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1 Introduction and motivation

Let U and X be separable Hilbert spaces. Let S = [ A&B
C&D ] be a system node

in the sense of [8], whose input and output space are U , and the state space
is X. An additional space V :=

{

[ x
u ] ∈ [ X

U ] : A−1x + Bu ∈ X
}

is defined as
usual, and it is equipped with the natural norm making it a Hilbert space.
Then, as is well-known, the Cauchy problem

{

x′(t) = A−1x(t) + Bu(t), t ≥ 0,

x(0) = x0

(1.1)

is uniquely solvable for any input u ∈ C2(R+; U) and initial state x0 ∈ X
for which the compatibility condition

[ x0

u(0)

]

∈ V holds. Moreover, then also
[

x(·)
u(·)

]

∈ C(R+; V ), and hence the output relation y(t) = C&D
[

x(t)
u(t)

]

is well

defined for all t ≥ 0 as C&D ∈ L(V ; U). These and many other facts can be
found in [8, Section 2].

The system node [ A&B
C&D ] is energy preserving if the following energy bal-

ance holds for all T > 0

〈x(T ), x(T )〉2X +

∫ T

0

〈y(t), y(t)〉2Y dt = 〈x0, x0〉2X +

∫ T

0

〈u(t), u(t)〉2Udt, (1.2)

where u, x, y and x0 are as in (1.1). For any energy preserving S, the
semigroup generator A is maximally dissipative and C+ ⊂ ρ(A). If both

S = [ A&B
C&D ] and its dual node Sd =

[

[A&B]d

[C&D]d

]

are energy-preserving, then

[ A&B
C&D ] is called conservative; see [8, Definitions 3.1 and 4.1]. Conservative

system nodes are known in classical operator theory as operator colligations
or Livšic – Brodskiĭ nodes. A wide classical literature exists for them but
the practical linear systems content might sometimes be hard to understand.
See e.g. Brodskĭı [4, 6, 5], Livšic [12], Livšic and Yantsevich [11], Sz.-Nagy
and Foiaş [15], Smuljan [13], and Helton [3]. An up-to-date, comprehensive
reference for operator nodes is Staffans [14]. The general conservative case is
treated in Malinen, Staffans and Weiss [8], and the special case of boundary
control systems are described in [7, 9].

For simplicity, it will be henceforth assumed that all system nodes treated
in this paper are conservative, even though most of the results could be given
in a more general setting. For the same reason, we assume that U = C, i.e.
the signals u(·) and y(·) in (1.1) are scalar valued, even though everything
would still remain true (with similar proofs) even if U was a separable Hilbert
space.

Let us assume, for a moment, that we are treating the matrix case. Then
the dynamical equations take the usual form











x′(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t), t ≥ 0,

x(0) = x0.

(1.3)
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where A ∈ Cn×n, B ∈ Cn×1, C ∈ C1×n, and D ∈ C. Let h > 0 be a discretiza-
tion parameter. We can carry out a slightly nonstandard time discretization
of (1.3) and obtain an approximation of Crank–Nicholson type











x(jh)−x((j−1)h)
h

≈ Ax(jh)+x((j−1)h)
2

+ Bu(jh),

y(jh) ≈ C x(jh)+x((j−1)h)
2

+ Du((j − 1)h), j ≥ 1,

x(0) = x0.

Clearly, this induces the discrete time dynamics














x
(h)
j −x

(h)
j−1

h
= A

x
(h)
j +x

(h)
j−1

2
+ B

u
(h)
j√
h
,

y
(h)
j√
h

= C
x
(h)
j +x

(h)
j−1

2
+ D

u
(h)
j√
h
, j ≥ 1,

x
(h)
0 = x0,

(1.4)

where loosely speaking u
(h)
j /

√
h is an approximation of u(jh). We hope

very much that y
(h)
j /

√
h would be close to y(jh) — at least under some

exceptionally happy circumstances. After some easy computations, equations
(1.4) take the form











x
(h)
j = Aσx

(h)
j−1 + Bσu

(h)
j ,

y
(h)
j = Cσx

(h)
j−1 + Dσu

(h)
j , j ≥ 1,

x
(h)
0 = x0,

(1.5)

where Aσ := (σ+A)(σ−A)−1, Bσ :=
√

2σ(σ−A)−1B, Cσ :=
√

2σC(σ−A)−1

and Dσ := D + C(σ − A)−1B with σ := 2/h.
Even though the computation leading to (1.5) was carried out in the ma-

trix setting, exactly the same transformation can be done for any system node
S = [ A&B

C&D ]. We simply define the discrete time linear system (henceforth,
DLS) described by the operator quadruple

φσ =

[

Aσ Bσ

Cσ Dσ

]

=

[

(σ + A)(σ − A)−1
√

2σ(σ − A−1)
−1B√

2σC(σ − A)−1 G(σ)

]

(1.6)

for any σ > 0 (or even for any σ ∈ D, D being the unit disk, but we shall not
use this in this paper). Here G(·) denotes the transfer function of S, and it
is defined by G(s) = C&D [ (s−A−1)−1B I ]T for all s ∈ C+.

In system theory, the transformation S 7→ φσ is called Cayley transform
of continuous time systems to discrete time systems. By some computations,
it can be checked that the discrete time transfer function Dσ(·) of φσ satisfies

Dσ(z) := Dσ + zCσ(I − zAσ)−1Bσ = G

(

1 − z

1 + z
σ

)

. (1.7)

We say that the DLS φσ of type (1.5) is conservative if the defining block
matrix

[

Aσ Bσ
Cσ Dσ

]

is unitary. Then the discrete time balance equation

N
∑

j=1

‖xj‖2 −
N

∑

j=1

‖xj−1‖2 =
N

∑

j=1

‖uj−1‖2 −
N

∑

j=1

‖yj−1‖2

4



is satisfied for all N ≥ 1, where the sequences {uj}, {xj} and {yj} satisfy
(1.5). Studying the approximation scheme (1.4) might not be well motivated,
unless the following proposition did not hold:

Proposition 1. Let the system node S = [ A&B
C&D ] and the DLS φσ =

[

Aσ Bσ
Cσ Dσ

]

be connected by (1.6). Then S is (continuous time) conservative (passive) if
and only if φσ is (discrete time) conservative (resp., passive).

