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1. Introduction. In this paper we present an a posteriori error analysis for
the so-called ‘Linked Interpolation Technique’ (cf. [2], [3] and [22], for instance) to
approximate the solution of the Reissner-Mindlin plate problem.

It is worth noticing that the main effort concerning the finite element discretiza-
tion of the plate bending problems has been focused on proposing and analyzing
locking-free schemes. As a consequence, most of the mathematical literature on the
subject is addressed to establish a priori error estimates. We mention here, in a to-
tally non-exhaustive way, the works [1], [5], [7], [13], [16], [19], [21], and the references
therein. On the contrary, when considering the a posteriori error analysis for plates,
only very few results are available (see [8], [9] and [15]).

In this work we consider the so-called ‘Linked Interpolation Technique’, focusing
on two triangular elements: the first one is the low-order element proposed in [22] (see
also [23]), while the second one is the quadratic scheme proposed in [3]. An a priori
error analysis has been developed for both the methods in [17, 18] and [3], respectively.
We also remark that the our a posteriori error analysis may be straightforwardly
extended to other schemes taking advantage of the ‘Linked Interpolation Technique’,
such as the quadrilateral elements considered in [2] and [3], for example.

An outline of the paper is as follows. In Section 2 we briefly recall the Reissner-
Mindlin problem, together with a mixed variational formulation and some useful reg-
ularity results. The ‘Linked Interpolation Technique’ is described in Section 3, where
we also develop an a priori analysis, which can be considered as an improvement over
the ones detailed in [17] or [18]. Section 4 is devoted to the a posteriori error estimates.
In particular we introduce our estimator, and we prove its reliability (Section 4.1) and
efficiency (Section 4.2). We point out that in the paper we consider the case of a
clamped plate only for simplicity. Indeed, both the a priori and the a posteriori error
analysis can be easily adapted to cover other relevant boundary conditions.

Throughout the paper we will use standard notations for Sobolev norms and
seminorms. Moreover, we will denote with C' a generic constant independent of the
mesh parameter i and the plate thickness ¢, which may take different values in different
occurrences.

2. The Reissner-Mindlin problem. The Reissner-Mindlin equations for a
clamped plate with polygonal mid-plane € require to find (6, w, ) such that

—divCe(@) —y=0 inQ,

—divy =g in Q,

(2.1)
v =ut=3(Vw — 0) in Q,
6=0, w=0 on 0f).

Here, C is the tensor of bending moduli, 8 represents the rotations, w the transversal
displacement, -« the scaled shear stresses and g a given transversal load. Moreover, ¢ is
the usual symmetric gradient operator, p is the shear modulus, and ¢ is the thickness.
The classical variational formulation of problem (2.1) is

Find (0,w,v) € ©® x W x (L*(Q))? :
a(0,m) + (Vv —n,7) = (g,v) (n,v) € © W, (2:2)
(Vw—8,7) = pu~'t*(y,7) =0 T € (L*()?,

where © = (H} ()2, W = H}(Q), (+,-) is the inner-product in L?(2) and

a(0,m) = /QCE(B) :e(m) .
Following [10], we write the pair (0, w) as
(0, w) = (09 + 0, wy + w;), (2.3)
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where the pair (09, ,wp) is the solution of the limit problem:

Find (89, wo,vy) €O x W x T :
a(@o,m)+ < Vo —n,v, >= (g,v) (n,v) €O X W, (2.4)

< Vwg—0y,7>=0 TeT,

and (6,,w,) can be thought as a remainder. Furthermore, I' = H~!(div,Q) and
< +,+ > is the duality pairing between Hy(rot,2) and H ~!(div,). One has (cf. [10])
PROPOSITION 2.1. Suppose that §2 is convex and g € L?(Q). Then it holds

[lwolls + 11012 + 7]l + ¢[[7vllr < C(llgll-1 + tllgllo), (2.5)
10-[11 < Ctllgl] -, (2.6)
lwe[l2 < Ct([lgll-1 + tlgllo)- (2.7)

O

3. The Linked Interpolation Scheme and an a priori analysis. In this
Section we present the general idea of the Linked Interpolation Technique (see [3]
and [22], for instance), together with two examples of triangular elements. Further-
more, focusing on the lowest-order element, we develop an a priori error analysis which
improves the result obtained in [3] and [18].

