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1 Introduction

Many phenomenons in nature are modelled by differential equations. For
example, if one wants to know the motion of a satellite around the Earth,
one constructs, according to the dynamical laws of Isaac Newton, equations
modelling the motion of satellite. Then, the equations have to be solved.
Sometimes the solution can be found exactly, but usually one needs to use
approximative methods, i.e. to construct a numerical solution. A numerical
solution is, in general, not completely accurate but an approximation to the
actual solution.

The subject of this Thesis is differential-algebraic equations, for which we
will from now on use the shorthand notation DAE. The name DAE refers to
a system with differential and algebraic equations. Here ’algebraic’ refers to
any non-differential equations.

1.1 On the history of DAEs

The DAEs arose originally in engineering problems, mainly in electrical cir-
cuits and multibody systems. In the circuit case, the laws of Kirchhoff (the
sum of the voltage drops around any closed loop is zero; at any point of a
circuit, the sum of inflowing currents is equal to the sum of outflowing cur-
rents) produce, with the modeling of the connections between current and
voltage in the circuit elements, equations for the currents.

In multibody systems, the differential equations come from the dynamical
laws governing the motion of bodies and the constraint equations come from
the rigidity of the system. For example, in the pendulum (see section 1.3)
case the constraint equation is the constant length of the bar.

The name “multibody systems” includes for example attitude control of
satellites and space vehicles, movement of robots and ground vehicles, e.g. a
railway wheelset. See for example [RS88, HD90|.

How to solve differential equations numerically? This has been studied
since Euler at 18 century, but since the advent of computers, the inter-
est to this question has grown enormously, enough to become a branch of
mathematics on its own.

In 1960’s engineers working on electrical circuits or multibody systems
realized that solving a differential equation with constraints is more involved
than solving one without constraints; that is, the constrained case can not in
general be reduced to the unconstrained case by some standard trick. The
first paper which introduced a way to attack these problems was written
by C. W. Gear |Gea7l| in 1971. There also the name “differential-algebraic
equation” was introduced. A rapid development of numerical methods for
DAEs begun with [Pet82] in the beginning of 1980’s. Petzold’s code DASSL
is nowadays still widely used e.g. in problems of electrical or chemical engi-
neering.

There are also several concepts of a so called index, which is an integer
measuring how difficult a DAE is to solve numerically. In conventional DAE



research the concepts of different indices sometimes even dominate the dis-
cussion. For example, the DASSL code typically works reliably only when
the (differential) index is at most one. There are many papers suggesting
suitable numerical schemes for systems with index two or three, but there
are always some additional requirements for the system to fulfill.

Conventionally, when the (differential) index is more than one, the DAE
is called a ’higher index’ problem and considered as something that should
be avoided. There are also index reduction techniques, we will discuss these
in section 2.2. Recent surveys of different concepts of indices and relations
between them are e.g. [CG95a, Man96, Sei99].

1.2 Geometrical approaches to DAEs

There has evolved also several geometrical approaches to DAEs, beginning
in 1984 by Rheinboldt [Rhe84| and continuing by Reich [Rei90, Rei91] and
[RR91, RR94a|. Another version is done by Szatkowski [Sza92|. We will
return to these shortly. At this point we remark that these geometrical
approaches are more intrinsic but less constructive than those introduced in
the previous section.

In 1950’s Ehresmann introduced the concept of a jet space in differential
geometry. These were later used as a basic building block in constructing
the formal theory of partial differential equations (which we call just formal
theory from now on), see the introduction in [A] for references and more
information. The jet spaces were first applied to analyze DAEs in 1993 in
[PT93] and [LV94|, independently.

The equation is considered as a locus in a suitable jet space. Since DAEs
are a special case of (nonlinear) PDEs one might think that the theory devel-
oped in [A] is just a special case of the formal theory, however, this is not so:
in formal theory everything is based on fibered submanifolds of a jet space,
but in our approach the manifold is not supposed to be fibered. Also, the
solution is defined as an integral manifold of a distribution which is induced
by natural conditions.

The reason for the first difference, namely dropping the requirement of
a fibration of the locus, stems (perhaps surprisingly) from numerical point
of view: the method for computing a solution (that is, an integral manifold)
is based on the idea that we are allowed to move away from the locus and
then project orthogonally back to it. This procedure does not respect any
fibration of the locus.

The reason for the second difference in our approach is that it is natural
and also more general: a distribution is a more general object than a vector
field. First of all this makes regular some situations which classically are
considered as singularities. Secondly, an interesting property of distributions
is that while a singularity of a vector field is generically zero dimensional, that
of a distribution might have generically positive dimension, see also [Tuo97|.

The approach of Rheinboldt et al. is based on a reduction process, which
is shown in [Kor97, RLWO01]|, independently, to be equivalent with a special



case of the formal theory.

There is also an interesting application: impasse points. These are studied
for example by Rabier and Rheinboldt in [RR94b, RR94c|. Their results
are generalized and proofs quite dramatically simplified in [Tuo97| by using
distributions. However, in this Thesis we will not consider impasse points,
an interested reader may consult the abovementioned papers and references
therein.