There exists an extensive literature on the Cayley transform of systems,
and we shall not try to make a full account of it here. See e.g. Ober and
Montgomery-Smith [10]. A nice piece of work, parallelling our approach, is
Arov and Gavrilyuk [1].

2 Approximation

of the input/output mapping

In this section, we describe the discretization (1.5) of dynamical system (1.1)
in operator theory language.

2.1 Spaces and transforms.

The norm of the usual Hardy space H2(C+) is given by

‖Φ‖2
H2(C+) = sup

x>0

1

2π

∫ ∞

−∞
|Φ(x + yi)|2 dy.

As usual, the Laplace transform is defined

(Lf) (s) =

∫ ∞

0

e−stf(t) dt for all s ∈ C+, (2.1)

and it maps L2(R+) → H2(C+) unitarily. The norm of H2(D) is given by
‖φ‖2

H2(D) =
∑

j≥0 |φj|2 if φ(z) =
∑

j≥0 φjz
j, which makes the Z-transform

unitary from `2(Z+) → H2(D). If, say, f ∈ Cc(R) in (2.1), then (Lf) (s) is
well defined for all s ∈ iR, too. We then call the function iω 7→ (Lf) (iω)
the Fourier transform of f .

From now on, denote by Dσ : H2(D) → H2(D) the multiplication oper-
ator defined by (Dσũ)(z) = Dσ(z)ũ(z) for all z ∈ D and σ > 0. Similarly,
denote by G : H2(C+) → H2(C+) the multiplication operator satisfying
(Gû)(s) = G(s)û(s) for all s ∈ C+

2. It follows immediately that (1.7) takes
the form of the similarity transformation

G = C−1
σ DσCσ, (2.2)

where the composition operator is defined by (CσF ) (z) := F ( 1−z
1−z

σ) for all

z ∈ D and F : C+ → C. Trivially (C−1
σ f) (s) := f( s−σ

s+σ
) for all s ∈ C+ and

f : D → C.
2Then Dσ and G are unitarily equivalent to the input/output mappings of φσ and S,

respectively.
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Proposition 2. The mapping f 7→ F given by F (s) =

√
2/σ

1+s/σ
f( s−σ

s+σ
) is unitary

from H2(D) onto H2(C+). In particular, the operator MσC−1
σ : H2(D) →

H2(C+) is unitary, where Mσ : H(C+) → H(C+) denotes the multiplication

operator by

√
2/σ

1+s/σ
.

Proof. This follows as soon as it is shown that for each σ > 0, the sequence
{√

2/σ

1+s/σ

(

s−σ
s+σ

)j
}

j≥0

is an orthonormal basis for H2(C+).

2.2 Discretizing operators.

By Tσ we denote a discretizing (or sampling) bounded linear operator Tσ :
L2(R+) → H2(D). The adjoint T ∗

σ of Tσ maps then H2(D) → L2(R+), and
it is typically an interpolating operator. In this paper, we define Tσ is by

(Tσu)(z) =
∑

j≥1

u
(h)
j zj where

u
(h)
j√
h

=
1

h

∫ jh

(j−1)h

u(t) dt, (2.3)

with h = 2/σ; see (1.4) and (1.5). Then the adjoint T ∗
σ is given by

(T ∗
σ ṽ) (t) =

1√
h

∑

j≥1

vjχ[(j−1)h,jh](t) (2.4)

where ṽ(z) =
∑

j≥0 vjz
j ∈ H2(D) and χI(·) denotes the characteristic func-

tion of the interval I.
It is worth noticing that the operator Tσ : L2(R+) → H2(D) is a coiso-

metry. This can be seen as follows:

‖T ∗
σ ṽ‖2

L2(R+) =
1

h

∫ ∞

0

|
∑

j≥1

vjχ[(j−1)h,jh]|2 dt =
1

h

∫ ∞

0

∑

j≥1

|vj|2χ[(j−1)h,jh] dt

(2.5)

=
1

h

∑

j≥1

|vj|2
∫ ∞

0

χ[(j−1)h,jh] dt =
∑

j≥1

|vj|2 = ‖ṽ‖2
H2(D).

2.3 Approximation of the Laplace transform.

Let us now use the discrete time trajectories of (1.5) to approximate the
continuous time dynamics in (1.3).

Let u ∈ L2(R+) be arbitrary. In the operator notation, the output of the
discretized dynamics (1.5) (after interpolation by T ∗

σ back to a continuous
time signal) is given by T ∗

σDσTσu. The output of continuous time dynamics
(1.3) is given by L∗GLu. Our first task is to show that at least for some nice
u ∈ L2(R+) and T > 0 we have convergence

‖T ∗
σDσTσu − L∗GLu‖L2([0,T ]) → 0 (2.6)
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at some speed as σ → ∞. By Proposition 2 and equation (2.2) we see that

T ∗
σDσTσ = T ∗

σ

(

CσM−1
σ

)

· G ·
(

MσC−1
σ

)

Tσ

= T ∗
σ

(

MσC−1
σ

)−1 · G ·
(

MσC−1
σ

)

Tσ =
(

MσC−1
σ Tσ

)∗ · G ·
(

MσC−1
σ Tσ

)

since the multiplication operator Mσ commutes with G. Hence by (2.6),
we are led to inquire whether the operators Lσ := MσC−1

σ Tσ are close (on
compact intervals) to the Laplace transform L when σ is large. This, indeed,
appears to be true to some extent 3.

Proposition 3. For any u ∈ Cc(R+) and s ∈ C+, we have (Lu)(s) =
limσ→∞ (Lσu)(s) where Lσ is defined as above.

