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1 Introduction

Consider an overloaded queueing network where the mean offered traffic ex-
ceeds the service capacity over a long time period. In this case, it is often
necessary to employ admission control to avoid the network to become fully
congested. Many networks of practical interest are composed of subnet-
works, not all of which are administered by a single party. In such a network
the admission controller seldom has complete up-to-date system information
available. Instead, the admission decisions must be based on partial mea-
surements on the network state.

In this paper we will study the effect of imperfect information to the per-
formance of the admission control scheme. Typical performance measures for
well-dimensioned networks in this kind of setting include the average amount
of rejected traffic per unit time, and the mean proportion of time the net-
work load is undesirably high. However, assuming the network under study is
subjected to long-term overload, there is another performance criterion that
must first be analyzed, namely: If the network is subjected to a stationary
load exceeding the service capacity, how strict admission control rules should
we set in order to stabilize the system?

To deal with the question mathematically, we will assume that the net-
work can be modeled using the simplest non-trivial model for a distributed
network, the two-node tandem network with independent and exponential
service times and unlimited buffers. We will denote the network state as
X = (X1, X2), where Xi is the number of jobs in node i. We assume that the
admission control can be modeled so that the input to the system is a Pois-
son process with a stochastic time-varying intensity, the intensity λ = λ(X)
being a function of the network state. The lack of complete state infor-
mation will be reflected in the model by assuming that the input rate λ is
a function of only one of the Xi. If we assume λ(X) = λ(X1), then the
analysis of the system can be reduced to the study of birth-death processes,
which is well understood. This is why in the following we will always assume
λ(X) = λ(X2), so that the admission control introduces a feedback loop to
the system. For example, with λ(X) = 1(X2 ≤ K) for some K ∈ Z+, we can
model a network where traffic arriving at unit rate is rejected when the size
of the second buffer exceeds a threshold level K, see Figure 1. However, in
order to also cover more complex admission policies with multiple thresholds
and thinning of input traffic, in the following we are not going to restrict the
shape of λ(X2) in any way.

More precisely, X will be defined as a continuous-time stochastic process
as follows. Let λ be a non-negative function on Z+ and µ1, µ2 > 0. We define
the the transition rates q(x, y) for x, y ∈ Z2

+ by

q(x, y) =



















λ(x2), y = x + e1,

µ1, y = x − e1 + e2 ≥ 0,

µ2, y = x − e2 ≥ 0,

0, otherwise,

(1)
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Figure 1: A simple network with threshold-based admission control.

where ei denotes the i:th unit vector of Z2
+. We adopt the convention that

q(x, x) = 0 always, and denote the transition rate out of x by

q(x) =
∑

y

q(x, y).

It is clear that q(x) < ∞ for all x, so using the minimal construction (cf.
eg. [3, 5]) the rates q(x, y) define a unique Markov process X on Z2

+ ∪ {κ}.
Here κ denotes an additional state not in Z2

+, with Tκ = inf{t > 0 : X(t) =
κ} ∈ [0,∞] being the time of explosion of X. We will use the notation
S(λ, µ1, µ2) for the set of transition rates corresponding to the the triple
(λ, µ1, µ2), and say that the system S(λ, µ1, µ2) is stable if the corresponding
Markov process is ergodic, ie., irreducible and positive recurrent.

In its most general form, our stability problem may now be stated as

(P1) Characterize the set of all (λ, µ1, µ2) ∈ RZ+

+ × R+ × R+ for which
S(λ, µ1, µ2) is stable.

Specializing to networks with threshold-based admission control, we can with-
out loss of generality assume that the offered traffic arrives at unit rate.
Denoting the admission threshold by K, (P1) now takes the form

(P2) For each (µ1, µ2) ∈ R2
+, determine for which values of K ∈ Z+ ∪∞, if

any, the system S( 1(· ≤ K), µ1, µ2) is stable.

Note that the system corresponding to K = ∞ in (P2) is the ordinary tan-
dem queue, for which it is well-known that min(µ1, µ2) > 1 is sufficient and
necessary for stability. On the other hand, assuming overload, answering the
question on the existence of a threshold level that can stabilize the system is
not as straightforward.

