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1 Introduction

Let T ∈ L(X); a bounded linear operator in a (complex) Banach space X.
The following result by J. Esterle holds, see [1, Corollary 9.5]:

Proposition 1. Let T ∈ L(X) satisfy σ(T ) = {1}. If T 6= I then

lim inf
n→∞

(n + 1)‖(I − T )T n‖ ≥
1

96
.

M. Berkani improved the lower bound to 1/12, and he conjectured that
the best lower bound is 1/e, see [6]. That 1/e has a special role in related
estimates can also be seen in the following remark by O. Nevanlinna, see [7,
Theorem 4.5.1]:

Proposition 2. Assume that there exists {λj} ⊂ σ(T ) such that |λj| < 1
and |λj| → 1 as j → ∞. Then

lim sup
n→∞

(n + 1)‖(I − T )T n‖ ≥
1

e
.

The constant 1/e appears also in the well-known “continuous time” case
[2, Theorem 10.3.6].

In this paper, we show that M. Berkani’s and J. Esterle’s conjecture is
right in the sense that Proposition 1 holds with 1/96 replaced by 1/e. We
use a related but more careful analysis that has already been used in [1],
involving the univalent functions gn(z) = z(1 − z)n. We give also another
variant of Proposition 2 without restrictions on σ(T ).

All of these results were first presented in [9] (Z. Yuan, 2002) with some-
what longer proofs. That 1/e in Proposition 1 is a valid lower bound, is
also proved in [3] (N. Kalton, S. Montgomery-Smith, K. Oleszkiewicz, and
Y. Tomilov, 2002) by quite different means. Both of the existing approaches
can be generalized to a larger class of results, but these respective classes are
different (and we shall not discuss these generalizations here). An example
is given in [3], indicating that the constant 1/e is the best possible. The
construction is a modification of an example given in [4] (Lyubich, 2001); see
also [5] (O. E. Maasalo, 2003).

2 Estimating lim infn→∞ (n + 1)‖(I − T )T n‖

Denote D(R) := {z ∈ C : |z| < R}, and let g : D(R) → C be an analytic
function satisfying g(0) = 0 and g′(0) 6= 0. Then there exists a maximal
radius Ru, 0 < Ru ≤ R, such that g is an univalent (i.e. an injective
analytic) function on the disk D(Ru). It is then easy to see that the image
of g (D(Ru)) contains an open disc, centered at origin. Let 0 < c < ∞ be
the largest radius such that D(c) ⊂ g (D(Ru)). Then there exists an analytic
function f : D(c) → D(Ru) such that

(g ◦ f)(z) := g(f(z)) = z for all z ∈ D(c). (1)

We denote the spectral radius of L ∈ L(X) by ρ(L). If ρ(L) = 0, then L
is called quasi-nilpotent. With these notations, we can prove the following
proposition:
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Proposition 3. Let g : D(R) → C be an analytic function such that g(0) = 0
and g′(0) 6= 0. Let the constants c and Ru be as above. Then for all 0 < η < 1

inf {‖g(L)‖ : L ∈ L(X), ρ(L) = 0, ‖L‖ ≥ Ruη(1 − η)−1} ≥ ηc.

Proof. The proof is carried out by showing that the set

{L ∈ L(X) : ρ(L) = 0, ‖g(L)‖ < ηc, ‖L‖ ≥ Ruη(1 − η)−1}

is empty for all 0 < η < 1. This is achieved by using the Cauchy estimates
for the function f defined in (1). Denote the power series representations

f(z) =
∑

j≥1

ajz
j and g(z) =

∑

j≥1

bjz
j .

Clearly f : D(c) → D(Ru) means that sup|z|<c |f(z)| ≤ Ru, and then the

Cauchy estimates give |aj|r
j ≤ Ru for each r < c and j ≥ 1. Letting r → c−,

we get that |aj|c
j ≤ Ru for all j ≥ 1.