Remark 1.1. There is an interesting concept, extended jet space, introduced
by P. Olver in [Olv86]. Now we can interprete our solution, see [A, def. 3.7],
as a section in the extended jet space. However, we do not gain much from
this, since the tools of formal theory also need the fibration of the manifold.

Remark 1.2. Also [Sza92| considers distributions as we do, but his point of
view is quite abstract; he considers (co—dimensional) Banach manifolds and
defines for them similar reduction process as in [Rhe84]. He also notes that
the reduction process might lead to an infinite loop.

Remark 1.3. There is also an interesting approach [Pry01] based on Taylor
series. The paper is related to our approach in the sense that [Pry01] also does
not transform it to a first order equation, but studies the highest derivatives
to find structure of the system. Here we note that it is not clear how to
define what is meant by a structure of a DAE. Our paper [D] offers one view
point to this.

1.3 The canonical example: pendulum

Undoubtedly the most famous example of a DAE is the frictionless pendulum,
see figure 1: a massless rod and an infinitesimal ball with unit mass at the
end of the rod. Using cartesian coordinates x,y for the center of mass, its
motion can be modelled by the following equations:

"+ Az =0
v +Xy+g =0 (1)
224212 =0

where ¢ is the gravitational constant, L is the length of the pendulum and
(x,y) is the location in cartesian coordinates. To use jet notation, put y' :=
z, y? =y, y® = A hence 2" — yi and y” — y2. For convenience, also put
the constants ¢ = 1 and L = 1. In this notation:

v +y'y’ =0
f=u+yy’+1 =0 (2)
)+ ) -1 =0
Here the constraint equation is the constant length of the bar (the dotted

arc in figure 1):
W)+ @) —1=0 (3)



For later reference, we formulate a system which is (2) except that (3) is
replaced by its derivative (and the common factor 2 is canceled):

p+ylys =0
9= +y'y’+1 =0 (4)
vyt =0

Now any solution of g should also be a solution of f, provided we start with
an initial point which satisfies also (3). Now, computing with g might give
something like in figure 2, where the movement of the ball is described by the
dashed arcs. There one can see that (3) is not fulfilled, i.e. the ball does not
stay on the dotted arc. A corollary of this is that this (numerical) solution is
not a solution of (2)! This is an example of phenomena called drift-off: the
numerical solution is “drifting” off the constraint equation (3).
We will come back to this example in several occasions.

Figure 1: The pendulum. The dotted arc shows the area where the ball will
move.

""""""

Figure 2: A drift-off with the pendulum. The computed solution (dashed
arcs) does not stay in the dotted arc.

1.4 Basic tools

In this section we give a very brief description of what mathematical tools we
have used. For rigorous definitions, see [A, sections 2.1 and 3.2], [B, sections
2.1, 6 and 8|, |C, sections 3.1-3.3], |D, section 3|.



>From the numerics of ODEs we take the Runge-Kutta methods and
modify it with geometrical ideas. The theorem of existence and uniqueness
of a solution is the one dimensional version of the Frobenius theorem, well
known in differential geometry. From commutative algebra we use the con-
cept of ideals, especially their prime decomposition. This decomposition has
a correspondence in varieties, yet in this case the varieties have additional
structure.

The basic ideas (or, lines of thought) come from the formal theory of
PDEs. The main concepts (e.g. involutivity, prolongation J, — J,4; and
surjectivity of the projection J,i; — J,) are geometrical, hence intrinsic.
However, when we need to compute something, we need algebra. Now, it is
not always clear what algebraic concepts (if any) correspond to the geomet-
rical concepts. For example in case of involutivity, see section 3.4.

2 DAEs

As usual, we shall use word ’equation’ both for a system consisting of a
single equation, and for a system of several equations. It will be clear from
the context which one is meant.

Let us start by putting a canonical system right here:

fl(t:y:ylay27 .- -,yq)
f2(t5y5y15y27"-7yq) :O

(5)
fk(t7y7y17y27"'7yq) :O
1

where k > n, y = (y , ..., y") and each f?is a smooth enough real valued
function.

2.1 On the definitions of indices

We will not even try to do a survey on several definitions of the indices, for
that the reader is referred to [CG95al and references therein. The purpose of
this section is to point out that there are two main approaches when defining
a differential index: a geometrical one [RR91, Rei90| and a ’derivative array’
|IBCP89, CGI5b| which is based on handling the defining equations. Both of
these definitions include constant rank conditions, which are slightly different.

The first is intrinsic but more difficult to construct as it requires finding
suitable coordinates, on the other hand the latter is less intrinsic but rather
straightforward to construct, although checking the constant rank conditions
might cause problems, see the abovementioned references. In the view point
of formal theory, the intrinsic meaning of the first one is: index equals the

number of steps of the Cartan-Kuranishi algorithm needed to reach an invo-
lutive form, see [RLWO1].



Under suitable conditions these definitions coincide. Any attempt to for-
mulate precisely what these ’suitable conditions’ would be, becomes easily
rather messy and uninformative.

Remark 2.1. Between these approaches is that of Kunkel and Mehrmann
[KM98| whose ’strangeness index’ is defined by using a mixture of these
two approaches. Their approach is more general than that of [CG95b| but
requires finding certain diffeomorphisms, that is, suitable coordinate trans-
formations.

