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1 Introduction

Extending iterative methods, optimal in some sense, beyond Hermitian ma-
trices is a challenging problem; see, e.g., [11, Chapter 6] for an informative
discussion. Recently there has been progress in this regard as two different
optimal methods have been discovered for normal matrices. One relies on a
3-term recurrence |20, 22| and the other on a recurrence with a slowly grow-
ing length [7, 23, 24]. In this paper we study various aspects of nonnormality
that arise from the existence of these algorithms. To this end we consider the
set of binormal matrices [3]| as well as its unitary orbit. These two families of
matrices are then associated with polynomially normal matrices of moderate
degree. Related matrix nearness problems are posed.

Binormal matrices possess a 2-by-2 block structure with commuting nor-
mal matrices as blocks. These matrices are typically far from being normal
with respect to the classical measures of nonnormality [8]. However, there
are ways to relate these matrices to normal matrices. For this purpose we
decompose any invertible binormal matrix as the product of a normal matrix
and one or two (nontrivial) involutions. A matrix P € C"*" is an involution
if P? = I. This factorization can be achieved inexpensively with a modifica-
tion of the Schur complement. Moreover, all the factors can be regarded as
polynomially normal matrices of very low degree.

Polynomial normality is originally an infinite dimensional operator theo-
retic concept; see [28, 29| and references therein. To adapt this to matrices,
we define A € C"*" to be polynomially normal of degree d if there exists
a monic polynomial p of degree d such that p(A) is normal and ¢(A) is not
normal for any monic ¢ with deg(q) < d. Modulo a constant term, p is
unique. In particular, involutions are polynomially normal matrices of de-
gree 2. Binormal matrices are polynomially normal of degree at most half of
the dimension of the underlying space. The size of d is critical for our pur-
poses, motivated by computations, since the concept is otherwise vacuous for
matrices.

Since polynomial normality of particular degree remains invariant under
unitary similarity transformations, we consider the unitary orbit of binormal
matrices denoted by BN. This set, studied in a completely different context
[38], provides a natural extension of normal matrices. It arises in connection
with R-linear operators in C" [6]. Elements of BN have also appeared in
illustrating various aspects of iterative methods [31, 13]. They can be linked
with [41]. For a large scale engineering problem, see [32]. Besides bringing
up these connections, we show that for these matrices polynomial normality
is well understood.

Aside from being an interesting matrix analytical concept, polynomial
normality yields a way to iteratively solve linear systems with methods for
normal matrices. To this end, assume a polynomially normal matrix A4 €
C™™ of degree d is factored as A = Ns(A)~! for a normal matrix N and
a polynomial s of degree d — 1. In practice the computation of the inverse
is never realized since solving a linear system Ax = b, for b € C"*", can be
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accomplished by solving
Nz = s(A)b (1)

instead. Hence algorithms for normal matrices can be employed with this
system obtained. Stated in the context of polynomial preconditioning, we
are concerned with finding a polynomial with the aim at having a normal
matrix when evaluated in A.

For recent attempts to extend “commutative spectral theory” of normal
matrices to nonnormal matrices, see [1, 30, 27| and references therein. In our
approach having a normal p(A) for a monic polynomial p means that with
p(A) we can employ methods for normal matrices for locating eigenvalues.
Consequently, sparse matrix algorithms relying on real analytic techniques
recently introduced in [24] become available. It remains to convert the infor-
mation computed to concern A. This is achieved with two simple applications
of the spectral mapping theorem.

In view of the preceding, for iterative methods it seems to be somewhat
unsatisfactory to measure nonnormality of A exclusively. Since any applica-
tion of an iterative method involves polynomials in A, it appears to be more
natural to inspect the least nonnormality of the polynomial family

{p(A)}p monic, deg(p)<k (2)

for a fixed k < n. If A is already normal, then these matrices remain normal.
If A is not normal but some p(A) is, then we can associate a particular Schur
decomposition with A and give a qualitative description of a related matrix
Krylov subspace. If there are no normal matrices among (2), then we ask
how far is this family from the set of normal matrices. Another option is to
try to find nearly normal matrices with polynomials in A by simultaneously
employing small rank perturbations.

The paper is organized as follows. In section 2 we introduce binormal ma-
trices and compute their dimension. We also demonstrate that any invertible
binormal matrix can be factored inexpensively as the product of involutions
and a normal matrix. In section 3 we study the unitary orbit of binormal
matrices and polynomially normal matrices of moderate degree after show-
ing how iterative methods for normal matrices can be employed with them.
In section 4 we group together related measures of nonnormality arising in
this context. We illustrate how “almost normality” in our sense allows us
to compute Ritz values with modest storage requirements. In section 5 we
consider numerical algorithms for computing the polynomials introduced.

2 Binormal matrices

How to benefit from optimal methods for normal matrices while dealing with
large nonnormal problems? Since every square matrix is the product of two
normal matrices, any linear system can be solved by solving two consecutive
linear system involving normal matrices. Presently this is an impractical al-
ternative since finding any such a factorization, like the polar decomposition,
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is too expensive with the existing techniques. Therefore it is of interest to
identify matrices for which there are inexpensive factorizations with nearly
normal factors.

The members of the following set of matrices introduced by Brown |[3]
admit a closed form solution to the problem of finding a nearest normal
approximant; see |33, 2, 34| and references therein.

Definition 1 A = [}! \?] € C™* s binormal if {N;}I_; C C™" are
commuting normal matrices.

The following canonical form of Brown is useful in practice; see |3, 2].

Theorem 1 Any binormal matriz is unitarily similar to a block upper tri-
angular binormal matriz.

A binormal matrix can be very far from being normal, like the nilpotent
matrix [ /] € C*"*?" and the example that follow illustrate.