Let L ∈ L(X) be an arbitrary quasi-nilpotent operator. Then g(L) is
quasi-nilpotent by the spectral mapping theorem, as g(0) = 0. Similarly
Y := f(g(L)) is also quasi-nilpotent. Let now 0 < η < 1, and assume that
‖g(L)‖ < ηc. It now follows from the above Cauchy estimates that

‖Y ‖ ≤
∑

j≥1

|aj| · ‖g(L)‖j <
∑

j≥1

|aj|c
j · ηj ≤ Ruη(1 − η)−1;

hence ‖Y ‖ < Ruη(1 − η)−1.
We proceed to show that Y = L. Since Y is quasi-nilpotent, g(Y ) is

well-defined. By the associativity

g(Y ) = g[f(g(L))] = g(f [g(L)]) = (g ◦ f)(g(L)) = g(L)

because (g ◦ f)(z) = z for any z ∈ D(c). As g(0) = 0, it follows that
σ(g(L)) = {0} ⊂ D(c). Using the power series of g, we get

0 = g(Y ) − g(L) =
∑

j≥1

bjY
j −

∑

j≥1

bjL
j (2)

= (Y − L)

(

b1I +
∑

j≥2

bj

[

Y j−1 + Y j−2L + ... + Lj−1
]

)

= (Y − L)(b1I + U),

where b1 = g′(0) 6= 0 and U :=
∑

j≥2 bj [Y j−1 + Y j−2L + ... + Lj−1].

We know that Y = f(g(L)) is quasi-nilpotent, and it is actually a function
of L. We now consider function h defined in D(Ru) as follows

h(z) :=
∑

j≥2

bj

[

f(g(z))j−1 + f(g(z))j−2z + ... + zj−1
]

.

Then h(z) is analytic in D(Ru) and h(0) = 0. So h(L) is well-defined and
U = h(L). Since both L and Y are quasi-nilpotent, we see that U is quasi-
nilpotent. Therefore b1I + U is boundedly invertible. This together with
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(2) implies that Y = L. Hence for any 0 < η < 1 and any quasi-nilpotent
L ∈ L(X)

‖g(L)‖ < ηc ⇒ ‖L‖ = ‖Y ‖ < Ruη(1 − η)−1.

This proves the claim.

A somewhat analogous result to the previous proposition is [3, Theorem
4.5]. We proceed to study the functions

gn(z) := (1 − z)nz for n ≥ 1 (3)

that made their appearance also in J. Esterle’s original argument. We shall

make use of the constants R
(n)
u and c(n) defined as follows:

(i) R
(n)
u > 0 is the largest radius of an open disc D(R

(n)
u ) such that gn(z)

is univalent in D(R
(n)
u ).

(ii) c(n) > 0 is the largest radius of an open disc D(c(n)) such that

D(c(n)) ⊂ gn(D
(

0, R(n)
u )

)

.

Because g′
n(z) = (1 − z)n−1(1 − (n + 1)z) and hence g′

n(1/(n + 1)) = 0, it

follows by elementary function theory that R
(n)
u ≤ 1/(n + 1). In essence, the

proof of Theorem 1 reduces to showing that equality holds here. For this, we
shall provide two different proofs. In the first proof, we shall use (with some
modifications) the positive real univalence criterion, see e.g. [8, p. 16]:

Lemma 1. Suppose Ω is a convex region, f ∈ H(Ω), and <f ′(z) > 0 for all
z ∈ Ω. Then f is univalent in Ω.

It clearly follows for any angle γ ∈ [0, 2π) that if <[eiγf ′(z)] 6= 0 for all
z ∈ Ω, then f is univalent in Ω. In particular it follows that =f ′(z) 6= 0 for
all z ∈ Ω implies that f is univalent in Ω.