Remark 2.2. This is example 6 in [CG95a|. The following DAE, where we
have denoted z, 7, z instead of ', y?, 3,

sin(y' )y +x = 0 (6)
sin(zz+y = 0 (7)
z =0 (8)

has index 3, yet it is clearly equivalent with x =y = 2 = 0, which has index
zero. Hence the concept of the differential index is not intrinsic but depends
on the chosen representation.

2.2 Index reduction

As noted before, in conventional DAE approaches the index should be as low
as possible, in practice this means one or zero, for the system to be suitable
for numerics. Therefore, there has evolved some techniques which transform
the given system to a new one which has lower index. A common name for
these techniques is index reduction, see e.g. [Gea88|.

Now there are at least three different kind of approaches here: first,
simply replacing certain equations of the system by their derivatives, for
example replacing (2) by (4). Second, so called Baumgarte stabilization,
which replaces an equation by a linear combination of the same equation
and its derivatives up to some order. Third, a more intrinsic approach: in
[Rei90, RR94a| the system is interpreted as a locus in suitable space and
through a differentiation-elimination process (which is defined in an intrinsic
way, by geometrical terms, see [RR94a] or [RLWO01]| for details) the system
is replaced by another one.

This latter one has been shown [Kor97, RLWO01| (independently) to be
equivalent with the Cartan-Kuranishi algorithm. This requires certain con-
stant rank conditions but we think this is still a correct way to transform
the system, in the sense that the structure of the system is not changed.
However, this is not always constructive, since it requires finding suitable
coordinates (which certainly exist).

The second approach, in spite of its name, might make the system nu-
merically quite instable. A geometrical interpretation for this approach can
be given by the pendulum example: a vector field around the locus of the last
row of (1) is defined such that it points towards the locus. The problem is:
how do you choose the coefficients of the linear combination? A bad choice

10



can make the system quite stiff. Continuing with the pendulum example, a
geometrical interpretation for the stiffness is that the vector field around the
locus is too steep towards the locus.

Remark 2.3. Another kind of index reduction technique, which seems to be
between the ’second’ and ’third” above, is described in [Sei95]. It is applied
to quasilinear first order Lagrangians and called symplectic index reduction,
due to the fact that it maintains the symplectic structure.

The first approach is, in our opinion, throwing away information of the
system and therefore might even destroy the structure of the system, hence
should be avoided. An effect of this is the drift-off of the length of our
pendulum, see section 1.3.

2.3 Numerics

In conventional DAE numerics, one is always considering systems which
have n equations, where n is also the number of dependent variables: y =
(yl, ceey y"). Systems with k& > n equations are called overdetermined. We
note that it seems like any interesting (that is, a “higher index”) DAE gener-
ically has an involutive form (in the sense of [A], see also section 3.4) which
is overdetermined.

Overdetermined systems are usually considered to be ill-posed since a
small perturbation could make the system nonsolvable. In conventional DAE
numerics, when an overdetermined system is encountered, some least squares
solution is used. This has two side-effects: the first one is the drift-off, which
we encountered already in section 1.3. On the other hand, this drifting can be
eliminated by some kind of projection, which forces the computed points to
satisfy the constraints. Yet if this is done in an arbitrary manner, it leads to
another problem, which is the second side-effect: instability. See also [CM95|
and references therein for a discussion.

New view points

So, our approach usually is looking at a overdetermined system, in the con-
ventional language. Does this make it worthless by the comments above?
The first thing to note is that since we are considering the locus of the
equation as a subset R, in a jet space, we have a few more (that is, ng +n
in case of (5)) dependent variables, so a situation k& > n is actually not
overdetermined. One immediately argues that the 3/, ¢ etc. depend on the
y and hence it has only n dependent variables. However, the whole point
of the jet approach is to put y and 1/, ..., y'9 to an equal setting. Their
interdependence is represented by the Cartan distribution which is the C, in
[A, (3.3)]. Now our locus is not overdetermined but of dimension ng+n+1—k.
The only place where we meet ’overdeterminacy’ in our method is when we
evaluate our distribution D,, it is the kernel of an overdetermined (numerical)
matrix. Now one could say that this is ill-posed: numerical round-off errors
make the kernel vanish. But it actually is not, because we read (a spanning

11



vector of) D, from the singular value decomposition of the corresponding
matrix, see [A, section 6.1]. This task is stable.

As already mentioned, our method includes also a projection: this also is
a stable task when it is defined to be orthogonal. We have implemented it
as a classical newton iteration.

The worst side-effect of our approach is that due to the bigger dimension
of the J, it is more costly. Especially, the newton iteration in the projection
is the dominant part of the algorithm. One could say that having undrifting
and stability simultaneously has a high price.

Remark 2.4. Since we do not have a restriction like £ = n for the number of
equations, we can easily maintain all such invariants which are formulated
as equations. It is interesting to note that the more equations we have, the
smaller dimension our locus has. Hence, the more equations, the simpler the
system.

Remark 2.5. Another view point which seems to be forbidden in conventional
numerical approaches, is that the value of ¢/(¢) is not necessarily uniquely de-
fined by the point (¢,y). However, such a situation can already be found from
a very simple geometrical problem, see [A, example 2.3.2|. Let us emphasize
that in such a situation it is natural to consider y' as another (dependent)
variable.