The queueing systems literature includes a vast amount of work on vari-
ous admission control mechanisms. However, most earlier studies on tandem
networks include the requirement that at least one of the queues be finite. In
this case the two-dimensional nature of the problem can partly be reduced
back to one-dimensional by applying matrix-geometric methods [7]. For net-
works with unlimited buffers and state-dependent service times, [4] provides
stability results extending to non-Markovian systems, however ruling out net-
works with the type of feedback loop present here. Concerning the network

4



S(λ, µ1, µ2) defined above, the compensation approach introduced in [1] can
be used for computing the invariant measure in the special case where λ is
constant on {n ∈ Z+ : n ≥ 1}. Further, there is a recent article [2], in-
troducing perturbation techniques that seem appropriate for asymptotically
analyzing the behavior of S(λ, µ1, µ2) under suitable parameter scaling.

In this paper we will partially answer (P1) by deriving sufficient and nec-
essary conditions for stability. Furthermore, by showing that in the special
case of threshold-based admission control the sufficient and necessary con-
ditions coincide, we will provide a complete solution of (P2). In addition,
we will analyze the sensitivity of the system with respect to changes in the
service rates and show how acceleration of one of the servers may, rather
paradoxically, unstabilize the system.

2 A sufficient condition for stability

Let E be a countable set. For a function V : E → R, we will denote

lim
x→∞

V (x) = ∞

if the set {x : V (x) ≤ M} is finite for all M ∈ R. Further, if q(x, y) ≥ 0 for
x, y ∈ E, then the mean drift of V with respect to q is denoted by

∆V (x) =
∑

y

[V (y) − V (x)] q(x, y),

assuming the sum on the right-hand side is well-defined.

Definition 1. Let q(x, y) ≥ 0 for x, y ∈ E. A map V : E → R is called a
Lyapunov function for q if it satisfies the following conditions called Foster’s
criteria:

(F1) limx→∞ V (x) = ∞.

(F2) ∆V (x) < ∞ for all x.

(F3) There is a finite set E0 ⊂ E such that supx∈E\E0
∆V (x) < 0.

The following continuous-time analogue of Foster’s classical theorem [6],
providing a sufficient condition for stability, is found in [8].

Theorem 1. Let X be an irreducible Markov process on a countable state
space E generated by transition rates q(x, y) so that q(x) < ∞ for all x. The
existence of a Lyapunov function for q is then sufficient for X to be ergodic.

Considering the system S(λ, µ1, µ2), let q(x, y) be as defined in (1). As-
sume V is a function on Z2

+ of the form V (x) = x1+v(x2) for some v : Z+ → R
with v(0) = 0. Searching for a Lyapunov function of this type, let us fix an
r > 0 and require that the mean drift of V with respect to q satisfies

∆V (x) = −r for all x with x1 > 0. (2)
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It is straightforward to verify that (2) is equivalent to

v(1) = 1 − (λ(0) + r)/µ1,

v(n + 1) = 1 − (λ(n) + r)/µ1 + (1 + µ2/µ1)v(n) − µ2/µ1v(n − 1), n ≥ 1.

Denoting α(n) = 1 − (λ(n) + r)/µ1 and w(n) = v(n + 1) − v(n), the above
difference equation can be written as w(n) = α(n)+µ2/µ1 w(n−1) for n ≥ 1,
with w(0) = α(0). Thus, w(n) =

∑n

k=0 α(k) (µ1/µ2)
k−n, so that

v(n) =
n−1
∑

j=0

w(j) =
n−1
∑

j=0

j
∑

k=0

α(k) (µ1/µ2)
k−j,

and we conclude that (2) defines for each r > 0 the function

Vr(x) = x1 +

x2−1
∑

j=0

j
∑

k=0

(1 − (λ(k) + r)/µ1)) (µ1/µ2)
k−j.

Thus we have constructed a family of functions V = {Vr : r > 0} whose
elements satisfy supx:x1>0 ∆Vr(x) < 0, so there are hopes that Vr might sat-
isfy (F3) for a suitably chosen finite subset of Z2

+. In order to investigate
whether this is the case, we will study the mean drift of Vr for x = (0, n)
with n ≥ 1,

∆Vr(0, n) = λ(n) − µ2(vr(n) − vr(n − 1)). (3)

For z ≥ 0, we will denote Zn ∼ geomn(z) if Zn is a random variable on
Z ∩ [0, n] with P(Zn = j) = czj for 0 ≤ j ≤ n. Using this notation, one may
verify that the above expression can be alternatively written as

∆Vr(0, n) =
Eλ(Zn) − µ2(1 − r/µ1) P(Zn > 0)

P(Zn = n)
, Zn ∼ geomn(µ1/µ2). (4)

Theorem 2. The family V = {Vr : r > 0} contains a Lyapunov function for
S(λ, µ1, µ2) iff

lim Eλ(Zn) < min(µ1, µ2), Zn ∼ geomn(µ1/µ2). (5)

In particular, if λ(0) > 0, then (5) is sufficient for the stability of S(λ, µ1, µ2).