3.1. The Linked Interpolation Scheme. Let {7;},~0 be a sequence of de-
compositions of €2 into triangular elements T, satisfying the usual compatibility con-
ditions (see [12]). We also assume that the family {7} }x~0 is regular, i.e. there exists
a constant o > 0 such that

hr < opr VTG’E“ (31)

where hp is the diameter of the element T and pr is the maximum diameter of the
circles contained in 7. We recall (see [12], for instance) that regularity implies the
minimum angle condition: there exists a constant o > 0 such that

ar>a VT €Ty, (3.2)

where ar denotes the smallest inner angle of T'. Moreover, given the decomposition
T, we will denote with &, the set of the edges e of the triangles T' € 7;,. We now select
the finite element spaces @, C @, W, C W, 'y, C L?(Q)?, together with a suitable
linear operator (the so-called linking operator)

L:©, — H}Q). (3.3)
We then form the following finite dimensional subspace of X :=© x W :
X5 ={(mp,,v5) = v+ Lmy,) : 0y, € O, vy € Wi}, (3.4)
and we finally consider the discrete problem
Find (0, wy;v,) € Xp x T,
a(On,mp,) + (Y, Vop, —m) = (9,v) (M, v5) € X, (3.5)

(Vwj, = On,71) — (v, Th) =0 7 €Th
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REMARK 3.1. We point out that eliminating =y, from system (3.5), our scheme
s equivalent to the following problem involving only the rotations and the wvertical
displacements:

Find (0, w}) € Xy, :

a(n,ny,) + pt > (Pu(Vwyy, = 0n), Pu(Voy, —m)) = (g,0n) V(0 03) € X,
(3.6)
where Py, denotes the L?-projection operator onto T'},.
We are now ready to present the following two elements (for other methods based
on the same strategy, see e.g. [2, 3]).

3.1.1. The linear element. This element (see [22]) is described by the finite
element spaces

0, ={ne®:ny e (P(T) & Bs(T))*}, (3.7)
Wy ={veW:vre P (T)}, (3.8)
T, ={Te€L*Q)?®: 717 € R(T)*}, (3.9)

where Py (T) is the space of polynomials of degree at most k defined on T and B3(T) =
P3(T) N H}(T) is the space of cubic bubbles on T'. The linking operator L : @) —
H}(Q) is defined as follows. For each T € Ty, we set

©i = Ak and EB>(T) = Span{pi}i ;<3 » (3.10)

where {)\;}1<i<3 are the barycentric coordinates of the triangle T" and the indices
(1,7, k) form a permutation of the set (1,2,3). Then, the operator L is locally defined
as

3
Lnyr = Y cipi € EBy(T), (3.11)
i=1
where the coefficients «; are determined by requiring that
(VLn, —mn,) -t is constant on each e . (3.12)

Above, t denotes the tangential vector to the edge e. We recall that for the linking
operator it holds (see [17] and [18])

IVLnyllo,r < Chr|nylir (3.13)

3.1.2. The quadratic element. This element (see [3]) is described by the finite
element spaces

0, ={ne®:nrcP(T) e (R(T) & VBs(T))br}, (3.14)
Wi ={veW :vr e P(T) & Bs(T)}, (3.15)
I, ={reL?*Q)?:7r € P(T)* & VB3(T)}, (3.16)

where by = 27X\ X\2A3. The linking operator L : ©, — HE () is defined as follows.
For each T € 7}, we set

©i = AjAe(Ak — A)) and EB;(T) = Span {‘Pi}lgi§3 , (3.17)
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where the indices (i, j, k) form a permutation of the set (1,2,3). Then, the operator
L is locally defined as

3
Ly = Zai%‘ € EB;(T), (3.18)

i=1
where the coefficients «;’s are determined by requiring that
(VLn, —n,,) -t is linear on each e . (3.19)
For this linking operator it holds (see [3])
IV Loy llor < ChZ|mylar < Chelmy|yr (3.20)

3.2. A priori error estimates. In this section we focus on the lowest-order
element detailed in Section 3.1.1, but a similar technique (together with the ideas
developed in [19]) may be applied to appropriately treat the higher-order case of
Section 3.1.2. Following the lines of [10, 17, 19, 21], we prove a priori error estimates
with respect to the norms

(s )15 = HlmllF + ol + > h2

TeTy

+ 2 ||V TIHS,T V(Thv) €O XW (321)

and
Irll—1 +tl|Tlloe V7 e L*(Q)*. (3.22)
We will also use the following discrete norm
I7ll7 = > hallrller +ElIrllE v e LA(Q)?. (3.23)
TET,

Before proceeding, we need the following lemma, which establishes a suitable
norm equivalence in the used finite element spaces.