Remark 2.6. One immediate way to reduce the cost of computation would be
to (locally) parametrize R,; then we could avoid the projection since p+h 'V,
(V, is the direction of the solution at p, see [A] and [B|) will stay on the
parametrization domain (which is R**"*17k j e  a linear space). However,
this does not really make things intrinsic: the choice of the parametrization
chart affects the ’effect of h’. How can you then do step size control? How
“close” to each other are m(p + hV},) and ¢~ (¢o(p) + h(p+(V)) (where ¢ is
the parametrization, ¢, its tangent map and 7 is our orthogonal projection
to R,), when “close” should be considered by the metric of J, ?

Besides, constructing a parametrization, for example by choosing suitable
jet coordinates as is done in [KM98| (although they do not mention jets), is
not necessarily a cheap operation; it requires several rank evaluations of the
jacobian. Not to mention, all objects included in the computation should be
re-evaluated through the parametrization. Although, we admit that if the
parametrization could be done globally, it might be reasonable. However, we
have not studied this aspect.

Remark 2.7. Sometimes it is considered of finding consistent initial values
(see e.g. [CGI5b| and references therein). In our approach it is clear that
the answer to the question “is the given initial value consistent?” is positive
if and only if the initial value fulfills the involutive form (or complete form, in
a nonsmooth, general polynomial case). We do not consider this question (of
consistency) as an important one, since it is a corollary of a more important
question: find involutive form.

As a convenient side effect(!) of our approach, we do not need to give the
(consistent) initial value with multiple decimals, as is done in conventional

12



DAE approaches, see e.g. [HW91|. Using involutive form with our projection
ensures that the (projected) initial value will be consistent.

2.4 Symbolics

By symbolics, we mean the symbolic computation, that is computation with
symbolic variables and exact numbers. Let us note that this has a synonym
“computer algebra”, which seems to have become more widely used. In our
approach we first do the symbolic computation to get a form suitable for
numerical computation, and only then do the actual numerics, i.e. produce
lots of those marvelous floating point numbers! We have in D, section 5.2]
a discussion of this, so we will keep this section short.

In [A] and [B] we were counting on Cartan-Kuranishi; that is, prolong
and project, until it stabilizes. However, a reasonable approach is to consider
arbitrary polynomials, and then we noted [D, remark 2.2| that there is a need
to reconsider the algebraic point of view to involutivity, taking into account
our definition of a solution. See also remark 3.4.

It is worth noting that a lot of equations which are not differential poly-
nomials, can be transformed to such by introducing more variables.

We give some comments on the algorithms of Maple which seems to have
the most up-to-date computer algebra packages relevant to our study:

e diffalg which is based on the Rosenfeld-Grobner algorithm, see [BLOP|.

e DEtools which is large package based on the article [CTvB95]. DEtools
includes also as a subpackage the rifsimp where “rif” stands for reduced
involutive form, see [RWB96].

e in pdetools the “casesplit” command which is implemented to Maple6,
is a user interface which automatizes the usage of both diffalg and
rifsimp. See remark 3.3.

e diffgrob2 which is based on differential Grébner bases, see [MC97].

Remark 2.8. There is also a concept of characteristic sets, which we have not
considered. That might be useful also in our context. However, we did not
find it useful enough to our purposes, hence we discarded it. An interested
reader should consult [Mis93, Rit50, ALMMO99].

3 Comments on publications [A-D]

3.1 Comments on [A]

The paper [A] is based on the preprint [TA98|. There is presented the funda-
mental ideas of our approach, and analyzed the local error of some numerical
basic methods. These numerical methods are (low order) Runge-Kutta meth-
ods with an extra property: an orthogonal projection to the locus f~'(0).

13



Now there is a concept of “Runge-Kutta with projections” in the conventional
DAE analysis, see [HW91]|. However, their projection is not the same as our
approach: first, they project onto the locus in £ while we project onto the
locus in J,(£). Second, their projection is not necessarily orthogonal.

We emphasize that the orthogonality of our projection makes the methods
stable, but there is a price to pay: the projection is clearly the dominating
part of our numerical method and makes it very slow, although in our opinion
more reliable, compared to the conventional ones. The future developments
of our numerical solver will attack to the projection.

The methods are explicit euler, implicit euler, and implicit midpoint rule.
Their order coincides with their classical versions. In fact, in [B] it is shown
that any Runge-Kutta method of classical order less or equal to four sustains
its order when we make it a projected version.

We have also made numerical testing of the methods to well-known ex-
amples from literature. A surprising effect is that the result is qualitatively
different depending on whether or not we take in account the constant en-
ergy of the (Hamiltonian) system. This holds true even in the case of the
midpoint method, which keeps the energy almost constant (when computing
without the equation energy=constant), in other words, keeps the drift-off
quite small.

Remark 3.1. We note that the results of [A] seem to be in conflict with the
well-known principle that solving DAEs is not the same as solving ODEs,
which can be seen also in the title of [Pet82].

Now, the apparent conflict is resolved by noting that terminology “ODE”
in the title of [Pet82| refers to an equation of the form y'(¢t) = f(¢,y), whereas
in our geometrical approach there is no need to such a specification. See [A,
remark 3.6] for more details.

