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1 INTRODUCTION

The aim of this work is twofold. The main objective is to get some new
resolvent estimates of elliptic finite element operators which are intended for
use in applications of the finite element method to parabolic initial-boundary
value problems. It however turns out that this might be successfully achieved
when using related estimates for elliptic partial differential operators; some
of them seem, apart from everything else, to be of independent interest. We
therefore start with showing resolvent estimates for differential operators. In
both cases, continuous and discrete, we make an emphasis on deriving such
estimates in pairs of function spaces, for which the first space in a pair is
endowed with stronger norm. More precisely, our consideration deals with
estimates in (Lebesgue, Lebesgue), (Holder, Lebesgue), and (Hélder, Holder)
pairs of norms.

It is well known that resolvent estimates of elliptic partial differential
operators are most important for applications of semigroup theory to the
analysis of parabolic initial-boundary value problems. In fact such estimates
allow one to study the problem of generation of analytic semigroups, as-
sociated to the elliptic operators, in different function spaces. The classi-
cal papers of Agmon [1| and Stewart [31] are concerned with generation in
Lebesgue spaces and in the space of continuous functions, respectively. For
recent work concerning generation in Besov and Holder spaces we refer to
Grisward [19], Campanato [8], and Lunardi [21]. The problem of generation
in Holder and Sobolev spaces of integral positive orders was examined in
Colombo & Vespri [12| and Mora [23|. A detailed discussion of generation
results in different function spaces can be found, e.g., in Lunardi [22].

We further remark that resolvent estimates for elliptic finite element op-
erators are of great significance for applications of operator theory to the
analysis of both spatially semi-discrete and fully discrete approximations
to parabolic PDE problems (cf., e.g., [7]). For earlier work related to this
subject we refer (in the chronological order) to Fujii [18], Schatz, Thomée &
Wahlbin [28], Nitsche & Wheleer [24], Wahlbin [36], Thomée & Wahlbin [33],
Rannacher [26], Chen [10], Crouzeix, Larsson & Thomée [13|, Palencia [25],
Bakaev, Larsson & Thomeée [6], Schatz, Thomée & Wahlbin [29], Thomée &
Wahlbin [34], Bakaev [4], Crouzeix & Thomée [14], and Bakaev, Thomée &
Wahlbin [7] (for brief discussions of the above work, see, e.g., [29] and [4]).

Let = Int Q be a convex bounded domain in R, d > 1, with smooth
boundary 0f). For simplicity we assume € to be of class C>°, meaning that in
the case d = 1, €2 is an open interval of the real axis. We introduce a linear
operator A by

i 5
A=-A=— ) 52

j=1 ~J
with homogeneous Dirichlet boundary conditions on 9€2. The operator A will
be considered in complex Lebesgue, Sobolev, and Holder spaces on €2 (or on
Q), for which we use the standard notation: L, sz, and C¢, respectively. The



respective norms will be denoted by ||.|[,, ||-||p4; and |.|¢. In this work it will be
convenient to identify denoted differently but, at the same time, equivalent
norms, although they are usually intended for use in different underlying
spaces. In such a way, we shall often write |v|y instead of ||v|| and |v],
instead of ||v]|;.00, €ven for measuring functions v in L., and W', respectively.
Let further C° = {v € C®: v =0 on 9N}, C¢ = C¢NC°, and WL = WL NCO.
Given two function spaces F; and F, (among those introduced above), if
B : E; — E, is a linear bounded operator, the symbol || B| g, g, will stand
for the corresponding operator norm. Below, in connection with the finite
element space, we shall also need to use a special operator norm which will
be specified additionally. In what follows we shall sometimes work with
functions defined on domains different from € (or €2). We therefore denote by
I-[lpi>- [I-lpst;p» and |.|¢;p, the norms in the spaces L, (D), W(D), and C4(D),
respectively (identifying, as above, equivalent norms). For our subsequent
needs we also denote (v, w)p = [, vwWdz, and we shall write (.,.) instead of
(., )a-

As already mentioned above, for elliptic partial differential operators there
are known resolvent estimates in different function spaces which allow one to
show that the above operator A generates a holomorphic semigroup e~** in
these spaces. Such estimates are usually stated under quite general restric-
tions on the operator in question and, as a rule, the sector of analyticity of the
semigroup e * is not specified. For our more concrete situation it is possible
to derive refined estimates, which are given below. Moreover, we generalize
these results and present as well related estimates in pairs of spaces.

For finite element versions of elliptic operators resolvent estimates can
be easily derived in L, norm but it is not a simple problem to show them
in the case of L, norm, p # 2. Note that if one has a suitable estimate in
L., norm, by duality and interpolation it immediately extends to the whole
scale of Lebesgue norms ||.||,, 1 < p < oco. It is worth mentioning that the
problem in the case of L., norm is brought to an end at least for second order
operators with real-valued sufficiently smooth coefficients due to [4] (the case
with at least quadratic elements) and 7] (the case with linear elements) in
the sense that these results yield a uniform resolvent estimate in L., norm
which is valid in any closed sector outside of the real positive semi-axis. We
are not however informed of any estimates in Holder norms or estimates
involving two different norms. In particular, for the time being, no uniform
estimate of the gradient is known in L., norm. In what follows we show such
estimates in the case of finite element discretization with piecewise linear test
functions. As concerns the case with higher degree elements, it seems to be
simpler for analysis for the reason that the L., norm of the Ritz projection is
uniformly bounded in this situation (unlike in the case with linear elements;
cf. [30]).

