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1 Introduction

A conforming finite element method for the Kirchhoff plate bending problem,
i.e. the biharmonic problem, needs a discrete space for which it holds at
least the global C1-regularity. As a consequence, in order to retain minimal
flexibility of the finite element space adopted, a fifth degree polynomial order
is in general required. A classical way to avoid using high order polynomial
spaces, is to write the Kirchhoff plate bending problem as the limit of the
Reissner–Mindlin problem written in mixed form. On the other hand, in the
presence of the free boundary conditions, this path leads to a method which
is not completely consistent; in other words, the solution of the Kirchhoff
problem is not exactly the solution of the mixed Reissner–Mindlin problem
with thickness set equal to zero. We must observe that this point is in general
ignored in the literature, where the more ”classical” clamped case is typically
considered.

Our aim in the present paper is to present for the Kirchhoff plate bending
problem a family of ”low order” finite elements for which it holds the optimal
convergence rate even in the presence of free boundaries. This method is a
modification of the stabilized method for the Reissner–Mindlin plates pre-
sented in [25]. The paper is organized as follows. In section 2 we describe
the plate bending problem, while in section 3 we introduce the new family
of finite elements. In section 4 an a-priori error analysis is derived. This
analysis leads to optimal results, with respect to the solution regularity and
to the polynomial degree used. In Section 5 an a-posteriori error analysis is
accomplished. We devise a local error indicator which is shown to be both
reliable and efficient.

We finally observe that the theoretical results here presented are in com-
plete agreement with the numerical tests shown in [10].

2 The Kirchhoff plate bending problem

We consider the bending problem of an isotropic linearly elastic plate and
assume that the undeformed plate midsurface is described by a given convex
polygonal domain Ω ⊂ R

2. The plate is considered to be clamped on the
part Γc of its boundary ∂Ω, simply supported on the part Γs ⊂ ∂Ω and free
on Γf ⊂ ∂Ω. A transverse load F = Gt3f is applied, where t is the thickness
of the plate and G the shear modulus for the material.

In the sequel, we indicate with V the set of all the corner points in Γf cor-
responding to an angle of the boundary Γf . Moreover, n and s represent the
unit outward normal and the unit counterclockwise tangent to the boundary.
Finally, for corner points c ∈ V , we introduce the following notation. We
indicate with n1 and s1 the unit vectors corresponding respectively to n and
s on one of the two edges which form the boundary angle at c; we indicate
with n2 and s2 the ones corresponding to the other edge. Note that which
of the two edges correspond to the subscript 1 or 2 is not relevant.
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Then, following the Kirchhoff plate bending model and assuming that the
load is sufficiently regular, the deflection w of the plate can be found as the
solution of the following well known biharmonic problem:

D∆2w = Gf in Ω

w = 0 , ∂w
∂n

= 0 on Γc

w = 0 , nT Mn = 0 on Γs

nT Mn = 0 , ∂
∂s

sT Mn + (div M) · n = 0 on Γf

sT
1 Mn1(c) = sT

2 Mn2(c) ∀c ∈ V ,

(2.1)

where the scaled bending modulus and the bending moment are

D =
E

12(1 − ν2)
, M =

G

6

(

ε(∇w) +
ν

1 − ν
div∇wI

)

, (2.2)

with E, ν the Young modulus and the Poisson ratio for the material. Note
that it holds G = E

2(1+ν)
, respectively.

Due to the presence of the fourth order elliptic operator ∆2 in (2.1),
the natural space for the variational formulation of the problem (2.1) is the
Sobolev space H2(Ω). As a consequence, conforming finite element methods
based on such a formulation need the C1 regularity conditions. In order to
keep minimal flexibility of the discrete space used, the C1 regularity condition
in turn requires a high order polynomial space, which may be preferable to
avoid.

On the other hand, in the case of clamped and simply supported bound-
ary conditions, the Kirchhoff problem can be treated similarly to a Reissner–
Mindlin plate bending problem with the thickness t set to zero in the formu-
lation. As a consequence, the following equivalent mixed variational formu-
lation is obtained.

