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1 Introduction

Representations for the Brownian bridge

Fix T > 0 and let W = (Wt)t∈[0,T ] be a standard Brownian motion on a
probability space (Ω,F ,P) starting from W0 = ξ.

Let (T, θ) be a “conditioning”. Then the notation W T,θ means that the
process W is conditioned to be θ at time T. That is W T,θ is a bridge from
(0, ξ) to (T, θ).

For the Brownian bridge W T,θ from (0, ξ) to (T, θ) one finds in the liter-
ature the following three equivalent definitions

dY T,θ
t = dWt +

θ − Y T,θ
t

T − t
dt, Y T,θ

0 = ξ, (1.1)

Y T,θ
t = ξ + (θ − ξ)

t

T
+ (T − t)

∫ t

0

dWs

T − s
, (1.2)

W T,θ
t = θ

t

T
+

(

Wt −
t

T
WT

)

. (1.3)

The representation (1.2) is just the solution of the (stochastic or pathwise)
differential equation (1.1). So, the equations (1.1) and (1.2) define the same
process Y T,θ. The equation (1.3), however, does not define the same process
as the equations (1.1) and (1.2). The equality between representations (1.1)–
(1.2) and (1.3) is only an equality in law: Law(Y T,θ;P) = Law(W T,θ;P).
That the processes Y T,θ and W T,θ are different is obvious from the fact that
the process Y T,θ is adapted to the filtration of W while the process W T,θ

is not. Indeed, to construct W T,θ
t by using (1.3) we need information of

the random variable WT . The fact that the two processes Y T,θ and W T,θ

have the same law is also obvious, since they have the same covariance and
expectation. It is also worth noticing that if the Brownian bridge Y T,θ is
given by the equation (1.2) then the original Brownian motion W may be
recovered from the bridge W T,θ by using the equation (1.1). In particular,
this means that in this case the filtration of this Brownian bridge is the same
as the filtration of the Brownian motion: FY T,θ

= FW .
The non-adapted representation (1.3) comes from the orthogonal de-

composition of Gaussian variables. Indeed, the conditional law of process
(Wt)t∈[0,T ] given the variable WT is Gaussian with

E(Wt|WT ) =
t

T
(WT − ξ) + ξ,

Cov(Wt,Ws|WT ) = t ∧ s − ts

T
.

The second-order structure of the Brownian bridge is easily calculated
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from the representation (1.3):

E
(

W T,θ
t

)

= ξ + (θ − ξ)
t

T
, (1.4)

Cov
(

W T,θ
t ,W T,θ

s

)

= t ∧ s − ts

T
. (1.5)

Girsanov theorem and Brownian bridge

The Brownian bridge can be defined only up to distribution. Put PT,θ :=
Law(W T,θ;P). We have that PT,θ = P(·|WT = θ). Consider now the re-
strictions of the measures PT,θ and P on the sigma-algebra F W

t : denote the
restriction by Pt and P

T,θ
t . We know that P

T,θ
t ∼ Pt for all t ∈ [0, T ), but,

of course, Pθ
T ⊥ PT . From (1.1) we get, by Girsanov theorem, that

dPT,θ
t

dPt

= exp

(

∫ t

0

θ − Y T,θ
s

T − s
dWs −

1

2

∫ t

0

(

θ − Y T,θ
s

T − s

)2

ds

)

.

This is a key observation for the non-anticipative representation.

Non-anticipative and anticipative representations

Let now X = (Xt)t∈[0,T ] be a Gaussian process on (Ω,F ,P) with X0 = ξ.
We want to understand what is the corresponding bridge XT,θ from (0, ξ) to
(T, θ). If one merely replaces the Brownian motion W with the process X in
representations (1.1)–(1.3) then the “X-bridges” obtained from the first two
representations of course coincide. However, the bridge obtained from the
last one does not coincide with the first two ones. The following example,
due to M. Lifshits, elaborates this point.

Example 1.1 Let (fn)n≥1 be a sequence of smooth isomorphisms of [0, T ]
onto itself. Take

Xn,t := Wfn(t)

and set

X1,T,θ
n,t := θ

t

T
+ Xn,t −

t

T
Xn,T ,

X2,T,θ
n,t := θ

t

T
+ (T − t)

∫ t

0

dXn,s

T − s
.

Then

Covn,1(s, t) := Cov
(

X1,T,θ
n,t , X1,T,θ

n,s

)

= fn(s ∧ t) + st − sfn(t) − tfn(s),
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Covn,2(s, t) := Cov
(

X2,T,θ
n,t , X2,T,θ

n,s

)

= (T − t)(T − s)

∫ s∧t

0

dfn(u)

(T − u)2
.

The covariances Covn,1 and Covn,2 are not the same in general. Indeed, let
fn → 1{1}. Then for all s, t < 1 we have that as n → ∞, Covn,1(s, t) → st
while Covn,2(s, t) → 0.

Structure of the paper

We will study Gaussian bridges. After the definition of Gaussian bridge
we obtain the anticipative representation of the Gaussian bridge, which is a
generalisation of the representation (1.3). Next we give the density between
the bridge measure PT,θ and the original measure P and give an abstract
version of the non-anticipative representation (1.2) in the general setup. In
the section three we study bridges of Gaussian martingales, and this part is
an easy generalisation of the Brownian bridge. In the next sections we study
bridges of certain special Gaussian processes: Wiener predictable process,
Volterra process and fractional Brownian motion. We end the paper by
giving the connection to the enlargement of filtrations theory, where the
enlargement is an initial enlargement with the final value of the Gaussian
process XT .