The proof of the theorem will utilize the following two lemmas.

Lemma 1. Condition (5) is equivalent to lim ∆Vr(0, n) < 0 for some r > 0.

Proof. Let Zn ∼ geomn(µ1/µ2) for n ≥ 0. Observe first that since lim P(Zn >
0) = min(1, µ1/µ2),

lim Eλ(Zn) − min(µ1, µ2) = lim {Eλ(Zn) − µ2P(Zn > 0)}. (6)

Assume now that (5) holds. Then we can choose an r > 0 so that Eλ(Zn) −
µ2P(Zn > 0) ≤ −r for n large enough. It follows that lim ∆Vr(0, n) < 0,
since using (4) we see that eventually for large n,

∆Vr(0, n) ≤
−r + r µ2/µ1P(Zn > 0)

P(Zn = n)
= −r.
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For the other direction, assume lim ∆Vr(0, n) < 0 for some r > 0. Then
there is an s ∈ (0, r) so that for n large enough, ∆Vr(0, n) ≤ −s, and
applying (4),

Eλ(Zn) − µ2(1 − s/µ1) P(Zn > 0)

P(Zn = n)
≤ ∆Vr(0, n) ≤ −s.

This shows that

Eλ(Zn) − µ2P(Zn > 0) ≤ −s(P(Zn = n) + µ2/µ1P(Zn > 0)) = −s

for all n large enough, and in light of (6) it follows that lim Eλ(Zn) <
min(µ1, µ2).

Lemma 2. Let f be a function of the form f(x) = u(x1) + v(x2) for some
u, v : Z+ → R. Then limx→∞ f(x) = ∞ iff limx1→∞ u(x1) = ∞ and
limx2→∞ v(x2) = ∞.

Proof. Assume lim u(x1) = lim v(x2) = ∞, and fix an M ∈ R. Since u0 =
inf u(x1) and v0 = inf v(x2) are finite, we can choose m1 and m2 such that
u(x1) > M − v0 for all x1 > m1, and v(x2) > M −u0 for all x2 > m2. Hence,
f(x) > M if either x1 > m1 or x2 > m2, so that the set {x : f(x) ≤ M} ⊂
[0,m1] × [0,m2] is finite. Since M was arbitrary, limx→∞ f(x) = ∞.

Suppose next that limx→∞ f(x) = ∞. Then if lim u(x1) < ∞, there is a
c ∈ R so that S = {x1 : u(x1) ≤ c} is infinite. This implies that {x : f(x) ≤
c+v(0)} ⊃ S×{0} is infinite, contrary to the assumption limx→∞ f(x) = ∞.
Thus, lim u(x1) = ∞. Similarly, one proves that lim v(x2) = ∞.

Proof of Theorem 2. Let r > 0 and assume Vr ∈ V is a Lyapunov function
for q. Let E0 be a finite set so that (F3) holds. Then {0}× (n0,∞) ⊂ Ec

0 for
some n0, which implies

lim ∆Vr(0, n) ≤ sup
n>n0

∆Vr(0, n) ≤ sup
x∈Ec

0

∆Vr(x) < 0.

By Lemma 1, this implies (5).
For the other direction, assume (5) holds with Zn ∼ geomn(µ1/µ2). Ap-

plying Lemma 1, we can pick an r > 0 so that lim ∆Vr(0, n) < 0. Hence,
there is an n0 and an ε > 0 so that ∆Vr(0, n) ≤ −ε for all n > n0. Denoting
E0 = {0} × [0, n0], it follows that

sup
x∈Ec

0

∆Vr(x) = max{ sup
n>n0

∆Vr(0, n), sup
x:x1>0

∆Vr(x)} ≤ max{−ε,−r} < 0,

since by the construction of Vr, ∆Vr(x) = −r for all x with x1 > 0. Thus, Vr

satisfies (F3). Next, observe that using (3),

λ(n) − µ2(vr(n) − vr(n − 1)) = ∆Vr(0, n) ≤ −ε for n > n0.