Let the function gn(z) be defined by (3). Define D+(0, 1/(n+1)) := {z ∈
D(1/(n+1)) : =z > 0} and D−(0, 1/(n+1)) := {z ∈ D(1/(n+1)) : =z < 0}.
We take an arbitrary z ∈ D(1/(n + 1)) and write it as z = reiθ = a + bi,
where θ ∈ (−π, π]. Then

1 − z = 1 − r cos θ − ir sin θ = |1 − z|eiα

for some α ∈ (−π, π]. Since z ∈ D(1/(n + 1)), we have the estimate

|α| < | tan α| =
|b|

|1 − a|
<

1/(n + 1)

1 − 1/(n + 1)
=

1

n
. (4)

On the other hand, we get by a direct computation

=g′
n(z) = =

(

|1 − z|n−1ei(n−1)α(1 − (n + 1)a − (n + 1)bi)
)

= |1 − z|n−1 (−(n + 1)b cos (n − 1)α + (1 − (n + 1)a) sin (n − 1)α) .
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Assume now that z ∈ D+(0, 1/(n + 1)); i.e. b > 0 and 0 < θ < π. Then we
have −1 < nα < 0 by (4) and some geometric reasoning, and moreover

−π/2 < −1 − α < (n − 1)α < −α < 0.

It now follows immediately that −(n + 1)b cos (n − 1)α < 0 and (1 − (n +
1)a) sin (n − 1)α < 0, and hence =g′

n(z) < 0. By a similar argument,
=g′

n(z) > 0 for all z ∈ D−(0, 1/(n + 1)). By Lemma 1, the function gn

is univalent in both D+(0, 1/(n + 1)) and D−(0, 1/(n + 1)). A more refined
analysis is required to prove the following proposition:

Proposition 4. The functions gn(z) = (1 − z)nz are univalent in the disc
D(1/(n + 1)) for all n ≥ 1.

Proof. Fix n ≥ 1. If the claim did not hold for this n, then there would
exist z1, z2 ∈ D(1/(n + 1)), such that gn(z1) = gn(z2) but z1 6= z2. From
the preceding discussion, both z1 and z2 cannot be in the same half disc
D+(0, 1/(n + 1)) or D−(0, 1/(n + 1)). Then z1 and z2 would have to satisfy
(without loss of generality) one of the following conditions:

(i) z1 ∈ D+(0, 1/(n + 1)) and z2 ∈ D−(0, 1/(n + 1)), or

(ii) z1 is a pure real number satisfying −1/(n + 1) < z1 < 1/(n + 1).

To show that (i) cannot hold, we write z1 = r1e
iθ1 = a1 + b1i, z2 = r2e

iθ2 =
a2 + b2i, where θ1 and θ2 are angles satisfying 0 < θ1 < π and −π < θ2 < 0.
Then we have by (4) and geometric reasoning

1 − z1 = |1 − z1|e
iα1 where − 1 < nα1 < 0, and

1 − z2 = |1 − z2|e
iα2 where 1 > nα2 > 0.

Since z1 ∈ D+(0, 1/(n + 1)), we have b1 > 0 and

sin |α1| =
b1

|1 − z1|
=

b1

r1

r1

|1 − z1|
= sin θ1

r1

|1 − z1|

< sin θ1
1/(n + 1)

1 − 1/(n + 1)
=

1

n
sin θ1.

Therefore, n sin |α1| < sin θ1. Because the function h(x) := n sin x − sin nx
for 0 < x < 1/n has a positive derivative, we get sin n|α1| < n sin |α1| <
sin θ1. As 0 < −nα1 < 1 and sin is increasing in [0, π/2], it follows that
0 < −nα1 < θ1 if 0 < θ1 ≤ π/2. On the other hand, if π/2 < θ1 < π
then trivially 0 < −nα1 < 1 < π/2 < θ1. We conclude that the estimate
0 < −nα1 < θ1 holds always, and hence

0 < nα1 + θ1 < θ1 < π. (5)

Similarly, for z2 ∈ D−(0, 1/(n + 1)), we get

0 < −nα2 − θ2 < π, (6)

and adding up (5) and (6) gives

0 < (nα1 + θ1) − (nα2 + θ2) < 2π. (7)
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For contradiction, let us assume that gn(z1) = gn(z2). Then

|1 − z1|
neinα1r1e

iθ1 = |1 − z2|
neinα2r2e

iθ2 ,

and the angles would satisfy for some integer k

nα1 + θ1 = nα2 + θ2 + 2kπ. (8)

