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1 Introduction

Let S? be the unit sphere of the Euclidean space R?. In this paper, we are
concerned with approximation in the L?-type Sobolev spaces H*(S?). A most
natural set of sampling points on the sphere consists of the intersections of
the equiangularly spaced longitudes and latitudes, and we shall restrict to
this case. We study approximation in Sobolev spaces on the sphere S? with
comparison to the very basic case of interpolation on the circle S*. For S!,
the old results are optimal and easy to obtain. However, non-commutative
harmonic analysis poses hard problems, and for S?, our results are quite likely
far from optimal, and yet require some work.

Our interest in this subject came originally from a need to solve integ-
ral and pseudodifferential equations by efficient algorithms. For example, a
Dirichlet boundary value problem of a linear elliptic partial differential equa-
tion in a domain diffeomorphic to the unit disk of the plane R? leads to a
pseudodifferential equation on the unit circle S' ¢ R2?. To solve such an
equation numerically, one may use equispaced sampling points on S!, and
compute with the now-classical FFT, the Fast Fourier Transform (see [8]).

Within last few years, the progress in Fast Fourier type algorithms on the
sphere S? (see [1], [2], [3]) has made it feasible to tackle applications, ranging
from tomography to meteorology. E.g. boundary value problems in domains
diffeomorphic to the unit ball of R? can be considered ([6], [7]).

The structure of the paper is as follows: The second section reviews the
well-known analysis on the circle. The third section is the core, dealing with
the case of the sphere. The fourth section demonstrates the sins committed
in estimates, applying the techniques of the sphere case to the circle.



2 Approximation on S!

To get some perspective to numerical harmonic analysis on the sphere S2,
let us review some elementary facts from numerical Fourier analysis on the
unit circle S' ¢ R%. We identify S' naturally with the 1-dimensional torus
T = R/Z (the space of real numbers modulo integers): if x € [0, 1] then
x + 7Z € T can be identified with (cos(27x),sin(27zx)). Of course, we may
identify T also with the interval [0,1], via (z +Z + ) : T — [0,1[. The
Fourier transform f: Z — C of a measurable function f : S! — C is defined
by

f(f) :/0 f($) o i2mTE dé.

The L2-type Sobolev space of order s € R on S!, denoted by H*(S'), is the
completion of C*(S') with respect to the norm

~

L
Hs(s1) 1= (Z<5>23 ) ,
cez

f= /]

(€)

where () := max{1,|{|}; the inner product is of course
(f.9) — () ey = Y _(©* f(&) 5(E).
¢ez
For n € N, let us define the orthogonal projection P, : H*(S') — H*(S') by

P.f = Z f(é) ¢,

E=—n+1

where e¢(z) = €%, If s < ¢ then it is easy to show that

If = Pufl

In practice, however, we are able to sample the values of a function f only
at finitely many points of S, and so we cannot even calculate P, f; hence let
us define the interpolation projection @, : C(S') — C(S') by

Q=P (@D (%) =1(5) 0<i<m,

mosty <77 | fllmes-

2n

recall that we can identify S! with [0,1[. This indeed determines Q,: if
1/2 <t and f € HY(S") then

n

Quf = > e Fl€+2my),

E=—n+1 neZL

and if moreover 0 < s < t then

|f = Qufllr=y < Ce ®" || fllmeesy,
where C; < oo depends only on ¢, and lirln C; = oo; this result is optimal
t—5+

(for a proof, see e.g. the lecture notes [8]). The Fourier coefficients Qnf can
be computed efficiently by FFT, in time O(nlogn).



3 Approximation on S?

For the unit sphere
§* = {a = (x1,25,25) €R®: ||w|lps = (a7 + 25 + 23)"* = 1}
we use the spherical coordinates x = z(0, ¢), where
x1 = cos(¢p)sin(f), o =sin(¢)sin(f), x3 = cos(h),

0<6<m 0<¢<2nr. The inner product for L*(S?) is

(f.9) = (f. g ey = / ' / " f(2) 9@) sin(0) 40 do.