Proof. Defining Tσ by (2.3) we get

(Lσu)(s) =

√

2/σ

1 + s/σ

∑

j≥1

(

1

h

∫ jh

(j−1)h

u(t) dt

)(

σ − s

σ + s

)j

(2.7)

=
1

1 + s/σ

∑

j≥1

(

∫ ∞

0

χ[(j−1)h,jh](t)

(

σ − s

σ + s

)j

u(t) dt

)

=

∫ ∞

0

Ks,σ(t)u(t) dt,

where σ = 2/h and

Ks,σ(t) =
1

1 + s/σ

∑

j≥1

χ[(j−1)h,jh](t)

(

1 − 2s

s + σ

)j

. (2.8)

Now, if j is such that t ∈ [(j − 1)h, jh], then we obtain from the previous

Ks,σ(t) ≈ 1

1 + s/σ

(

1 − s

s/2 + σ/2

)(σ/2)·t
→ e−st as σ → ∞.

We conclude that limσ→∞ Ks,σ(t) = e−st for all s ∈ C+ and t ≥ 0. Moreover,
for each fixed s ∈ C+ and σ ≥ 2|s| we have

|Ks,σ(t)| ≤ 2 ·
(

1 +
2|s|

σ − |s|

)(σ/2)·t

≤ 2 ·
(

1 +
2|s|

σ − |s|

)(σ−|s|)t/2

·
(

1 +
2|s|

σ − |s|

)|s|t/2

≤ 2
(

e
√

3
)|s|t

.

The proposition now follows from the Lebesgue dominated convergence the-
orem, as the integrand in (2.7) is has a compact support.

The purpose of this paper is to give stronger versions of Proposition 3.

3Note that by Proposition 2 and equality (2.5), we see that each Lσ : L2(R+) →
H2(C+) is a coisometry. The Laplace transform, in its turn, is an unitary mapping between
the same spaces. Hence, the convergence of Lσ → L must be rather weak.
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3 A pointwise convergence estimate

Our main result will be given in this section. Theorem 1 provides a uniform
speed estimate for the convergence of (Lσu)(iω) → (Lu)(iω) for iω ∈ K
where K ⊂ iR is compact.

Before that some new definitions and notations must be given: Let Ij =
((j − 1)h, jh] = (tj−1, tj] and tj−1/2 = 1

2
(tj−1 + tj). For u ∈ L2(R+), let Ih,su

be the piecewise constant interpolating function, defined by

(Ih,su)(t) = ūj,h +
cj(h, s)

h
(t − tj−1/2), t ∈ Ij, (3.1)

where ūj,h = 1
h

∫

Ij
u(t) dt and the defining sequence {cj(h, s)}j≥1 (depending

on two parameters h and s) will be later chosen in a particular way. Let Ph

denote the orthogonal projection in L2(R+) onto the subspace of functions
that are constant on each interval Ij. Then clearly for all u ∈ L2(R+), j ≥ 1
and t ∈ Ij we have (Phu)(t) = ūj,h.

Theorem 1. Let h > 0, σ = 2/h, T = Jh for some J ∈ N, u ∈ Cc(R+) ∩
H1(R+), and assume that supp(u) := {t ∈ R : u(t) 6= 0} ⊂ [0, T ].

(i) Then the sequence {cj(h, s)}j≥1 can be chosen so that (Lσ−L)(Ih,su)(s) =
0 for all s ∈ C+.

(ii) For any such choice of the sequence {cj(h, s)}j≥1, we have

|(Lσu)(s) − (Lu)(s)|

≤ hT 1/2|s|
π

(

‖Ih,su − Phu‖L2([0,T ]) +
h

π
|u|H1([0,T ])

)

(3.2)

for all s ∈ C+.

(iii) The sequence {cj(h, s)}j≥1 in claim (i) can be chosen optimally so that

‖Ih,su − Phu‖L2([0,T ]) ≤
15

218

(

h−1/2T−1/2 +
|s|
6e

)

‖Phu‖L2([0,T ])

for a given s ∈ iR, T ≥ 1 if 9h ≤ T 2/3e−
4
3
|s|T . Furthermore, then

|(Lσu)(s) − (Lu)(s)| (3.3)

≤ 3h1/2|s|
100

‖u‖L2([0,T ]) +
2hT 1/2|s|2

1000
‖u‖L2([0,T ])

+
h2T 1/2|s|

10
|u|H1([0,T ]).

Proof. Let us first make some general observations. By a simple argument,
‖Phu‖2

L2(R+) = h
∑

j≥1 ū2
j,h. Clearly for all t ∈ Ij

(Ih,su − Phu)(t) =
cj(h, s)

h
(t − tj−1/2).
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Since for any b > a we have

1

(b − a)2

∫ b

a

(

t − b + a

2

)2

=
b − a

12
,

it follows that

‖Ih,su − Phu‖2
L2([0,T ]) =

J
∑

j=1

cj(h, s)2

h2

∫ tj

tj−1

(t − tj−1/2)
2 dt (3.4)

=
h

12

J
∑

j=1

cj(h, s)2.

In claim (i) we want to determine the sequence {cj(h, s)}j≥1 so as to satisfy
(Lσ − L)(Ih,su)(s) = 0 for given h and s. After some computations, we see
that this is equivalent to requiring that {cj(h, s)}j≥1 satisfies

J
∑

j=1

ūj,hI
(0)
j (h, s) +

J
∑

j=1

cj(h, s)Jj(h, s) = 0, (3.5)

where for s ∈ C+ \ {0}

I
(0)
j (h, s) :=

∫

Ij

[

1

1 + s/σ

(

σ − s

σ + s

)j

− e−st

]

dt (3.6)

=
2

σ + s

(

σ − s

σ + s

)j

+
1

s

[

e−sjh − e−s(j−1)h
]

,

and

Jj(h, s) := I
(1)
j (h, s) − (j − 1/2)h · I (0)

j (h, s) (3.7)

=
1

s2

[

e−sjh − e−s(j−1)h
]

+
h

2s

[

e−sjh + e−s(j−1)h
]

,

together with

I
(1)
j (h, s) :=

∫

Ij

[

1

1 + s/σ

(

σ − s

σ + s

)j

− e−st

]

t dt

=
(2j − 1)h

σ + s

(

σ − s

σ + s

)j

+

(

jh

s
+

1

s2

)

[

e−sjh − e−s(j−1)h
]

+
h

s
e−s(j−1)h.