Throughout this work we shall denote by C' and ¢ generic constants,
subject to C' > 0 and ¢ > 0, whose sizes will be unessential for our subsequent
analysis.

Let now h € (0,hg), ko > 0, be a small parameter and let 7, = {r;}7

j:l?



be a triangulation of €, = Int (U;7;) C Q into mutually disjoint open face-
to-face simplices 7;. It will be convenient to take h = max;diam 7;. We
assume that the vertices of simplices 7; which belong to 0€, lie also on
0 and that the family {7,} of triangulations is globally quasi-uniform in
the sense that min;vol (1;) > ch?. It follows from our assumptions that
dist (x,0Q) < Ch? for z € 9%y,. Let further Sj, be the finite dimensional
space of all continuous complex-valued piecewise linear functions, associated
with 7j,, that vanish outside €2;,. To the operator A we associate its finite
element version Ay, : S, — S by

(Ahwa X) = (V’Qba VX) for all T/); X € Sh-

If we consider the parabolic initial-boundary value problem
w+Au=0, t>0; u(0)=uv, (1.1)

associated to the operator A, its solution is given, with the aid of the semi-
group e~ by u(t) = e~*v. Then a spatial semi-discrete approximation to
u(t) may be taken as uy(t) = e *rv,, with v, a suitable approximation to
v in (1.1). For any h € (0, ho] the operator A is bounded which yields that
the exponential function e~*** is a bounded operator as well (for any fixed
h € (0, hg] and t > 0). The known resolvent estimates allow one to show that
e~ is in fact uniformly bounded with respect to h € (0, ho] and ¢ > 0, in
the operator norms of the corresponding function spaces. This fact is most
essential for the analysis of stability and convergence of spatial semi-discrete
approximations to (1.1). Moreover, for one step methods approximating (1.1)
both in space and in time

U" = T‘(—kAh)n’Uh, (12)

where r(z) is a rational function (it just specifies the method), the stability
of U™ and its convergence to the solution of (1.1) can be shown by making
use of the same resolvent estimates for the operator Ay (cf., e.g., Bakaev [3]
or Thomeée [32]). It is worth mentioning that, for the analysis of fully dis-
crete approximations based on the application of A(p)-stable methods, it is
essential to use resolvent estimates of the operator A; that would be valid
outside of any closed sector around the real positive semi-axis; just such esti-
mates were found in L., norm in [4] and [7]. Using duality and interpolation
arguments it is possible to extend the results of [4] and [7] to the whole
scale L,, 1 < p < oo of Lebesgue norms. In this work we show resolvent
estimates of A, in (Lebesgue, Lebesgue), (Holder, Lebesgue), and (Holder,
Holder) pairs of norms; all of them are valid outside of any sector containing
the real positive semi-axis. In particular, a uniform resolvent estimate in L,
norm for the gradient can be obtained as a direct consequence of Theorem
3.5 below. Our results can be used, for example, for showing the stability
and convergence of U™ in (1.2) in the corresponding pairs of of norms. For
further possible applications of the below estimates we can refer to [5].



Our main results are collected in the following two sections. In Section
2 we show resolvent estimates in pairs of spaces for the operator A. These
assertions are further applied in Section 3 in order to obtain analogous es-
timates for the finite element operator Ay. All the restrictions stated above
are assumed to be in force throughout this work. The below technical tools
are similar to those used in [4] and [7]; they are based on comparing the
discrete resolvent to the continuous one and on making use of estimates for
the continuous problem.

2 RESOLVENT ESTIMATES OF THE OPER-
ATOR A

In this section we present, as mentioned above, resolvent estimates for the el-
liptic differential operator A in pairs of function spaces. It will be convenient,
given ¢ € (0, %), to denote

S, = {A: A0, arg A < 0} U {0},

We start with showing some auxiliary results of which the first will be related
to real interpolation theory.

Let (CO, Wolo) , 0 < 0 < 1, be the interpolation space between C° and

0,00

I/Vol0 constructed by the K-method (cf., e.g., Triebel [35, pp.23-24]). The
norm in (CO, Wolo> is given by
0,00
loll@oyyy =sups™ inf o (Jwo(s)lo+ sllwi(s)ocr):

6,00 >0 v=wq(s)+wy(s),
wo(s)€C0,wy (s)eW,

Lemma 2.1. For any fixred 0 < a < 1, we have

lolosin) < Clola forallvec™ (2.1)

This result can be shown by direct use of the definition of ||v||(c~0 W)

«,00

and by application of standard methods in real interpolation theory. We also
note that the same estimate with C! in place of WL follows from Lunardi [21,

Proposition 2.6 and Remark 2.9], but the norm in (CO, Wolo) is dominated

,00
by that in <60,cl) .
Let further G(s;lz:,y), s > 0, be the Green’s function for the operator

(sI + A)~'. We shall now obtain some pointwise estimates which will be
quite useful in the sequel.