LEMMA 3.1. Consider the finite element spaces and the linking operator detailed
in Section 3.1.1, and let Py denote the L2-projection operator on T'},. Then for each
(M, v}) € X, it holds

1/2
1 *
<||77h|1+ > R w2l Pn(Von = nh)|0T> < [lmp v3)ln (3.24)
TeT,
and
) 1/2
I (g, vi)lln < C <|77h|1 + Z h2 752||Ph(VUh 77h)||0 T> . (3.25)
TeT,

Proof. Since (3.24) is trivial, we only consider (3.25). Therefore, take n;, € O,
vy € Wy, and form (n,,v}) = (n,, v + Ln,) € X ;. We first notice that

IVoll3 < 2 (Vo = nl5 + [m4l[5)

(3.26)
< C Z h2 ) vah )
TeT),

so that, by Poincare’s inequality, we have

1
||vh||1SO<Z 5l eV - nh||0T+|17h|1> ; (3:27)
TeT)
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Next, we write Vv; —n,, as
Vouj —n, = Vo, + VI, —n, = P,Vu, + VLI, —n,
= PV, — (P,VLn, — VLn,) —n, (3.28)
= Pn(Voy, —my,) = (PaVLny, = VLn,) + (Pamy, —05) -

Therefore, we have

IV oh, = nullor < [[Pa(Voh, —n4)llor
(3.29)
+ [PV Ly, — VLnyllor + [[Pany, — nallor -
Since (see also (3.13))
1P Ln, - (3.30)
and
1Py — npllo,r < Chrlnylir (3.31)

from (3.29) we obtain

1 . 1 h2.
Vo=l < © (Gl P (T~ mlr + g gl

1 *
< ¢ (G!PTei — m)lBr + il )

(3.32)

Therefore, we get

Z p) QHVU]'L "7h||0T_ (Z 2 2|| Pyp(Vuy, — 77h) > .
TeTh +i TeThh +i

(3.33)

Using (3.27) and (3.31) we deduce estimate (3.25). [J

It is now useful to set
A(07 w,vy;n,v, T) I:CL(O, T’) + (VU -n, 7)
(3.34)
- (Vw - 0, T) + M_1t2(777-)'
Therefore, the continuous problem (2.2) reads
Find (0, w;~) € X x L*(Q)? s.t.
(3.35)
A0, w,v;im,v,7) = (g.v)  V(nu;T) € X x L*(Q)?
while the discrete problem (3.5) is
Find (Oh,w;;'yh) € X xTy s.t.
(3.36)
A(0h7 w;a Vi Mhs v;km Th) = (g7 U;) v(nha IU;:; Th) € Xp x T

We have the following stability result, for which we only sketch the proof, since
it takes advantage of the same techniques detailed in [10] and [17].

PROPOSITION 3.2. Given (B, %;;pn) € Xn x Iy, there exists (n,,v);7Th) €
X x 'y such that

ABn: 2> Pri s Vi ) = C (1B, 207 + llonl 21 + [ p4l17) (3.37)



8 C. LOVADINA and R. STENBERG

ICns o)l + VT all-x + EITallo < C B zp)lln + llopll-1 + Ellonllo) — (3:38)

Proof. Let us (By,, z}; p,) be given in X, xT'j,. Using exactly the same arguments
of [10] and [17] we get that there exists (1, vy; Tr) in X, x I'y, such that

* * 1 *
ABr, zhs Pri s V3 ) 2 C (Hﬁh”% + Z m\lPh(Vzh = Bullo,r + |Ph|i>
TeTy T
(3.39)
and

1 . 1/2
it (Y Gl 1P (T0h = m)Br)  + llralln
TeT), T
(3.40)

1 1/2
<C Bl + = 1Pu(Vz; = B3 +lonlln
(14 (X e - i) < o

TeT,

We now use Lemma 3.1 to infer that given (8, z5; p,) € Xp x Iy, there exists
(M, v} mh) € Xy x Ty, such that

A(Br, 235, s s v T1) = C (1B, vl + [enll7) (3.41)

and

I o)+ lrnlln < € NBhs z3)lln + [lowlln) - (3.42)

Stability with respect to the shear norm detailed in (3.22) is finally obtained by using
the ‘Pitkdranta-Verfiirth trick’ (cf. [20], [24] and also [11]). OJ

We now prove an error estimate, which can be considered as an improvement of
the ones obtained in [18] and [17].