2 Gaussian bridges in general

2.1 Definition of the X-bridge

The fact that for Brownian motion the Brownian bridge in unique up to law
only suggests the following definition in the case of an arbitrary Gaussian
process.

Definition 2.1 Let X be a Gaussian stochastic process with X0 = ξ. Then
the Gaussian process XT,θ is an X-bridge from (0, ξ) to (T, θ) if

Law
(

XT,θ;P
)

= Law
(

X;PT,θ
)

, (2.1)

where the measure PT,θ on (Ω,F ) is defined by

PT,θ = P( · |XT = θ). (2.2)

Remark 2.2 The definition above assumes that the process XT,θ exists in
the space (Ω,F ,P). Also, we have

1 = P(XT = θ|XT = θ) = PT,θ(XT = θ) = P
(

XT,θ
T = θ

)

,
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as we should.

In what follows we denote by µ and R the mean and covariance of X,
respectively.

2.2 Anticipative representation

The anticipative representation corresponding to (1.3) is easily obtained from
the orthogonal decomposition of X with respect to XT . Indeed, Law(X|XT )
is Gaussian with

E(Xt|XT ) = (XT − µ(T ))
R(T, t)

R(T, T )
+ µ(t),

Cov(Xt, Xs|XT ) = R(t, s) − R(T, t)R(T, s)

R(T, T )
.

Thus, we have an anticipative representation for any Gaussian bridge.

Proposition 2.3 Let X be a Gaussian process with mean µ and covariance
R. Then the X-bridge XT,θ from (0, µ(0)) to (T, θ) admits a representation

XT,θ
t = θ

R(T, t)

R(T, T )
+ XT,0

t

= θ
R(T, t)

R(T, T )
+

(

Xt −
R(T, t)

R(T, T )
XT

)

. (2.3)

Moreover,

E
(

XT,θ
t

)

= (θ − µ(T ))
R(T, t)

R(T, T )
+ µ(t), (2.4)

Cov
(

XT,θ
t , XT,θ

s

)

= R(t, s) − R(T, t)R(T, s)

R(T, T )
. (2.5)

Example 2.4 Let X be a centered fractional Brownian motion. The bridge
process Zt := Xt− t

T
XT is a H- self similar process, but it is not a ’fractional

Brownian bridge’ in the sense of definition 2.1.

The correct fractional Brownian bridge in the sense of the definition 2.1
is

XT,θ
t = Xt −

t2H + T 2H − |t − T |2H

2T 2H
XT .
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2.2.1 X-bridge and drift

Let aW is a Brownian motion with drift a ∈ R, i.e. Wt := aWt − at is a
standard Brownian motion starting from ξ. Then from (1.3) it easy to see
that the Brownian bridge is invariant under this drift: aW T,θ = W T,θ.

Consider now a centered Gaussian process X. Let µ be a deterministic
continuous function. When the process µXt := Xt − µ(t) has the representa-
tion (2.3)? From (2.3) it follows that in the general case the invariant mean
functions µ must satisfy the equation

µ(t) =
R(T, t)

R(T, T )
µ(T ).

So, in general the invariant mean µ depends on the time of the conditioning
T. Indeed,

µ(t) = µT (t) = aR(T, t)

for some a ∈ R. In particular, we see that µ is independent of T if and only
if

R(t, s) = f(t ∧ s).

But this means that X has independent increments, or in other words that
X − E(X) is a martingale.

2.2.2 X-bridge and self-similarity

The Brownian motion W starting from W0 = 0 is 1/2-self-similar. I.e.

Law
(

(Wt)t∈[0,T ] ; P
)

= Law
(

(

T 1/2Wτ

)

τ∈[0,1]
; P

)

.

Consequently, we have for the Brownian bridge the scaling property

Law

(

(

W T,θ
t

)

t∈[0,T ]
; P

)

= Law

(

(

T 1/2W 1,θT−1/2

τ

)

τ∈[0,1]
; P

)

.

From (2.3) it is easy to see that if the process X = (Xt)t∈[0,T ] is H-self-
similar, i.e.

Law
(

(Xt)t∈[0,T ] ; P
)

= Law
(

(

THXτ

)

τ∈[0,1]
; P

)

then the corresponding bridge satisfies the scaling property

Law

(

(

XT,θ
t

)

t∈[0,T ]
; P

)

= Law

(

(

THX1,θT−H

τ

)

τ∈[0,1]
; P

)

.
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So, we may represent the bridge XT,θ as

XT,θ
t = X1,θT−H

s

= θ
R(1, τ)

R(1, 1)
+ THXτ −

R(1, τ)

R(1, 1)
THX1,

where τ = t/T ∈ [0, 1].

2.3 Density between the bridge measure PT,θ and P

When we look for analogies for the non-anticipative, or dynamic, represen-
tation (1.2) and the corresponding differential equation (1.1), then the main
idea is to work with the prediction martingale of X and to use the Girsanov’s
theorem.