Example 1 Take 4 circulant matrices {N;}j_, and form a 2-by-2 block ma-
trix out of them to have a binormal matrix A. For block circulant matrices
arising in practice, see [4].

A square matrix P is an involution if P? = I.

Proposition 1 Let A € C*"** be an invertible binormal matriz. Then
A = NP for a normal matriz N and an involution P.

Proof. Let A =UTU*, with a unitary U and an upper triangular binormal
matrix 7' = [Nl ]Xr‘l, be in the canonical form of Brown. Then factoring

0 Na
T=TT, = HVI 134] [*01 *ﬁfﬁﬂ gives A = UT,U*UT,U* = NP. 0

Classically P is regarded as very nonnormal. However, from the point
of view of iterative methods an involution is almost normal; see section 3.
The converse also yields an interesting question: Characterize those matri-
ces which can be represented as the product of a normal matrix and an
involution. (Recall that every invertible matrix is the product of a complex
symmetric matrix and an involution [10].)

For the canonical form of Brown one needs to compute an eigendecom-
position which is costly. To avoid this, we proceed as follows. Multiplying
a binormal matrix A by the involution IT = [ [] from the left and/or right,
we can have any block as the (1,1)-block. Binormality is preserved in this
operation so we can assume that, after a possible permutation, the matrix
N is the easiest to solve linear systems with. In an ideal case N; would be
close to the identity. Then

A= [Lviw ] [0 3 (3

with N = N, — NlegNg. These factors are still binormal.
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Proposition 2 Let {Nj};’?zl C C™™ be commuting normal matrices. Then
r(N1, ..., Ni) is normal for any rational function r for which r(Ny, ..., Ny)
s well defined.

Proof. As commuting normal matrices are simultaneously diagonalizable

by a unitary matrix [19, Theorem 2.5.5], we have the claim. O
Since [ ] =% ¥ [*01 *NI;IN‘—’} , we have the following.

Theorem 2 If A € C**?" s invertible and binormal, then A = P(M; &
My) Py Py with normal My, My € C" and involutions Py, Py and Ps, where
P is either I or 11; this factorization does not use the canonical form of
Broun.

Proof. We have already proved the case of N; being invertible. If N; is not
invertible but Ny is, then ITAII reduces to the case where the (1,1)-block is
invertible. Then multiplying with IT from the left and right yields

A = (TP (TH(My @ My)T1)(TIP,IT) = Py (M @ M,) Py (4)

It remains to consider the case where both Ny and N, are singular. Then
ATl must yield an invertible (1, 1)-block since A is invertible. Thus, proceed-
ing as in the first case gives us AIl = P;(M; & M;)P, proving the claim.
O

Clearly only P, and P, involve computations.

If linear systems with N; can be solved very fast, then Ax = b, for
b € C?", can be iteratively solved by solving 4 linear systems involving normal
matrices. Each of these problems is half of the size of the original system.
Since only matrix—vector products are performed, this factorization can be
employed implicitly, i.e., the factors need not be explicitly constructed.

The dimension of binormal matrices in is as follows.

Theorem 3 The set of binormal matrices in C*"*?" is a stratified subman-
ifold with the stratum of maximal real dimension n* + Tn.

Proof. We employ techniques from [20] adapted to our setting. Namely,
considering the 2-by-2 block structure, let A = [%; %i] € C?"*2" be any, not
necessarily a binormal, matrix. Then A is binormal if and only if {N;}]_,
satisfy

NJNk—NkNJ:()and NJN;—N;NJZO (5)

for all 1 < j,k < 4. As these are polynomial equations for the entries of
A separated into the real and imaginary parts, the set of binormal matrices
admits a stratification [9].

Recall that N = H + K, with H = {(N + N*) and K = 5 (N —
N*), is normal if and only if H and K commute; see, e.g., [14]. Moreover,
assume Ny = Hy| 4+ 1K, and Ny = Hy + 1K, are commuting normal matrices.
Then, by the Fuglede-Putnam-Rosenblum theorem [35], N commutes with
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Ny and Nj commutes with Ny. Therefore {Hy, Ho, K7, K5} is a commuting
family of Hermitian matrices. Hence we can consider, instead of {N;}j_,, the
commuting family {Hj, K;}]_, of Hermitian matrices (the converse is clearly
true as well).

Denoting by H C C"" the set of Hermitian matrices, consider the di-
rect product H®. Fix H, € H with distinct eigenvalues and consider those
Hermitian matrices Ho, ..., Hg that commute with H;. Then, since H; is
nonderogatory, Hy = po(Hy),...,Hs = ps(H;) with polynomials p;, for
2 < j < 819]. Being Hermitian matrices, each p; is of degree n — 1 at
most with real coefficients. In particular, varying H; and the polynomials
pj, the matrices of the form

Hi+ipi(H1)  pa(Hi)+ipa(Hi) (6)

pa(H1)+ips(H1) pe(H1)+ip7(H1)
give rise to an open dense subset of the set of binormal matrices. Since the
set of nonderogatory Hermitian matrices is of dimension n?, this sums up to
n? + Tn free real parameters as claimed. O

At first sight n? + 7n may not impress compared with 8n?, the real di-
mension of C>"*?", However, such a sheer comparison is not reasonable since
most practical problems give rise to matrices with structure. For instance,
the real dimension of the set of Toeplitz matrices is even of different magni-
tude, that is, 8n — 2 in C?"*%n,

An adaptation of the methods proposed in [20] yields a way to generate
binormal approximations to a given matrix with sparse matrix techniques.
This amounts to taking a Hermitian matrix H; and forming (6) with poly-
nomials p; with real coefficients, for j = 1,...,7. These polynomials can
be generated inexpensively with a modification of the Hermitian Lanczos
algorithm.