PROPOSITION 3.3. Suppose that Q is a convex polygon and g € L*(Q) and
consider the element detailed in Section 3.1.1. Let (6,w;vy) € X x L*(Q)? and
(0n, wisv,) € X x Ty, be the solutions of problem (3.35) and (3.36), respectively.
Then the following a priori estimates holds

(0 =61, w —wi)lln +llv = ¥all-1 + tllv = vallo < CA(llgll-1 +tllgllo) - (3.43)

Proof. Since our method is consistent (cf. (3.35) and (3.36)) and stable (see Propo-
sition 3.2), error estimates with respect to the norms in question can be established
in the standard way. Hence, let

(01, wi;vy) = (Or,wr + LOr;v;) € Xp x Tpy (3.44)

be a suitable interpolant (to be specified later) of the continuous solution (8, w™*;~).
Corresponding to (6, — 01, w), — wi;~vy, — ) € X, x I'y, there exists (see Proposi-
tion 3.2) (n,,v}; Th) € X5, x Ty, such that

A(On — 01, Wy, —wi, Yy, = YrMn, Vi Th) = C (10 — 01, wj, — wi)li (3.45)
+vn =il + s —il1B)

and

In, o)l ll=1 + 17 allo
(3.46)

<C((8n = 01, wp, —w)lln + v, —vell=1 + tllvn —illo) -
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By consistency it holds
A(On — 01, wj, —wi Yy = Y13 M Vhs Th) = A0 — 01, w — Wi,y = Y150y, Vg, Th)
=a(@0—6r,m,) + (Vo =m0, — 1)
— (V(w—w;) = (0 —6;7),7h) + "2 (v =¥, 7Th)

=)+ 1)+ (II1) + (1V) .
(3.47)

To bound the four terms above, we first choose the interpolants 8;, wj and ~y; as
follows. According to the splitting (2.3), 6; is given by

0, :=70 =760, +70, (3.48)

where 7 is the Lagrange interpolating operator. To define wj, we need to specify w;
(cf. (3.44)). Again, the splitting (2.3) suggests to set

wr ==ZTw = Twy + Tw, . (3.49)
Therefore, w} turns out to be wi = wy + LO; = Tw + L(ZH). Finally, v, is simply
the L2-projection of ~ onto T'j,.
Estimate for (I). Using the H'-continuity of the bilinear form a(-,-), standard ap-
proximation results and estimate (2.5) we have
(I) = a(0 = 01, m,) < Chl[0]l2|lnyl[1 < Ch(llgll-1 + tllgllo)]|nnllr - (3.50)
Estimate for (I1I). We notice that

(I1) =(Vvy, =,y — 1)

1/2 1/2
(Z hE t2||VUh T’}L||0T> (Z (h?r+t2)|7—71||3,:r> )

TeTh TET,
(3.51)
by which, using again (2.5) and standard approximation estimates, we get
) 1/2
(1) < Ch(llgll - + o1l ( > Vi - ml T> )
TeTy,

Estimate for (IIT).

(III) = _(V(w_uﬁ) - (6_01)77-h)

1/2 1/2
(Z h2+t2||vw wy) — (0_01)|%,T> <Z(h%+t2)||Th|(2),T> :

TeT), TeT),
(3.53)
We now notice that we have (see (2.3), (3.44) and (3.48)—(3.49))

V(w—wl)— (0 —80;) = {V(wo — Twy — L(Z6,)) — (80 — Ioo)}
(3.54)

+{¥(w. - Tw, - L(76,)) - (6. ~ T6,)}

In [17] it has been proved that

|V (wo — Twy — L(Z86y) )|0 < Chlwolsr , (3.55)
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while standard approximation results give

80 — Z0o|o. 7 < Ch%|00|2.7 (3.56)

0, — 20,07 < Ch2|0,|27 . (3.57)
Furthermore, using also (3.13) it holds
|V (w, — Tw, — L(Z6,))

|0 T = < |V( 7Iw?”)|0,T + |VL(IOT)|0,T

< \V(wr — I’IUT)IQT + \VL(IOT — 9r)|0,T + ‘VL(OT) 0,7

(3.58)
< C(hT|wr|2,T + hp|Z0, — 6,11 + hT|9r|1,T)
< C(hr|wrlar + h3|0: 27 + hr|6:|1,7)
From (3.54)7(3.58) we obtain

2
E 3 2||Vw wy) — (H_GI)HO,T
Te:rhh +t

<C Z hz —|—t2 (hT|w0|3T+hT|0|2T+hT|wT‘2T+h 16,3 )
T€Th

h2
< Ch*(Jwol3 +1613) Z hZ + 12 (Jwrl3.0 +160:17 1)