Lemma 2.2. For any fired 0 < a < % 0<a<1lifd=1), we have
do g _ _
Glsiary)| < O—m . SPEVSIZ Y]

- 27—« |z — y|d(-e)
forall z,y € Q and s > 0. (2.2)

+C(s+ 1),




Furthermore, if a is restricted by 0 < a < di—l, then for all x,y € Q and
s >0,

(d+1)a_
s 2 ! exp(—v/s|z — y)

-1
A+ —a  |o—y@n0-a +C(s+1)"1 (2.3)

(V.G(s;2,y)] < C3

Proof. Let us denote for short p = |z —y|. For &(t; z,y) the Green’s function
of the related parabolic problem (1.1), we have (cf. [17])

|&(t;z,y)| < C(t+ p2)7% exp(—cp?/t) + Cexp(—ct), t> 0. (2.4)

Now, in order to show (2.2), we use the representation
Glsiz) = [ ¢ ®(tiay)dr
0

which yields with the aid of (2.4), since t + p? > t*p?(1=2)

Gsizy) < C / (t+ %) exp(—st — cpJt) dt + ——
0 s+1

< nglp(la)d/ t5 exp(—t — csp?/t) dt + ——.
0 s+1

The integral on the right-hand side of the last estimate converges for 0 <
o < 2, and we see that (2.2) follows by using the evident estimate

exp(—t/2 — esp? [t) < exp(—cy/sp).

The second stated inequality (2.3) can be shown similarly by applying
the estimate (see, e.g., [17])

d+1

(V& (t2,9)| < C(t+ p*) "7 exp(—cp®/t) + Cexp(—ct), t>0. (2.5)

(Note that (2.3) formally obtains by comparing (2.5) to (2.4) and substituting
(d+ 1) for d into (2.2)). O

Now we turn to showing resolvent estimates themselves. The first result
is not original but it is needed for our subsequent purposes.

Theorem 2.1. For any fized ¢ € (0, 3), we have

(A — A)~wl; < O+ [A]) 3 ulo,
for X¢ Int¥,, j=0,1, and v € Ly, (2.6)

and

AN — A) ol < C(1+ |)\|)’%|v|1 for N ¢ Int X, andv € WL. (2.7)



In principle (2.6) is an almost direct consequence of a quite general result
of Stewart [31] which has been sharpened in [7]. In this work we accept in
fact just the same starting assumptions as in [7| (which are more restrictive
than in [31]) and we take the resolvent estimate (2.6) itself actually in the
same form as it is stated in |7]. The minor difference is however that (2.6) is
stated in [7] only for v € C, but, since the resolvent is an integral operator,
the result is clearly still valid for v € L. For a proof of (2.7), see [7].

In what follows we shall also give analogues of (2.6) and (2.7) in L, norm.
Moreover, an analogue of (2.6) with j = 0 can be stated right now:

Theorem 2.2. For any fired ¢ € (0,%), we have

(AL = A) ol < CL+ [AD vl
for1<p<oo, A¢ Int>,, andv € L,. 2.8
¢ P

In fact (2.8) with p = 1 follows from (2.6) with j = 0 by duality and
further the result extends, by interpolation, to the general case 1 < p < oc.
We shall also need to use below some estimates in Holder norms.

Theorem 2.3. For any fired ¢ € (0,75) and for a = 0,1,

AT = A) 10 < C(1+ ) 5o,
forall X ¢ Int $, and v € WL. (2.9)
Proof. We shall first show that the assertion is true if || > R, with R > 0
sufficiently large. We start with taking @ = 0. Given A ¢ Int X, we let
i = —|A|. Applying now Theorem 3.2 in [12] with p — oo and fixing R > 0
sufficiently large, we find that (2.9) with @ = 0 holds with p written for A,
for || > R. We therefore have, since |u| = |A|,

(I = A) oy < CA+|pl) ol = CA+]AD) Mol for [A > R (2.10)

At the same time, it follows from (2.6) with j = 1 and (2.7) that, for |A\| > R,

(I — A)PAN = A) ol < O+ ul) 2 [AN — A) Yol
< C(1+ M) (2.11)
Next in view of the identity
MM —A) P =T+ AN - A, (2.12)
a simple calculation shows, since |u| = |l

(I = A) " (M = A) Yol = (] — A)TIA M — A) oy
<\ — A7)y + |(ul — ATTAN — Al (2.13)

Using (2.10), (2.11), (2.13), the identity

(M — A) L = (ul — A)Y(ul — A) (A — A)7Y, (2.14)



and the fact that |u| = |A|, we thus obtain for |A\| > R,

(M — Ay < (] — A" (M — A) M|y
+H (I — A TAN — A) o)y
< CO+ ) Mol (2.15)

This yields that (2.9) with o = 0 holds for [A\| > R.
Applying further Theorem 3.2 in [12] with s = 1 and using again (2.14),
we get

(A= A) Mol < [(ul = A) (= A) (A = A) o),
+](ul = A) 7ol
< O+ ul) 2 (I(e =) A= A) ol + [oh),  (216)

and with the aid of the estimate (2.9) with o = 0 (already proved) we see
that in fact (2.9) holds also with @« = 1 if A > R and R > 0 is sufficiently
large.

It remains to show that (2.9) is also in force for A < R, with any fixed
R > 0. Note that it would suffice in fact to prove that for « =0, 1,

(M — A)"0]14q < Clu|y for A ¢ Int B, |\ < R, and v € WL. (2.17)

For o = 0, the last estimate immediately follows by (2.6) with j = 1, since
|v|o < C|v|;. In order to show that (2.17) holds as well for a = 1, we write,
using well-known inequalities between Holder norms, the estimate |w(s; <
C|Awl|y/o (cf. [2]), and the above identity (2.12),

|()\I — A)711)|2 C|()\I — A)71U|5/2
C|A()\I— A)_l'l)|1/2

C (Juy + A [(AT = A)1o]y) .