It is clear that (3.5) has a huge number of solutions {cj(h, s)}J
j=1 for any

fixed s and h, and most of the functions (h, s) 7→ cj(h, s) need not even be
continuous.
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Claim (ii) is to be treated next. Recalling (2.7), (2.8) and (3.1)

(Lσu)(s) − (Lu)(s) =

∫ T

0

(Ks,σ(t) − e−st)u(t) dt

=

∫ T

0

(Ks,σ(t) − e−st)(u(t) − (Ih,su)(t)) dt

=
J

∑

j=1

∫ tj

tj−1

(Ks,σ(t) − e−st)(u(t) − ūj,h) dt

−
J

∑

j=1

cj(h, s)

h

∫ tj

tj−1

(Ks,σ(t) − e−st)(t − tj−1/2) dt = I − II.

(3.8)

Let us first give an estimate to the term II. By the Poincare inequality,
Proposition 6, we obtain for all j = 1, . . . , J

‖(I − Ph)(Ks,σ − e−s(·))‖L2(Ij) ≤
h

π
|Ks,σ − e−s(·)|H1(Ij) =

h

π
|e−s(·)|H1(Ij),

where the equality follows because the function Ks,σ is constant on each
interval Ij. By the mean value theorem we get for s ∈ C+ and 0 ≤ a < b < ∞,

|e−s(·)|2H1([a,b]) =

∫ b

a

| d

dt
e−st|2 dt =

|s|2
2Re s

(

e−2aRe s − e−2bRe s
)

≤ |s|2
2Re s

· 2Re se−2ξRe s (b − a) ≤ (b − a)|s|2e−2aRe s.

Hence |e−s(·)|H1(Ij) ≤ h1/2|s|e−(j−1)hRe s and this estimate is seen to hold also

for all s ∈ C+. We now conclude that |e−s(·)|H1([0,T ]) ≤ T 1/2|s| and

‖(I − Ph)(Ks,σ − e−s(·))‖L2(Ij) ≤
h3/2|s|

π
(3.9)

for all s ∈ C+. Using (3.9) we have

II =
J

∑

j=1

∫ tj

tj−1

(Ks,σ(t) − e−st) · cj(h, s)

h
(t − tj−1/2) dt (3.10)

=
J

∑

j=1

∫ tj

tj−1

(

(I − Ph)
(

Ks,σ − e−s(·))) (t) · cj(h, s)

h
(t − tj−1/2) dt

≤
J

∑

j=1

h3/2|s|
π

·
[

cj(h, s)2

h2

∫ tj

tj−1

(t − tj−1/2)
2 dt

]1/2

≤
(

J
∑

j=1

h3|s|2
π2

)1/2

·
(

J
∑

j=1

cj(h, s)2

h2

∫ tj

tj−1

(t − tj−1/2)
2 dt

)1/2

≤h3/2|s|
π

J1/2 · ‖Ih,su − Phu‖L2([0,T ]) =
hT 1/2|s|

π
‖Ih,su − Phu‖L2([0,T ])
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where the Schwarz inequality has been used twice, and the second to last
step is by (3.4).

It remains to estimate term I in (3.8). In this case, since Ph maps on
piecewise constant functions and each u(t)− ūj,h has zero mean on subinter-
vals Ij, we obtain by the inequalities of Schwarz and Poincare, together with
(3.9)

II ≤
J

∑

j=1

∫ tj

tj−1

(

(I − Ph)
(

Ks,σ − e−s(·))) (t)(u(t) − ūj,h) dt

≤
J

∑

j=1

h3/2|s|
π

· h

π
|u|H1(Ij) ≤

h5/2|s|
π2

J
∑

j=1

|u|H1(Ij)

≤h5/2|s|
π2

(

J
∑

j=1

1

)1/2 (

J
∑

j=1

|u|2H1(Ij)

)1/2

=
h2T 1/2|s|

π2
|u|H1([0,T ]).

(3.11)

Estimate (3.2) follows from combining (3.10) and (3.11) with (3.8).
To prove claim (iii), we shall minimise h

12

∑

j≥1 cj(h, s)2 under the con-
straint (3.5), see (3.4) for motivation. We form the Langrange function

L(c1, . . . , ck . . . , cJ , λ)

=
h

12

J
∑

j=1

c2
j + λ

(

J
∑

j=1

ūj,hI
(0)
j (h, s) +

J
∑

j=1

cjJj(h, s)

)

,

and compute its (unique) critical point giving the minimum. We obtain
{

∂L
∂ck

= h
6
ck + λJk(h, s) = 0 for 1 ≤ k ≤ J,

∑J
j=1 ūj,hI

(0)
j (h, s) +

∑J
j=1 cjJj(h, s) = 0.

Solving this gives the minimising sequence

ck = ck(h, s) = −6λ

h
Jk(h, s) = −

∑J
j=1 ūj,hI

(0)
j (h, s)

∑J
j=1 Jj(h, s)2

Jk(h, s),

for all 1 ≤ k ≤ J , and then for the minimum value

h

12

J
∑

j=1

cj(h, s)2 =
h

12

(

∑J
j=1 ūj,hI

(0)
j (h, s)

∑J
j=1 Jj(h, s)2

)2 J
∑

k=1

Jk(h, s)2

=
h

12

(

∑J
j=1 ūj,hI

(0)
j (h, s)

)2

∑J
j=1 Jj(h, s)2

.