This shows that vr(n) − vr(n − 1) ≥ ε/µ2 eventually for large n, so that
limn→∞ vr(n) = ∞. By Lemma 2, we conclude that Vr satisfies (F1). Fur-
ther, (F2) holds trivially since the set {x : q(x, y) > 0} is finite for all x.
Thus, Vr is a Lyapunov function for q.

Finally, note that X is irreducible if λ(0) > 0. Hence, application of
Theorem 1 now completes the proof.
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3 Necessary conditions for stability

Assume λ(0) > 0 so that the system S(λ, µ1, µ2) is irreducible. In the previ-
ous section we saw that

lim Eλ(Zn) < min(µ1, µ2), Zn ∼ geomn(µ1/µ2),

is sufficient for the stability of S(λ, µ1, µ2). We would next like to study
whether this condition is also necessary.

3.1 Small perturbations of Markov processes

In this section we will study how ergodicity is preserved under small perturba-
tions of generators of Markov processes. If q(x, y) and q ′(x, y) are generators
of Markov processes on a countable state space E, we will denote

D(q, q′) = {x : q(x, y) 6= q′(x, y) for some y}

and

D(q, q′) = D(q, q′) ∪ {y : q(x, y) > 0 or q′(x, y) > 0 for some x ∈ D(q, q′)}.

Further, for F ⊂ E we will denote

TF = inf{t > 0 : X(t−) 6= X(t), X(t) ∈ F},

with the convention inf ∅ = ∞; and Tx = T{x} for x ∈ E.

Proposition 1. Let X and X ′ be irreducible Markov processes on a countable
state space E generated by q(x, y) and q′(x, y), respectively, with q(x), q′(x) <
∞ for all x. Assume that D(q, q′) is finite. Then X is ergodic iff X ′ is
ergodic.

The proof will utilize the following lemma, which is a continuous-time
analogue of Lemma I.3.9 in [3].

Lemma 3. Let X be as in Proposition 1. Assume there is a finite F ⊂ E
such that ExTF < ∞ for all x ∈ F . Then X is ergodic.

Proof. Fix x ∈ F and define the stopping times T n
F by

T 0
F = 0, T n+1

F = inf{t > T n
F : X(t−) 6= X(t), X(t) ∈ F} for n ≥ 0.

Note that if ExT
n
F < ∞ for some n, then by the strong Markov property,

ExT
n+1
F = ExT

n
F + ExEX(T n

F
)TF ≤ ExT

n
F + sup

y∈F

EyTF < ∞,

so by induction it follows that ExT
n
F < ∞ for all n ∈ Z+. In particular, T n

F

is almost surely finite for all n, so we may define Y (n) = X(T n
F ) for n ∈ Z+.

Using the strong Markov property it is not hard to check that Y is a Markov
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chain on F . Further, it is clear that Px(∃n > 0 : Y (n) = y) = Px(∃t > 0 :
X(t) = y) for all x, y ∈ F , so that the irreducibility of X implies that of Y .
Let Sx = inf{n > 0 : Y (n) = x}. Being an irreducible Markov chain on the
finite set F , Y is positive recurrent, so that ExSx < ∞. Now,

ExTx = Ex

Sx
∑

n=1

(T n
F − T n−1

F ) =
∞

∑

n=1

Ex(T
n
F − T n−1

F ; Sx ≥ n).

Since {Sx ≥ n} ∈ FT n−1
F

, the strong Markov property implies that the terms
of the sum on the right-hand side equal

Ex(Ex(T
n
F − T n−1

F | FT n−1
F

); Sx ≥ n) = Ex(EX(T n−1
F

)TF ; Sx ≥ n).

By irreducibility, the ergodicity of X now follows from

ExTx ≤ sup
y∈F

EyTF

∞
∑

n=1

Px(Sx ≥ n) = sup
y∈F

EyTF ExSx < ∞.

Proof of Proposition 1. By symmetry, it is sufficient to show that the ergod-
icity of X ′ implies that of X. So, assume X ′ is ergodic, and let x be a state
in D = D(q, q′). Denote the first jump time of X by τ = inf{t > 0 : X(t−) 6=
X(t)}. By irreducibility, Exτ < ∞, so by the strong Markov property,

ExTD = Exτ + Ex(EX(τ)TD; X(τ) /∈ D).