IA N IA

Now combining this and (2.17) with o = 0 (already shown) leads easily to
(2.17) with a = 1.
This completes the proof. O

We are ready now to show resolvent estimates in pairs of Lebesgue spaces.
We shall state first a result for the particular case when A = —s, s > 0, and
when one of the spaces is L.

Theorem 2.4. For any fizred ¢ < ¢ < oo (for1 <q < oc ifd=1), we have

d

(T + A) 0|0 < C(s+1)2 |||, foralls >0 andv € L, (2.18)

Proof. A suitable argument somewhat changes in details for d = 1 and for
d > 2 and one has to distinguish between these cases. The case d = 1
is however simpler and we shall further concentrate on the situation when
d> 2.



Assuming therefore that d > 2, we select a fixed a such that ¢ >
%. Defining further ¢’ by % =1- % and noting that 0 < a < %
d—dq(1—a) >0, we apply (2.2) to obtain for all v € L, with ||v||, =1 (as

above we denote p = |z — y|), if s > 0,

L
«
and

1/¢

[(sT + A) "ol < sup /|G(s;x,y)lq'dy

xef)
1/q
o e c
< 5% Tsup / PV g,
2€Q p‘]( a)
Q
o0 1/(]’

< 0551 /exp( cq'\/52) 241 =0) g
0
4_q
< Cs2
which shows the claim at least for s > 1.

It thus remains to prove (2.18) for 0 < s < 1. Clearly, it would suffice to
show instead that

|(sI + A) || < C|lv]], for0<s < 1.

The last estimate follows however easily from (2.12), (2.8) with p = oo and
A = —s, and the inequality ||A 'v]| < C|lv|| (valid for ¢ > ) with the aid
of

(T +A) ]l = |A(sT + A) 7' A7 ]| < CllA™ 0]l

This completes the proof. O
Now we can obtain sectorial estimates in (L,, L,) pairs.

Theorem 2.5. For any fized ¢ € (0,%) and 1 < q¢ < p < oo such that

%—%<%(foranyﬁxedlSQSPSOOifdzl); we have

IO = A) o, < C(1+ AT o,
for all X ¢ Int ¥, and v € L,. (2.19)
Proof. As above, we shall restrict our consideration to the case d > 2.
Assuming first that % < 2, by (2.12), (2.8) with p = oo, and (2.18), we
find for all A ¢ Int X,
1AL = A) ]l IOAIT + A) (AT = A)TH A + A) " ol
< (12RO = A zwsza) 1IN +A4) 0]lo

4 _
< O+ A olloe < O+ A2 oy,

which shows the claim for p = oo and é < %. Observe also that, by duality,
this yields in turn that (2.19) holds as well for ¢ = 1 and p > 1 such that
1-1<2

p d

10



Let us now consider the general case with arbitrary p and ¢ such that

%—%<%. Define ¢y and p; by
1 1 1 1
— = — = =1 —.
o q P D1

i 1 11 2
Noting thatq—o—l o < @

(2.19) holds for p = 0o, ¢ = qo and for p = p;, ¢ = 1. For arbitrary p and g,
with % — % < %, the desired result thus obtains by interpolation. O

we see that in view of the above reasonings

Further we shall obtain resolvent estimates in (Holder, Lebesgue) pairs
of spaces. As above, we shall consider first the particular case when A\ = —s,
s > 0.

Theorem 2.6. For any fired 0 < £ <1 and q € (2%5, oo], we have

(s + A)""wle < C(s +1)5 3% wll, foralls>0andv e Ly (2.20)

Proof. Note that, in the case £ = 1 and ¢ > d, the result obtains by using
(2.3) and the estimate |[A™'v|; < C||v||, (cf. the proof of Theorem 2.4). In
particular, (2.20) holds for £ = 1 and ¢ = oc. Since, by (2.8) with p = oc,
it holds as well for £ = 0 and ¢ = oo, by interpolation, we have shown the
result in fact for 0 < ¢ <1 and g = oo.

Let us turn to the general case. Let £ € [0,1] and ¢q € (ﬁ, oo] be fixed.

We can write, with some ¢ > 0,
-=——=c. (2.21)

Assuming that ¢ < é and defining then ¢y and ¢; by

1 2 1 1

—i=——g —1=-—ck,

q0 d 1 d
we conclude that (2.20) holds for £ = 0 and ¢ = ¢ by (2.18) with ¢ = qo,
and it will hold, as already shown, for £ = 1 and ¢ = ¢, since ¢; > d. The
desired result in the general case will thus follow by interpolation.

If it happens that, in (2.21), & > %, which means that ¢ is sufficiently large,

the result nevertheless will follow by interpolation, since we have already
shown that it is in force for ¢ = oo and for ¢ sufficiently close to ﬁ. O

Sectorial estimates in (C¢, L,) pairs will then obtain as follows:

Theorem 2.7. For any fired ¢ € (0,5), 0 < (<1, and q € (ﬁ,oo], we

have

_ S§44d_
(AL = A) Mol < CL+ |22 oy,
for all X ¢ Int ¥, and v € L,. (2.22)

11



Proof. 1t follows from (2.12) and (2.8) with p = ¢ that for all A ¢ Int X,
IOAIT + A) (AT = A) ol < fJollg + 2P AT = A) 7 olly < Cllol,.