Applying the Gramm-Schmidt process to the sequence (z — 2')%2, we ob-
tain the Legendre polynomials P, forming an orthogonal basis for L*([—1, 1]):

PO) = PE) = 51 (di) (1),

Forl € Nand m € {0,...,l}, the associated Legendre function P/™ is defined

by

m m d "
e == (L) e

and furthermore

(I —m)!
(I +m)!

B (z) = (=" B"(2),

Then an orthonormal basis for L?(S?) consists of the spherical harmonic
functions Y;™ € C*(S?) (I € N, |m| < 1),

(2l + 1)(I —m)
4 (l 4+ m)!

Y™ (x(0,9)) = (=1)" \/ ! P"(cos(6)) ™.

~

For | € N and m € Z, |m| < [, the Fourier coefficient f(l,m) of a function
feC>=(S?) is

Flom) = (1. Y™ o) = /0 ' /0 " f(x) V(@) sin(6) 6 do.

The Fourier inverse transform is now

00 !
F=>3" fl,m)ym
=0 m=—1

~

It is often convenient to define f(I,m) := 0 whenever [ < 0 or |m| > L.
The spherical harmonic Fourier series can be obtained also from the Four-
ier series on groups SO(3) or U(2); this process is canonical, owing to the
representation theory of the groups.



The Laplace operator A on S? is the angular part of the Laplace operator
92 + 92, + 02, on R?:

1 9 [, 0 1 0?
Af= sin(d) 960 (sm(Q) %f> * sin?(6) 37¢2f

Also A can be obtained using the representation theory of the symmetry
group of S?. Notice that ¥;™ is an eigenfunction of the Laplacian, such that
AY™ = —I(1+1) Y™ Let the test function space D(S?) be C*°(S?) endowed
with the standard Fréchet space structure. The Sobolev space H*(S?) is the
completion of the test function space in the norm

0o 1 ) 1/2
1702y = (ZWS S |Fam) ) ,
=0 m=—1

where (I) = max{1,l{}. The inner product for H*(S?) is obvious. Let us
define the orthogonal projection Py : H*(S?) — H*(S?) by

l
Pof=> Y flm)y"
=0 m=-—I
Lemma 1. [Ifs <t then
If = Pufllassz) < 0" (| fllaes2).

Proof. This is a matter of a simple calculation:

o l 1/2
If = Pufllieey = (ZFM Z”era,mn?)
l=n

<t o n::_l V2
sé nst (Z l2t Z ]f(l,m)]Q)
l:on m:—ll s
< a7t (Z@% > |J?(l7m)|2>
=0 m=—1

= "7 || fllaes2)
=

Now we are facing the difficulty that a function f can be sampled only
at finitely many points. As in the case of numerical Fourier analysis on the
torus, we need interpolation projections @),, and study their approximation
properties in the scale of Sobolev spaces. Moreover, it would be important



to have some_efficient computation method for the approximated Fourier
coefficients @, f (I, m).

Actually, there is an FFT-type algorithm for computing the Fourier coef-
n—1 1

ficients of a function f = Z Z f(l ,m) Y™, where n € N. Notice that here
=0 m=—1

f has at most N := n? non-zero Fourier coefficients; a straightforward cal-

culation for all these coefficients would cost O(N?) operations, but with the

FFT-type approach only O(N(log N)?) operations and memory is needed.

The inverse Fourier transform has similar properties. The key to an FFT-

type algorithm on S? is that

Y™ () = cim P (cos(8)) €™,

where the classical FFT on S! can be applied to the exponential factor, and
that there is a recurrence formula

(l—m+1) PT(2) = Q2l+1) 2 P"(2) + (I +m) P"(2) =0

allowing one to construct a “Fast Legendre Transform”. It can be said that
all this is possible due to the rich symmetries, and there has been research
on FFT-type algorithms on many compact groups [4].