Next we introduce, respectively, the space for the deflection, rotation and
for the ”shear stress” Lagrange multiplier

W =
{

v ∈ H1(Ω) | v = 0 on Γc ∪ Γs

}

, (2.3)

V =
{

η ∈ [H1(Ω)]2 | η = 0 on Γc , η · s = 0 on Γs

}

, (2.4)

H = {v ∈ L2(Ω) | rotv ∈ L2(Ω) , v · s = 0 in Γc ∪ Γs} , (2.5)

Q = H′ . (2.6)

Now the mixed variational formulation reads:
Find (w,β, q) ∈ W × V × Q such that

a(β,η) + κ〈q,∇v − η〉 = (f, v) ∀(v,η) ∈ W × V ,

〈∇w − β, r〉 = 0 ∀r ∈ Q ,
(2.7)
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where κ is the shear correction factor and a is the bilinear form

a(φ,η) =
1

6

(

(ε(φ), ε(η)) +
ν

1 − ν
(div φ, div η)

)

∀φ ∈ V , η ∈ V . (2.8)

Note that the brackets 〈·, ·〉 above indicate the duality product between func-
tions of H and Q.

The problem above could be equivalently rewritten setting W in H2 and
H in H1. The advantage of formulation (2.7) is that, in the case of clamped or
simply supported boundary conditions, a non conforming Kirchhoff element
(i.e. which uses globally C0 deflections) can be obtained using any locking
free Reissner–Mindlin element [2, 4, 5, 7, 11, 12, 17, 18, 6, 13, 19]. The
discrete deflection will converge to the continuous one at least in the H1

norm.
However, this cannot be done in the case of the free boundary conditions.

Introducing the rotation β and the shear stress q, it is easy to check that the
problem (2.1) is equivalent to

Lβ + q = 0 in Ω

−div q = f in Ω

∇w − β = 0 in Ω

w = 0 , β = 0 on Γc

w = 0 , β · s = 0 , nT Mn = 0 on Γs

β · s − ∂w
∂s

= 0 , nT Mn = 0 , ∂
∂s

sT Mn − q · n = 0 on Γf

sT
1 Mn1(c) = sT

2 Mn2(c) ∀c ∈ V ,

(2.9)

where now the scaled bending moment

M (φ) =
1

6

(

ε(φ) +
ν

1 − ν
div φI

)

(2.10)

and the operator L is defined as

Lφ = div M(φ) . (2.11)

On the other hand, the strong form related to the variational formulation
(2.7) reads exactly identical to (2.9) apart the boundary condition on Γf

which must be substituted with

nT Mn = 0 , sT Mn = 0 , q · n = 0 on Γf (2.12)

and the vertex condition which is no longer valid.
Therefore, if Γf 6= ∅, the two formulations are not equivalent. This point is

in general under-estimated or simply ignored in the literature, where typically
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only the ”classical” clamped plate case is addressed. A direct correction to
this nonequivalence could be done by substituting the space (W,V ,Q) in
(2.7) with the space

{(v,η, r) ∈ W × V × Q | η · s −
∂v

∂s
= 0 on Γf} . (2.13)

Then, as noted in [15, 16, 9, 8], one would obtain a problem which is com-
pletely equivalent to (2.9). On the other hand, such a choice is not directly
viable at the discrete level because a condition of (2.13) type generates an
additional boundary locking effect. In the sequel we will present a family of
low order finite elements for Kirchhoff plates which avoids this difficulty; in
particular, its rate of convergence to the Kirchhoff problem solution does not
deteriorate in the presence of the free boundary conditions.

Remark 2.1. As is well known, in the presence of the free boundary condi-
tions the solution of the Reissner–Mindlin plate bending problem is strongly
non-regular even if the load and domain boundaries are smooth (see [3]).
This may lead to a very slow convergence of Reissner–Mindlin finite element
methods. Therefore, it is exactly in the case of the free boundary conditions
that the Kirchhoff plate model is particularly valuable.

3 Finite element formulation

In this section we introduce the numerical method, which is an extension
of the method presented in [25]. In order to neglect plate rigid movements
and the related technicalities, in the sequel we will assume that the one-
dimensional measure

meas(Γc ∪ Γs) > 0 . (3.1)

3.1 The new finite element method

Let a regular family of triangular meshes on Ω be given. Given an integer
k ≥ 1, we then define the discrete spaces

Wh = {v ∈ W | v|K ∈ Pk+1(K) ∀K ∈ Ch} , (3.2)

V h = {η ∈ V | η|K ∈ [Pk(K)]2 ∀K ∈ Ch} , (3.3)

where Ch represents the set of all triangles K of the mesh and Pk(K) is the
space of polynomials of degree k on K. In the sequel, we will indicate with
hK the diameter of each element K, while h will indicate the maximum size
of all the elements in the mesh. Also, we will indicate with e a general edge
of the triangulation and with he the length of e.