This contradicts with inequality (7), and case (i) has therefore been excluded.
Suppose now that case (ii) holds. Then nα1 = 0, and θ1 = 0, or π. For

contradiction, assume again that gn(z1) = gn(z2) which leads to equality (8).
But (8) implies now nα2 + θ2 = kπ for some k ∈ Z. But by inequalities (5)
and (6), we get 0 < |nα2 +θ2| < π if z2 ∈ D+(0, 1/(n+1))∪D−(0, 1/(n+1)).
Thus z2 is also a real number.

Since gn(z1) = gn(z2) for real −1/(n + 1) < z1, z2 < 1/(n + 1) implies
trivially z1 = z2, the proof is now complete.

Now comes the other, shorter proof for Proposition 4:

Proof. Let z = reiφ ∈ C, where 0 ≤ r < 1/(n + 1) and φ ∈ R. Now

gn(z) = R(r, φ) eiΦ(r,φ),

where rφ =
√

1 − 2r cos(φ) + r2, Φ(r, φ) = φ − n arcsin(r sin(φ)/rφ) and
R(r, φ) = r · rn

φ; note that arcsin : [−1, 1] → [−π/2, π/2] is the inverse
function of sin : [−π/2, π/2] → [−1, 1]. Mapping φ 7→ Φ(r, φ) is injective on
R, because by writing t = cos(φ),

∂Φ(r, φ)

∂φ
=

(

1 − (n + 2)rt + (n + 1)r2
) (

1 − 2rt + r2
)−1

≥
(

1 − (n + 2)r + (n + 1)r2
) (

1 − 2rt + r2
)−1

= (1 − r) (1 − (n + 1)r)
(

1 − 2rt + r2
)−1

> 0,

where the last estimate follows as r < 1/(n + 1). Notice furthermore that
Φ(r, 2πk) = 2πk for every k ∈ Z. Moreover, if φ is fixed then

∂R(r, φ)

∂r
=

∂Φ(r, φ)

∂φ

(

1 − 2rt + r2
)n/2

> 0.

Hence r 7→ R(r, φ) is injective on [0, 1/(n + 1)), and the claim follows.

In other words, we have now proved that R
(n)
u = 1/(n + 1) for all n ≥ 1.

The other sequence of constants can be determined easily:

Proposition 5. The constants c(n) (as introduced earlier) satisfy

c(n) =
1

n + 1

(

1 −
1

n + 1

)n

for all n ≥ 1.
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Proof. Clearly for any fixed n,

c(n) = inf
z∈∂D(R

(n)
u )

|gn(z)|.

Since |(1 − z)nz| ≥ (1 − R
(n)
u )nR

(n)
u for all z satisfying |z| = R

(n)
u , we get

c(n) ≥ 1
n+1

(

1 − 1
n+1

)n
as R

(n)
u = 1/(n + 1) by Proposition 4. By choosing

z = R
(n)
u , we see that even the equality holds.

Now we are prepared to prove our main result. The required improvement
of Proposition 1 follows by taking L = I − T in the following theorem.

Theorem 1. Let L ∈ L(X), L 6= 0, be quasi-nilpotent. Then

lim inf
n→∞

(n + 1)‖(I − L)nL‖ ≥
1

e
.

Proof. Define the functions gn and the constants R
(n)
u , c(n) as earlier. Let

0 < η < 1 be arbitrary. Since by Proposition 4

R(n)
u η(1 − η)−1 =

1

n + 1
· η(1 − η)−1 → 0 as n → ∞,

there exists N(η) < ∞, such that for all n ≥ N(η) we have

‖L‖ ≥ R(n)
u η(1 − η)−1.

By Proposition 3 (with g = gn) and Proposition 5, we have for all n ≥ N(η),

‖(I − L)nL‖ ≥ ηc(n) = η
1

n + 1

(

1 −
1

n + 1

)n+1

.