Since q(x, y) and q′(x, y) coincide outside D, and Px(X(τ) ∈ D) = 1,

Ex(EX(τ)TD; X(τ) /∈ D) = Ex(EX(τ)T
′
D; X(τ) ∈ D \ D) ≤ sup

y∈D

EyT
′
D.

Since X ′ is ergodic and D is finite, so is the right-hand side in the above
inequality, and we conclude ExTD < ∞. Application of Lemma 3 now com-
pletes the proof.

3.2 General input rate function

Let us now introduce another model family, denoted by SN(λ, µ1, µ2). For
N ∈ Z+, define

qN(x, y) = q(x, y) + µ11(x1 = 0, x2 < N, y = x + e2).

It is clear that when λ(0) > 0, the transition rates qN(x, y) define using the
minimal construction an irreducible Markov process on Z2

+ ∪ {κ}.

Lemma 4. Assume that SN(λ, µ1, µ2) is stable. Then the stationary distri-
bution of XN satisfies

Eλ(XN
2 ) = µ2P(XN

2 > 0) − µ1P(XN
1 = 0, XN

2 < N), (7)

P(XN
2 = n) ≤ P(XN

2 = 0) (µ1/µ2)
n for all n ∈ Z+, (8)

and for all real-valued f on Z+,

E(f(XN
2 ) |XN

2 ≤ N) = Ef(ZN), ZN ∼ geomN(µ1/µ2). (9)
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Proof. Starting from the balance equations for XN , it is not hard to check
that Eλ(X2) = µ1P(XN

1 > 0), and

µ1P(XN
1 > 0) + µ1P(XN

1 = 0, XN
2 < N) = µ2P(XN

2 > 0),

showing that (7) is true. Further, it is straightforward to verify that for all
n,

P(XN
2 = n + 1) = µ1/µ2 [P(XN

2 = n) − 1(n ≥ N)P(XN
1 = 0, XN

2 = n)]

from which (8) and (9) follow.

For 0 ≤ z < 1, we will denote Z ∼ geom(z) if Z is a random variable on
Z+ with P(Zn = j) = (1 − z)zj for all j ∈ Z+.

Theorem 3. When µ1 < µ2, a necessary condition for the stability of
S(λ, µ1, µ2) is given by

Eλ(Z) ≤ µ1, Z ∼ geom(µ1/µ2).

Proof. Let µ1 < µ2 and assume S(λ, µ1, µ2) is stable. Then by Proposition 1,
so is SN(λ, µ1, µ2) for each N . Next, applying (9) and (7),

µ1P(XN
1 = 0, XN

2 < N) = µ2P(XN
2 > 0) − Eλ(XN

2 )

≤ µ2P(XN
2 > 0) − E(λ(XN

2 ); XN
2 ≤ N)

= µ2P(XN
2 > 0) − P(XN

2 ≤ N)Eλ(ZN),

(10)

where ZN ∼ geomN(µ1/µ2). Inequality (8) implies

P(XN
2 > N) ≤

∑

n>N

(µ1/µ2)
n for all N,

so that lim P(XN
2 ≤ N) = 1. Next, setting f(n) = 1(n = 0) in (9) gives

P(XN
2 = 0) = P(XN

2 ≤ N) P(ZN = 0),

showing that lim P(XN
2 > 0) = µ1/µ2. Further, since µ1 < µ2, it follows that

lim Eλ(ZN) = Eλ(Z) with Z ∼ geom(µ1/µ2). Combining these observations
with (10), we may now conclude that

0 ≤ lim[µ2P(XN
2 > 0) − P(XN

2 ≤ N)Eλ(ZN)] = µ1 − Eλ(Z).

Lemma 5. Let Zn ∼ geomn(z) with z ≥ 1. Then for any f : Z+ → R,

lim f(n) ≤ lim Ef(Zn) ≤ lim Ef(Zn) ≤ lim f(n).

10



Proof. Without loss of generality, assume lim f(n) < ∞. Choose an r ∈ R
so that lim f(n) < r. Then there is an n0 so that f(n) ≤ r for all n > n0,
and thus

Ef(Zn) ≤ r +

∑n0

j=0(f(n) − r)zj

∑n

j=0 zj
for n > n0.

This implies that lim Ef(Zn) ≤ r, so by letting r ↓ lim f(n), it follows
that lim Ef(Zn) ≤ lim f(n). The proof will be completed by applying this
inequality to −f .