Using this thus yields

(M= A) tole < NAA +A) Mol el (A + A) (M = A) o,
< CIONI+A) ollz,seellvllo:
It remains to apply (2.20) with s = |}|. O

We shall next show analogues of (2.6) with j = 1 and of (2.7) in L, norm.

Theorem 2.8. For any fived ¢ € (0,5) and 1 < g < p < oo such that

%— L < L we have for all X ¢ Int X, and v € Ly,

I = 4) Mollpa < CA+ AN 2 o], (2.23)
Proof. We can write, with some ¢ € (0, 7],
1 1 1
¢ p d
Let further ¢; and pg be defined by
1 1 1 1
a::g—s, 1—p—0::a—5.

By (2.20) with £ = 1, we have, since qil < 5,

(I + A) 0| < C(s + )71 %|Ju]l,, foralls>0andv e L. (2.24)

We define now ¢y by L =1- pio (note that qio < 1) and select some a €
(ﬁ(l%— d), d+1> Then
(V(s1 + 4)" // (5:2,0) v(y) dyd,

which yields, using (2.3) and Holder’s inequality, for all s > 0, v € Ly, and
Y € Ly,

(V(sI+A) v, 9)] < ||v||1sup/|V G(s;2,y)| | (x)| do

IN

s[04

This implies in turn

d ,L 1
(51 + A) " 0[|ppr < C(s+1)2" 2072 0|y,
forall s > 1 and v € L. (2.25)

12



As above (cf. the argument used in the proof of Theorem 2.4), the restriction
s > 1 can be replaced by s > 0.

By interpolation, we obtain from (2.24) and (2.25),

(5T + A) 0|l < C(s+1)2@ )2 ||v||, foralls>0andv € L,

Using this finally yields for all A ¢ Int X, and v € L,, with the aid of (2.12),

[T = A) 0l = AT+ A) (AT + A) (AT = A) o]
< C(L+ ARG P3| (AT + A) (AT = 4) ],
del_1y_1 _
< O+ ADEEH72 (A (A= A) " ollg + [lolla) -
whence the claim follows by (2.8) with ¢ substituted for p. O

Theorem 2.9. For any fized ¢ € (0,%) , we have

[AN = A)~ ol < O+ [AD) 72 vl
foralll <p<oo, \¢ Int ¥,, andv € Wpl. (2.26)

Proof. For all ¢ € L, with ;7 + i =1, we can write
(AN — A) v, ) = (Vo, V(AT — A)7'),
whence, in view of (2.23) with p = ¢, in which we substitute p' for p,
(A = A)" 0, )] < Cllollpa (L4 [A) 2]l
which shows the claim. O

Now we shall give some generalizations of our above results which will be
expressed in terms of estimates involving the iterated resolvent operator.

Theorem 2.10. Let £ € [0,1], g € [1,00], and m € NU {0} be such that

1 2m + 2 —
cmt2-8

z 2.27
Lo Imt 27
Then for any fized ¢ € (0,%),
(M = A) D0 < C(1L+ AN o],
for all X ¢ Int ¥, and v € L,. (2.28)

Proof. Let qo, q1, - .., ¢m_1 be chosen such that

13



and

1 2 —
1. 2=
qo d
1 1 - 2
q1 qo0 d’
1 1 - 2
q  Gm d

Then applying (2.22) with g substituted for ¢ and using further repeatedly
(2.19), we get

(V1728

d _q
(AT = A) ™yl < O(1 4 A2 20 [(A = A) ™0l
£, d _
< COL+AD>T3 2| = A) " V|,
< <O+ PFHETED )

for all A ¢ Int ¥, and v € L,

which is the desired result. O
Theorem 2.11. Let m € NU{0} and 1 < ¢ < p < oo be such that

1_1_2m
¢ p d
Then for any fized ¢ € (0,5),
IO = 4) ™o, < C+ DG o],
forall X ¢ Int ¥, and v € Lq. (2.29)

Theorem 2.12. Let m € NU{0} and 1 < g < p < oo be such that
1 1 2m+1

q p d
Then for any fized ¢ € (0,%),

[(AT = A) =m0y < C(1+ A2 )2y,
for all X\ ¢ Int ¥, and v € L,,. (2.30)

The proofs of Theorems 2.11 and 2.12 are similar to that of Theorem
2.10. They are based on using (2.19) and (2.23).
It remains to show resolvent estimates in pairs of Holder spaces.

Theorem 2.13. For any fived ¢ € (0,%), £ € [0,1], and n € [0,£], we have
(M= A) " wle < CA+|AD)T Y|, forall ¢ IntS, and v € €. (2.31)

In the case n = 0, the result is still valid for all v € Le, and in the case
E=n=1, it is valid for allv € WL.

14



Proof. In the case n = 0, (2.31) holds for all v € L., at least if £ = 0 or
¢ = 1. This follows directly from (2.6). By interpolation, we get immediately
for £ € [0, 1],

(M = A) Ml < CA+ A5 Yoo forall v € L, (2.32)

which shows the claim in the case n = 0.

Next note that the result also holds in the case £ =7 =1, forall v € Wolo,
as follows from (2.9) with & = 0. In particular, (2.31) with £ =7 =1 is true
for all v € C'.

