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Abstract: It is well-known (and can be proved in a number of ways) that a
densely defined, closed operator A generates a bounded C0-semigroup if (and
only if) the Hille–Yoshida resolvent condition

‖(sj − A)−k‖ ≤
M

sk
j

(1)

holds for some positive and unbounded sequence {sj}j≥1. We give a novel and
short“frequency domain”proof for the observation that the resolvent condition
(1), indeed, is only required for such sequences {sj}j≥1. The proof is based
on studying the analytic function s 7→ (I − A/s)−1 whose values are power
bounded operators.
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1 Introduction

Let X be a Banach space. Let A : dom (A) → X be a generator of a bounded
C0-semigroup {T (t)}t≥0, satisfying supt>0 ‖T (t)‖ ≤ M < ∞. Such operators
are precisely the closed, densely defined operators that satisfy the Hille –
Yoshida resolvent condition

‖(s − A)−k‖ ≤
M

sk
for all s > 0 and k ≥ 1. (2)

A classical references to this result are, of course, [4] (K. Yoshida) and [2]
(E. Hille and R. S. Phillips). Both of these references give the stronger version
of this result, as quoted in the abstract of this paper. The purpose of this
paper is to give a short “frequency domain”, “complex analysis” proof for the
following theorem:

Theorem 1. Let A be a densely defined (closed) operator with s0 ∈ R+∩ρ(A),
and let M < ∞. If for s = s0 we have

‖ (I − A/s)−k ‖ ≤ M for all k ≥ 1, (3)

then (0, s0] ⊂ ρ(A) and (3) holds for all s ∈ (0, s0].

Indeed, suppose that the resolvent condition (2) is known only for all
s ∈ {sj}j≥1, where limj→∞ sj = +∞. Then (2) holds for all s > 0 as a direct
consequence of Theorem 1.

Note that Theorem 1 has a flavor of the Maximum Modulus Theorem.
All other proofs of Theorem 1 (that we know of) are carried out by using
“time domain” techniques. It is rather unusual in harmonic analysis to have
two precise characterizations of a same phenomenenon, one on “each side” of
the Fourier transform1. This is the main motivation for writing this paper.

2 Resolvent condition for power-bounded

operators

The discrete semigroups are generated by power bounded operators T . For
such operators, a resolvent characterization has been published in [1] (A. Gib-
son), and it was independently rediscovered in [3, Theorem 2.7.1] (O. Nevan-
linna).

Proposition 1. Let T ∈ L(X) and C < ∞. Then the following are equiva-
lent:

(i) supj≥0 ‖T
j‖ ≤ C,

(ii) for all x > 1 and k ≥ 1

‖T k(x − 1)k(x − T )−k‖ ≤ C, (4)

and
1Note that the Parseval’s identity is a positive example of this.
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(iii) there exists a (monotone increasing) sequence {xj}j≥1 ⊂ (1,∞)∩ρ(T ),
such that xj → ∞ and the estimates (4) hold for x = xj for all j ≥ 1
and k ≥ 1.

Proof. Assume (i). Then for all x > 1, we have, by the nonnegativity of all
scalar terms in sums

‖T k(x − 1)k(x − T )−k‖ =

(

1 −
1

x

)k

‖T k

(

I −
T

x

)−k

‖

=

(

1 −
1

x

)k

‖T k
∑

j≥0

(

k + j − 1
j

)(

T

x

)j

‖

≤

(

1 −
1

x

)k

sup
j≥0

‖T j‖
∑

j≥0

(

k + j − 1
j

)(

1

x

)j

= C

(

1 −
1

x

)k (

1 −
1

x

)−k

= C.

So the resolvent condition in claim (ii) follows. The implication (ii) ⇒ (iii) is
trivial. The final implication (iii) ⇒ (i) just by taking the limit as xj → ∞
in the resolvent condition.