Hence, choosing the operator Ih,s in (3.4) optimally gives

‖Ih,su − Phu‖L2([0,T ]) ≤

(

∑J
j=1 I

(0)
j (h, s)2

)1/2

(

∑J
j=1 Jj(h, s)2

)1/2

‖Phu‖L2([0],)

2
√

3

11



since ‖Phu‖L2([0,T ]) =
(

h
∑J

j=1 ū2
j,h

)1/2

. We must now attack (3.6) and (3.7)

to estimate the required two square sums, and the resulting long computa-
tions will be done in separate subsections 3.1 and 3.2. As a final result, we
get by Propositions 4 and 5

(

∑J
j=1 I

(0)
j (h, s)2

)1/2

(

∑J
j=1 Jj(h, s)2

)1/2
≤ 5

218

(

3h−1/2T−1/2 + h1/2|s|2T 1/2
)

assuming that 9h ≤ T 2/3e−
4
3
|s|T . But then

h1/2|s|2T 1/2 ≤ |s|
3

· |s|T 5/6e−
2
3
|s|T ≤ |s|

3
· |s|Te−

2
3
|s|T ≤ |s|

2e
,

since maxr≥0 re−
2
3
r = 3/(2e). Noting that the norm of the orthogonal pro-

jection Ph is 1, the proof of 1 is now complete.

3.1 Estimation of (3.7)

In this subsection, we shall estimate the square sum of

Jj(h, s) =
1

s2

[

e−sjh − e−s(j−1)h
]

+
h

2s

[

e−sjh + e−s(j−1)h
]

(3.12)

from below and above. For the first term on the left of (3.12) we obtain

1

s2

[

e−sjh − e−s(j−1)h
]

=
1

s2

[

∑

k≥0

(−sjh)k

k!
−

∑

k≥0

(−s(j − 1)h)k

k!

]

=
1

s2

[

−sh +
∑

k≥2

(−sh)k(jk − (j − 1)k)

k!

]

= −h

s
+

∑

k≥2

(jk − (j − 1)k)

k!
(−s)k−2hk.

For the latter term in (3.12) we get

h

2s

[

e−sjh + e−s(j−1)h
]

=
h

s

∑

k≥0

(−s)k(jk + (j − 1)k)

2k!
hk

=
h

s
−

∑

k≥2

(jk−1 + (j − 1)k−1)

2(k − 1)!
(−s)k−2hk.

Hence, for all s ∈ C+ \ {0}

Jj(h, s) =
∑

k≥2

dk(j)

2k!
(−s)k−2hk

12



where the coefficient polynomials satisfy (by the binomial theorem)

dk(j) = 2
(

jk − (j − 1)k
)

− k
(

jk−1 + (j − 1)k−1
)

=
k−3
∑

m=0

(

k
m

)

(k − m − 2)(−1)k−mjm for k ≥ 3

and d2(j) = 0. Hence dk(j) is a polynomial of degree k − 3 in variable j.
Finally, we get

Jj(h, s) =
∑

k≥3

k−3
∑

m=0

k − m − 2

2m!(k − m)!
(−j)msk−2hk.

Let us compute an upper estimate for

‖{Jj(h, s)}j‖`2 :=

(

J
∑

j=1

Jj(h, s)2

)1/2

.

By the triangle inequality

‖{Jj(h, s)}j‖`2

≤ |s−2| ·
∑

k≥3

k−3
∑

m=0

k − m − 2

2m!(k − m)!
|sh|k

(

J
∑

j=1

j2m

)1/2

≤ |s−2| ·
∑

k≥3

k−3
∑

m=0

k − m − 2

2m!(k − m)!
|sh|k · Jm+1/2

√
2m + 1

≤ 1

2
|s|T 1/2h5/2 ·

∑

k≥3

k−3
∑

m=0

k − m − 2

2
√

2m + 1 m!(k − m)!
|s|k−3Tmhk−m−3.

Noting that for k − 3 ≥ m ≥ 0 we have k−m−2√
2m+1 m!(k−m)!

≤ 1
m!(k−m−3)!

and

|s|k−3Tmhk−m−3 = |sh|k−3 · (T/h)m, we may estimate the sum term above

∑

k≥3

k−3
∑

m=0

k − m − 2

2
√

2m + 1 m!(k − m)!
|s|k−3Tmhk−m−3

≤
∑

k≥3

(

|sh|k−3

(k − 3)!

k−3
∑

m=0

(

k − 3
m

) (

T

h

)m
)

≤
∑

k≥3

|sh|k−3

(k − 3)!

(

1 +
T

h

)k−3

= e|s|(h+T ).

We now conclude for all h, T > 0 and s ∈ C+ \ {0} that

‖{Jj(h, s)}J
j=1‖`2 ≤

1

2
|s|T 1/2h5/2e|s|(h+T ). (3.13)

13



In addition to estimate (3.13) a lower bound can also be obtained: Decompose

Jj(h, s) =
∞

∑

k=3

k−3
∑

m=0

k − m − 2

2m!(k − m)!
(−j)msk−2hk

=
∞

∑

k=3

(

1

2(k − 3)!3!
(−j)k−3sk−2hk +

k−4
∑

m=0

k − m − 2

2m!(k − m)!
(−j)msk−2hk

)

=
∞

∑

k=3

1

2(k − 3)!3!
(−j)k−3sk−2hk +

∞
∑

k=4

k−4
∑

m=0

k − m − 2

2m!(k − m)!
(−j)msk−2hk

so that by the triangle inequality

∥

∥{Jj(h, s)}J
j=1

∥

∥

`2
≥

∥

∥

{ ∞
∑

k=3

1

2(k − 3)!3!
(−j)k−3sk−2hk

}J

j=1

∥

∥

`2

−
∥

∥

{ ∞
∑

k=4

k−4
∑

m=0

k − m − 2

2m!(k − m)!
(−j)msk−2hk

}J

j=1

∥

∥

`2
.