Before introducing the method, we state the following result which follows
trivially from classical scaling arguments and the coercivity of the form a.
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Lemma 3.1. Given any triangulation Ch, let Th indicate the set of all the
triangle edges, and Γf,h the set of the triangle edges in Γf . Then, there exist
positive constants CI and C ′

I such that, for all meshes Ch,

CI

∑

K∈Ch

h2
K‖Lφ‖2

0,K ≤ a(φ,φ) ∀φ ∈ V h , (3.4)

C ′
I

∑

e∈Γf,h

he ‖Mns(φ)‖2
0,e ≤ a(φ,φ) ∀φ ∈ V h , (3.5)

where the operator Mns(η) = sT M (η) n with n, s unit outward normal and
unit counterclockwise tangent to the edge e, and with M defined in (2.10).

Let two real numbers γ and α be assigned, γ > 2/C ′
I and 0 < α < CI/4.

Then, the discrete problem reads:

Method 3.1. Find (wh,βh) ∈ Wh × V h, such that

Ah(wh,βh; v,η) = (f, v) ∀(v,η) ∈ Wh × V h , (3.6)

where the form Ah is

Ah(z,φ; v,η) = Bh(z,φ; v,η) + Dh(z,φ; v,η) , (3.7)

with

Bh(z,φ; v,η) = a(φ,η) −
∑

K∈Ch

αh2
K(Lφ,Lη)K

+
∑

K∈Ch

1

αh2
K

(∇z − φ − αh2
KLφ,∇v − η − αh2

KLη)K (3.8)

and

Dh(z,φ; v,η) =
∑

e∈Γf,h

(

(Mns(φ), [∇v − η] · s)e

+([∇z − φ] · s,Mns(η))e +
γ

he

([∇z − φ] · s, [∇v − η] · s)e

)

(3.9)

for all (z,φ) ∈ Wh × V h, (v,η) ∈ Wh × V h.

The bilinear form Bh constitutes essentially the original method of [25]
with the thickness t set equal to zero, while the added form Dh is introduced
to avoid the convergence deterioration in the presence of free boundaries.

Note that, instead of a global constant α, for stability reasons in practical
implementation it may be preferable to use local constants αK defined by

1

αK

= ρ−1 max
φ∈Pk(K),aK(φ,φ)6=0

h2
K‖Lφ‖2

0,K

aK(φ,φ)
, (3.10)

where aK represents the form a restricted to K and where 0 < ρ < 1
4

is a
fixed value. Similarly, instead of using a global constant γ, local constants
γe can be derived calculating the elementwise value of C ′

I in Lemma 3.1.
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We also introduce the discrete shear stress

qh|K =
1

αh2
K

(∇wh − βh − αh2
KLβh)|K ∀K ∈ Ch . (3.11)

Noting that, due to the first and third equation of (2.9), it holds

q|K =
1

αh2
K

(∇w − β − αh2
KLβ)|K ∀K ∈ Ch , (3.12)

and it follows that the definition (3.11) is consistent with the exact ”shear
stress”.

3.2 Boundary inconsistency of the original method

If the original method of [25] without the additional form Dh is employed, in
the presence of a free boundary an inconsistency term arises. In other words,

Bh(w,β; v,η) = (f, v) +
∑

e∈Γf,h

(Mns(β), [∇v − η] · s)e (3.13)

∀(v,η) ∈ Wh × V h, and therefore the additional inconsistency term

−
∑

e∈Γf,h

(Mns(β), [∇v − η] · s)e (3.14)

arises, hindering severely the convergence of the method.
Regardless of the solution regularity and the polynomial degree k, the

term in (3.14) can only be bounded with the order O(h1/2). As well known
(see for example [24]), the inconsistency error is a lower bound for the error
of finite element methods. As a consequence, the original Kirchhoff method
(i.e. without the additional correction Dh) is not expected to converge with
a rate better than h1/2 if Γf 6= ∅. This observation is also confirmed by the
numerical tests shown in [10]. See also [14] for other numerical tests regarding
this issue.

Note also that this boundary inconsistency term is connected not only to
the formulation in [25] but is common to any other Kirchhoff method which
follows a ”Reissner–Mindlin limit” approach.