Theorem 4. For µ1 ≥ µ2, a necessary condition for the stability of S(λ, µ1, µ2)
is given by lim λ(n) ≤ µ2.

Proof. If S(λ, µ1, µ2) is stable with µ1 ≥ µ2, then by Proposition 1, so is
SN(λ, µ1, µ2) for each N . Choose an r ∈ R so that r < lim λ(n). For
Zn ∼ geomn(µ1/µ2) it follows by Lemma 5 that lim λ(n) ≤ lim Eλ(Zn).
Thus there is an n0 so that λ(N) ≥ r and Eλ(ZN) ≥ r for all N > n0. Thus,

Eλ(XN
2 ) = E(λ(XN

2 ); XN
2 > N) + Eλ(ZN)P(XN

2 ≤ N)

≥ rP(XN
2 > N) + rP(XN

2 ≤ N) = r

for all N > n0, so that lim Eλ(XN
2 ) ≥ r, and by taking r ↑ lim λ(n) we

conclude that lim Eλ(XN
2 ) ≥ lim λ(n).

Next, lim P(XN
2 > 0) = 1, since P(XN

2 = 0) ≤ (
∑N

j=0(µ1/µ2)
j)−1 by

inequality (8). Equality (7) shows that Eλ(XN
2 ) ≤ µ2P(XN

2 > 0) for all N ,
so that we can now conclude

lim λ(n) ≤ lim Eλ(XN
2 ) ≤ lim µ2P(XN

2 > 0) = µ2.

Example 1 (Diverging input rate function). Assume that λ(n) = a for
n even and b for n odd, for some a, b with 0 < a < µ2 < b < µ1. Then the
necessary condition of Theorem 4 is valid, while with Zn ∼ geomn(µ1/µ2),
the sufficient condition of Theorem 2 takes the form

lim Eλ(n) = µ2/(µ1 + µ2)a + µ1/(µ1 + µ2)b < µ2.

When µ1 → ∞, the above inequality stops being valid, so that for large µ1,
we cannot determine the stability of the system.

The next corollary shows that, fortunately, the gap between the sufficient
and necessary conditions observed in Example 1 shrinks to a single point,
when we restrict ourselves to converging input rate functions.

Corollary 1. Assume λ(0) > 0 and that lim λ(n) exists. Then with Zn ∼
geomn(µ1/µ2), lim Eλ(Zn) exists, and

lim Eλ(Zn) < min(µ1, µ2) =⇒ S(λ, µ1, µ2) is stable,

lim Eλ(Zn) > min(µ1, µ2) =⇒ S(λ, µ1, µ2) is unstable.
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Proof. First, it is easy see that for µ1 < µ2, lim Eλ(Zn) = Eλ(Z) with Z ∼
geom(µ1/µ2), while by Lemma 5, lim Eλ(Zn) = lim λ(n) for µ1 ≥ µ2. The
first implication is the content of Theorem 2, while for µ1 < µ2, the second
implication follows from Theorem 3. If µ1 ≥ µ2, then lim Eλ(Zn) = lim λ(n)
combined with Theorem 4 shows that the second implication is valid.

3.3 Eventually vanishing input rate function

If the input rate function eventually vanishes, we are going to show that the
necessary and sufficient conditions derived in earlier sections will coincide,
providing an exact characterization of the stability region for the system.

Proposition 2. Assume µ1 < µ2, and λ(n) = 0 eventually for large n.
If S(λ, µ1, µ2) is stable, then so is the system S∗(λ, µ1, µ2) generated by the
transition rates

q∗(x, y) = q(x, y) + µ11(x1 = 0, y = x + e2).

Proof. Fix a K ∈ Z+ so that λ(n) = 0 for all n > K, and define the transition
rates q′ by

q′(x, y) = q(x, y) + µ11(x1 = 0, x2 > K, y = x + e2).

Clearly, q′(x) < ∞ for all x, and thus the rates q′(x, y) define a Markov
process X ′ on Z2

+ ∪ {κ}, which is obviously irreducible. We will first show
that X ′ is ergodic. Note that set of states where q and q′ differ is now given
by D(q, q′) = {0} × [K + 1,∞). The key to the proof is to observe that
inside D = D(q, q′), the behavior of X ′ is similar to a birth-death process
with birth and death rates µ1 and µ2, respectively. Denote x = (0, K + 1).
Then since µ1 < µ2, it follows that for all y ∈ D \ {x},

EyT
′
x =

y2 − x2

µ2 − µ1

. (11)

The ergodicity of X implies Ex−e2
T ′

D = Ex−e2
TD < ∞. Next, since Px−e2

(T ′
D ≤

T ′
x) = 1, we can compute using the strong Markov property and (11),

Ex−e2
T ′

x = Ex−e2
T ′

D + Ex−e2
(EX′(T ′

D
)T

′
x ; X ′(T ′

D) 6= x)

= Ex−e2
T ′

D + Ex−e2

X ′
2(T

′
D) − x2

µ2 − µ1

= Ex−e2
TD + Ex−e2

X2(TD) − x2

µ2 − µ1

.