Let b € N and n = 2°. The sampling points on S? for degree n are

o) = 2(0", 6\"),

. J o m g K
9] =T %, (bk — 27T %7
where 0 < 5, k < 2n. Notice that xg,? € S? is the north pole for every k, and
furthermore we will have sampling weight equal to 0 at the north pole; yet for
convenience we may think of 4n? points, which of course holds asymptotically
as n — o0o. Proposition 1 collects some results from [1]:

n—1 1

Proposition 1. Letly € Nandmy € Z, |mo| < ly. If f = Z Z f(l,m) y"
then o

N 1 2n—12n—-1 - @@

fllo,mg) = 4—712 f <x Z) Y, <x§2)> sin <9J(n)> X

k=0
X é 1 sin <(2l + 1)9(n)> :
™ 20+ 1 J

Notice that here we used (less than) 4n? sampled values of f to compute
n? Fourier coefficients f(I,m). The sampling measure implicit here is

2n—12n—1

n—1
4n2 Z Z(Si’i) sin (6”) % ;m}u sin ((20-+ 1)6").




Let us define Q,, : C(S?) — C(S?) by

Trivially P,Q,, = Q,. By Proposition 1, we have Q,P, = P,. Hence Q? =

Qn(PQn) = (QnP)Qy = P.Qn = Qp, i.e. @, is a projection. We want to
estimate || f — Qy f||ms(s2). First, let us present some auxiliary results.

Lemma 2.
_ 1, whenl=0=m
,U/Tl(l?m) =
0, when0<l<2n or mé¢2nZ.
Here 2nZ = {2nk : k € Z}. Moreover,
e (l,m)| < C ()2,
where C' < 2.043 1s a constant.

Proof. The equations for the Fourier coefficients were proven in [1]. Let us
then establish the estimate. Let

1, 0<f<m,
Sgn(e):{—l -1 <0<0

Notice that in the L*([—m, 7])-sense,

o0

4 1
sgn(f) = — ; 577 S+ 1)0).

Due to the Gibbs phenomenon, the partial sums of this Fourier series do not
converge in L, but yet we may say that

n

4 1
— in((20+1)6
7T;%_i_lsm(( +1)0)| <c

for every n € N, where ¢ < 1.179 is a constant. Thereby

|/,Ln l07m0)|
_ ’/ Y7 du
2n—12n—-1__ 4 -1
- 42221/’"0( ”)sm(@") —Z sm<21—|—1)9§”)>
n m
7=0 k=0 1=0

< ¢ sup sup |V (x(6,9))|

0<6<7 0<¢p<2m

c 2l +1 HYI?OHL%S%
= c\/2lp+ 1.

In the last inequality we used Lemma 8 from [5]. Hence the desired estimate
is obtained O

IN

For a function or a distribution g on S?, denote g/ := g(I,m) Y;™.



Lemma 3. Let f € D(S?) and g € D'(S?). Then fg € D'(S?) satisfies

lo+1
m1 mg
E E E f1 912 m).
lb=0  ly=|ly—]| m1,ma:

Imy;|<l;
mi1+mo=m

Proof. There is a product formula

l1+l2
mi ma lllgL mi +m2
Y21 YEQ - Z Cmims Y ’
L=|l1—l12|

where

bl _ \/(251 + D@+ 1) bl b

mimse 47T(2L i 1) 0,0,0 mi1,ma,mi1+m2a?

