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1 Introduction

Finite element analysis of thin shell structures is known to be a task of
many aspects. Quality of the discretized solution depends on several factors,
e.g. the geometry and thickness of the shell, degree of the interpolating
polynomials, the regularity of the mesh, and the applied load.

A good finite element scheme for shells must be able to successfully con-
front a whole spectrum of different situations: the problem of locking in
the bending-dominated state should be circumvented and the membrane-
dominated deformations captured. Further, the detection and resolution of
several boundary layers is required.

At the moment there is no general and unified theory for how to design
a good finite-element procedure for a general shell structure. Therefore the
design of new shell elements, as well as the ongoing testing of already existing
ones, is often reliant on the use of sets of benchmark problems. Unfortunately,
the test sets used do not necessarily cover all the phenomena present in
thin shells, but are rather a “traditional collection” of problems to which the
solution (or some part of the solution) is known.

Our plan is to propose a series of benchmark problems illustrating char-
acteristic aspects of thin shells and their finite element analysis (for similar
ideas, see [1]). Throughout the series we examine different types of shells of
revolution. This first paper focuses into the nature of some relatively simple
elliptic and hyperbolic shells. Our analysis is carried out in the spirit of [3]
where the parabolic case (i.e. a cylinder) was thoroughly treated.

The plan of this paper is as follows. In section 2 we present the shell model
used in numerical calculations. In section 3 the actual benchmark cases are
specified and the results are presented in section 4. A short discussion is
provided in section 5.

2 The Shell Model

Throughout the paper we consider the dimensionally reduced model of Reiss-
ner and Naghdi. In this model the total energy of the shell is given by

Flu) = %A(@, u) — Q(u) (1)

where A represents the (possibly scaled) deformation energy, ) denotes the
load potential and u = (u, v, w,0,1) is the vector of three translations and
two rotations. The deformation energy is further split into bending, mem-
brane and transverse shear energy:

A, u) = d* Ap(u, v) + dAy (u, u) + dAs(u, u). (2)



Here d denotes the thickness of the shell and the different energy components
are further given by
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where r;;, f;; and p; denote the bending, membrane and transverse shear
strains, respectively, and v is the Poisson number of the material. The inte-
grals are calculated over the midsurface €2 of the shell which is parametrized
by the (generally curvilinear) principal curvature coordinates «;. The metric
of the shell surface is given by the Lamé parameters A;.

Remark 1 In some instances it is customary to use the scaled thickness
t = d/L where L denotes the characteristic length of the shell. However, in
the cases under study L equals unity and therefore we may take t = d for any
practical purposes.

Remark 2 In our model we have omitted the constant factor D = ﬁ,

where E is the Young modulus of the material, from the energy expressions.
Consequently, all the results can be considered to be scaled with a factor D',

The strains are taken to be [2]
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where the R;’s are the principal radii of curvature of the shell at the point
(Oq, OZQ).

Given an energy space U C [H'(Q)]® the above definitions lead to a
variational formulation: Find u € U s.t.

Alu,v) = Qv) Yvel (3)

and further to a conforming finite-element approximation in a finite-dimensional
subspace U, C U: Find u, € U, s.t.

Aluy,,v) = Qv) Yuv el (4)

3 The Benchmark Cases

For shells of revolution we note that the entire geometry of the problem is
defined by a profile function ® and the axis of revolution. In this paper we
consider the case when the axis of revolution is the x-axis and the profile
function is given by ® = ®(z) > 0, x € [—L, L] for some L > 0. Thus, the
profile function ® gives the radius of the shell at the point x. In this case
the coordinates a; and asy correspond to the z-coordinate and the angle of
rotation denoted by ¥, respectively. Further, the Lamé parameters depend
only on x and are given by

Ai(z) = V14 [P(2)? Ax(r) = @(2), (5)

and the radii of curvature satisfy
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For benchmarking purposes the variational problem (3) can be reduced
to a one-dimensional problem. Firstly, we assume that the load acting on
the shell is a pressure load, i.e.