(3.14)

For the first term in the right hand side of (3.14) we have

∥

∥

{ ∞
∑

k=3

1

2(k − 3)!3!
(−j)k−3sk−2hk

}J

j=1

∥

∥

`2

=
∥

∥

{

1

12
sh3

∞
∑

k=3

1

(k − 3)!
(−j)k−3sk−3hk−3

}J

j=1

∥

∥

`2

=
1

12
|s|h3 ·

∥

∥

{

e−jsh
}J

j=1

∥

∥

`2

(3.15)

where

∥

∥

{

e−jsh
}J

j=1

∥

∥

`2
=

J
∑

j=1

|e−jsh|2

=

{

J = h−1T, when Re s = 0

e−2hRe s 1−e−2(J+1)hRe s

1−e−2hRe s , when Re s > 0.

(3.16)
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For the latter term in (3.14) we have a similar upper estimate to (3.13).
Indeed,

∥

∥

{ ∞
∑

k=4

k−4
∑

m=0

k − m − 2

2m!(k − m)!
(−j)msk−2hk

}J

j=1

∥

∥

`2

≤
∞

∑

k=4

k−4
∑

m=0

k − m − 2

2m!(k − m)!
|s|k−2hk Jm+1/2

√
2m + 1

=
∞

∑

k=4

k−4
∑

m=0

k − m − 2

2m!(k − m)!
|s|k−2hkh−m−1/2Tm+1/2

=|s|2h7/2

∞
∑

k=4

k−4
∑

m=0

k − m − 2

2m!(k − m)!
|s|k−4hk−m−4Tm

≤|s|h7/2e|s|(h+T ).

(3.17)

As a conclusion we can now state

Proposition 4. Let Jj(h, s) be defined through (3.12). Then for any s ∈ iR,

T, h > 0 satisfying T = Jh, J ∈ N and 9h ≤ T 2/3e−
4
3
|s|T we have

‖{Jj(h, s)}J
j=1‖`2 ≥

5

109
Th2|s|. (3.18)

Proof. It is clear that (3.18) is satisfied for s = 0. For s ∈ iR \ {0} it follows
from (3.14) and (3.15) – (3.17) that for all s ∈ iR \ {0}, h, T > 0 satisfying
T = Jh for J ∈ N that the estimate

∥

∥{Jj(h, s)}J
j=1

∥

∥

`2
≥

(

T

12
− h3/2e|s|(h+T )

)

h2|s|

holds. Since always h ≤ T , we have h3/2e|s|(h+T ) ≤ h3/2e2|s|T ≤ T
27

provided

that h ≤ T 2/3

9
e−

4
3
|s|T . The claim follows from this.

3.2 Estimation of (3.6)

In this subsection, we compute an upper estimate for

∥

∥

{

I
(0)
j (h, s)

}J

j=1

∥

∥

`2
:=

(

J
∑

j=1

I
(0)
j (h, s)2

)1/2

.

Writing τ = sh and recalling σ = 2/h, we get for s ∈ C+

I
(0)
j (h, s) =

2

σ + s

(

σ − s

σ + s

)j

+
1

s

(

e−sjh − e−s(j−1)h
)

=
2

σ + s

(

(

σ − s

σ + s

)j

− e−sjh

)

+

(

2

σ + s
− 1

s
(esh − 1)

)

e−sjh

=
2h

2 + τ

(

(

2 − τ

2 + τ

)j

− e−τj

)

+

(

2h

2 + τ
− h

τ
(eτ − 1)

)

e−τj.

15



Let Ω ⊂ C+ be any set. Then for any τ ∈ Ω we have

|I(0)
j (h, s)| ≤

∣

∣

∣

∣

2h

2 + τ

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

2 − τ

2 + τ

)j

− e−τj

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

2h

2 + τ
− h

τ
(eτ − 1)

∣

∣

∣

∣

∣

∣e−τj
∣

∣

≤
∣

∣

∣

∣

2h

2 + τ

∣

∣

∣

∣

∣

∣

∣

∣

(

2 − τ

2 + τ

)

− e−τ

∣

∣

∣

∣

∣

∣

∣

∣

∣

j−1
∑

k=1

(

2 − τ

2 + τ

)k

e−τ(j−k−1)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

2h

2 + τ
− h

τ
(eτ − 1)

∣

∣

∣

∣

≤h|τ |
(

CΩ

∣

∣

∣

∣

2jτ 2

2 + τ

∣

∣

∣

∣

+ C ′
Ω

)

where the constants are given by

CΩ = sup
τ∈Ω

∣

∣

∣

∣

1

τ 3

(

2 − τ

2 + τ
− e−τ

)∣

∣

∣

∣

and C ′
Ω = sup

τ∈Ω

∣

∣

∣

∣

1

τ

(

2

2 + τ
− 1

τ
(eτ − 1)

)∣

∣

∣

∣

.

This implies for all h ≥ 0 and τ = sh ∈ Ω

∥

∥

{

I
(0)
j (h, s)

}J

j=1

∥

∥

`2
≤CΩ

2h|τ |3
|2 + h|

(

J
∑

j=1

j2

)1/2

+ C ′
Ωh|τ |

(

J
∑

j=1

1

)1/2

≤CΩh4|s|3
(

1

3
J3 +

1

2
J2 +

1

6
J

)1/2

+ C ′
Ωh2|s|J1/2 (3.19)

≤CΩh5/2|s|3T 3/2 + C ′
Ωh3/2|s|T 1/2

by the facts that T = Jh and J ≥ 1. We now have to choose the set Ω in a
clever way, so that the resulting estimate is properly “fine tuned” according
to Proposition 4.

Proposition 5. Let I
(0)
j (h, s) be defined through (3.6). Then for any s ∈ iR,

T ≥ 1,h > 0 satisfying T = Jh, J ∈ N and 9h ≤ T 2/3e−
4
3
|s|T we have

∥

∥

{

I
(0)
j (h, s)

}J

j=1

∥

∥

`2
≤ 1

2
h5/2|s|3T 3/2 +

3

2
h3/2|s|T 1/2 (3.20)

Proof. Since we assume (motivated by Proposition 4) that 9h ≤ T 2/3e−
4
3
|s|T ,

we have

|τ | = |s|h ≤ |s|T 2/3

9
e−

4
3
|s|T ≤ |s|T

9
e−

4
3
|s|T ≤ 1

12e
,

since maxr≥0 re−
4
3

r = 3/(4e). Hence, we are invited to estimate the constants
CΩ and C ′

Ω for the set Ω := [−i/(12e), i/(12e)]. By computing the Taylor
series, we see that

CΩ ≤
∑

j≥0

∣

∣

∣

∣

1

2j+2
− 1

(j + 3)!