Since limn→∞

(

1 − 1
n+1

)n+1
= 1/e, we get by letting n → ∞

lim inf
n→∞

(n + 1)‖(I − L)nL‖ ≥ η/e.

Because 0 < η < 1 is arbitrary, the claim follows by letting η → 1.

3 Estimating lim supn→∞ (n + 1)‖(I − T )T n‖

Theorem 2. For any T ∈ L(X) either

(i) lim supn→∞(n + 1)‖(I − T )T n‖ ≥ 1/e or

(ii) lim supn→∞(n + 1)‖(I − T )T n‖ = 0 holds.

Proof. If lim supn→∞(n+1)‖(I−T )T n‖ = ∞ or T = I, then the claim holds.
It remains to consider the case when supn≥0(n + 1)‖(I − T )T n‖ < ∞ and
T 6= I. By [7, Theorem 4.2.2], σ(T ) ⊂ D(1) ∪ {1}.

If 1 /∈ σ(T ), then ‖T n‖ ≤ Mrn for some 0 ≤ r < 1 and (ii) follows. If 1
is an accumulation point of σ(T ), then (i) holds by Proposition 2. If 1 is an
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isolated point, then either σ(T ) = {1} or there is a positive distance between
1 and σ(T ) \ {1}. If σ(T ) = {1}, then (i) holds by Theorem 1.

To complete the proof, we can assume dist (1, σ(T ) \ {1}) > 0. There
exist closed, nonintersecting curves Γ1 and Γ2 with following properties: Γ1

lies strictly inside the open unit disc D(1) and it surrounds the set σ(T )\{1};
Γ2 surrounds point 1. Define the bounded spectral projections P1 and P2,
together with the corresponding closed subspaces

P1 :=
1

2πi

∫

Γ1

(λ − T )−1dλ, P2 :=
1

2πi

∫

Γ2

(λ − T )−1dλ,

X1 := P1X and X2 := P2X.

Both X1 and X2 are invariant for T , X1 ∩ X2 = {0} and X = X1 + X2.
They inherit their norms from X, and X itself is isometrically isomorphic to

the exterior direct sum
X1
×
X2

, equipped with the norm

‖
[

x1 x2

]T
‖X1×X2 := ‖x1 + x2‖ for all x1 ∈ X1, x2 ∈ X2.

Define the bounded operators L and M by L := T |X1 ∈ L(X1) and M :=
T |X2 ∈ L(X2). Then T is isometrically equivalent to the block matrix

[ L 0
0 M ] :

X1
×
X2

→
X1
×
X2

, and (I − T )T n is represented (apart from an isometric

isomorphism) by
[

(IX1
−L)Ln 0

0 (IX2
−M)Mn

]

. By the triangle inequality

‖(I − T )T n‖ =
∥

∥

∥

[

(IX1
−L)Ln 0

0 (IX2
−M)Mn

]∥

∥

∥

L(X1×X2)
(9)

≥
∥

∥

[ 0 0
0 (IX2

−M)Mn

]∥

∥

L(X1×X2)
−

∥

∥

[

(IX1
−L)Ln 0
0 0

]∥

∥

L(X1×X2)

= ‖(IX2 − M)Mn‖L(X2) − ‖(IX1 − L)Ln‖L(X1).

The spectra of L and M satisfy σ(L) = σ(T ) \ {1} ⊂ D(1) and σ(M) = {1}.
It follows again immediately that limn→∞ (n+1)‖(IX1 −L)Ln‖L(X1) = 0. By
Theorem 1

lim sup
n→∞

(n + 1)‖(IX2 − M)Mn‖L(X2) ≥ 1/e.

Therefore (9) implies

lim sup
n→∞

(n + 1)‖T n(T − 1)‖ ≥ lim sup
n→∞

(n + 1)‖(IX2 − M)Mn‖L(X2) ≥ 1/e,

and the proof is completed.

The lower bound 1/e in Theorem 2 can be reached, see [7, Example 4.5.2].
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