3 Polynomial normality for matrices

Involutions have the property that a low degree polynomial evaluated at them
yields the identity, i.e., a normal matrix. This interpretation can be used for
classifying nonnormality more generally.

Definition 2 A € C™*" is polynomially normal of degree d if p(A) is normal
for a monic polynomial p of the least possible degree d. Then p is called a
minimal normal polynomial of A.

In an analogous way we define A € C"*" to be polynomially Hermitian of
degree d if p(A) is Hermitian for a monic polynomial p of the least possible
degree d. These are unitarily invariant concepts both so that, as opposed
to binormality, polynomial normality is not confined to any particular block
structure.

Initially polynomial normality was introduced for analyzing infinite di-
mensional operators; see |28, 29| where a typical problem was, e.g., to char-
acterize operators which are polynomially normal. This type of questions are
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vacuous for matrices simply because every A € C"*" is polynomially normal
of degree n at most (employ the characteristic polynomial of A). Instead, in
finite dimensions the size of d is of interest. We illustrate this by extending
iterative methods to nonnormal problems, both for solving linear systems
and locating eigenvalues, when d is moderate.

3.1 Solving nonnormal linear systems

If the coefficient matrix A € C"*" of a linear system is polynomially normal
of moderate degree, then the problem can be solved with algorithms for
normal matrices. To see this, suppose p(A) is normal for a monic polynomial
p of degree d > 1. Since normality is a translation invariant property, we
can assume that p(z) = 2¢ — 2q(z) for a polynomial g of degree d — 2 at
most. Modulo translations, a minimal normal polynomial is readily seen to
be unique. Hence A(A%"! — ¢(A)) = N for a normal matrix N and a unique
polynomial gq.

Assuming s(A) = A4"! — g(A) to be invertible, we obtain a factorization

A= Ns(A)! (7)

of A which can be employed implicitly. More precisely, solving a linear system
Ax = b, for a vector b € C", is equivalent to solving

Nz = s(A)b (8)

under the assumption that both A and N are invertible. Since in the latter
system the coefficient matrix is normal, this seemingly nonnormal problem
can be solved with techniques for normal matrices [22, 26|, provided d is not
large. This factorization can also be viewed in the context of polynomial
preconditioning with the relaxed aim at having a normal matrix instead of
the identity.

Example 2 For an illustration, let A (see [13, 25]) be of the form ZAZ™!
with

1v1-60..0
Z=|9 v g;;;g] and A = diag(20,10,5,...,1),
o 0 0

in such a way that, besides 20 and 10, the remaining eigenvalues of A are uni-
formly distributed in the interval [1, 5]. The factor in the minimal polynomial
of A corresponding to the 2-by-2 block is (z — 20)(z — 10) = 2% — 30z + 200
which also yields the minimal normal polynomial of A. Namely, taking
p(z) = 22 — 30z = 2(z — 30) gives us a Hermitian matrix p(A4) = As(A).

In the preceding example the degree of the minimal normal polynomial
was 2 regardless of the size of the matrix described. By taking p to be the
factor in the characteristic polynomial corresponding to the d-by-d block,
this has an obvious generalization as follows.

Proposition 3 Assume A € C**" is unitarily similar to M & A, with M €
C¥4 gnd a diagonal matriz A € C=D*=d)  Then A is polynomially normal
of degree d at most.
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3.2 Locating eigenvalues of nonnormal matrices

The standard way of converting a matrix A € C**" into a normal matrix is
to form A*A, i.e., to “symmetrize” A. In this operation spectral information
is lost since the eigenvalues of A and A*A are generally not related in any
reasonable way. For this, see [39, Section 4|. Polynomial normality preserves
data better since by knowing the eigenvalues of A, the spectrum of p(A)
available. For the converse, the following two propositions are also direct
consequences of the spectral mapping theorem.

Proposition 4 Let p(A) = M € C"" for a polynomial p and assume
o(M)CS. Theno(A) C {z € C:p(z) € S}.

In particular, if p(A) is normal, then algorithms proposed in [24]| can be
employed for generating sets S containing its spectrum. What then remains
is to find the inverse image of S to get an exclusion region for the eigenvalues
of A. This latter task is a simple one as opposed to solving large nonnormal
eigenvalue problems.

Example 3 We consider A of Example 2, that is, N = p(A) is Hermitian
with p(z) = z(z — 30). The extreme eigenvalues of N can be computed
fast with the Hermitian Lanczos method. Thus, assume knowing that the
spectrum of N belongs to the interval [—200, —29] on the real axis. Finding
the inverse image of this interval for p is straightforward; it consists of the
intervals [1,10] and [20, 29] on the real axis. Both of these intervals contain
eigenvalues of A.

Since iterative methods are often aimed at finding just a few eigenvalues
of very large matrices, the following is useful.

Proposition 5 Let p(A) = M € CY" for a polynomial p and assume \ €
o(M). Then the set {z € C: p(z) = A} contains an eigenvalue of A.

This yields a circuitous way to using real analytic computational tech-
niques for finding approximations to eigenvalues of a nonnormal matrix. The
idea is to generate Ritz values for a normal p(A) with the methods proposed
in [20, 24| and then to find their inverse image with respect to p.

Example 4 Consider the matrix of Example 2 again. To illustrate Propo-
sition 5, assume having computed the rightmost eigenvalue )\, = —29 of N
with, e.g., the Hermitian Lanczos method. Then solving p(z) = z(z — 30) =
—29 gives z = 29 and z = 1, the latter being an eigenvalue of A.