We introduce some notation. Let XT,θ and PT,θ be as in (2.1) and (2.2).
Let X̂T | · = (X̂T | t)t∈[0,T ] be the prediction martingale of X. I.e.

X̂T |t := E
(

XT |FX
t

)

.

For the incremental bracket of the Gaussian martingale X̂T | · we use the
short-hand notation

〈X̂T | ·〉T,t
:= 〈X̂T | ·〉T − 〈X̂T | ·〉t

:= 〈X̂T | ·, X̂T | ·〉T − 〈X̂T | ·, X̂T | ·〉t.

(Note that since X̂t| · is a Gaussian martingale it has independent increments,

and consequently its bracket 〈X̂T | ·〉 is deterministic.) Denote

Pt := P|F X
t and P

T,θ
t := PT,θ|FX

t .

Let αt
T denote the regular conditional law of XT given the information F X

t

and let αT = α0
T be the law of XT . So, if p denotes the Gaussian density

p(θ; µ, σ2) =
1√
2πσ

e−
1

2(
θ−µ

σ )
2

,

it is easy enough to see that

αt
T (dθ) = p

(

θ; X̂T |t, 〈X̂T | ·〉T,t

)

dθ,

αT (dθ) = p
(

θ; µ(T ), 〈X̂T | ·〉T
)

dθ.
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Now, by using the Bayes’ rule we have that

dPT,θ
t

dPt

=
dαt

T

dαT

(θ)

=
p
(

θ; X̂T |t, 〈X̂T | ·〉T,t

)

p
(

θ; µ(T ), 〈X̂T | ·〉T
)

=

√

√

√

√

〈X̂T | ·〉T
〈X̂T | ·〉T,t

exp

(

−1

2

(θ − X̂T |t)
2

〈X̂T | ·〉T,t

+
1

2

(θ − µ(T ))2

〈X̂T | ·〉T

)

. (2.6)

Since we want to use the Girsanov’s theorem later we need to assume
that the prediction martingale X̂T | · is continuous. Another way of stating
this assumption is the following:

(A0) The history of X is continuous, i.e. F X
t− = FX

t+.

Also, in order for the calculations above to make sense we need the to
assume that P

T,θ
t ¿ Pt for all t < T. Or, since the both measures are

Gaussian, we may as well assume that:

(A1) Pt ∼ P
T,θ
t for all t < T.

From equation (2.6) we see that assumption (A1) says that 〈X̂T | ·〉t <

〈X̂T | ·〉T for all t < T. So, another way of stating assumption (A1) is that the
value of XT cannot be predicted for certain by using the information F X

t

only. Indeed,
〈X̂T | ·〉T,t

= Var (X̂T |t)

is the prediction error of X̂T |t. Let us note that in general the measures PT

and P
T,θ
T are of course singular, since XT,θ is degenerate at T.

In what follows βT,θ is a non-anticipative functional acting on Gaussian
(prediction) martingales m :

βT,θ(m)t :=
θ − mt

〈m〉T,t

.

The following proposition is the key tool in finding a non-anticipative
representation.

Proposition 2.5 Let X be a Gaussian process on (Ω,F ,P) satisfying the
assumptions (A0) and (A1). Then the bridge measure PT,θ on (Ω,F ) may
be represented as

dPT,θ
t = LT,θ

t dPt,

where

LT,θ
t = exp

(
∫ t

0

βT,θ(X̂T | ·)s dX̂T |s −
1

2

∫ t

0

βT,θ(X̂T | ·)
2
s d〈X̂T | ·〉s

)

.
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Proof The claim follows from equation (2.6). Indeed, just use Itô’s
formula with the martingale X̂T | · to the function

g(t, x) := −1

2

(θ − x)2

〈X̂T | ·〉T,t

,

and there you have it. ¤

2.4 Non-anticipative representation

In order to come back from the “prediction martingale level” to the actual
process we still need one assumption.

(A2) The non-anticipative linear mapping FT sending the path of the Gaus-
sian process X to the path of its prediction martingale X̂T | · is injective.

The assumption (A2) says simply that the process X may be recovered
from X̂T | · by X = F−1

T (X̂T | ·). Also, note that the assumption (A2) implies
that the prediction filtration and the original filtration are the same: FX =
FX̂T | · .

Let m be a Gaussian martingale. We denote by ST,θ(m) the unique solu-
tion of the differential equation

dmT,θ
t = dmt + βT,θ(m

T,θ)t d〈mT,θ〉t (2.7)

with initial condition mT,θ
0 = ζ, i.e.

mT,θ
t = ST,θ(m)t

= ζ + (θ − ζ)
〈mT,θ〉t
〈mT,θ〉T

+ 〈mT,θ〉T,t

∫ t

0

dms

〈mT,θ〉T,s

.

In order to see that ST,θ(m) is indeed the solution to (2.7) one just uses the
integration by parts. It is also worth noticing that classical theory of dif-
ferentiation applies here: The differential equation (2.7) may be understood
pathwise. Finally, note that by the Girsanov’s theorem the brackets of the
Gaussian martingales m and mT,θ coinside: 〈m〉 = 〈mT,θ〉.

Let us now abuse the notation slightly and set

ST (m) := ST,0(m).