3.1.1 The involutive form of the pendulum

As mentioned at the end of section 3.1 of [A], we want to transform a system
to an involutive form. As an example we show how [A, (4.1)] (that is, (2) of
this introduction) transforms to [A, (4.2)]. For a quick review of the Cartan-
Kuranishi algorithm, see [D, sec. 2.3]|.

Step 1: now ¢ = 2 and we get

1 i Y1y’ +y'yl
B = 1 . f v+t (9)
0 2y' y1 + 297y}

Step 2: B is now constant, hence ker(BT) is too, and clearly v := (0,0,1) is
a basis for ker(BT).
Step 3: now v = 1 and we have the equation

0=2y"'yi +20°y; =y yi +y° ui (10)

which is algebraically independent of (2).

14



Step 4: append (10) to f to get:

v +y'y’ =0
s+ 2yt +1 =0
W)+ @) -1 =0
v yi + vy =0

(11)

then step 1 again:

1 iy +ytyl

vy +yiyl (12)
29yt + 297 3
0 2y ys 4+ 2(y1)* + 297 y5 + 2(y3)?

&
I
o
Y
Il

Step 2: v!' :=(0,0,1,0), v? := (0,0,0,1) span ker(B”).
Step 3: now v = 2 and we get the equations

0 =2y ys +2(y1)* + 27 y5 + 2(y7)?

where the latter one is algebraically independent of (11), and the reduction
with respect to (11) gives

0=y' (=y'"v*)+ (w)* +v* (=" y* = 1) + (y7)
=)+ W)=y + (=)= )y (14)
=)+ ) -y -y
hence the new f:
(13 +y'y? =0
ys+ 2y + 1 =0
f=9 W)+ ) -1 =0 (15)
vy + Pt =0
L)+ W) =y =y =0
and step 1 gives
1 oyt +ytyd
1 ) viy' +ytyl
B= o, f= 2y' y1 +2y% 7 (16)
0 2y" yy + 2(y1)” + 2y% y3 + 2(y7)?
0 20t ys + 2yt ys — yi — u3

step 2: v! :=(0,0,1,0,0), v* := (0,0,0,1,0), v* := (0,0,0,0,1). )
step 3: now v = 3, immediately we see from previous round that (vHT f and
(v¥)T f are dependent (they directly correspond to (10) and (14), respectively)
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of (15). Hence we need only to check (v*)”f which indeed gives a new,

independent equation:

0=2ylys+2y1 95 — v — yi

=2y (—y' )+ 2y (=Y = 1) —yi — i
=20y + v’y v — 2y — vy —
= —(3y; + v

hence the new f:

(v +y'y? =0
v vty +1 =0
WY+ -1 =0
f =9 1,1 2. 92 _
Yy Yty =
(i) + W) —y*—y* =0
3yt + vt =0
step 1 gives:
1 vy +ytyl
1 vy + vyl
2y' y1 + 207 3

? f =

2ut ys + 2yt ys — yi — u3
3y5 + 3

o O O O

2y" yy +2(y1)” + 2y7 y5 + 2(y1)?

(17)

(18)

(19)

step 2: v := (0,0,1,0,0,0), v2 := (0,0,0,1,0,0), v* := (0,0,0,0,1,0)v* :=
(0,0,0,0,0,1). Now v = 4 but, as before, we know from previous round
that v!, v2, v*® do not give new equations, hence we check only (v*)? f which

indeed is algebraically independent of (18). The new f:
(v +y'y? =0
v +yyt+1 =
(v + ") -1 =

f=3v"v+vy =
W)+ @) -y —y® =0
3yl + i =
3y + 95 =

step 1 gives

1 vy +ytyl
1 vy + vyl

2y' 1 + 207 3

=
I

3y5 + 5
0

0
0
0 2yt v + 297y — yi —
0
1

16

20" yy +2(y1)? + 2y7 y5 + 2(y1)?

(20)

(21)



step 2: v!' := (0,0, 1,0,0,0,0), v* := (0,0,0,1,0,0,0), v* := (0,0,0,0,1,0,0), v* :=
(0,0,0,0,0,1,0). Now v = 4 but again we know from previous round that

none of (v/)Tf give new equations. Hence we are done and an involutive
form of f is (20), which is exactly [A, (4.2)].

3.1.2 Erratum on [A]
In [A], the last line of (7.6) should read

V= (Lyl vt - + 20", - + (1) — 7))

However, the numerical computations were done with the correct V', above.

3.2 Comments on [B]

The paper |B] consists of the preprints [Tuo98, TA99]. The theory of [A]
is extended to Runge-Kutta methods up to order four. Also Taylor type
methods are analyzed, but they are not implemented. Multistep methods we
did not even consider, since they are based on using linear combinations of
previously computed steps, and our manifold is, in general, certainly not a
linear space.

We implemented the methods: classical RK4, Fehlberg 4(5) and Dormand-
Prince 5(4). Now any numerical method with a nonconstant stepsize needs
some kind of strategy to adjust the stepsize. Now this seems to include always
some heuristics, and the conventional Runge-Kutta methods (that is, when
the manifold is R” and there is no projections) have quite well-tested strate-
gies, see [HNW87|. However, our numerical testing indicates that these need
some kind of revision in our case. This task we have not (yet) considered.