Hence Proposition 5 can give us “shadow” eigenvalues. Their number
depends on the degree of p such that the smaller its degree the fewer of them
occur. For solving the arising polynomial equation accurately, the degree of
p should be moderate.
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There are other approaches to partially conserve the commutative spectral
theory of normal matrices with nonnormal matrices. Our considerations
can be related to certain hereditary classes of matrices; see [1, 30, 27]. We
briefly describe the connection as follows. If A € C™*" is such that p(A) is
Hermitian, then

p(A) = p(A)" = ) caA*A =0, (9)

0<k,i<d

for some ¢;; € C, with c40 = co,¢ = 1. In this case most of these coefficients
equal zero. Because multiplications by A* precede multiplications by A,
the matrix in question can be regarded to belong to the hereditary class
corresponding to p.

3.3 The unitary orbit of binormal matrices and polyno-
mially normal matrices of low degree

There are matrices for which the characteristic polynomial coincides with the
minimal normal polynomial. In particular, its degree can equal the dimension
of the underlying space.

Example 5 Let A € C"™ be the nilpotent backward shift, that is, the
matrix has ones on the first super—diagonal while other elements are zero.
Then any p(A), for a monic polynomial p of degree d < n — 1, has ones on
the d'" super—diagonal. Also, being upper triangular, p(A) is already Schur

decomposed and, consequently, p(A) = A" is the minimal normal polynomial
of A.

If A is the square root of a normal matrix, like an involution, then A is
polynomially normal of degree 2. These can be characterized completely; see
also [5].

Theorem 4 [3/] If A € C"*" is the square root of a normal matriz, then A
18 unitarily similar to []\él _fﬁgl} @ N with normal matrices N; and N and a

positive definite matriz No commuting with Nj.

Note that also N, can be chosen to be normal.

Assume A is a square root of a normal matrix. Then the converted system
(8) reads A%z = Ab which falsely resembles solving the normal equations. For
a normal matrix we do have x(A?) = k(AA*) while with nonnormal matrices
this need not hold. In fact, x(A4%) < k(AA*) is quite realistic which can be
illustrated, e.g., with involutions. See also Example 6.

Commuting normal matrices are simultaneously unitarily diagonalizable;
see [19]. Hence by employing the canonical form of Brown, any binormal ma-
trix is unitarily similar to a binormal upper triangular matrix with diagonal
blocks. The unitary orbit of binormal matrices can be regarded as a natural
extension of normal matrices.
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Definition 3 The set BN C C*™*?" consists of matrices A € C**2" with

_ Dl D2 *
A—U[ 0 DB}U

for diagonal matrices Dy, Dy, Dy € C*™" and a unitary matriz U € C***",

This yields a unitarily invariant family of matrices containing the set of
normal as well as the set of binormal matrices. Since already the set of normal
matrices is of real dimension 4n? + 2n in C?"*?"  we have a significantly
larger set than just binormal matrices. For these matrices the formula of
Phillips [33] for finding a nearest normal approximant holds, after performing
a unitary similarity transformation.

This is an interesting structure also because unitarily diagonalizable R-
linear operators in C" give rise to elements of BN through their real form.
See [6].

If Dy and Dj are real such that Dy(D; — D3) = 0, then A is readily seen
to be 3-selfadjoint, i.e., A belongs to a particular class of Hereditary matrices
[30].

The Gersgorin region G(A) of A € C"*" is the union of the Gersgorin
disks

Gi(A) ={XeC:lay—A < layl}, (10)
i#l
for [ = 1,...,n. For locating eigenvalues with the GerSgorin regions of

unitary orbits, see [41]. We denote by U the set of unitary matrices.
Theorem 5 If A € BN, then the spectrum of A equals (o, G(U*AU).

Proof. We can assume A to be in its canonical form of Definition 3. Then,

for j =1,...,n, each span{e;, e, ;} is invariant for both A and A* and these

subspaces are orthogonal. So apply the corresponding unitary similarity to

have A as a direct sum of matrices of size 2-by-2. Then use [41, Theorem 1|

block—wise. O
The following simple fact is useful.

Proposition 6 Let A € BN and p be a polynomial. Then p(A) € BN.

An involution acting in an even dimensional space, although typically is
far from being binormal, belongs to BA'. More generally, the following holds.

Theorem 6 If the degree of the minimal normal polynomial of A € C>*2n
is 2, then A € BN.

Proof. Let p(\) = A? + a\, with a € C, be the minimal normal polynomial
of A. Then consider ¢(\) = p()\) + a?/4 = (A + «/2)?, for which g(A) is also
normal since the set of normal matrices is translation invariant.

By Theorem 4, A 4+ «/2I is unitarily similar to a matrix of the form

[ 7]\]]\2,1] @ N. Since the blocks N; and Ny can be chosen to be commuting
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normal matrices, by being simultaneously unitarily diagonalizable, we can
assume N7 and N, to be diagonal. Also, we can assume N to be diagonal.
Since the dimension of the space is even, decompose N = J; & Jy into two
equally large diagonal blocks .J; and J;. Then with a similarity permutation
arrange D1 = Ny & J;, Dy = Ny @ 0 and D3 = (—N;) & J, to have a
binormal matrix of type of Definition 3. Since by Proposition 6 the set BN
is translation invariant, the claim follows. O

Combining this with Theorem 5 extends [41, Theorem 2| and its corollar-
ies since the set of matrices A € C?*"*?" whose minimal normal polynomial is
of degree 2 obviously contains the matrices with a quadratic minimal poly-
nomial.

Example 6 (For this large scale problem, see [18, 32].) Consider

where H is a (tridiagonal) Hermitian matrix and d € C. Now, A% — (—d)A =
H® H is Hermitian, so that the matrix in question is polynomially Hermitian
of degree 2.

Using the notation of Definition 3, we have the following.

Theorem 7 For A = U [') 2] U* € BN and My, = 35~  D{D5™7" let
d be the smallest integer such that the diagonal matrices {DyM;}d_, are
linearly dependent. Then A is polynomially normal of degree d.