Then we have the decomposition

ST,θ(m) = θKT (m) + ST (m),
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where

KT (m) :=
〈m〉
〈m〉T

and ST is independent of θ.
The following theorem is the analogy of the non-anticipative representa-

tion (1.2).

Theorem 2.6 Let X be a Gaussian process with mean µ and covariance R
satisfying (A0), (A1) and (A2). Then the bridge XT,θ from (0, µ(0)) to (T, θ)
admits the non-anticipative representation

XT,θ
t =

(

F−1
T ST,θFT

)

(X)t (2.8)

= θ
(

F−1
T KT FT

)

(X)t +
(

F−1
T ST FT

)

(X)t (2.9)

= θ
R(T, t)

R(T, T )
+ XT,0

t . (2.10)

Moreover, the original process X may be recovered from the bridge XT,θ

by
Xt =

(

F−1
T S−1

T,θFT

) (

XT,θ
)

t
. (2.11)

Proof Let us first prove the equations (2.8)–(2.10). By the equation
(2.3) we already know the contribution coming from θ. Indeed, we must have

(

F−1
T KT FT

)

(X)t = θ
R(T, t)

R(T, T )
.

So, we may assume that θ = 0 and consider the corresponding bridge X (T,0).
Now, we map X to its prediction martingale FT (X). Then (ST FT )(X) is the
solution of the stochastic differential equation (2.7) with m = FT (X) and
the initial condition ζ = µ(T ). Consequently, the Girsanov’s theorem and
Proposition 2.5 tells us that

Law
(

(ST FT ) (X) ; P
)

= Law
(

FT (X) ; PT,θ
)

. (2.12)

So, the claim (2.8) follows simply by recovering the process X by using the
map F−1

T on both sides of the equation (2.12).
The equation (2.11) is now obvious, since ST,θ is invertible. Indeed,

S−1
T,θ

(

FT

(

XT,θ
))

t
= S−1

T,θ

(

X̂T,θ
T | ·

)

t

= X̂T,θ
T | t +

∫ t

0

β
(

X̂T,θ
T | ·

)

s
d〈X̂T,θ

T | · 〉s

This finishes the proof. ¤
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Remark 2.7 For the differential equation (1.1) have the following formal
analogy

XT,θ
t = Xt + F−1

T

(

∫ s

0

θ − FT (XT,θ)u

〈FT (X)〉T,u

d〈FT (X)〉u ; s ≤ t

)

t

.

In the following sections we consider some special Gaussian bridges and
give the somewhat abstract Theorem 2.6, and highly abstract Remark 2.7,
more concrete forms. In particular, we consider cases where the operators
FT and F−1

T may be represented as Wiener integrals.

3 Bridges of Gaussian martingales

The case of Gaussian martingales is extremely simple. Indeed, the analogy
to the Brownian case is complete.

Proposition 3.1 Let M be a continuous Gaussian martingale with strictly
increasing bracket 〈M〉 and M0 = ξ. Then the M-bridge MT,θ admits the
representations

dMT,θ
t = dMt +

θ − MT,θ
t

〈M〉T,t

d〈M〉t, MT,θ
0 = ξ, (3.1)

MT,θ
t = ξ + (θ − ξ)

〈M〉t
〈M〉T

+ 〈M〉T,t

∫ t

0

dMs

〈M〉T,s

, (3.2)

MT,θ
t = θ

〈M〉t
〈M〉T

+

(

Mt −
〈M〉t
〈M〉T

MT

)

. (3.3)

Moreover, we have

EMT,θ
t = ξ + (θ − ξ)

〈M〉t
〈M〉T

,

Cov(MT,θ
t ,MT,θ

s ) = 〈M〉t∧s −
〈M〉t〈M〉s
〈M〉T

.

Proof Since M is continuous and 〈M〉 is strictly increasing the assump-
tion (A0) and (A1) are satisfied. The assumption (A2) is trivial in this case.
Now, the solution of (3.1) is (3.2) and this is just the equation (2.8) where
FT is the identity operator. Representation (3.3) as well as the mean and co-
variance functions come from the representation (2.3). Indeed, for Gaussian
martingales we have R(t, s) = 〈M〉t∧s. ¤
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Remark 3.2 Actually, one can deduce the result of Proposition 3.1 without
using the “Bayes–Itô–Girsanov machinery” introduced in Section 2. Indeed,
the result follows quite easily from equations (1.1)–(1.3) and the represen-
tation of the Gaussian martingale M as the time-changed Brownian motion
W〈M〉.

4 Bridges of Wiener predictable processes

Let us first consider abstract Wiener-integration with respect to Gaussian
processes. The linear space Ht of a Gaussian process X is the closed Gaussian
subspace of L2(Ω,F ,P) generated by the random variables Xs, s ≤ t. For
the prediction martingale of X it is well known that X̂T |t ∈ Ht. Let Et denote
the space of elementary functions over [0, t] equipped with the inner product
generated by the covariance of X :

〈〈

1[0,s),1[0,u)

〉〉

:= R(s, u),

Let Λt be the completion of Et in the inner product 〈〈·, ·〉〉. Now the mapping

It : 1[0,s) 7→ Xs

extends to an isometry between Λt and Ht. We call this extension the abstract
Wiener integral.