∣

∣

∣

∣

·
(

1

12e

)j

<
∑

j≥0

1

2j−1
·
(

1

12e

)j

=
6e

24e − 1
<

1

2
.

16



Similarly

C ′
Ω ≤

∑

j≥0

∣

∣

∣

∣

∣

(

−1

2

)j+1

− 1

(j + 2)!

∣

∣

∣

∣

∣

·
(

1

12e

)j

<
∑

j≥0

1

2j
·
(

1

12e

)j

=
24e

24e − 1
<

3

2
.

But now (3.19) implies (3.20).

3.3 Determination of the isoperimetric constant

In this section we give a basic interpolation estimate used several times in
the proofs.

Proposition 6. Assume that u ∈ H1(Ij). Then

||u − ū||L2(Ij) ≤
h

π
|u|H1(Ij)

Proof. Let Iref = (0, 1] and define the bilinear forms a(u, v) =
∫

Iref
u′(v′)∗ dt

and b(u, v) =
∫

Iref
uv∗ dt where the asterisk denotes complex conjugation.

Furthermore, let

V = {v ∈ H1(Iref ) |
∫

Iref

v(t) dt = 0}

and

λ1 = inf
v∈V, v 6=0

a(v, v)

b(v, v)
∈ R+

By Rayleigh’s theorem, λ1 is the smallest eigenvalue of the problem: Find
u ∈ V such that

a(u, v) = λb(u, v) ∀v ∈ V. (3.21)

Solution to (3.21) can be sought for using the Euler equations for the eigen-
pair (λ, u). By standard calculus the first eigenpair is found to be (λ1, u1) =
(π2, cos (πt)). It follows that b(v, v) ≤ 1

λ1
a(v, v), that is ||v||2L2(Iref ) ≤ 1

π2 |v|2H1(Iref )

for any v ∈ V . Let now u ∈ H1(Iref ) and set v = u − ū ∈ V implying

||u − ū||2L2(Iref ) ≤
1

π2
|u − ū|2H1(Iref ) =

1

π2
|u|2H1(Iref ) (3.22)

For the general interval Ij = (tj−1, tj ] a standard scaling argument with
û(τ) = u((t − tj−1)/h) and τ = (t − tj−1)/h ∈ Iref gives

||u − ū||2L2(Ij)
=h||û − ¯̂u||2L2(Iref ) ≤

1

π2
h|û|2H1(Iref ) =

1

π2
h2|u|2H1(Ij)

(3.23)

implying

||u − ū||L2(Ij) ≤
1

π
h|u|H1(Ij). (3.24)
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4 Weak and strong convergence

We first show that Theorem 1 implies that Lσ → L in weak operator topology.
Using this, it is then shown in Theorem 2 that the convergence is, in fact,
strong.

Indeed, it follows from Theorem 1 that (Lσu)(iω) → (Lu)(iω) uniformly
in the compact subsets iω ∈ K ⊂ iR for any u ∈ Cc(R+) ∩ H1(R+). Hence,
for finite linear combinations s (also called simple functions) of character-
istic functions χK of compact intervals K ⊂ iR we have 〈s, Lσu〉L2(iR) →
〈s,Lu〉L2(iR). Since ‖Lσ‖L(L2(R+);H2(C+)) ≤ 1 and simple functions are dense

in L2(iR), it follows that

〈v, Lσu〉K2(iR) → 〈v,Lu〉H2(iR) as σ → ∞ (4.1)

for all u ∈ Cc(R) ∩ H1(R+) and v ∈ L2(iR+). Another density argument
implies finally that (4.1) holds even for all u ∈ L2(R+) and v ∈ L2(iR+).

We recall a result from elementary functional analysis:

Proposition 7. Let H be a Hilbert space, and assume that uj → u weakly
in H. If ‖uj‖H → ‖u‖H , then uj → u in the norm of H.

Proof. 〈uj − u, uj − u〉H = 〈uj, uj〉H−〈u, u〉H−〈u, uj − u〉H−〈uj − u, u〉H =
‖uj‖2

H − ‖u‖2
H − 2Re 〈u, uj − u〉H .

Theorem 2. We have ‖Lσu−Lu‖H2(C+) → 0 for any u ∈ L2(R+). Moreover,
‖L∗

σv − L∗v‖L2(R+) → 0 for any v ∈ H2(C+).

Proof. Adjoining (4.1) shows that L∗
σv → L∗v weakly. Since Lσ is a coisom-

etry by Proposition 2 and (2.5), we have

‖L∗
σv‖2

L2(R+) = 〈LσL
∗
σv, v〉2H2(C+) = ‖v‖2

H2(C+).

Now Proposition 7 implies the latter part of this Theorem.
To show the first part, we have to work a bit harder to verify that

‖Lσu‖L2(iR) → ‖u‖L2(R+) = ‖Lu‖L2(iR). Suppose that h = 2/σ > 0 and
u ∈ L2(R+) is such that u(t) = uj,h :=

∫

((j−1)h,jh]
u(t) dt for all t ∈ Ij :=

((j − 1)h, jh] — in other words, this is simply u = Phu. For such u

‖u‖2
L2(R+) =

∑

j≥1

∫

Ij

|u(t)|2 dt = h‖{uj,h}j≥0‖2
`2 .

By the definition of the discretizing operator Tσ, we have

‖Tσu‖2
H2(D) =

∑

j≥1

(

1√
h

∫

Ij

|u(t)|2 dt

)2

= h
∑

j≥1

|uj,h|2 = ‖u‖2
L2(R+).