Moreover, with this in mind and using (2.32) with £ = 0 (which clearly
can be considered for all v € C), we get by interpolation (see, e.g., Triebel |35,
Theorem 1.3.3]), for £ € (0, 1),

(M —A) e <C(1+ |)\|)_1||v||( for all v € C¢,

CWL),
whence, applying (2.1) yields, if £ € (0,1),
(M — A) ) < C(1+|A) " Yule for all v € C5. (2.33)

The last result can be also thought of as a refined version of a well-known
resolvent estimate in Holder norms (cf. Campanato [8] and Cannarsa, Terreni
& Vespri |9]). Note that, in view of the above comment, (2.33) also holds for
£=0and ¢ =1.

On the other hand, applying (2.9) with @ = 0 and (2.32) with £ = 1
(which clearly can be considered for all v € C) and using again an interpola-
tion argument combined with (2.1), we get, for 0 <7 <1,

(M = A)" ")y < CA+A) = o, forallvedln (2.34)

(This is a direct consequence of (2.32) with £ = 1 in the case n = 0 and of
(2.9) with @ = 0 in the case n = 1).

Finally, we get by interpolation from (2.33) and (2.34), for £ € [0, 1],
n € 10.¢],

)=

(M — A) ol <CA+[A)7 Yo, forallvec.

So the proof is complete. O

3 RESOLVENT ESTIMATES OF THE OPER-
ATOR A4,

In this section, we present sectorial resolvent estimates for the finite ele-
ment operator A,. These estimates will look similarly to those involving the
operator A. All of them will hold uniformly with respect to h € (0, ho].
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We shall start with recalling some facts used below and connected with
application of the finite element method. First of all we state the well-known
inverse property (cf. Ciarlet [11]), for j = 0,1 and 1 < ¢ < p < o0,

(l_l

||X||p;j;7 < ch % p)”XHq;O;T for h € (0, ho], 7 € Ty, and x € Sp,. (3.1)

Let further P, be the orthogonal (in the sense of Ly) projection onto S,
for which, given a function v,

(Pyv,x) = (v,x) forall xy € Sp.

For our subsequent purposes we state the uniform boundedness of P}, in L,
norm (cf. Descloux [15] and Douglas, Dupont & Wahlbin [16]):

| Ppollp, < Cllv]lpa, < Cllv|l, foralll<p<ooandwve L, (3.2)

Note that using (3.1), (3.2) with p = oo, and well-known properties of the
standard Lagrange interpolant I, yields (cf. [7])

|Pyoli < Cloliia, < Clv)y forve WL. (3.3)

Moreover, an interpolation argument (see, e.g., Triebel [35, Theorem 1.3.3|),
applied to (3.3) and (3.2) with p = oo (the last one clearly holds for all
v € ), implies for any fixed £ € [0,1), with the aid of (2.1) (for € = 0 this
is in fact a direct consequence of (3.2) with p = o),

|Pyvle < Clv]e  for v € CE. (3.4)

Note in passing that (3.3) is an extension of (3.4) to the case v € WL.
Let next Rj be the standard Ritz projection onto Sj for which, given a
function v,

(VRyv,Vx) = (Vv,Vy) forall xy € S.
In what follows we shall use the following stability estimate for Ry in W]D1
norm, for all 1 < p < oc and v € Wolo,
[Brvllpn < Cllvllpue, + Chlv|iag,- (3.5)

For a proof of this in the case p = oo, see [7]. Note however that the
techniques in [7] can be slightly modified (using also the ideas developed in
[27]) in order to obtain (3.5) as stated for 2 < p < occ. ‘
Applying now (3.5) with p = oo to (Iv — v), we find for all v € W2,
[Rpv —vlie, < [Ra(v = Iw)h + [(Iw — )|,

S O|IhU_U|1;Qh+Ch|U|1;Q\Qh S Ch|’U|2 (36)
Using the fact that

PhU - RhU = Ph(’l) - Rh’l)), (37)

and taking (3.3) into account, this yields in turn
|Pyv — Ryv|y < C|Ryv — v|10, < Chluly for ve W2, (3.8)

Another estimate for P, — R, will be contained in the following assertion:
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Lemma 3.1. For any fixred 1 < p < oo, we have
(P, — Rp)A ||, < CRH||v|l, forv € L,. (3.9)

Proof. Let throughout the proof p and ¢ be fixed, subject to 1 < p,q < .
Applied to (I — Ip)w, (3.5) yields

IRy (I — I)wllgia, < CI(I = I)wllgue, + Chlwlioa, for we WL

With the aid of this estimate we obtain, assuming that ¢ be sufficiently large
and applying the inequality |w|; < C|jw||42.

IVRA(I = I)wllge, < Chllw|lge  for we Wy

Using this and the above argument, we get by elliptic regularity, with ¢
sufficiently large,

IV(Bh = DA llga, = [V(BRr— 1) (I = 1) A7 ]lg0,
< ChlA™" g2 < Chl[¢l,. (3.10)

Now, in order to apply a duality argument, we shall be based on the following
identity, considered for suitable pairs of v and 1,

(R — DA v, ¢) = (v, (R —1)A™ ')
= (VI = I)A "0, V(Ry — 1) A7)
= (VU = I,)A v, V(R, — 1)A™ ")

— (VA v, VAT!Y)

_ o
o (3.11)
Using now (3.10) and the above reasonings, this leads in a standard way to
the estimate

(B = DA™ 0], < CR?[Jo],, (3.12)

which will be therefore valid at least for p sufficiently close to 1 (the last
term on the right-hand side of (3.11) is estimated as desired in the same way
as in the proof of Lemma A.4 in Lin, Thomée & Wahlbin [20]). With the
aid of the equality in the first line of (3.11), we conclude, by duality, that
(3.12) holds as well for all p sufficiently large and further it is easily seen, by
interpolation, that (3.12) is valid in fact for all 1 < p < oc.