Alas, the space Λt is not in general a space of functions (or more precisely
space equivalence classes of functions). However, we can find a subspace of it
whose elements may be identified as (equivalence classes) of functions. Viz.
the space Λ̃t which consists of such function f that

sup
π

∑

si,sj∈π

f(si−1)f(sj−1)
〈〈

1[si−1,si),1[sj−1,sj)

〉〉

< ∞.

Here the supremum is taken over all partitions π of the interval [0, t]. The
reason to take a supremum insted of letting the mesh of the partition go to
zero is that the 〈〈·, ·〉〉-norm of a function may increase when multiplied by an
indicator function. For details of this phenomenon in the case of fractional
Brownian motion see Bender and Elliot [1].

If f ∈ Λ̃t then we write

∫ t

0

f(s) dXs := It [f ] . (4.1)

So, the Wiener integral (4.1) of a function f ∈ Λ̃t is defined as a 〈〈·, ·〉〉-limit of
simple functions. Note that if t ≤ T then Λ̃t ⊂ Λ̃T and It[f ] = IT

[

f1[0,t)

]

for f ∈ Λ̃T .
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Since the operator FT is linear and non-anticipative we have

X̂T |t = It [pT,t]

for some pT,t ∈ Λt. We assume now that this prediction kernel pT,t is actually
a function in Λ̃t :

(A3) There exists a Volterra kernel pT such that pT (t, ·) ∈ Λ̃t for all t and
m may be represented as the Wiener integral

X̂T |t =

∫ t

0

pT (t, s) dXs. (4.2)

Representation (4.2) suggests that, if we are lucky enough, the inverse
operator F−1

T may be represented as a Wiener integral with respect to X̂T | ·.
We assume that we are lucky.

(A4) There exists a Volterra kernel p∗
T such that the original Gaussian pro-

cess X may be reconstructed from the prediction martingale m as a Wiener
integral

Xt =

∫ t

0

p∗T (t, s) dX̂T |s. (4.3)

Remark 4.1 The Wiener integral in (A4) may understood as an abstract
Wiener integral or, as well, as the stochastic integral with respect to the
martingale m. Indeed, in this case Λt is the function space L2([0, t], d〈X̂T | ·〉).
Also, assumption (A4) gives us an alternative way of defining the Wiener
integral (4.2). Indeed, let the operator P ∗

T be the linear extension of the map
1[0,t) 7→ p∗T (t, ·). Then the assumption (A3) may be restated as:

The operator P ∗
T has the indicator functions 1[0,t), t ∈ (0, T ], in

its image.

In this case we may define Wiener integrals with respect to X as

∫ t

0

f(s) dXs :=

∫ t

0

P ∗
T [f ](s) dX̂T |s

for such f that P ∗
T [f ] ∈ L2([0, t], d〈X̂T | ·〉). Moreover, in this case

pT (t, ·) = (P ∗
T )−1 [

1[0,t)

]

.

Indeed, this is the approach taken in the next section.
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Remark 4.2 Obviously (A4) implies (A2). Also, we have implicitly assumed
that X is centred with X0 = 0. However, adding a mean function to X
causes no difficulties. Indeed, let m̃ be the prediction martingale of the centred
process X − µ and let p̃T and p̃∗T be the kernels associated to this centred
process. Then

ˆ̃XT | t = X̂T | t − µ(T ),

Xt =

∫ t

0

p̃∗T (t, s) dX̂T | s + µ(t),

X̂T | t =

∫ t

0

p̃T (t, s) d(Xs − µ(s)) + µ(T ).

Remark 4.3 The relation (4.3) says that the covariance R of X may be
written as

R(t, s) =

∫ t∧s

0

p∗T (t, u)p∗T (s, u) d〈X̂T | ·〉u. (4.4)

So, p∗T is a “square root” of R. Note, however, that in general a decomposition
like (4.4) is by no means unique, even if the measure is given. This means
that from an equation like (4.4) we cannot deduce the kernel p∗T even if we
knew the measure d〈X̂T | ·〉 induced by the bracket 〈X̂T | ·〉.

We have the following analogue of representations (1.1) and (1.2).

Proposition 4.4 Let X be a Gaussian process with covariance R satisfy-
ing (A0), (A1), (A3) and (A4). Then the bridge XT,θ satisfies the integral
equation

XT,θ
t = Xt +

∫ t

0

{

θ −
∫ s

0

pT (s, u) dXT,θ
u

}

p∗T (t, s)

〈X̂T | ·〉T,s

d〈X̂T | ·〉s. (4.5)

Moreover XT,θ admits the non-anticipative representation

XT,θ
t = θ

R(T, t)

R(T, T )
+ Xt −

∫ t

0

φT (t, s) dXs, (4.6)

where

φT (t, s) =

∫ t

s







∫ u

s

pT (v, s)

〈X̂T | ·〉
2

T,v

d〈X̂T | ·〉v −
pT (u, s)

〈X̂T | ·〉T,u







p∗T (t, u) d〈X̂T | ·〉u.