Proof. Since Dy, Dy and D3 commute, we have

[D1 D2]2 — D} (D1+Ds3)D>
0 Ds 0 Dg

Consequently, by using commutativity and by induction we have

[ 31" =[5 ] (11)
with M, = E?;& D{D];_j_l, for k =1,2,.... Any linear combination of the
matrices (11) has as its (1,2)-block the corresponding linear combination of
the matrices MyD,. Since this linear combination is already Schur decom-
posed, a monic polynomial in A is normal if and only if this (1, 2)-block is
the zero matrix. O

Any matrix A € BN is thus polynomially normal of degree rank(D;) + 1
at most. Moreover, it is readily verified that if the matrix has real eigenvalues,
then the minimal normal polynomial yields a Hermitian matrix.

Regarding the speed of convergence to the set of normal matrices, the
following generalization of the distance formula of Phillips [33] illustrates
how polynomial normality is completely understood for the elements of BN .
By P;j(00) we denote the set of monic polynomials of exact degree j and by
N the set of normal matrices while ||-|| is the spectral norm.
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Proof. By Proposition 6, any polynomial in A remains in BA/. The claim
follows by using the distance formula of Phillips [33]. O

The formula of Phillips [33] also gives a best normal approximant explic-
itly.

The canonical form of Definition 3 for a nonderogatory element A € BN
can be found in a numerically stable way by computing a Schur decomposition
A=V(D+T)V* of A, where D and T is a diagonal and a strictly upper
triangular matrix, respectively.

Corollary 1 For A € BN and j > 2 we have

min dist(p(A),N) = min

1
PEP;(00) 2 a1,.,aj_1€C

7—1
Do(M; =y My)
k=1

Corollary 2 Let A € BN C C***" pe nonderogatory with a Schur decom-
position A =V (D +T)V*. Then T has at most n nonzero entries such that
every row and column of T has at most 1 nonzero entry.

Proof.  Let {eq,...,es,} be the standard basis corresponding to U*AU
in its canonical form of Definition 3 with a unitary matrix U. Then, for
j =1,...,n, each span{e;,e,,} is invariant for both A and A* and these
subspaces are orthogonal. Moreover, for a Schur decomposition A = V(D +
T)V*, the diagonal matrix D; @ D3 equals D after a possible permutation
of its diagonal entries. Two eigenvalues of D are connected with a nonzero
element in 7" if and only there was a connection between {e;, e, ;} through
Dy with the index j corresponding to the same eigenvalue pair. 0

For generic element A € BN the minimal normal polynomial is com-
putable by employing the matrices { My Dy}¢_, since only a permutation is
needed for constructing the canonical form of Definition 3 by using a Schur
decomposition. Being diagonal matrices, the algorithm has a low complexity;
only finding a Schur decomposition is an O(n?®) computation.

By now it is clear that the set BN can also be characterized as consisting
of those square matrices acting in an even dimensional space which are uni-
tarily similar to a block diagonal matrix with blocks of size two at most. For
these matrices, see [38]. In particular, matrices illustrating different aspects
of iterative methods often appear to be elements of BN; see, e.g., [31, Section
8] where the matrices By, B4, and B, considered all belong to BA/. Also
the matrix of Example 2 is from BN (when the dimension is even).

Corollary 3 If A = XJX ! is a Jordan canonical form of A € BN, then
the Jordan blocks of J are of size 2 at most.

Proof. Perform a similarity transformation for the 2-by-2 blocks correspond-
ing to each invariant subspace span{e;, e, ;}. O
Using this structure we can compute the dimension of BN
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Lemma 1 Let Sy C C**2 denote the set of upper triangular matrices with
a non-negative (1,2)-entry. Then C**? equals the image of the mapping
(S,U) — USU* with S € § and U € U.

A1 Ay
0 A3

(1 0 M A 71 0
vl S LR S

where 6 = arg(A\y) (if Ay = 0, then put § = 0). Thus, M is unitarily similar
to an element of §y. Using this with the Schur decomposition proves the
claim. ([

Proof. If M = [ } is an upper triangular matrix with complex

entries, then

Theorem 8 BN C C* 2" s q stratified submanifold of C**?" with the
stratum of mazimal real dimension 4n? + 4n.

Proof. In the proof of Corollary 2 we showed that any A € BN is uni-
tarily similar to block—diagonal matrix with blocks of size 2-by-2 at most.
Conversely, every matrix of this form is in BN

Let the set S C C?*™*?" consist of block—diagonal matrices whose blocks
are upper triangular matrices of size 2-by-2 each having a non—negative (1, 2)-
entry. Then the image of the mapping f defined by (U,S) — USU* from
U xS to C*? ijs BN. Since this mapping is real analytic and proper
(compact sets have compact preimages), its image admits a stratification
[15]. Let us find the maximum dimension of the strata.

Denote by Sy the subset of & consisting of matrices with nonnormal 2-
by-2 blocks whose diagonal entries satisfy the ordering
(i) |s2524] > [s2(j+1)2¢+1)| and
(1) |s2524] > |S2j412j41l,
forj=1,...,(n—1).

By Lemma 1, the image of f restricted to U x Sy is dense in BN. Further-
more, US1U* =V S, V* with U,V € U and 5,55 € & if and only if Sy = 5
and U*V commutes with S;. Since S; has distinct eigenvalues, this forces
U*V to be polynomial in .S;. Moreover, since each block of S; is nonnormal,
U*V must be a direct sum " I, @ - - - @ e I,, where I, is the 2-by-2 identity
matrix and 6; € R for j = 1,...,n. Since the real dimension of & C C***?"
is (2n)?, there are 4n® — n real degrees of freedom to choose U and 5n real
parameters for choosing S;. In all, this yields 4n? + 4n real parameters. [

To deal with general square matrices, let us define PAN; = {A € C" :
p(A) is normal for a monic polynomial p of degree j at most}.

