)? < I4(s) < —cpas(s)?, (3.44)

forall s > —InT.
By the relations (3.40)- (3.44) and Lemma 3.3 it follows after some cal-
culations that there is ¢3 > 0 such that

lim sup(g(s)ay(s) + czaz(s)?) < 0. (3.45)

§— 00

Finally, we conclude that (3.45) implies
lim ay(s) = 0. (3.46)
5—00

(1): If ay has a non-zero limit a* (a* > 0, because of Lemmas 3.3 and
3.12 ), then by (3.45) it holds that for every e > 0 there exists a sg > —InT
and C > 0 such that g(s)a), < —C, as s > s¢. Integrating this, we obtain

*odr
as(s) — m(s0) < —C [ T oo,
s0 9(7)
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by (3.33). This is a contradiction to Lemmas 3.3 and 3.12 .

(2): If ay does not have a limit, then it follows by Lemmas 3.3 and 3.12

that there exists a sequence s; — oo such that a}(s;) > 0, and as(s;) > 6 > 0,
which is a contradiction to (3.45).

Theorem 3.1(b) follows from (3.46) and Lemma 3.12. O
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