TeTy
el 10:13 7
< Ch*(Jwol3 +1013) + > h% ( S
TeTy
lw, 3 10,13
< on (juolt + 6 + 552 4 551
(3.59)
Using (2.5)—(2.7), from (3.59) it follows that
1/2
2
Z 12 1 2 IV (w—wr) — (0 — 91)|0,T>
(TGT hp +t
lwrlle , 1611 (3.60)
< O (lula + gl + 121t 110 )
< Ch(llgll-1 + tlgllo) -
Therefore, we obtain (see (3.53))
1/2
(I11) < Ch(llgll-1 +t1lgllo) (Z (h%+t2)||7'h|3,T> : (3.61)
TeT),

Estimate for (IV)). We simply notice that

(IV) = w2 (y =1, m1) < Ctlly = villot [[7nllo < Ch(llgll-1 + tllgllo)t lITallo -
(3.62)
Collecting (3.50), (3.52), (3.61) and (3.62), from (3.47) we get

A0, — 01, wy — Wi, Yy — 1M Vi, Th)

< Ch(llgll-1 + tllgllo) N(mpn, vi)lle + ll7all—1 + tll7Tnllo) -
(3.63)
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Estimate (3.43) now follows from (3.45), (3.46), (3.63) and the triangle inequality. [
Using the technique in [10], one may also get the following improved estimates.
PROPOSITION 3.4. Suppose that Q is a convex polygon and g € L*(Q2). Then the

following a priori estimates holds

0 —nllo < Ch*(|lgl|-1 +tlgllo) (3.64)

lw = whllr < Ch(h+t)([lgll-1 +tllgllo) - (3.65)
O

4. A posteriori error estimates. The aim of this section is to introduce suit-
able error estimator for the elements based on the ‘Linked Interpolation Technique’,
and to prove its reliability and efficiency. To begin, for each T' € 7}, and e € &, we
introduce the following quantities

07 = hp||divCe(6r) + 7,5 1 + 7 (h7 + t2)[| div ey, + gnll 7

1 —1,2 * 2 (4.1)
+ h%+t2||’u =y, — (Vwy, —0)ll5r

e = hel| [Ce(@n)n] [[ o + he(h + %) [y, 0] [ - (4.2)

where gj, is some approximation of the load g. Moreover, h is the length of the side
e and [-] denotes the jump operator. We then define a local indicator nr as

1/2
nr = (ﬁ%Jr > 773) , (4.3)

eCOT

and a global indicator n as

1/2
7= (Z ?]%—FZ?]?) . (4.4)

TeTh ecép

REMARK 4.1. When considering the element described in Section 3.1.1, the ex-
pression in (4.1) becomes simpler, since we locally have div~y, =0 (see (3.9)).

We now introduce some useful notation: given a generic e € &, we denote with
we the union of the triangles in 7; having e as a side. Furthermore, for T' € 7} we set
wr as the union of the w,’s, with e C dT. We proceed with the following result.

LEMMA 4.1. Given e € &, let Px(e) be the space of polynomials of degree at most
k defined on e. There exists a linear operator

M. : Pu.(e) — HZ(we) (4.5)

such that for all py, € Py(e) it holds

CullpelBe. < [ pe(tlne) < el ... (4.6)
Mepillo, < Coh?lpallo. (4.7)
V(o < Cohz 2 lIpillo.c (4.8)
IV (Tepi)li. < Cih 2l pilloe (4.9)

Above, the constants C; depend only on k and on the minimum angle of the triangles
in the meshes Tp,.
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y
A

FiG. 4.1. The ‘reference’ rhomb D

Fi1G. 4.2. Relevant objects associated with the edge e

Proof. We consider only the case of an interior edge e: if e is a boundary edge
(i.e. e C 99N), the required modifications are obvious. Due to the minimum angle
condition, there exists a fized ‘reference’ rhomb ﬁ, as depicted in Fig. 4.1, where e.g.
0 = «/2 (see (3.2)), and with the following property: for each e € &, it is possible to
determine a rhomb D, C w, similar to D (see Fig. 4.2). According to Fig. 4.2, on
we we now introduce local Cartesian coordinates (s,t), as well as the functions

d;(s,t) = “distance of (s,t) from the edge I;”, i = 1,...,4 (see Fig. 4.2). (4.10)

Next, we define ¢, (s,t) : we — R as

4

Ye(s,t) = ae XD, (8,1) Hdi(s,t)Q , (4.11)

i=1

where xp, (s, t) is the characteristic function of the set D., while . is a normalization
constant in order to have ||t).||oc = 1. We also notice that in the coordinates (s,t) a
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generic polynomial py € Py (e) can be simply written as pi(s). We are ready to define
I, : Py(e) — HZ(we) by setting