It thus remains to combine (3.7), (3.2), and (3.12). O

We proceed now to showing resolvent estimates for the operator A,. The
first two results presented below are in fact found in [7]. We state however
them here in view of their significance and for subsequent reference. For the
second assertion we also propose a new proof, which is given, from our point
of view, in a more straightforward way than in [7] and is based on using (2.9)
with o = 1. The latter fact is of particular interest because (2.9) with o =1
will be an essential ingredient in showing resolvent estimates of the operator
Ay, in Holder norms.
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Theorem 3.1. For any fired ¢ € (0,7), we have

(AT — Ap) "xlo S CA+ M) Yxlo for all X ¢ Int 5, and x € Sp. (3.13)

Theorem 3.2. For any fized ¢ € (0,%), we have

AR = A2)~'xlo < O+ [AD 2 |xls.
for all X ¢ Int £, and x € Sp. (3.14)

The proof of (3.14) is given in fact only for [A| < weh™2, with wy > 0
sufficiently small, because just this case needs to be settled. It was remarked
in [7] that, in the opposite case |A\| > woh ™2, (3.14) obtains in a trivial way.
We shall therefore emphasize below on the case |A| < woh 2, with wy > 0
sufficiently small.

Proof of Theorem 3.2 for |\| < wgh™2. We use the identity, for y € Sy,
Ap(M = Ap)'x = PAN — A) 'y
FAAR M — Ap) Py — Ry) (M — A) Y, (3.15)

both sides of which are well defined for all A ¢ Int ¥,. Applying (3.2) with
p = oo and (2.7), we find

[PAA = A) ' xlo < C(1+ AN [ls. (3.16)

Next, by (3.8) and (2.9) with o = 1, we get
|(Py = Ra) (M — A)7'x|1 < ChI(A] — A) |2 < Ch(1 + [A)"2|x|i. (3.17)
Now, given a linear bounded operator By, : Sy, — Sy, denote |Bp||s, .10 :=

sup (|Bnx|o/|x|1)- Inserting (3.17) and (3.16) into (3.15), we find

XESh

JARAT = A) lsas0 < C(1+|A]) 3
FOR(L+ A AR — AR) " ls,10.

Clearly, if C1h(1+|A|)2 < %, this implies
[ARAT = AR) g0 < C(1+ A2,

so that the result follows for |A| < woh 2, if wy is sufficiently small. O

The above estimate (3.13) implies similar estimates for the whole Lebesgue
scale L,, 1 <p < oo.

Theorem 3.3. For any fized ¢ € (0,%), we have

(AL = Ap) " xllp < CA+ [AD Xl
foralll1 <p<oo, \¢ Int ¥,, and x € Sj. (3.18)
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Proof. Immediate by duality and interpolation. O

Our next result gives a resolvent estimate of Aj, in W1 norm. Note that
the below proof of this assertion will be essentially based on the use of the
estimate (2.9) with o = 1.

Theorem 3.4. For any fized ¢ € (0,7), we have

(M — Ap) "' < CA+ M) x|y for all X ¢ Int X, and x € Sp. (3.19)
Proof. We use the identity (cf. |7]), for x € Sp,

(M —A3) 7 x = B =A) " x4+ Ay (M = Ap) " (Po—Rp) (M —=A)"'x, (3.20)

where both sides are well defined for A ¢ Int ¥,. By (3.3) and (2.9) with
a = 0, we have

|Py(A — A)~ x|l < C(L+ A7 x (3.21)
Next, denoting
G = Ah()\[ - Ah)il(Ph - Rh) ()\I - A)ilx, (322)

we find by (3.1), (3.14), (3.8), and (2.9) with a =1,

G, < Ch Gl
< Ch™ 1+ A2 [(Py — Ry) (M = A) 7'y
< CO+ AN = A) 7 x OO+ A) T xh.  (3.23)
The claim thus follows by combining (3.20), (3.21), and (3.23). O

Now we can show estimates in pairs of Holder norms.

Theorem 3.5. For any fired ¢ € (0,5), £ € [0,1], and n € [0,£], we have

&

(AT = Ap)~xle < C(L+ AN~ xly,
for all X ¢ Int ¥, and x € Sp. (3.24)

Proof. First of all, by (3.3), (3.5)with p = oo, and (2.31) with £ = 1, we have

[(Py— Bi) M= A)7'xli < CI(M = A)7'xy
< CO+ )T |xly (3.25)

With G defined as above (see (3.22)), using further (2.12) with A, substituted
for A, (3.19), and (3.25) yields
Gli < |(Pu— Rn) (M — A)"'xh
+HAN = Ap) NPy — Ry) M = A)"xh
Cl(Py = Rp) (AT = A) x|
CA+ A" |xl- (3.26)
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Combining now (3.4) (if £ = 1, we use instead (3.3)) and (2.31), this yields
_ _ E-n_
[Ph(M = A)7'x|e S Ol = A)Txle SCL+[A)T xly (3:27)
At the same time, applying (3.14) and (3.25) allows one to get as well

Glo < COL+A) 21(Py = Ra) (AT = 4) 'xls
i

< U+ ), (3.25)
It follows from (3.26) and (3.28) that
- £on_
Gle < CIGIIGI ™ < O+ M) = [l (3.29)
Finally, the claim obtains by combining (3.20), (3.27), and (3.29). O

We shall also derive a finite element analogue of Theorem 2.7 involving
(Holder, Lebesgue) pairs.