(12)

Since EyTx = (y2 − x2)/µ2 for all y ∈ D \ {x}, we find in a similar way that

Ex−e2
Tx = Ex−e2

TD + Ex−e2

X2(TD) − x2

µ2

. (13)
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Since X is ergodic, comparison of (12) and (13) shows that Ex−e2
T ′

x < ∞.
Conditioning on the first transition of X ′ now yields

ExT
′
x =

1

µ1 + µ2

+
µ1

µ1 + µ2

Ex+e2
T ′

x +
µ2

µ1 + µ2

Ex−e2
T ′

x

=
1

µ1 + µ2

+
µ1

µ1 + µ2

1

µ2 − µ1

+
µ2

µ1 + µ2

Ex−e2
T ′

x,

showing that ExT
′
x < ∞. By irreducibility, it now follows that X ′ is ergodic.

Finally, we note that the set D(q′, q∗) ⊂ [0, 1]× [0, K + 1] is finite. Thus,
in light of Proposition 1 we may now conclude that the Markov process X ∗

generated by q∗(x, y) is ergodic.

Theorem 5. Assume λ(0) > 0 and λ(n) = 0 eventually for large n. Then (5)
is necessary and sufficient for the stability of S(λ, µ1, µ2). In particular,
S(λ, µ1, µ2) is always stable with µ1 ≥ µ2, while for µ1 < µ2, the stability of
the system is equivalent to Eλ(Z) < µ1 with Z ∼ geom(µ1/µ2).

Proof. That (5) is sufficient follows from Theorem 2. To prove the necessity,
assume first that µ1 < µ2 and that S(λ, µ1, µ2) is stable. Using Proposition 2,
we conclude that S∗(λ, µ1, µ2) is stable. From the balance equations for X∗

it is easy to see that X∗
2 ∼ geom(µ1/µ2), and for each m ≥ 0,

∞
∑

n=0

λ(n)P(X∗
1 = m,X∗

2 = n) = µ1P(X∗
1 = m + 1).

Summing this over m yields

Eλ(Z) = Eλ(X∗
2 ) = µ1P(X∗

1 > 0) < µ1,

where the last inequality is strict since P(X∗
1 > 0) < 1 by the ergodicity of

X∗. Now (5) follows from the fact that with µ1 < µ2 and Zn ∼ geomn(µ1/µ2),
lim Eλ(Zn) = Eλ(Z).

On the other hand, Lemma 5 shows that for µ1 ≥ µ2, lim Eλ(Zn) ≤
lim λ(n) = 0, so that (5) always holds.

4 Sensitivity analysis of the stability region

In this section we will investigate the stability of the system subjected to
fluctuations in the system parameters. We will restrict ourselves to the case
with eventually vanishing input rates, since under this assumption Theorem 5
completely characterizes the stable parameter region.

4.1 Properties of the system with eventually vanishing
input rates

Lemma 6. Assume λ is non-increasing and λ(n) = 0 eventually for large n.
Then the function F : R+ → [0,∞] defined by

z 7→ lim Eλ(Zn), Zn ∼ geomn(z)
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is non-increasing.

Proof. Assume that λ is as above. Then it is easy to check that F (z) = 0 for
all z ≥ 1, while for 0 ≤ z < 1, F (z) = (1− z)

∑∞
n=0 λ(n)zn. To complete the

proof, it suffices to note that since λ(n) are bounded, F (z) differentiable for
all 0 ≤ z < 1 with

F ′(z) =
∞

∑

n=0

(n + 1)[λ(n + 1) − λ(n)]zn ≤ 0.

The next proposition shows that with non-increasing input rates, the
stability of the system is preserved under speeding up of server 1.