(Hepk)(s’t) = ¢e(sat)pk(s) (S,t) € We - (412)

Estimates (4.6)—(4.9) easily follows from standard scaling arguments, using the fized

~

reference thomb D. [

4.1. Upper bounds. We now prove that the indicator just introduced can be
used as a reliable error estimator. We need to make the following

Saturation assumption: Given a mesh 7j, let 7} /o be the mesh obtained from 7}, split-
ting each T' € 7}, into four triangles using the edge midpoints. Let (0},/2, W} o Yh/2)
be the discrete solution corresponding to the mesh 7}, ;. We assume that there exists
0 < p < 1 such that

18 — 612w — wi o)y + 117 = ngell -1+ 1y = Yazello
(4.13)
< o6 = 8w = willa + by = vall -1 + tlly = vllo)-

O
By using the saturation assumption (4.13), it is easily seen that one gets the
reliability estimate

16 = 6n,w —wi)lln +[lv = yall-1 + tlly = vnllo

1/2 (4.14)
<o (3 (084 Ale-alis))
TeTy,

provided one is able to bound

182 = O, wh o = wi)llnjz + 1172 = Yull-1 + tllvn2 = vnllo - (4.15)

To this aim, we need the next result, which states that functions in X,/ can be
approximated by functions in X . The proof can be performed by scaling arguments,
using exactly the same techniques of Lemma 3.1 in [4], and recalling the norm defini-
tion (3.21).

LEMMA 4.2. Given (1},/2, v}, 5) € X2, there exists (n,,v},) € Xy such that

2
0,7

— 1 * * *
+ 302 (s = il + gl = w1 ) < O IR -
e€&y ¢

— 1 * *
Z hy” <|77h/2 —mllor + WH%/Q = vp|
TeT, T

(4.16)
O

We are now ready to prove the following proposition.
ProOPOSITION 4.3. We have

1(8n/2 = On, wh o = wi)llnyz + 1172 = Yl + tlvn2 = vallo

2 (4.17)
<o (3 (# +i0d + o mlka))
TeT)

Proof. Consider (Bh/Q—Hh,wZ/Z—wZ;'yh/Q—'yh) € X}, /2 ¥, /2. Discrete stability
for the 7} jo-problem (see Proposition 3.2) implies that there exists (1,2, v}, i Th/2)
in Xp,/9 X I'y /3 such that
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I(mn 20 v 2 g2 + [Ths2ll=1 + E TR 200 <1 (4.18)

and

C (1812 = 8nswi = widllngo + 11 Vnj2 = Yall-1 + ¢l = Yallo)
< {a<0h/2 - 9h777h/2) + (’Yh/z — Y VUZ/Q - 77h/2)}

+ { - (V(wi*L/z - U)Z) - (ah/2 - Bh)aTh/2) + /J_th(’Yh/z - ’Yh77'h/2)}
=)+ (I).
(4.19)
On one hand, since (8}, /2, Wy, /o Yns2) (resp. (@h,w};vy,)) solves the discrete problem
with respect to the mesh 7}, /5 (resp. 7,), we have

(1) = a(@n/2 — On:Mpy2) + (Ynj2 = Yns VUijo — My2)
= (Q,UZ/Q) —a(0p, 77h/2) = (Vas VUZ/2 - "7h/2) (4.20)
= (Q,Ui/z —vp) — a(9h777h/2 =) — (’Yha V(UZ/Q —vp) = (nh/z - nh)) )

where we choose (n,,,v};) € X, satisfying estimate (4.16). An elementwise integration
by parts gives

(1) = Z {/T (diVCE(Oh) +’Yh) : (nh/z —np) — /8TCE(0h)n. ("7h/2 - nh)}

TeT,

+ S (vt ) G- i) [ venGi - o)

TeTy
(4.21)
by which

(1) = Z /T (divCe(n) +4) - (Mhy2 — M) — Z /[[C (0n)n] - (M2 — M)

TeTh ec&, V€
+ 3 [ (divano) i =) = X [ v nl i = i)
Te1;, T e€y V€
(4.22)
Hence, it holds
) 1/2 3 1/2
(n<c (( > w3lldaivCe@) +valldr) (D hrlimge —malidr)
TeT, TETh
1/2 B 1/2
+ (X nellice@nnlli,) (D2 At —mll.)
ecéy, e€€y
1/2 1 1/2
+ Z hi (b + )| divy,, + gll3 7 Z o [Uh 2 — vinllor
(TETh ) (TGTh hT(hT +1 ) )

1/2 1/2
+ (3 herZ+ ) v -ml 1) (Zmuvz/z—vznae) )

eclp eely
(4.23)
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Using Lemma 4.2, we get