There is a slight generalization of this results, and we give it here even
though it will not be needed in the proof of Theorem 1.

Corollary 1. Let α ∈ [0, 1) and T ∈ L(X). Then the powers of Tα :=
α+(1−α)T are bounded by constant C if and only if there exists a (monotone
increasing) sequence {yj}j≥1 ⊂ (1,∞) ∩ ρ(T ), such that yj → ∞ and the
estimates

‖T k
α(yj − 1)k(yj − T )−k‖ ≤ C (5)

hold for all k ≥ 1.
Moreover, an operator V ∈ L(X) is power bounded by constant C if

and only if there exists α ∈ [0, 1) and a (monotone increasing) sequence
{yj}j≥1 ⊂ (1,∞) ∩ ρ(Vα), such that yj → ∞ and the estimates

‖V k(yj − 1)k (yj − Vα)−k ‖ ≤ C (6)

hold for all k ≥ 1, where Vα := (V − α) / (1 − α).

Proof. For all α 6= 1 and x ∈ (1,∞) ∩ ρ(Tα) we have

(x − 1)(x − Tα)−1 = (x − 1)(x − α − (1 − α)T )−1

=
x − 1

1 − α

(

x − α

1 − α
− T

)−1

= (y − 1)(y − T )−1,

where y = y(x) := (x−α)(1−α)−1 or, equivalently, x = x(y) = α+(1−α)y.
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Assume that Tα is power-bounded by C. Then by implication (i) ⇒ (ii)
of Proposition 1, we have for all x > 1 (and hence, because α ∈ [0, 1), for all
y > 1)

‖T k
α(y − 1)k(y − T )−k‖ = ‖T k

α(x − 1)k(x − Tα)−k‖ ≤ C

where k ≥ 1 is arbitrary. This estimate holds in particular for any sequence
{yj}j≥1 converging to ∞, and the one direction of the first equivalence is now
proved.

Conversely, assume that estimate (5) holds for all k ≥ 1 and some
sequence {yj}j≥1, having the stated properties. Define another sequence
{xj}j≥1, by setting xj := α + (1 − α)yj . Because α < 1, this new sequence
satisfies the same conditions that have been imposed on {yj}j≥1. Now, for
all j ≥ 1, we have the estimates

‖T k
α(xj − 1)k(xj − Tα)−k‖ = ‖T k

α(yj − 1)k(yj − T )−k‖ ≤ C

where k ≥ 1 is arbitrary. Now implication (iii) ⇒ (i) of Proposition 1 gives
the power-boundedness of Tα.

Let us proceed to prove the second equivalence. Fix α ∈ [0, 1) arbitrarily.
Define T := (V − α)/(1 − α). Then Tα = V and the power-boundedness of
V is seen to be equivalent to the resolvent condition (6), by the first part of
this corollary.

3 Proof of Theorem 1

Now begins the real fun, and we give the promised proof of Theorem 1.

Define for all s ∈ ρ(A) the operator-valued function T (s) := (I − A/s)−1.
By the assumption of Theorem 1, supk>1 ‖T (s0)

k‖ =: M < ∞. Applying
Proposition 1 shows that for all x > 1 and integers k > 1

‖T (s0)
k (x − 1)k (x − T (s0))

−k ‖ ≤ M ; (7)

in particular such x ∈ ρ(T (s0)). But now for all x > 1

T (s0) (x − 1) (x − T (s0))
−1 = (x − 1)

(

I −
A

s0

)−1
(

x −

(

I −
A

s0

)−1
)−1

= (x − 1)

(

x

(

I −
A

s0

)

− I

)−1

=

(

I −
A

(1 − 1/x)s0

)−1

.

Denoting s = (1 − 1/x)s0 we see from (7) that ‖ (I − A/s)−k ‖ ≤ M for all
such s. Because x > 1 was arbitrary, this estimate holds for all s ∈ (0, s0),
thus proving Theorem 1.
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