11,l2,1 : : ; hilaL
oLz L, being a Wigner symbol, see [9]. We use the convention ¢;}/2, = 0

whenever L < |l; — I3 or L > Iy + I3 or |my + msy| > L. Thus

fmlg;;w( ) — Ym,mi+ma C?Llfrlng f(llaml) /g\(l%m?)a

so that

o

follim) = Y Z > Z fi g (1m)

1h=0mi1=—11 l2 Omgf—lg

= > > Z Z Sumarnytma €20, Fi g (1, m)

ll OZQ Oml——l1 m2——12

00 lo+1
_ E E E l1lgl
- m1m2 l17m1) g(l27m2)
la=0  Ii=|la—] my,ma:
;| <l
mi1+mo=m
00 lo+1
— ml mz
=2 2> ftaram
lo=0  Ii=|la—] mi,ma:

Im;|<l;
mi1+mo=m

|

Lemma 4. Let f be a function, and let p,, be the sampling measure presen-
ted above. Then

P m)| < G ™ )" () | Fma)]

for every r > 1, where C,. is a constant depending on r, lirﬂ C, =
7



Proof. The last claim follows simply because ju,;> = 0 when my ¢ 2nZ.
Notice that H"(S?) € C(S?) if and only if > dim(S?)/2 = 1. For functions
g,h : S* — C let us denote M,h := gh. When r > 1, H"(S?) is a Banach
algebra when equipped with the norm

g— sup ||gh||HT(S2) = ||M9H£(HT(S2))'
heH™(S2): [|hll gr 52y <1

This Banach algebra norm is equivalent to the Sobolev norm:
19l (s2) < 1Mol eers2)) < e 9]l s2)-

Here ¢, is a constant, and hr{l ¢, = 0o. Thereby we get
r—1+

f"“uZE( m)| = O N )i e sy
< O A 2 e 2
= O™ ||Mflllﬂn12||m(§2)
< (O HMfZLl“%(HT(SQ)) [t 1 52
< O N N2y Nl 2

e (77 (L) (1)

~ 2 P 9
(hymo)| |l ma)

By Lemma 2 above, |j1,(l2, m2)|* < C? (l), and this concludes the proof O

Theorem 1. If —1<s <t andt>T7/2 then

If = Qnfl

Hs(S?) < Cs te ns_t 7’L4+€ ||f||Ht(S2)-

Here cg1 . < 00 15 a constant depending only on s, t and € > 0.

Proof. First, H*12(S?) c C*(S?) c H*(S?) for every k € N and & > 0,
and furthermore H**(S?) ¢ C*(S?). Therefore we assume that f € H!(S?)
for some ¢t > 1. Trivially

If = Qnf]

Hs(S?2) — ”(f_Pnf) + (Pnf_an)| Hs(S2)

|f_Pn.f|

Hs(S2)- Now

HS(S2).

Lemma 1 gave the optimal estimate for
come when dealing with || P, f — Q. f|

me(s?), and the difficulties

Qnf = Pu(fpn)
1



When 0 <[ < n, we have

[e'e) lo+1
§ : § : § : m1 mg
f/’l/n(l m Mnlz )
lo=2n Il1=la—1 mi,ma2:
2=an e moE2nl
Imy;|<l;
mi+mao=m
by Lemmata 2 and 3. Thereby
Qn—Pu)f
n—1 ! [e%s) lo+l1
m1 mg
)IRTED DN DD DI T (L0}
=0 m=-1 lo=2n l1=la—1 mi,ma:
m 2=an =i mo€2nZ

Im; |<l;
mi+mo=m

We have
(P, — Qu)fII7
n n Hs(S2?)
2
n—1 ! 0o lo+1
_ 2s ml m2
= 2> > > X fitmnlm)
=0 =—1|lo=2n l1=ly—1 M1,Mm2:
m Fmen = mo€2nZ
Im;|<l;
mi1+mo=m
n—1 l 0 lo+1
2s m1 m2
=D ULD SN D DED DD DR T (N
=0 =— lo=2n l1=lp—1  ™M1,m2:
" e
Im;|<l;

mi1+mo=m

and by Lemma 4 we get

1(Pn = Qn)

H#(S?)