Remark 4.5 Note that unlike the equations (1.1) and (3.1) the equation
(4.5) is not of differential form. Indeed, it is clear by now that the differential
connection is characteristic to the martingale case.
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Proof [Proposition 4.4] Consider the prediction martingale X̂T | ·. Using
the relation (2.7) i.e.

dX̂T,θ
T |t = dX̂T | t +

θ − X̂T,θ
T | t

〈X̂T | ·〉T,t

d〈X̂T | ·〉t

with (4.3) yields

XT,θ
t = Xt +

∫ t

0

{

θ − X̂T,θ
T | s

} p∗T (t, s)

〈X̂T | ·〉T,s

d〈X̂T | ·〉s. (4.7)

The integral equation (4.5) follows now from (4.7) and (4.2).
Let us now derive the non-anticipative representation (4.6). Inserting the

solution X̂T,θ
T | · = ST,θ(X̂T | ·) to the equation (4.7) we obtain

XT,θ
t = Xt +

∫ t

0

p∗T (t, s)

〈X̂T | ·〉T,s

{

θ
〈X̂T | ·〉T,s

〈X̂T | ·〉T
+ 〈X̂T | ·〉T,s

∫ s

0

dX̂T |u

〈X̂T | ·〉T,u

}

d〈X̂T | ·〉s

= Xt +
θ

〈X̂T | ·〉T

∫ t

0

p∗T (t, s) d〈X̂T | ·〉s

+

∫ t

0

∫ s

0

dX̂T |u

〈X̂T | ·〉T,u

p∗T (t, s) d〈X̂T | ·〉s

=: Xt + θfT (t) + ΦT (X̂T | ·)t.

Note now that

XT = X̂T |T =

∫ T

0

p∗T (T, s) dX̂T |s,

which implies that p∗
T (T, s) = 1[0,T )(s). Consequently, by (4.4)

∫ t

0

p∗T (t, s) d〈X̂T | ·〉s =

∫ T∧t

0

p∗T (T, s)p∗T (t, s) d〈X̂T | ·〉s = R(T, t),

and, since 〈X̂T | ·〉T = R(T, T ), we have

fT (t) =
R(T, t)

R(T, T )

(a fact that we actually knew already by (2.4)). Now we want to express
ΦT (X̂T | ·) in terms of X. We proceed by integrating by parts:

∫ s

0

dX̂T |u

〈X̂T | ·〉T,u

=
X̂T |s

〈X̂T | ·〉T,s

−
∫ s

0

X̂T |u

〈X̂T | ·〉
2

T,u

d〈X̂T | ·〉u. (4.8)
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Using the assumption (A4) to (4.8) and changing the order of integration we
obtain

∫ s

0

dX̂T |u

〈X̂T | ·〉T,u

=
1

〈X̂T | ·〉T,s

∫ s

0

pT (s, u) dXu

−
∫ s

0

1

〈X̂T | ·〉
2

T,u

∫ u

0

pT (u, v) dXv d〈X̂T | ·〉u

=

∫ s

0







pT (s, u)

〈X̂T | ·〉T,s

−
∫ s

u

pT (v, u)

〈X̂T | ·〉
2

T,v

d〈X̂T | ·〉v







dXu.

Thus,

ΦT (X̂T | ·)t

=

∫ t

0

∫ s

0







pT (s, u)

〈X̂T | ·〉T,s

−
∫ s

u

pT (v, u)

〈X̂T | ·〉
2

T,v

d〈X̂T | ·〉v







dXup
∗
T (t, s) d〈X̂T | ·〉s

=

∫ t

0

∫ t

s







pT (u, s)

〈X̂T | ·〉T,u

−
∫ u

s

pT (v, s)

〈X̂T | ·〉
2

T,v

d〈X̂T | ·〉v







p∗T (t, u) d〈X̂T | ·〉u dXs

= −
∫ t

0

φT (t, s) dXs.

This proves the decomposition (4.6). ¤

5 Bridges of Volterra processes

The result of the previous section is still rather implicit. Indeed, we have
no explicit relation between the covariance R of X and the bracket 〈X̂T | ·〉
of the prediction martingale m. Moreover, in general there is no simple way
of finding, or even insuring the existence, of the kernels p∗

T and pT . In this
section we consider a model where these connections are clear, although the
formulas turn out to be rather complicated.

(A5) There exists a Volterra kernel k and a continuous Gaussian martingale
M with strictly increasing bracket 〈M〉 such that X admits a representation

Xt =

∫ t

0

k(t, s) dMs. (5.1)

17



Remark 5.1 Since M is continuous, 〈M〉 is also continuous. Also, if 〈M〉
is not strictly increasing on an interval [a, b], say, then nothing happens on
that interval. Consequently, we could just remove it.

Remark 5.2 The connection between the covariance R and the kernel k is

R(t, s) =

∫ t∧s

0

k(t, u)k(s, u) d〈M〉u. (5.2)

Moreover, if R admits the representation (5.2) with some measure d〈M〉,
then X admits the representation (5.1).

Now we define the Wiener integral with respect to X by using the way
described in Remark 4.1. Let K extend the relation K : 1[0,t) 7→ k(t, ·)
linearly. So, we have

∫ T

0

f(t) dXt =

∫ T

0

K[f ](t) dMt, (5.3)

∫ T

0

g(t) dMt =

∫ T

0

K−1[g](t) dXt

for any g ∈ L2([0, T ], d〈M〉) and such functions f that are in the preimage
of L2([0, T ], d〈M〉) under K.