(n<c (( S fdivee@n) +lie)” + (X hellicz@aniz,) "

TeT), e€€y

1/2 1/2
+ (D med+ Ol divay +gllfr) T+ (D helhZ + )] by wl1E) )

TeTy, ec&p

X |\|(77h/2702/2)|||h/2~
(4.24)
Therefore, one has

n<c (( S #lldivCe@) +vilide) (X hellice@omlz,)

TeT, e€ép

1/ 1/2
(X w03+ Olldivan +ailBr) (3 1303+ 2l - aulld)
TeTh TeTh

1/2
+ (X helt? + ) by ml 13 ) a2 0 2) I
ecéy,
(4.25)
On the other hand, since (0;,/2,w;/2;7h/2) solves the discrete problem with respect
to the mesh 7}, /5, we have

(IT) = —(V(wy sy — wh) = Onj2 = On), Thy2) + 1 (V2 — Vi Thy2)

= — (1, = (Vwy, = 01),Thy2)
1/2 1/2
—1,2 9.2 B2, 442 2
> hz T Py = (Ve =08 | | Y ()l
TET, TET,

1/2
<c< el - <Vw;z—oh>||aT> (72l + 17 2ll)
TeTy

(4.26)

As a consequence, from (4.19), (4.25), (4.26), using (4.18) and recalling defini-
tions (4.1)—(4.3), we have

|||(9h/2 - ehva/Q - w;)\”h/Q + ||’Yh/2 —Ypll-1 +1 H’Yh/z = Ynllo

1/2
<C(Z(n%+h%<h%+t2>||g—gh|3,T)> .

TE,]-}L

(4.27)

The proof is complete. [

4.2. Lower bounds. We now prove the efficiency of our error estimator by
establishing the following proposition.
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PROPOSITION 4.4. Let (6, w;~) (resp. (O, w5;~y)) be the solution of the con-
tinuous (resp. discrete) problem. Given T € Ty, it holds

r = € (G 196 = 0) = 0= 0) o+ 16 = Ol

-
(hZ. + 2

1/2
Hlve = rwr +tvn = YMowr + (D W7 +1%)lg — 9ull5r) ) ,

TCuwr
(4.28)
where nr is defined by (4.1)—(4.3).
Proof. Fix T € Tj, and a generic edge e C 9T. We proceed in three steps.
First step. Since
p Py =Vw -0, (4.29)
we get
i, — (Vi — 0l
(3 + )72 ’
- WHN‘W (vn =) = (V(wy, —w) = (0r = 0)) ], 1 (4.30)
<€ (tllm = lor + e IV 0 = ) = - 0], )
(hZ + 12)1/2 0,7
Second step. We choose
ny = h7(div Ce(6r) + ;) br (4.31)
where br is the standard cubic bubble on T. We observe that
In7|10 < Chrl[divCe(0n) +vpllor - (4.32)
Taking advantage of the equilibrium equation
—divCe(0)—vy=0, (4.33)
we get
h || divCe(6)) + ’Yh”g,T
< C(divCe(8y) + vy, mr) = C(divCe(8y — 6) + (v, —¥).m7) (434
= C(=a(6n—0,m7) + (v, — 7, n1))
< C(10n = 8llrr + vy = ll-17) N7l
Using (4.32), from (4.34) we thus obtain
hr||divCe(0n) +vpllor < C([10n = Oll1.0 + llvn —ll-17) - (4.35)
Next, we choose
Ne = he P([C(0n)n]) be (4.36)

where P is the prolongation operator introduced in [25] and b, is the usual ‘edge’
bubble on e. We observe that it holds

_ 1/2
(X mlmlidr) " < Clmeli, < CRY2| [C2(@n)] lo.c (4.37)
TCwe
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Integrating by parts and using again the equilibrium equation (4.33), we have

hel[ [Ce(0n)n] |5 .