,_A

n—

l

S 2s 2r § :

l:0 m=—

2
lo+1

E : § : § : r+1/2 f(l17m1)

lo=2n Il1=la—I mi,ma:

2T TR oz

Im;|<l;
mi1+mo=m

11



The Holder inequality gives us the next estimate:

(P — @n) fll s (s2)
n—1 l
< oSy
=0 m=
lo+1

Z Z Z 2r 2t > 2r+1 %

lo=2n l1=l2—1 mi,m2:
2= 1= mo€2nZ
Im; |<l;
mi1+mo=m

0o la+1

2
| X > WA
lo=2n l1=l2—1 mi,ma:
moE2n
Im;| <l
mi1+mao=m
for some t large enough. Moreover,
[e%9) lo+1
Z Z Z 2r 2t >2r+1
lo=2n l1=l2—1 7;’1”2167757'52
;| <l;
mi1+meo=m
lo+1
< Z BN (14 2min{ly, L/ (2n)})
lo=2n li=l2—1
00 lo+1
< D BT (/) > B
la=2n l1=la—1
< (2+1)) BT (A4l n) (I —n)"
lo=2n
ki=ly—n >
§2 (2l + 1) Z(k _|_n)2r+1 (2 + k:/n) k2r—2t
k=n
< (2l—|— 1)222r+1 k,2r+1 (2+k/n) k,?r—2t
k=n
S Ct,r <l> n4r72t+2’

where ¢, depends on ¢ and r. In the previous calculation, we had to demand
that 4r — 2t +2 < —1, i.e. t > 2r +3/2. Since r > 1, we must have t > 7/2.

12



With this knowledge, we get

||(Pn - Qn>f| 12573(82)
n—1 1
< 02 Cir n4r—2t+2 Z<l>25—27‘+1 Z
—_ T )
=0 m=—I
la+l R 2
S Y Y W [
lo=2n l1=Il2—1 nrfgléggZ
Im;|<l;
mi1+mo=m
n—1 o)
— (2 c nAr—2t+2 Z<l>2s—2r+1 Z <l1>2t Z
= » Ctr
=0 l1=n+1 lo:max{2n,l1 —1}<la<i1+1
! N 2
> S [
m=—1 mi,ma:
mo€2nZ
Im;|<l;
mi1+mo=m
n—1 0o
< CE Cor nir—2t+2 Z<l>2572r+1 Z <l1>2t (2l—|—1) >
=0 li=n+1
h 2
(20 +1) Z Flamo)
n—1 oo ll Y 2
<9 Cz Cor n4r72t+2 Z<l>2572r+3 Z <l1>2t Z ‘f(lhml)
=0 li=n+1 mi=—I1
n—1
<9 Cg Cor nAr—2t+2 Z<l>25—2r+3 ||f||§{t(82)'
=0

We may consider r > 1 to depend on t. We must suppose that 2s—2r+3 >
—1,ie. s>7r—2>—1 Then > (1)2~2+3 < ¢ n?~2+4 50 that

r

1(Po = @) fllizs(2y < Cov 0™ 00 || fll e e2)-
Here 2r 4+ 6 = 2(r 4+ 3) > 2 - 4. This yields
H(Pn - Qn)f’ Hs(S2) < C;,t,a - n4+€ HfHHt(S2)7
where (. is a constant depending on ¢ and € > 0. Consequently, an estimate
for || f — Qnf|lms(s2) is established O

13



4 Insufficiency of methods

It is also important to notice that the results in numerical Fourier analysis on

S? above are quite robust; more delicate treatises will be needed. To demon-

strate this, let us apply our technique on S? to get estimates for interpolation

projections on S!. The notation in this section is parallel to the S2-case.
We identify S! with [0, 1[C R. Recall that here

<F%f:: 2{: fkg)ef‘

E=—n+1
Lemma 1°. Ifs <t then

Hf)_'ijW

sty <7 | fllaee).

This result is optimal, but we will present non-optimal results, yet in
analogy to the interpolation on the sphere S> — we must remember that the
main point of this section is to demonstrate how insufficient our methods for
S? may be.