Another goal, which we were unable to reach, is to generalize (or disprove)
the result on the order of our projected Runge-Kutta methods. That is, to
answer to conjecture 4.1 of [B|.

3.3 Comments on [C]

In [C] we apply the ideal decomposition to regularize certain singularities
appearing in multibody systems. This is a bit side track compared to [A,B,D]
which are very closely, even sequentially, related.

The main idea is that sometimes the models contain singularities which
are due to a ’bad’ choice of the model. Now ideal decomposition might be
helpful in here, as has been shown in the examples. The decomposition gives
several (but finitely many) systems, from which one can hopefully find a
nonsingular one with desired geometrical properties.

There are two natural questions to the decomposition: first, how do
we know what movements (that is, varieties of ideals), and why, are non-
physical? Second, how do we know what ideal to choose? Both of these have
been answered in [C, remark 3.2].
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Other approaches to solve this problem of a ’bad’ model is to somehow
discover what is causing the singularity and to add (or multiply) suitable
‘compensating’ terms to the model. But that is based on ad hoc methods
and requires quite a lot of experience to find such a trick. On the contrary,
our method is based on prime decomposition which is constructive.

Remark 3.2. On the concluding remarks we mention the possibility to apply
this to also some other kinds of singularity, and the reader might wonder what
kinds of singularity we think. The reason for this is that the method, prime
decomposition, works for any polynomial ideal. That is, any kind of polyno-
mial singularity. What might be the corresponding physical singularities, is
hard to say in advance. It depends on the designer of the model.

3.3.1 Errata on [C]

e We have mentioned that the decomposition is done over C and used
Singular to compute the decomposition. Now Singular computes the
decomposition over QQ instead of C. However, the results are correct
also over C.

e We mentioned that the prime decomposition is implemented on several
computer algebra systems, including Maple and Mathematica. How-
ever, it seems that although on both of these have been implemented a
computation of the Grobner bases, the actual decompositions are not.

3.4 Comments on [D]

In [D] we expand our approach to arbitrary polynomial systems: then we
need to look at the components of the system and also drop the requirement
of the constant rank of the jacobian. In [A] the examples we considered
were in involutive form, by which we have meant that there exist equations
which globally describe the geometrical situation, that is, the (geometrical)
involutivity of the system.

Now involutivity and constant rank conditions (i.e. a certain symbol
involved is a vector bundle) implies [Pom83, prop. 4.34] that the system is
a prime differential ideal. Hence it is natural to consider prime differential
ideals to be “the” (components of) structure of the system, see also remark
1.3 of this introduction. However, as noted in [D, rem. 2.2|, we cannot use
differential ideals, which in formal theory is the most natural tool to define
“the” components of f. Instead, [D, rem. 2.3] has a discussion about the
definition of the structure.

It is important to note that the prime decomposition, hence also our
concept of structure, depends on the chosen ground field, which we have
chosen to be Q. With a larger field we might get more components. However,
we find this choice to be the most reasonable, for two reasons: first, since
we are working with characteristic zero, we can not have smaller than Q.
Second, since we are aiming to a numerical computation, at the end what
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we have is a collection of floating point numbers, representation of which
certainly does not need any field bigger than Q.

Remark 3.3. To compare the packages of Maple (see section 2.4), it is reason-
able to look at the “casesplit” procedure: it splits the system in to different
cases and it is natural to ask whether this is related to our splitting (in [D]).
These cases are represented by pairs (E, I) where E is a set of equations and
I a set of inequations, that is, I = {g; # 0, ..., g, # 0}. Now, in |D|, each
(component of the) system is a pair of (bases of) ideals (A, B) which means
a point set V(A) — V(B), that is, at least one element of B is # 0, but not
necessarily all. So, our pair (A, B) is not used in the same way as in the
“casesplit” procedure, which produces cases based on the pivot elements.

Remark 3.4. There is also a recent, quite interesting approach to define in-
volutivity in algebraic terms: [GB97a, GB97b]|. Their work is based on that
of Janet; they consider involutive divisions of the variables, yet this is not in
the scope of this Thesis.

4 Conclusions

One could say that there is a dilemma when studying (numerically) the
DAEs: given a DAE, one wants to (1) know its structure and (2) compute
approximations to solutions. Now, the goal (1) is best achieved when one
finds intrinsic properties of the DAE, but these are usually defined in a
nonconstructive way, which prevents performing (2). Or, if (1) is successfully
done, it often makes (2) very laborious. On the other hand, forgetting (1)
makes it possible to perform (2) in a relatively efficient way, but the quality
of approximations rests on heuristics.

In [D] we have attempted to define ’structure’ of a polynomial DAE in
a constructive way. The construction is done by computer algebra, that is,
symbolic computation. This is, however, very time-consuming and so far
restricted to systems of moderate size. Of course the situation will become
better since the computer algebra techniques are evolving rapidly.

The goal (2) seems to be done, for systems in practical applications, best
by BDF (backward differentiation formula) methods. But what is 'reason-
able’ in approximation? There seems to be no other answer except a human
eye, that is, heuristics: one runs several computations varying the initial
point a little and hoping that the computed numerical solution will also vary
only a little, until one gets convinced that the computed solution(s) is (are) a
reasonable approximation to a correct one. Unfortunately, these fast methods
depend on the chosen representation of the DAE.