Theorem 3.6. For any fized ¢ € (0,5), £ € [0,1], and q € (ﬁ,oo], we
have

£4d
(AL = Ap) 'xle < O+ AN 2 Y x]lg,
for all X ¢ Int ¥, and x € Sp. (3.30)

Proof. Let throughout the proof G' be just the same as in (3.22).
Assume first that ¢ € (d, co]. By (3.25) and (2.22) with £ = 1, we obtain

d_1
|(Ph = Rp) (A = A) x|y < C(L+ A2 2 [Ixllq, (3.31)
and a similar argument shows that
d 1

[Pa(A = A) x| < C(1+ AN 7]Ix]lg- (3.32)

Inserting now (3.31) into (3.26), we find

d_1

Gl < OO+ [AD2 2 Ixlg- (3.33)

So combining (3.20), (3.32), and (3.33) shows the claim at least for £ = 1.
Let further ¢ =0 and ¢ € (%, oo} . From now on we assume that d > 2 (the
below reasonings can be easily modified to the case d = 1). If, additionally,
q = 00, the result directly obtains by (3.13). We may thus consider only the
case q € (g, oo). Let p be a fixed number such that p > ¢ and p € (d, o).
Clearly, p can be chosen such that é — ;7 < é. Then, using the inverse
inequality |Anx|o < Ch™!|x|1, we get, since p > d and the result is already

proved for £ =1,

IGlo < Ch M — Ay) 1Py — Ry) (M — A) x|y
d _1 _
Ch ' (1+ A2 72 ||(Py — Ry) (M — A) x|,

A
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Combining further this with (3.9), (2.12), and (2.6) yields
4 1
|Glo < Ch(L+ AN 2{]xllp-

Defining now 7 € [1,p) by & := ]1; + % and using the inverse inequality (3.1)
with 7 = 0, it follows from the last estimate that

d_1
Glo < CCL+ D2 1xll. (3.34)
At the same time, as a direct consequence of (3.29) with £ = n = 0, we have
Glo < C(1+ M) M Ix]loo- (3.35)

An interpolation argument, applied to (3.34) and (3.35), thus leads to the
estimate

4
[Glo < C(L+ AN Hixllg- (3.36)
Moreover, by (3.2) and (2.19), both with p = oo, we have
da_
[Pa(M = A) ' xlo < CIAT = A)7"xlo < OO+ AN il (3:37)

Altogether (3.20), (3.36) and (3.37) show the claim for £ = 0.
It remains to get the result in the case & € (0,1). In order to do this,

note that we can write any fixed g € (ﬁ, oo] in the form
1 2-
- = _§ —g, >0
q d

Assuming that ¢ < é and defining then ¢y and ¢; by

1 1
—=—=—¢,
q1 d

we have by (3.30) with £ =1 and £ = 0 (already shown) and by (3.2),

d _ 1
(M= Ap) Pyl < C(L+ AP 2| Pyolly,
d

< O+ Az 2oy,

-

and .
[(M = A) " Pyolo < O+ M) 20 [[o]|g,

Using these estimates, we find by interpolation
(M = A~ Pyole < CL+ ADEE o,

whence the result with 0 < £ < 1 follows by taking v = x.

If the above ¢ does not satisfy the restriction ¢ < %, this situation can be
considered after all by using an interpolation argument (as it is done in the
proof of Theorem 2.6).

So the proof is complete. O
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In the case of purely Lebesgue pairs we have the following result:

Theorem 3.7. For any fized ¢ € (0,%) and 1 < q¢ < p < oo such that
%—%<%, we have

de1_1y_
1T = A4n) 7' xllp < C+ M) I,
for all X ¢ Int ¥, and x € Sp. (3.38)

Proof. In the case p = oo, % < %, the result obtains straightforwardly by

(3.30) with & = 0. By duality, the claim also follows for 1 — ;7 < %, qg=1.
Finally, the general case can be then shown by interpolation. O

The following results unite and generalize in some sense the assertions of
Theorems 3.6 and 3.7.

Theorem 3.8. Let £ € [0,1], g € [1,00], and m € NU{0} be such that

1 2m+2-¢
< —.
q d

Then, for any fized ¢ € (0, %), we have

d_

£ m
(AT = Ap) =™ xJe < O(1 4 [A]) 25~ D
for all X ¢ Int £, and x € Sp,.

Theorem 3.9. Let 1 < ¢ <p<oc and m € NU{0} be such that

1 1 2m

g p d

Then, for any fized ¢ € (0, %), we have

N

(l_l

1AL = 44) 7]l < CA+ADEET2 7" x s
for all X ¢ Int ¥, and x € Sp.

The proofs of these results are based on an induction argument and are
similar to their continuous analogues (see the proofs of Theorems 2.10 and
2.11).

In conclusion we note that using the above results, combined with more
or less standard reasonings, allows one to obtain finite element analogues of
Theorems 2.8, 2.9, and 2.12. We omit the corresponding statements.
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