Proposition 3. Assume λ is non-increasing and λ(n) = 0 eventually for
large n. Then for all µ′

1 ≥ µ1,

S(λ, µ1, µ2) is stable =⇒ S(λ, µ′
1, µ2) is stable.

Proof. We know by Theorem 5 that the stability of S(λ, µ1, µ2) is equivalent
to (5), which can now be expressed as F (µ1/µ2) < min(µ1, µ2). If µ′

1 ≥ µ1,
then by Lemma 6,

F (µ′
1/µ2) ≤ F (µ1/µ2) < min(µ1, µ2) ≤ min(µ′

1, µ2),

showing that the triple (λ, µ′
1, µ2) also satisfies (5).

To see why it is necessary to require λ to be non-increasing, consider the
following example.

Example 2. Let λ(n) = 1/8 1(n = 0) + (1 + 1/8) 1(n > 1), and µ2 = 1. For
Zn ∼ geomn(µ1/µ2), we now have

lim Eλ(Zn) − min(µ1, µ2) =

{

1/8 − (1 + 1/8)µ1(1 − µ1), µ1 < 1,

1/8, µ1 ≥ 1.

Denoting the above quantity by φ(µ1), we know by Corollary 1 that S(λ, µ1, µ2)
is stable for φ(µ1) < 0 and unstable for φ(µ1) > 0. The function φ(µ1) is
plotted in Figure 2. Observe that µ1 = 1/2 is a stable point, while µ1 → 0 or
µ1 → ∞ leads to unstability.

Alternatively, we may fix µ1 and see what happens when µ2 varies. The
following proposition tells us a rather surprising result: even with non-
increasing λ, acceleration of one of the servers may indeed unstabilize the
system.
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1

0

Figure 2: The function φ(µ1) of Example 2.

Proposition 4. Assume λ is non-increasing and λ(n) = 0 eventually for
large n and fix a µ1 > 0. Then

• for λ(0) ≤ µ1, S(λ, µ1, µ2) is stable for all µ2 > 0,

• for λ(0) > µ1, S(λ, µ1, µ2) becomes eventually unstable for large µ2.

Proof. Fix a positive integer K so that λ(n) = 0 for all n > K. Assume first
λ(0) ≤ µ1. Then by Theorem 5 we know that S(λ, µ1, µ2) is stable for all
µ2 ≤ µ1. On the other hand, for µ2 > µ1 with Z ∼ geom(µ1/µ2),

Eλ(Z) = (1 − µ1/µ2)
K

∑

n=0

λ(n)(µ1/µ2)
n ≤ λ(0)(1 − (µ1/µ2)

K+1) < µ1.

Thus (5) holds for all µ2 > µ1, proving the first claim.
For the second part, assume that λ(0) > µ1. Then again S(λ, µ1, µ2) is

stable for all µ2 ≤ µ1. But with µ2 → ∞, the above equation shows that
Eλ(Z) eventually becomes larger than µ1, making S(λ, µ1, µ2) unstable.

4.2 Phase partition of the system with threshold-based
admission control

Consider the network with threshold-based admission control, and assume
without loss of generality that the offered traffic to the network arrives at
unit rate. Denoting the threshold level by K, this system can be modeled as
S( 1(· ≤ K), µ1, µ2). Theorem 5 now implies that for each K ∈ Z+ ∪∞, the
set of (µ1, µ2) corresponding to a stable system is given by

RK = {(µ1, µ2) : 1 − (µ1/µ2)
K+1 < min(µ1, µ2)}.

Since RK ⊃ RK+1 for all K, the stabilizable region is given by ∪K≤∞RK = R0,
while R∞ = {(µ1, µ2) : min(µ1, µ2) > 1} represents the system with no
overload. We can now partition the positive orthant of R2 into four phases
as follows:
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• A1 = R∞ represents the region where the uncontrolled system is stable.

• A2 = ∩K<∞RK is the region where any control stabilizes the overloaded
system.

• A3 = R0 \ ∩K<∞RK is the region where the overloaded system is sta-
bilizable using strict enough admission control.

• A4 = Rc
0 is the region where the system cannot be stabilized.

1

1

PSfrag replacements

µ1

µ
2

A1

A2

A3

A4

Figure 3: The phase diagram of the system with threshold-based admission
control.

This partition is depicted in Figure 3. The phase diagram clearly illustrates
the content of Propositions 3 and 4, showing that accelerating server 1 drives
the system towards more stable regions, while rather paradoxically, speeding
up server 2 may unstabilize the network.
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