Q(u) :/Qf(x,y)w(x,y)dxdy. (7)

Secondly, we assume that the load is periodic in the angular variable and
given by
f(z,y) = P(x) cos (Ay). (8)

For A # 1 the load given by (7), (8) is self-balancing and thus orthogonal to
any rigid body modes that may arise.
The assumptions (7), (8) imply that the solution is given by

u(z) cos (Ay)
v(x)sin (A\y)
w(x) cos (Ay) 9)
() cos (\y)
(@) sin (Ay)

Q(fﬁ,y) =

Substituting the load (7), (8) and the Ansatz (9) into the variational formu-
lation (3) and integrating with respect to the angular variable y we end up
with a one-dimensional problem: Find u = (u(z),v(z), w(x),0(z),¥(z)) € U
s.t.

A(u,v) = &> Ap(u,v) + dAy (u,v) + dAs(u,v) = Qv) Yveld  (10)

where U C H'(—L, L) is the one-dimensional energy space. In (10) the
bending, membrane and shear energies are given by
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and the load by
Q) = 7r/ Pla)w(x)dz (11)

L



The one-dimensional strains are in this case given by
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The one dimensional variational formulation (10) is then solved by a high-
order finite-element method in an overkill manner to produce accurate ref-
erence results. From the solution u;, = (un(x), vy (2), wy(z), Op(x), Yp(x)) the
approximate two-dimensional fields can be reconstructed as per (9).



Remark 3 We note that the one dimensional fields are also solutions to the
Euler equations given by
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and the constants of integration are determined by the boundary conditions.

In order to obtain a relatively simple but yet interesting benchmark prob-
lem a profile function

d(z) =1+ az®, z€[-L,1] (12)

with L =1 and —1/2 < a < 1/2 is chosen. With this choice the cases a > 0
correspond to hyperbolic shells whereas the cases a < 0 lead to elliptic
geometries. The choice & = 0 gives the parabolic case (i.e. a cylinder) and is
not of interest here. In addition, for each geometry, three different boundary
conditions are considered:

1. Clamped boundary, i.e. u(—1) = u(1) = 0.
2. Free boundary, no constraints imposed at x = +1.

3. Sliding support, i.e. w(—1) = w(1) = 0 but no other constraints at
r==+1

The reason for these three choices is that the first conditions leads to membrane-
dominated deformation states where no inextensional deformations exist and



the second condition with suitable loading falls into the category of bending-
dominated deformation states. In the third case a strong boundary layer
typically appears.

The load acting on the shell surface is taken to be a constant pressure
load, i.e. P(x)= P, in (8).

4 Results

In our model the load is not scaled in the thickness d. This results in energies
tending to infinity as d — 0. Therefore it is sensible to scale the energies
and deformation fields with proper exponent of d. It turns out that in case
of a clamped boundary the scaling factor d is appropriate, in case of a free
boundary the exponent d* naturally appears, and in case of sliding support
the factor d*/? gives nicely bounded energies.

In the numerical computations the parameters are chosen as follows: Py =
1, A = 2, and v = 1/3. Further, the values of « are chosen to be « = —1/2
for the elliptic case and a = 1/2 for the hyperbolic case.

4.1 Deformation fields

The w-component of the deformation field for the elliptic case is shown in
Fig. 1 and for the hyperbolic case in Fig. 2 for each of the three boundary
conditions and for the thickness d = 0.01.

4.2 Energy distributions

The values of different energy components for an elliptic and a hyperbolic
shell is shown in Tables 1 — 3. As expected, the deformation energy is mainly
due to membrane energy in case of a clamped boundary whereas in case of
a free boundary bending energy dominates. The third boundary condition
considered, the case of a sliding support, leads to a mixed configuration where
the membrane energy is roughly three or four times the bending energy.
It should be noted that the contribution of the shear energy is in general
negligible for the type of load applied.

4.3 Boundary layers

It is predicted theoretically that in both cases, elliptic and hyperbolic, bound-
ary layers of length 1/d and 1/+/d appear [4]. These are very well visible in
Figures 3 and 4 where three different values of d are plotted together in a
close up near the other end-point x = 1. Also, the amplitudes are scaled by
a power of d in addition to the basic scaling introduced at the beginning of
section 4.