The sampling points are {j/(2n) : 0 < j < 2n}, and each point carries
the equal weight 1/(2n). The corresponding sampling measure is

2n—1

0j/(2n)-
j=0

1

Nn:%

Let Qnf := P.(fu,). Now we can calculate all the Fourier coefficients of f,,:

_ 1, when & € 2nZ,
,un(é) =
0, when ¢ & 2nZ.

But we want to demonstrate what could possibly cause bad estimates for S?
in the previous section. Hence let us modestly state the following:

Lemma 2’.

- 1, when & =0,
fn(§) =
0, when & & 2nZ,

Moreover,
[ (E)] < 1.

For a distribution g € D'(S'), let g¢ = g(&) e¢. We write the well-known
formula fg(¢) = (f xg)(£) in the following form:

14



Lemma 3’. Let f € D(S') and g € D'(S'). Then fg € D'(S') satisfies

F96 =3 fasal©.

§2€Z §&1=£—¢&2

The Fourier coefficients of @), f can be written down precisely, but we
settle for a weaker result:

Lemma 4’.  Let f be a function, and let p,, be the sampling measure presen-
ted above. Then

o~

f(&1)

P < € @7 (e @)

Y

where r > 1/2.

Proof. The operator norm endows H"(S') with a Banach algebra structure
if and only if r > dim(S!)/2 = 1/2. Now the estimation process goes as in
the proof of Lemma 4, and we notice that |, (£2)] < 1 here O

Theorem 1’. If—1/2 <s <t andt > 3/2 then

If = Qnfl

HS(SI) S Cs,t,z—: ns_t n Hf”Ht(Sl)

Here ¢; 5. < 00 is a constant depending only on s, t and € > 0.

Proof. First,

If = Qnf]

mesty < f — Pufl

asst) + | Pof — Qnfll st

Lemma 1’ gave the optimal estimate for || f — P, f||gss1). We must estimate
| Pnf — Qnfllmssty, but not too well: we follow the path taken in the proof
of Theorem 1. If —n < £ < n then Lemma 2’ yields

Fin@© =FO+ S Y Famal).

&2 [62]>2n &1=£—&2

Hence

Qu—=P)f= Y e > Y famal,

§=—n+l & [&2]>2n L1=(—&

15



so that Lemma 4 gives

(P — Qn) [l 7o)
2
= 2@ X X Tameal®
§=—n+1 &0 |&21>2n §1=E—&2
. 2
< Y XX famal®)
§=—n+1 §2: [621>22n &1=£—62
2
<Y XY @ @) |fare©)
§=—n+1 &2 [&21>22n L1=E—&2
The Holder inequality yields
||<Pn - Qn)f| 125{5(81)
< Z ©* Z Z €)% (&) | x
§=—n+1 £2: [&2]>2n &1=€—&2
2
| D D @) | fE&)

&2: |62]>2n §1=€—&2

Here

Z Z <51>2’”*2t <£2>2T‘ < Cy, n4r72t+1;

&2 62|>2n L1=£—&2
here 4r — 2t < —1,1.e. t > 2r +1/2 > 3/2. Consequently,

(P = Qn) 7 (o)
< aen S @ Y @) |fe|
§=—n+1 20 §2>2n

<y 2T Y il ),

where 2s —2r > —1,ie. s > r—1 > —1/2. Since r > 1/2, we have
r 4+ 1> 3/2. Thus we eventually get

Hf - an’

where —1/2 < s<t,t>3/2and e > 0. O

Hs(S1) < Ct,s,e n®~! n3/2+8 Hf”Ht(Sl)a

16



5

Conclusion

Theorem 1’ shows that our method does not give the optimal result even in
the extremely simple case of the circle S': We lost 3/2 + & Sobolev space
degrees, and we had to suppose that f € H'(S') with ¢t > 3/2, even though
actually ¢ > 1/2 can be assumed. This may suggest that our results for the
2-sphere S? are not the best possible.
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