We need to have the inverse K−1 defined for a large enough class of func-
tions. Thus, we assume

(A6) For any t ≤ T the equation

Kf = 1[0,t)

has a solution in f.
(A7) For any t ≤ T the equation

Kg = 1[0,t)k(T, ·)

has a solution in g.

By the assumption (A6), we have a reverse representation to (5.1). In-
deed,

Mt =

∫ t

0

k∗(t, s) dXs, (5.4)

where we have denoted

k∗(t, s) := K−1
[

1[0,t)

]

(s).
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Since M is a martingale we have

dmt = k(T, t) dMt.

By assumption (A6) we have k(t, s) 6= 0 for s < t d〈M〉-almost everywhere
(and as 〈M〉 is strictly increasing also dt-almost everywhere). So, we may
write

dMt =
dX̂T |t

k(T, t)
.

Thus,

Xt =

∫ t

0

k(t, s)

k(T, s)
dX̂T |s

and we have the assumption (A4) satisfied with

p∗T (t, s) =
k(t, s)

k(T, s)
.

Consequently, the assumption (A2) is also satisfied. Also, the assumption
(A6) implies the assumption (A1), since

d〈X̂T | ·〉t = k(T, t)2 d〈M〉t.

Indeed, this implies that 〈X̂T | ·〉 is strictly increasing.
For the kernel pT we find the representation by using the assumption (A7)

as follows:

X̂T |t =

∫ t

0

k(T, s) dMs

=

∫ t

0

K
[

1[0,T )

]

(s) dMs

=

∫ t

0

K−1
[

1[0,t)K
[

1[0,T )

]]

(s) dXs

=

∫ t

0

{

K−1K
[

1[0,t)

]

(s) + K−1
[

1[0,t)K
[

1[t,T )

]]

(s)
}

dXs

= Xt +

∫ t

0

ΨT (t, s) dXs,

where we have denoted

ΨT (t, s) := K−1
[

1[0,t)K
[

1[t,T )

]]

(s). (5.5)
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So, we have found that

d〈X̂T | ·〉t = k(T, t)2 d〈M〉t,

pT (t, s) = 1[0,t)(s) + ΨT (t, s),

p∗T (t, s) =
k(t, s)

k(T, s)

and we may rewrite Proposition 4.4 as follows.

Proposition 5.3 Let X satisfy assumptions (A5), (A6) and (A7). Then
the bridge XT,θ satisfies the integral equation

XT,θ
t = Xt+

∫ t

0

{

θ − XT,θ
s −

∫ s

0

ΨT (s, u) dXT,θ
u

}

k(T, s)k(t, s)
∫ T

s
k(T, u)2 d〈M〉u

d〈M〉s.

(5.6)
Moreover, the bridge XT,θ admits the non-anticipative representation

XT,θ
t = θ

R(T, t)

R(T, T )
+ Xt −

∫ t

0

ϕT (t, s) dXs, (5.7)

where

ϕT (t, s) =

∫ t

s

{
∫ u

s

(1 + ΨT (v, s))k(T, v)2

(
∫ T

v
k(T,w)2 d〈M〉w)2

d〈M〉v

− 1 + ΨT (u, s)
∫ T

u
k(T, v)2 d〈M〉v

}

k(T, u)k(t, u) d〈M〉u.

6 Fractional Brownian bridge

The fractional Brownian motion Z is a centred stationary increment Gaussian
process with variance E(Z2

t ) = t2H for some H ∈ (0, 1). Another way of
charaterising the fractional Brownian motion if to say that it is the unique
(up to multiplicative constant) centred H-self-similar Gaussian process with
stationary increments.

In order to represent the fractional Brownian motion as a Volterra process
we first recall some preliminaries of fractional calculus. For details we refer
to Samko et al. [7].

Let f be a function over the interval [0, 1] and α > 0. Then

Iα
± [f ] (t) :=

1

Γ(α)

∫ 1

0

f(s)

(t − s)1−α
±

ds

20



are the Riemann–Liouville fractional integrals of order α. For α ∈ (0, 1),

Dα
± [f ] (t) :=

±1

Γ(1 − α)

d

dt

∫ 1

0

f(s)

(t − s)α
±

ds.

are the Riemann–Liouville fractional derivatives of order α; I0
± and D0

± are
identity operators.

If one ignores the troubles concerning divergent integrals and formally
changes the order of differentiation and integration one obtains

I−α
± = Dα

±.

We shall take the above as the definition for fractional integral of negative
order and use the obvious unified notation.

Now, the fractional Brownian motion is a Volterra process satisfying as-
sumptions (A5) and (A6). Indeed, let K be a weighted fractional integral or
differential operator

K [f ] (t) := cHt
1

2
−HI

H− 1

2

−

[

sH− 1

2 f(s)
]

(t),

where

cH =

√

2H(H − 1
2
)Γ(H − 1

2
)2

B(H − 1
2
, 2 − 2H)

and Γ and B are the gamma and beta functions. Then we have the relation
(5.1) for fractional Brownian motion:

Zt =

∫ t

0

K
[

1[0,t)

]

(s) dWs, (6.1)

where W is the standard Brownian motion. Thus, the fractional Brownian
motion satisfies the assumption (A5).