We propose that when numerically solving DAEs, one should first use
symbolic computation to find out the structure of the DAE, although it is
at this point of research limited to moderate size systems, and only then
use a numerical method which is based on geometrical ideas, hence does not
depend on the chosen representation of the system. Especially, the numerical
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solvers should not be based on the representation of the system but instead
on the intrinsic properties of DAEs.

References

[ALMM99| P. Aubry, D. Lazard, and M. Moreno Maza. On the theories of

[BCP8Y)

[BLOP]

[CG95a]

[CGO5b)

[CM95]

[CTvB95)

[GB97a]

[GBITH]

|GeaT71]

|Gea88|

[HDO]

[HNWS7]

triangular sets. J. Symb. Comp., 28:105-124, 1999.

K.E. Brenan, S.L.. Campbell, and L.R. Petzold. Numerical Solu-
tion of Initial- Value Problems in DAFs. North-Holland, 1989.

F. Boulier, D. Lazard, F. Ollivier, and M. Petitot. Representation
for the radical of a finitely generated differential ideal. In Proc.
of ISSAC 1995.

S.L. Campbell and C.W. Gear. The index of general nonlinear
DAEs. Numer. Math., 72:173-196, 1995.

S.L. Campbell and E. Griepentrog. Solvability of general differ-
ential algebraic equations. SIAM J. Sci. Comp, 16(2):257-270,
1995.

S.L. Campbell and E. Moore. Constraint preserving integrators
for general nonlinear higher index DAEs. Numer. Math., 69:383—
399, 1995.

E.S. Cheb-Terrab and K. von Biilow. Analytical solving of PDEs
using symbolic computing. Technical Report 20, Univ. do Estado
do Rio de Janeiro, Inst. de Fisica, 1995.

V. Gerdt and Y. Blinkov. Involutive bases of polynomial ideals.
Preprint E5-3, JINR, Dubna, 1997.

V. Gerdt and Y. Blinkov. Minimal involutive bases. Preprint
E5-4, JINR, Dubna, 1997.

C.W. Gear. Simultaneous numerical solution of DAEs. IEEE
Trans. Circ. Th., 18(1):89-95, 1971.

C.W. Gear. DAE index transformations. SIAM J. Sci. Stat.
Comput., 9(1), 1988.

E. Haug and R. Deyo, editors. Real-Time Integration Methods
for Mechanical System Simulation, volume F 69 of NATO ASI
Series. Springer, 1990.

E. Hairer, S. Ngrsett, and G. Wanner. Solving Ordinary Differ-
ential Fquations I: nonstiff problems, volume 8 of Computational
Mathematics. Springer, 1987.

20



[HWO1]

[KMO3]

[Kor97]

[LV94]

[Man96]

[MC97]

[Mis03]

[O1v86|

[Pet82]

[Pom83]|

[Pry01]

[PT93]

[Rei90)

[Reidl]

[Rhe84]

E. Hairer and G. Wanner. Solving Ordinary Differential Equa-
tions 1I: stiff and differential-algebraic problems, volume 14 of
Computational Mathematics. Springer, 1991.

P. Kunkel and V. Mehrmann. Regular solutions of nonlinear
DAESs and their numerical determination. Numer. Math., 79:581—
600, 1998.

T. Korvola. On the formal integrability of differential algebraic
systems. Technical Report A381, Helsinki Univ. of Tech, April
1997.

G. Le Vey. Differential algebraic equations - a new look at the
index. Technical report, Institut de Recherche en Informatique
et Systemes Aleatoires, 1994.

E. Mansfield. A simple criterion for involutivity. J. London Math.
Soc., 2(54):323-345, 1996.

E. Mansfield and P. Clarkson. Applications of the differential
algebra package diffgrob2 to classical symmetries of differential
equations. J. Symb. Comp., 23(5):517-533, 1997.

B. Mishra. Algorithmic Algebra. Texts and Monographs in Com-
puter Science. Springer, 1993.

P.J. Olver. Applications of Lie Groups to Differential Equations,
volume 107 of Graduate Texts in Mathematics. Springer, 1986.

L. Petzold. DAEs are not ODEs. SIAM J. Sci. Stat. Comp.,
3(3), September 1982.

J. F. Pommaret. Differential Galois Theory, volume 15 of Math-
ematics and Its Applications. Gordon and Breach Science Pub-
lishers, 1983.

J. Pryce. A simple structural analysis method for DAEs. BIT,
41(2):101-131, 2001.

O-P. Piirild and J. Tuomela. Differential-algebraic systems and
formal integrability. Technical Report A326, Helsinki Univ. of
Tech., november 1993.

S. Reich. On a geometrical interpretation of DAEs. Circuits
Systems Signal Process, 9(4), 1990.

S. Reich. On an existence and uniqueness theory for nonlinear
DAEs. Circuits Systems Signal Process, 10(3), 1991.

W.C. Rheinboldt. Differential-algebraic systems as differential
equations on manifolds. Math. Comp., 43(168):473-482, 1984.