< C/e[[CE(O;L)n] ‘n, :0( divCe(65) -ne+/

We

= 0((divc€(9h) +Ypme) +a(0r —0,m.) — (v, — 7, ne))

We

C(6,): e(m))

(4.38)

/ /
<c (( > lldivee@) + i) (X hlindBa)

TCwe TCwe

+ (116 = Bll1w + i = 10, ) Il )
Therefore, using (4.37) and (4.35), from (4.38) we get
B2 [Ce(@m] lloe < C (108 = Bll1. +ll9n — | 10) - (439)
Third step. We first define
pr = (divyy, + gn) b7 - (4.40)
We observe that o € HZ(T) and one has

lorlir < Chzt||divayy, + gallor
(4.41)
[Veorhr < Chz?||divy, + gnllor -
We then set
vr = h3(h3 + %) or . (4.42)
Using the equilibrium equation
—divy=g, (4.43)
we get
hp(hg + )| divy, + gullg 2 < C(divyy, + g, vr)
(4.44)

= C((div(’yh —),vr) + (gn — g,w)) :

We now separately treat the two terms at the right-hand side of (4.44). Integrating
by parts, recalling (4.40) and (4.42), and using (4.41), we have

(div(y, —7),vr) = =(v4 —, Vur)
= —h1(v, — 7, Ver) — *hi (v, — v, Vur)
<|lvn = Ye12hd Vorlir + v, — Ylorhat || Veor|lor

< C (Il = -0 divayy, + gullor + v = Alowhat || divy, + gallor)

< (I = l-vr + i = Ao ) b (W + 1212 divy, + gallor -

(4.45)
Furthermore, it holds

(9n — g,v1) < hp (W3 + ) 2|gn — gllo,r hr (B3 + )2 |orlo,r

< Chr(h3 +t2)2||gn, — gllo,r hr (k3 + ) /2| divy, + gnlloT -
(4.46)
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Therefore, using (4.45) and (4.46), from (4.44) we infer

P (% + )12 divay, + gullor < C(llvn = ll-1r

(4.47)
+ vy = Alor + b (b + %) ?||gn — 9||0’T> '
Next, we define
pe = e([vy, -ml) , (4.48)
where II. is the linear operator of Lemma 4.1. Therefore, we have
b nl B, <€ [ Bl (4.49)
ll@ellow. < ChY?|| [y (4.50)
IV ¢ellow. < ChZY2 I vy, 0] llo.e (4.51)
IVeehw, < Ch* 2| Iy, -1l llo,e - (4.52)
We then set
Ve = he(h? +1%) e . (4.53)

Integrating by parts using (4.49) and the equilibrium equation (4.43), we get

he(hZ + )| [

5 SC/[[’Yh‘n]]Ue

C (/ Ve div Ay, +/ Tn - Vve>
We We (454)

= C((div’yh +9,0) + (v, — s Vve))

IA

= O((ivy, + g ve) + (9= g ve) + (3 =7, V0.) )
We now estimate the three terms above. Recalling (4.53) and using (4.50), we obtain

(divyy, + gn,ve) = he(h? + ) (divy, + gn, @e)

= 30 [ (e ) 2 ) (824 )

TCwe
) 1/2 1/2
< (X nw+e)diva, +anlBr) (X 02+ 2)lelEr)
TCwe TCwe

1/2 1/2
< (X med+ldvy +alic) (D 2+l r)

TCwe TCwe

20712 | 42 2 \Y% 1202, 2012
<Y B+ ) ldivy, +gnlBr) 202+ 22 Ty - nl e -
TCwe
(4.55)
The same argument shows that it holds

1/2
(g — gn,ve) < C( > h%(h%thz)Ilg—ghII%,T) he? (02 + )2 [vs -0l lloe -
TCwe
(4.56)
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We now notice that
(Yn =, Vve) = b2 (v, = 7, Vo) + het® (v, — 7, Vepe) - (4.57)

On one hand, using (4.52), we have

h3(vn =7, Vee) < llvn — Vl-1,w.h2 IV eeli o,

(4.58)
< Cllvn = =10 k22 Tva -] llo.e -
On the other hand, from (4.51) we get
hetz(’Yh - V‘Pe) <t H’Yh - 7| O,wehet ||V<Pe||07we
(4.59)

< Oty = Ylow.he"*t | Ty, - 0] llo.e -

Therefore, using (4.58) and (4.59) from (4.57) we obtain

(vh =7, Voe) < C(llvn = =100 + v — Yow. )R 2(R2 + 32| [v, - n] I(o,e '
4,60

Collecting (4.55), (4.56) and (4.60), we infer from (4.54) that

) 1/2
B2 (02 + 42| [y, - m] o < © (( > W33+ ) divy, + galldr)
TCwe

2 2 2 2 1/2
v = Vv + = ow. + (D0 W30F+Olg - anllir) ) -
TCwe
(4.61)

Hence, from (4.47) we get

B2+ )2 Ty - 0] o < € (Il = Yl

(4.62)

1/2
tlvn = Vlow, + (D2 BE0F+B)lg—anllir) ) -
TCwe

Estimate (4.28) now follows from (4.30), (4.35), (4.39), (4.47) and (4.62). OJ
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