Clearly, PN, equals the set of normal matrices while PA/,, = C**",

Proposition 7 The sequence N C PNy C --- C PN, C CY™™ is strictly
Increasing.

Proof. It is clear that the sequence is increasing. The strictness can be
established with the help of Example 5. Namely, take A = M & A € C**",
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where M is the nilpotent shift of size j < n and A is a diagonal matrix. Then
AE”PijutAgpNj_l. O

On the growth of the dimension of PA; we can give the following lower
bound.

Theorem 9 PN; C C™" is a star-shaped set containing a star—shaped
smooth manifold of dimension n* +n+j(j — 1), forj=1,...,n.

Proof. Let p be a polynomial. If p(A) is normal and s € R, then after scaling
the coefficients of p appropriately to have py, we have a normal ps(sA). So
linearly connecting A to the zero matrix, we can infer that PN is star-
shaped.

For the second claim, consider those upper triangular matrices D + T of
size j-by-j, where D is diagonal and 7' is strictly upper triangular such that
the entries ¢, of T, for k = 2,...,j, are restricted to be strictly positive.
Furthermore, assume that the diagonal entries of D satisfy |di| > |dg1],
for k = 1,...5 — 1. Denote the upper triangular matrices satisfying these
restrictions by &;. Assume B € €7 belongs to the unitary orbit of an
element of §;. With 6, € R assume ey, .. .,emjxj are the eigenvectors
of B arranged according to |dx| > |dxi1|. Choose 6; such that the first
component of €'z, is non-negative. Thereafter it is easy to verify that to
get a Schur decomposition of B with a triangular part from S;, the remaining
0 are uniquely determined.

Consider matrices (D +T) @ A with D+ T € S;, where A is a diagonal
matrix of size (n — j)-by-(n — j) with |A\g| > |Agyal, for k& = 1,...n — j.
Denote these matrices by Sy. Let Uy C C**™ denote those unitary matrices
whose (1,1)-entry is non-negative. Its real dimension is n? — 1. Consider
the mapping (U, S) — USU* from Uy x Sy to C**™. Since this mapping is
real analytic and proper (compact sets have compact preimages), its image
admits a stratification [15]. Let us find the maximum dimension of the strata.

Assume U,V € Uy. Then USU* = VS, V* with 51,5, € &y if and
only if Sy = S; and U*V commutes with S;. This forces U*V = ewle &
e @ ... @ e+t where I; is the j-by-j identity matrix and 6; € R, for
k=1,...,n—74 1. Since U,V € Uy we have §; = 0. In all this yields us
n? —1 — (n — j) real parameters for choosing the unitary matrix. To choose
an element of Sy, we have j(j — 1)+ j + 1 + 2(n — j) free real parameters.
This gives us n? +n + j(j — 1) parameters as claimed. 0]

Binormal matrices were defined via the polynomial equations (5). How-
ever, each PN, for 2 < j <n — 1, being defined as a union of the solution
set of an infinite number of polynomial equations, is a more complicated set
than that of binormal matrices. For an illustration, consider PN 5. Then,
for any fixed o € C, the variety

[A €T : (42— aA)(A”? —@A") — (A2 —@A") (A2 — ad) = 0}

is a subset of PN,. Letting o vary and taking the union yields PN ,.
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3.4 A canonical Schur decomposition

For a general square matrix A € C"*" it is not obvious how to compute its
minimal normal polynomial with an algorithm of O(n?*) complexity. A brute
force method can be devised in the Frobenius norm || - || although then the
distance formula of Corollary 1 does not hold.

Algorithm 1. "for computing the minimal normal polynomial of A €

C’IZX’IZ”.
compute a Schur decomposition A =V (D +T)V* of A
forg=2,3,...

compute the Schur decomposition A =V (D; + T;)V* of A7
T; - 21;11 Otka‘ ‘f

compute minah___’aj_le(c ‘
end.
The implementation is illustrative albeit naive. In section 5 we present a
numerically more reliable method.

The intermediate steps give rise to a “vector” measure of nonnormality in
accordance with Henrici’s measure [16] defined, for j =1,...,n — 1, via

7j—1
Tj - Z Oéka
k=1

Hence He;(A) is the original deviation due to Henrici. If He;(A) = 0 with
j < n, then a particular Schur decomposition can be associated with the
matrix.

He;(A) = min

041,...,04]'716(:

(12)

F

Theorem 10 Let p be the minimal normal polynomial of A € C™™ with
k = deg(p(A)) such that k; are the multiplicities of the eigenvalues of p(A).
Then there is a Schur decomposition A = Udiag(Mj, ..., My)U* of A with
upper triangular blocks M; € Cki*Fi | for j=1,... k.

Proof. Let A = V(D + T)V* be a Schur decomposition of A. Since p(A)
is normal, p(D + T is diagonal. We assume the Schur decomposition to be
such that the equaling diagonal entries of p(D + T') are arranged in blocks
(this can be achieved since p(D + T') is a diagonal matrix commuting with
D + T). Then the k blocks are of size kj, for j = 1,..., k. For p(A) to
commute with A, the corresponding Schur decomposition of A must have k
triangular blocks of respective size. ([

If Hej(A) = 0 with j < n, then A is reducible, i.e., it can be repre-
sented, after performing a unitary similarity transformation, as a direct sum
of smaller matrices. For reducibility, see [17].

Polynomial normality can also be used in characterizing matrix Krylov
subspaces qualitatively. To this end, consider

K(A; 1) = span{l, A,..., A" '} (13)

which is also called the double commutant of A. It is well known that its
dimension equals the degree of the minimal polynomial of A and is thereby
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bounded by n. In this regard polynomial normality yields more insightful
qualitative information. For example, the double commutant of the matrix
of Example 5 does not contain any other normal matrices besides multiples
of the identity.