Note that the 1/d layer is not present if the Kirchhoff model is used,
i.e. if the shear strains are assumed to vanish and consequently the energy
component associated with this short layer is of negligible size.
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(a) Elliptic shell, clamped boundary, scaling fac-
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-1 0.5 0.5

=
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Figure 1: Deformation profiles of elliptic benchmark shells with a = —1/2
and d = 0.01.
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(a) Hyperbolic shell, clamped boundary, scaling
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(b) Hyperbolic shell, free boundary, scaling factor
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(c) Hyperbolic shell, sliding support, scaling fac-
tor d?/2,

Figure 2: Deformation profiles of hyperbolic benchmark shells with a = 1/2
and d = 0.01.
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Table 1: Bending and membrane deformation energies of the elliptic bench-

mark shell with & = —1/2 for different boundary conditions and thickness.
be scaling d bending membrane
clamped d 0.1  0.067932274375052329846 0.6529083197266562495
clamped d 0.01  0.0103830463685097923 0.882496248727063182
clamped d 0.001 0.001257384370548325997 0.911085652488554903
free d? 0.1  0.05259865416361741899  0.016340716502303697963
free d? 0.01  0.04482455416706005 0.000518711236301804
free d? 0.001 0.0445615374485630 0.00000910669449100
sliding d3/? 0.1 0.121531656841800993 0.376653195459904178
sliding d3/? 0.01  0.10023313105636776 0.35255544437330241
sliding d*?  0.001 0.097760476060097 0.3146453371291655

Table 2: Bending and membrane deformation energies of the hyperbolic
benchmark shell with o = 1/2 for different boundary conditions and thick-

ness.

be scaling d bending membrane
clamped d 0.1  0.0503943539707896942 0.5898711230384374474
clamped d 0.01  0.012885686264982638  0.75063903767235717
clamped d 0.001 0.003945073398564912  0.79448479732357318
free d? 0.1  0.07345043843274972 0.0454278042763258840
free d? 0.01  0.07096148230262519 0.00050691514487500
free d? 0.001 0.070928877870723 0.000005675569089a
sliding 3/ 0.1  1.6172362524993354 2.019491461183940693
sliding a3/ 0.01  0.4512398801411733 2.6183584078606343
sliding d®?  0.001 0.429359677890091 1.724365800207987

Table 3: Shear deformation energies of the elliptic and hyperbolic benchmark
shells with @ = £1/2 for different boundary conditions and thickness.

be scaling ~d  shear (elliptic) shear (hyperbolic)
clamped d 0.1  0.0141326720498383618 0.00488440125780130
clamped d 0.01  0.00021889131306770 0.00014965245645691
clamped d 0.001 0.000003415112101626 0.000004572518992731
free d? 0.1  0.003059859817461312484 0.00140478553416503418
free d? 0.01  0.00019506851456497016  0.00004217225656242
free d? 0.001 0.0000186715544510 0.00000321135199450
sliding PRE 0.1  0.01728331306404600426  0.03101233723801069
sliding a3/ 0.01  0.00139067900641246 0.0017604214947907
sliding d*? 0.001 0.0001227384878609 0.0001755007710594
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(a) Elliptic shell, sliding support, 1/+/d-layer in
w-component.

1-d 1
(b) Elliptic shell, free boundary, 1/d-layer in 1)-

component, scaling factor 1/d.

Figure 3: The 1/v/d- and 1/d-scale boundary layers in the elliptic shell.
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(a) Hyperbolic shell, clamped boundary, 1/+/d-

layer in f-component, scaling factor v/d.

d=0. 0

(b) Hyperbolic shell, free boundary, 1/d-layer in
1)-component, scaling factor 1/d.

Figure 4: The 1/v/d- and 1/d-scale boundary layers in the hyperbolic shell.
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5 Conclusions

Shells of revolution provide a good basis also for benchmarking hyperbolic
and elliptic shell geometries. Suitably selected load allows to reduce the
dimension of problem by one allowing an accurate solution of the deformation
fields.

The benchmark cases considered strengthen several principal ideas on
the behaviour of thin hyperbolic and elliptic shells when using the model of
Reissner and Naghdi:

1. The deformation state can be either bending- or membrane-dominated
— or some intermediate state. Constraints imposed on the boundary
have a great impact on the actual deformation state.

2. The contribution of the transverse shear energy is typically negligible.
3. Boundary layers of scales 1/d and 1/+/d appear.

However, considering only basic benchmark cases like the ones in the
present paper would give too narrow a vision on the very rich garden of
differently behaving shell structures. Therefore, in a forthcoming paper we
shall analyse a sensitive shell that is intended to shed light on more complex
aspects of shell modelling.
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