21



[Rit50]

[RLWO1]

[RR91]

[RR94a|

[RR94b]

|[RR94c]

[RS8

[RWB96|

[Sei95]

[Sei99|

[Sza92]

[TA9S|

[TA99)

[Tuo97|

[Tuo98|

J. Ritt. Differential Algebra. Dover, 1950.

G. Reid, P. Lin, and A. Wittkopf. Differential elimination-
completion algorithms for DAE and PDAE. Stud. Appl. Math.,
106:1-45, 2001.

P.J. Rabier and W. Rheinboldt. A general existence and unique-
ness theory for implicit DAEs. Diff. Int. Eqns, 4:563-582, 1991.

P.J. Rabier and W. Rheinboldt. A geometric treatment of im-
plicit DAEs. J. Diff. Eqns, 109:110-146, 1994.

P.J. Rabier and W.C. Rheinboldt. On impasse points of quasi-
linear DAEs. J. of Math. Anal. and Appl., 181:429-454, 1994.

P.J. Rabier and W.C. Rheinboldt. On the computation of im-
passe points of quasilinear DAEs. Math. Comp., 62:133-154,
1994.

R. Roberson and R. Schwertassek. Dynamics of Multibody Sys-
tems. Springer, 1988.

G.J. Reid, A.D. Wittkopf, and A. Boulton. Reduction of systems
of nonlinear PDEs to simplified involutive forms. Fur. J. Appl.
Math., 7(6):635-666, 1996.

W. Seiler. Involution and constrained dynamics II: the Faddeev-
Jackiw approach. J. Phys. A: Math. Gen., 28:7315-7331, 1995.

W. Seiler. Indices and solvability for general systems of differ-
ential equations. In V. Ghanza, E. Mayr, and E. Vorzthsov,
editors, Computer Algebra in Scientific Computing — CASC 99,
pages 355-385. Springer, 1999.

A. Szatkowski. Geometric characterization of singular DAEs.
Int. J. Systems Sci, 23(2):167-186, 1992.

J. Tuomela and T. Arponen. On the numerical solution of invo-
lutive ordinary differential systems: introduction and numerical
examples. Technical Report A393, Helsinki University of Tech-
nology, 1998.

J. Tuomela and T. Arponen. On the numerical solution of in-
volutive ordinary differential systems: higher order methods 2.
Technical Report A409, Helsinki Univ. of Tech., 1999.

J. Tuomela. On singular points of quasilinear differential and
differential-algebraic equations. BIT, 37:966-975, 1997.

J. Tuomela. On the numerical solution of involutive ordinary
differential systems: higher order methods. Technical Report
A397, Helsinki University of Technology, 1998.

22



(continued from the back cover)

A441

A440

A439

A438

A437

A436

A435

A434

A433

A432

A431

A430

A428

Jukka Liukkonen
Data Reduction and Domain Truncation in Electromagnetic Obstacle Scattering,
Oct 2001

Ville Turunen
Pseudodifferential calculus on compact Lie groups and homogeneous spaces,
Sep 2001

Jyrki Piila and Juhani Pitkaranta
On corner irregularities that arise in hyperbolic shell membrane theory, Jul 2001

Teijo Arponen
The complete form of a differential algebraic equation, Jul 2001

Viking Hognas
Nonnegative operators and the method of sums, Jun 2001

Ville Turunen
Pseudodifferential calculus on compact homogeneous spaces, Jun 2001

Timo Salin
On Quenching with Logarithmic Singularity, May 2001

Ville Havu
An Analysis of Asymptotic Consistency Error in a Parameter Dependent Model
Problem, Mar 2001

Ville Havu and Juhani Pitkaranta
Analysis of a bilinear finite element for shallow shells 1: Consistency error,
Jan 2001

Tuomas Hytonen
Optimal Wrap-Around Network Simulation, Dec 2000

Ville Turunen
Pseudodifferential calculus on compact Lie groups, Jun 2001

Ville Havu and Juhani Pitkaranta
Analysis of a bilinear finite element for shallow shells I: Approximation of Inex-
tensional Deformations, May 2000

Jarmo Malinen
Discrete Time H* Algebraic Riccati Equations, Mar 2000



HELSINKI UNIVERSITY OF TECHNOLOGY INSTITUTE OF MATHEMATICS
RESEARCH REPORTS

The list of reports is continued inside. Electronical versions of the reports are
available at http://www.math.hut.fi/reports/ .

A446 Tuomas Hytdnen
R-Boundedness is Necessary for Multipliers on H', Feb 2002

A445  Philippe Clément, Stig-Olof Londen, Gieri Simonett
Quasilinear Evolutionary Equations and Continuous Interpolation Spaces,
Mars 2002

A444 Tuomas Hytdnen
Convolutions, Multipliers and Maximal Regularity on Vector-Valued Hardy
Spaces, Dec 2001

A443 Tuomas Hytdnen
Existence and Regularity of Solutions of the Korteweg - de Vries Equations and
Generalizations, Dec 2001

A442 Ville Havu
Analysis of Reduced Finite Element Schemes in Parameter Dependent Elliptic
Problems, Dec 2001

ISBN 951-22-5953-2
ISSN 0784-3143
Espoo, 2002