Corollary 4 For A € C™™ the dimension of N N K(A; 1) equals

max deg(p(4)).
Proof. The dimension is well defined since N' N K(A; 1) is a subspace of
C"*™ consisting of those polynomials in A that give a normal matrix. These
matrices are closed under addition and multiplication by a scalar. The claim
follows from the Schur decomposition introduced. O

Aside from being unitary invariant, this number is also translation and
(nonzero) scaling invariant of A. It is also invariant under taking the adjoint
because the minimal as well as the minimal normal polynomial have the same
degree for A and A*.

In contrast to Example 5, the dimension of N'N K(A; I) for the matrix
of Example 2 equals n — 1, the largest value one can have with a nonnormal
matrix. Hence, regarding iterative methods, we are dealing with an almost
normal matrix in this geometrical sense proposed. Remark also that the
dimension of NN K(A;1) is always at least n for a nonderogatory A €
BN C (CQnX%.

4 Measures of nonnormality related to itera-
tive methods

Instead of expecting to find a low degree monic polynomial yielding a normal
matrix when evaluated at the matrix, a more realistic alternative in practice
is to strive for decrease in nonnormality. This aim gives rise to measures
of nonnormality differing from the classical ones [8] since there is now an
element of discreteness through the increase of the degree of the polynomial.
For more familiar polynomial approximation problems related to iterative
methods, see [12].

Denote by ’/P\j(oo) the set of monic polynomials of degree j at most. The
first problem is to find, for A € C"*" and j = 1,...,n, the value of

min dist(p(A),N) (14)
PEPj(00)
in the spectral norm. For attaining zero the degree can be n and, as was
illustrated in Example 5, it cannot be improved in general. This is a difficult
problem in the spectral norm; no explicit formula is known even in the case
j=1
In [25] we introduced, for j = 1,...,[%], the problem of finding
min dist(A — F, ) (15)

rank(F)<j



18 M. HUHTANEN

and in [21] it was shown that for attaining zero j = |7 | suffices. With binor-

mal matrices we can demonstrate that this cannot be improved in general.

Theorem 11 There ezist a binormal matriz A € C?*?" such that A — F is
nonnormal for every F with rank(F') < n.

Proof. Take A = [J!] € C*® Let A—F = A—UV* with U,V €
C™* for k < n. We identify V with the subspace it spans. Clearly, the
null space N(A) of A is spanned by the first n standard basis vectors. We
assume A — UV™ is normal and show that it leads to a contradiction. To
this end we employ the fact that a square matrix M is normal if and only if
|Mz|| = ||M*z|| for every vector z; see, e.g., [14, Condition 64].

We have dim(V+ N N(A)) > 1 so that taking a nonzero z € V+ N N(A)
gives (A — UV*)z = 0. Assuming A — UV* to be normal, we have (A* —
VU*)x = 0 as well. Note that A*z # 0 since the null space of A equals the
orthogonal complement of the null space of A*. Since the range of A* equals
the orthogonal complement of the null space of A, the equality A*z = VU*x
implies that there is a vector in V' belonging to the orthogonal complement
of the null space of A. Consequently, dim (VL N N(A)) > 2. Continuing this
argument inductively, we can deduce that dim(VL NN (A)) > n. The same
reasoning can be used to show that dim(U* N N(A*)) > n. Therefore

A—UV* =[015R] (16)

with a matrix R with rank strictly less than n. Since by (16) the matrix
A — UV* is already Schur decomposed, this forces R = I for the matrix
to be normal. This, however, is in contradiction with the assumption that
rank(R) < n and the claim follows. O

The measures (14) and (15) quantify nonnormality very differently. The
matrix A of Example 5 was polynomially normal of degree n although we
attain zero in (15) with a rank-1 perturbation by replacing the (n,1)-entry
of A with 1. Conversely, A = [J ] € C*"*?" is the square root of a normal
matrix while A — F' is nonnormal for every matrix F' with rank less than n.

Since these two prescribed measures are so dissimilar, we combine them
as

~ min dist(p(A) — F,N), (17)
PEP;(00), rank(F)<lI

for j+1 < |5]. The motivation for solving linear systems is as follows. If zero
is attained, then a polynomial in A is a small rank perturbation of a normal
matrix. Since N is a translation invariant set, As(A)—F = N is normal for a
polynomial s. Hence solving a linear system Az = b is equivalent to solving
N(I + N7'F)z = s(A)b as long as N is invertible. Using the Sherman—
Morrison formula, this latter problem amounts to solving rank(F’) + 1 linear
systems involving N. See also [21].

For Ritz values it is not clear how to preserve the length of recurrence
since in a small rank perturbation the spectrum changes typically drastically.
Let us describe a way to circumvent this in case (15) is zero for j < n.
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Example 7 Assume A = N + F, where N is normal and F' = UV* is of
rank j < n. To compute Ritz values for A with the method proposed in [24],
store

U=lu ... u;land V =[vy ... vj]. (18)

Denote by Q) € C™* the matrix with orthonormal columns that [24, Algo-
rithm 1] has generated with the normal part N of A at the kth step. For
Ritz values consider

QrAQr = QuNQk + QuF Qi = QuNQi + (U Qr)" V*Qy. (19)

Treating the terms on the right separately, [24, Algorithm 1| yields @} NQy
with a recurrence whose length does not exceed v/8%. To find U*Q; and V*Qy
we do not need to preserve any of the columns of () while the computation
proceeds. Hence the storage consumption for Ritz values with this approach
is bounded by 2j + v/8k. The difference is more drastic if the spectrum of
N lies on low degree algebraic curve; see [24]. Depending on the degree, the
maximum number of vectors that needs be stored is constant. For example,
if N is Hermitian, then only 2; + 3 vectors needs to be saved.