The operator K satisfies the assumption (A6). Indeed,

K−1[f ](t) =
1

cH

t
1

2
−HI

1

2
−H

−

[

sH− 1

2 f(s)
]

(t)

The kernel ΨT has been calculated e.g. in Pipiras and Taqqu [6], Theorem
7.1. Indeed, for any H ∈ (0, 1) we have

ΨT (t, s) =
sin

(

π(H + 1
2
)
)

π
s

1
2
−H(t − s)

1
2
−H

∫ T

t

uH+
1
2 (u − t)H+

1
2

u − s
du.
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As for the kernel p∗T note that for H ∈ (0, 1) we have

k(t, s) = K
[

1[0,t)

]

(s)

= c′H

{

(

t

s

)H− 1

2

(t−s)H− 1

2 − (H− 1
2
)s

1

2
−H

∫ t

s

uH− 3

2 (u−s)H− 1

2 du

}

,

where

c′H =

√

2HΓ(3
2
− H)

Γ(H + 1
2
)Γ(2 − 2H)

.

If H > 1/2 then we have a slightly simpler expression, viz.

k(t, s) = c′H(H− 1
2
) s

1

2
−H

∫ t

s

uH− 1

2 (u − s)H− 3

2 du.

For the derivation of these formulas (without using the notions of fractional
integration) see Norros et al. [5].

The representations for the fractional Brownian bridge follow now by
plugging in our ΨT and k to the formulas (5.6) and (5.7) in Proposition 5.3
with M = W and d〈M〉t = dt. Unfortunately, it seems that there is really
nothing we can do to simplify the resulting formula (except some trivial use
of the H-self-similarity), even in the case H > 1/2. So, we do not bother to
write the equations (5.6) and (5.7) again here.

7 Enlargement of filtration point of view

Let us denote by FX be its natural (continuous) filtration of the Gaussian
process X. Setting in our conditioning simply θ := XT we may interpret
the bridge measure P(0,X0)→(T,XT ) as initial enlargement of the filtration FX

by the random variable XT . Let FX,XT be this enlarged filtration. We have
formally

(Ω,F ,FX ,P(0,X0)→(T,XT )) ' (Ω,F ,FX,XT ,P).

For the Brownian motion W we have the following: with respect to the
measure Pθ the Browian motion has the representation

Wt = W θ
t +

∫ t

0

βT,θ(W )sds = W θ
s +

∫ t

0

θ − Ws

T − s
ds.

This means that with respect to the filtration FW,WT and measure P

Brownian motion W has the representation

Wt = WF
W,WT

t +

∫ t

0

WT − Ws

T − s
ds,
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where Law (WF
W,WT |P) = Law(W |P), WF

W,WT is a (P,FW,WT ) Brownian
motion, but W is a (P,FW,WT ) semimartingale.

Similarly, if we have an arbitrary gaussian process such that the process
has a Volterra representation (4.3)

Xt =

∫ t

0

p∗T (t, s) dX̂T |s.

we can use the enlargement of filtration results to give a semimartingle rep-
resentation for the martingale X̂T |· with respect to (P,FX,XT ):

X̂T |t = X̂F
X,XT

T |t +

∫ t

0

XT − X̂T |s

〈X̂T |·〉T,s

d〈X̂T |·〉s, (7.2)

where the (P,FX,XT )- gaussian martingale X̂F
X,XT

T |· has the same law as X̂T |·

(see [2, 3] for more details). We can now use (4.3), (4.6) and (7.2) to obtain
the following representation for the process X

Xt = XF
X,XT

t + XT
R(T, t)

R(T, T )
−

∫ t

0

φT (t, s)dXs, (7.3)

with

φT (t, s) =

∫ t

s







∫ u

s

pT (v, s)

〈X̂T | ·〉
2

T,v

d〈X̂T | ·〉v −
pT (u, s)

〈X̂T | ·〉T,u







p∗T (t, u) d〈X̂T | ·〉u.

References

[1] Bender, C., and Elliott, R. (2003) On the Clark-Ocone theorem for
fractional Brownian motions with Hurst parameter bigger than a half.
Stoch. Stoch. Rep. 75, no. 6, 391–405.

[2] Gasbarra, D., and Valkeila, E. (2003) Initial enlargement: a Bayesian
approach. Theory of Stochastic Processes Vol. 9 (25), no. 3–4, 26–37.

[3] Gasbarra, D., Valkeila, E., and Vostrikova, L. (2004) Enlargement of
filtration and additional information in pricing models: a Bayesian ap-
proach. Institute of Mathematics, Helsinki University of Technology,
report A476 (to appear).

[4] Jeulin, T. (1980) Semi-martingales et Grossisement d’une Filtration.
Lecture Notes in Mathematics 1118, Springer, Berlin.

[5] Norros, I., Valkeila E., and Virtamo J. (1999) An elementary approach to
a Girsanov formula and other analytical results on fractional Brownian
motion. Bernoulli 5, no. 4, 571–587.

23



[6] Pipiras, V., and Taqqu, M. (2001). Are classes of deterministic in-
tegrands for fractional Brownian motion on an interval complete?
Bernoulli 7, no. 6, 873–897.

[7] Samko, S.G., Kilbas A.A., and Marichev, O.I. (1993). Fractional in-
tegrals and derivatives. Theory and applications. Gordon and Breach
Science Publishers, Yverdon.

24



(continued from the back cover)

A470 Lasse Leskelä
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