Hence, we have ‖TσPhu‖H2(D) = ‖Phu‖L2(R+) for all u ∈ L2(R+) where σ =
2/h. Also note that Tσu = TσPhu for all u ∈ L2(R+) provided that σ = 2/h.
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We now have for any u ∈ L2(R+)

∣

∣‖Tσu‖H2(D) − ‖u‖L2(R+)

∣

∣

≤
∣

∣‖Tσu‖H2(D) − ‖TσPhu‖H2(D)

∣

∣ +
∣

∣‖TσPhu‖H2(D) − ‖Phu‖L2(R+)

∣

∣

+
∣

∣‖Phu‖L2(R+) − ‖u‖L2(R+)

∣

∣ =
∣

∣‖Phu‖L2(R+) − ‖u‖L2(R+)

∣

∣

where again σ = 2/h. Since the projections Ph → I strongly in L2(R+) as
h → 0, we conclude that ‖Tσu‖H2(D) → ‖u‖L2(R+) and hence ‖Lσu‖H2(C+) →
‖u‖L2(R+) as σ → ∞, see Proposition 2. The first claim of this theorem
follows from this, Proposition 7 and (4.1).

Using Theorem 2 we can show that the output of integration scheme (1.5)
converges to the output of continuous time dynamics (1.3) for input/output
stable systems S. These are systems for which G(·) ∈ H∞(C+) or, equiv-
alently, G ∈ L(H2(C+)). To understand the formulation of the following
theorem, we refer back to Section 2.

Theorem 3. For any u ∈ L2(R+) and G ∈ H∞(C+), we have

‖T ∗
σDσTσu − L∗GLu‖L2(R+) → 0 (4.2)

as σ → ∞.

Proof. As noted just before Proposition 3, we have T ∗
σDσTσ = L∗

σGLσ. Then
we get for all σ > 0

‖L∗
σGLσu − L∗GLu‖L2(R+) ≤ ‖(L∗

σ − L∗)G (Lσu − Lu)‖L2(R+)

+ ‖(L∗
σ − L∗)GLu‖L2(R+) + ‖L∗G (Lσu − Lu)‖L2(R+).

Now (4.2) follows by Theorem 2.

5 A counterexample

We complete this paper by reviewing estimate (2.6) in the special case when
G(s) = I for all s ∈ C+. It indicates that Theorem 3 cannot be improved by
a speed estimate for convergence.

In this special case it follows from the very definitions that L∗
σGLσ =

T ∗
σTσ = P2/σ where the orthogonal projection Ph is defined as in Section 3.

Since L∗L = I on all of L2(R+), we should give an estimate to

‖u − Phu‖L2([0,T ]) for a family of functions u ∈ L2(R+).

It is, of course, true that Phu → u as h → 0 for all u ∈ L2(R+). However,
there cannot be a uniform speed estimate of type

‖u − Phu‖L2([0,T ]) ≤ Cuh
α (5.1)
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where Cu < ∞ for all u ∈ L2([0, T ]). If it were so, then for any 0 < β < α
we would have ‖h−β(I − Ph)u‖L2([0,T ]) ≤ Cuh

α−β → 0 as h → 0, for all
u ∈ L2([0, T ]). By the uniform boundedness principle,

sup
h>0

‖h−β(I − Ph)‖L2([0,T ]) =: M < ∞

and hence ‖(I − Ph)‖L(L2([0,T ])) ≤ Mhβ for all h > 0.
Making now h small enough, we see that then the norm of the orthog-

onal projection (I − Ph)|L2([0, T ]) is strictly less than 1; this implies that
I|L2([0, T ]) = Ph|L2([0, T ]). But Ph|L2([0, T ]) is a finite rank operator, and
the uniform speed estimate (5.1) cannot hold by contradiction. The same
conclusion holds, if hα in (5.1) is replaced by any increasing continuous func-
tion φ(h) satisfying φ(0) = 0.

It should also be noted that for functions u ∈ L2(R+) that possess certain
smoothness properties such a speed estimate can be obtained. See [2] for a
further discussion on what is obtainable and what is not.

6 Conclusions

The operators Lσ for σ > 0 have been introduced just before Proposition 3
with aid of the Cayley transformation (1.7). It is shown in Theorem 2 that
the operators Lσ provide an approximation to Laplace transform for a wide
class of functions. In addition, Theorem 3 shows that for I/O-stable linear
systems, the convergence extends to the input/output relation of the system.
All this can be anticipated since the Cayley transform actually corresponds
to the slightly “unorthodox”, conservativity-preserving discretization (1.5) of
the dynamical equations (1.3) (or their infinite-dimensional analogue e.g. in
[8, Proposition 2.5]).

Theorem 3 gives no estimate on the speed of the convergence with respect
to the sampling parameter h = 2/σ. If we had some decay

G(s) → 0 as |s| → ∞ (6.1)

at some speed, then we could effectively restrict our analysis to compact
subsets of iR. Then the speed estimate of Theorem 1 could show up in (4.2)
in some form. Unfortunately, (6.1) is not a generic property of G ∈ H∞(C+)
– hence it is not a generic property of the transfer functions of conservative
systems either.

In the time domain, the same problem appears because the sampling
operator Tσ cannot detect above a certain cutoff frequency: there are always
high-frequency signals carrying substantial energy that a given discretized
system cannot capture. To achieve a speed estimate in (4.2), one could
assume either

(i) that the high frequencies are damped by the linear system itself (e.g.
by a property like (6.1)), or
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(ii) that the high frequencies have a small amplitude in the signal u (e.g.
an assumption such as u ∈ H1(R+) in Theorem 1).

The approximation of the state trajectory x(·) by the discrete trajectories

{x(h)
j }j≥0 solving (1.5) has not been studied here. This will be carried out in

a future paper on the state space approximation for conservative systems.

Remark 1. We remark that practically all of the results presented in this
paper hold if the input space of the node S is a separable Hilbert space instead
of C.
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