REMARK. In the preceding example the actual iteration did not employ
F. Only in the projection (19) was F' taken into account. A way to employ
F also during the iteration is to choose the (re—)starting vector(s) from the
columns of U and V.

Example 8 We demonstrate the idea of Example 7 with a small but il-
lustrative example by using Matlab. Assume A = N + F with n = 1000,
where R = randn(n,n) + irandn(n,n) and N = R+ R* and F is a random
matrix with rank (F) = 5. Rounding to five digits, we had ||A|| = 125.92,
|| V|| = 125.87, and the largest and the smallest non-—zero singular values of
F were 0,(F) = 45.755 and o05(F) = 41.666. By using a random complex
vector as a starting vector, we took 30 steps of the Arnoldi method and 50
steps of the method (19). See Figure 1 and Figure 2, respectively. Note that
with the latter alternative we needed to save only 13 vectors, independently
of the number of steps. Regardless of that, to our mind the method (19)
yields here better approximations to several extreme eigenvalues of A.

Sometimes in the numerical solution of a PDE a splitting A = N+ F of A
can be obtained directly by discretizing the boundary conditions separately.
By the same arguments that led to (17), we are interested in finding

min dist(p(A — F),N), (20)

peP;(00), rank(F)<I
for j 4+ 1 < |5]. The following relation between (17) and (20) is obvious.

Proposition 8 Assume A = M + F € CY" with p(M) normal. Then
p(A) = p(M) + G with rank(G) < deg(p) rank(F).
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Figure 1: The spectrum of A (depicted by ’x’) and the Ritz values with the
Arnoldi method (depicted by’o’) after 30 steps from Example 8.

5 Algorithms for computing the polynomials
introduced

The computational approach outlined in Section 3.4 is not numerically re-
liable. For a more stable algorithm, consider a Schur decomposition A =
V(D+T)V* of A€ C"". Define a linear operator on C™*™ via the matrix—
matrix product

X (D+T)X (21)

for X € C"". Using the Arnoldi method, compute a Hessenberg form
H = (h;) for this operator by using (1 = (D + T')/||Al|r as a starting
vector. We denote by (); the arising orthonormal matrices and set V; = T'
and a; = Hz o 1, for j > 2.
Algorithm 2. “for computing the minimal normal polynomial of A €

Cn)(n‘”

for j =2,3,... compute the orthonormal matrices @),

set Vi = a; |4l (Q; — diag(Qy))

compute Hej(A) = min,, ., ec ‘ ‘V Zk ) fkak‘ ‘f
if He;(A) =0, end

form the polynomaial corresponding to zero

end.

In this manner, by computing an orthonormal basis of the matrix Krylov
subspace

K(D+T;D+T)=span{D+T,(D+T)*....,(D+T)"}
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Figure 2: The spectrum of A (depicted by 'x’) and the Ritz values with the
method (19) (depicted by ’0’) after 50 steps from Example 8.

we avoid generating the power basis {Ak}z>1. With this orthonormal basis
the strictly upper triangular matrices 7T}, of Algorithm 1 can then be found
in a more stable way.

For an illustration of Algorithm 2, consider the following example com-
puted by using Matlab.

Example 9 We take four matrices of size 20-by-20 each scaled to have the
spectral norm equal 1. The matrix A; is a complex random matrix. The
matrix A is binormal with random complex diagonal blocks. The matrix
Ay = M, ® M, with a complex random M; € C*** and a Hermitian diagonal
matrix M, € C*5. Finally, A, is the matrix of Example 5, i.e., the nilpotent
shift. See Figure 3 for the behavior of the He;(A).

The algorithm proposed cannot be regarded as practical for large prob-
lems. The following method is “semi sparse” in the sense that we need a single
Schur decomposition. Thereafter we compute only matrix—vector products.
To this end, recall that the Arnoldi method with D + T and a starting vec-
tor gp € C" generates orthonormal vectors g; which can be represented as
¢; = pj(D + T)go with polynomials p;. These polynomials can be formed by
using the entries of the Hessenberg matrix computed.

Algorithm 3. "for computing the minimal normal polynomial of A €
CTLXTL?"
compute a Schur decomposition A=V (D +T)V* of A
for qy € C*

using the Arnoldi method with D +T compute ¢; = p;(D + T')qq
compute q; = q; — p;(D)qo
orthogonalize q; against span{qi, ¢z, ...,q;—1} to get g,
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16 18 20

Figure 3: From Example 9 the behavior of He;(A) for matrices Ay, Ay, A3
and A, € C?°*20 denoted by the solid line, '——’, +—" and ’x—, respectively.

if g =0, end
form the polynomial corresponding to q; = 0
end.

Hence the purpose of the step ¢; = ¢; —p;(D)qo is to “deflate the diagonal
part” from the vector ¢; = p;(D + T')qo.

It is critical to compute the coefficients of the polynomials p; accurately in
order to generate p,(D)qy accurately. Note that since D is a diagonal matrix,
the latter is a polynomial evaluation and not a matrix—vector multiplication
problem.

6 Conclusions

We have considered aspects of nonnormality for iterative methods. Our point
of view is weighted by the Krylov subspace methods recently introduced
for normal matrices such that a matrix regarded as almost normal if there
is a circuitous way to employ these methods for solving linear systems or
finding approximations to eigenvalues of the matrix. To this end we have
studied binormal matrices, their unitary orbit and, as their natural extension,
polynomially normal matrices of moderate degree. We have collected various
matrix nearness problems and shown how, e.g., Ritz values can be computed
with modest storage requirements in case we have an almost normal matrix
in the sense proposed. Three algorithms were devised for computing the
polynomials introduced.
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