4 A-priori error estimates

For (v,η) ∈ Wh × V h, we introduce the following mesh dependent norms:

|(v,η)|2h =
∑

K∈Ch

h−2
K ‖∇v − η‖2

0,K , (4.1)

‖v‖2
2,h = ‖v‖2

1 +
∑

K∈Ch

|v|22,K +
∑

e∈Th

h−1
K ‖ J

∂v

∂n
K ‖2

0,e , (4.2)

‖|(v,η)‖|h = ‖η‖1 + ‖v‖2,h + |(v,η)|h , (4.3)
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and for r ∈ L2(Ω)

‖r‖−1,h =
(

∑

K∈Ch

h2
K‖r‖2

0,K

)1/2

. (4.4)

Given the space

V ∗ =
{

η ∈ [H1(Ω)]2 | η = 0 on Γc, η · s = 0 on Γf ∪ Γs

}

(4.5)

we also introduce the norm

‖r‖−1,∗ = sup
η∈V ∗

〈r,η〉

‖η‖1

. (4.6)

Note that the norm ‖ · ‖−1,∗ bounds from above the classical norm ‖ · ‖−1.

In [23] the following lemma is proved:

Lemma 4.1. There exists a positive constant C such that

‖v‖2,h ≤ C
(

‖η‖1 + ‖v‖1 + |(v,η)|h
)

∀(v,η) ∈ (Wh × V h) . (4.7)

Using the Poincaré inequality and the previous lemma, the following
equivalence follows easily:

Lemma 4.2. There is a positive constant C such that

C‖|(v,η)‖|h ≤ ‖η‖1 + |(v,η)|h ≤ ‖|(v,η)‖|h ∀(v,η) ∈ Wh × V h . (4.8)

The convergence of the method to the solution of the problem (2.9) is
stated in Theorem 4.3 below. We need some preliminary results; the following
theorem states the stability of the discrete formulation (3.6):

Theorem 4.1. Let 0 < α < CI/4 and γ > 2/C ′
I . Then there exists a positive

constant C such that

Ah(v,η; v,η) ≥ C‖|(v,η)‖|2h ∀(v,η) ∈ Wh × V h . (4.9)

Proof. Using the inverse estimate of Lemma 3.1 we easily get

Bh(v,η; v,η)

= a(η,η) −
∑

K∈Ch

αh2
K‖Lη‖2

0,K +
∑

K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K

≥
(

1 −
α

CI

)

a(η,η) +
∑

K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K . (4.10)
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First using locally the arithmetic-geometric mean inequality with constant
γ/he, then the second inverse inequality of Lemma 3.1, we get

Dh(v,η; v,η)

=
∑

e∈Γf,h

2(Mns(η), [∇v − η] · s)e +
γ

he

‖[∇v − η] · s‖2
0,e)

≥
∑

e∈Γf,h

(

−
γ

he

‖[∇v − η] · s‖2
0,e − γ−1he ‖Mns(η)‖2

0,e +
γ

he

‖[∇v − η] · s‖2
0,e

)

= −
∑

e∈Γf,h

γ−1he ‖Mns(η)‖2
0,e

≥ −
γ−1

C ′
I

a(η,η)

≥ −
1

2
a(η,η) . (4.11)

Joining (4.10) with (4.11) and using Korn’s inequality we then obtain

Bh(v,η; v,η) + Dh(v,η; v,η)

≥
(1

2
−

α

CI

)

a(η,η) +
∑

K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K

≥ C
(

‖η‖2
1 +

∑

K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K

)

. (4.12)

From the triangle inequality, again the inverse estimate of Lemma 3.1 and
the boundedness of the bilinear form a it follows

∑

K∈Ch

1

αh2
K

‖∇v − η‖2
0,K

≤ 2
(

∑

K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K +
∑

K∈Ch

1

αh2
K

‖αh2
KLη‖2

0,K

)

≤ 2
(

∑

K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K +
∑

K∈Ch

αh2
K‖Lη‖2

0,K

)

≤ C
(

∑

K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K + a(η,η)
)

≤ C
(

∑

K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K + ‖η‖2
1

)

, (4.13)

which combined with (4.12) gives

Ah(v,η; v,η) ≥ C
(

‖η‖1 + |(v,η)|h
)

. (4.14)

The result then follows from Lemma 4.2.
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The following result states the consistency of the method. For simplicity,
in the rest of this section we assume that w, the solution of the problem
(2.1), or equivalently (2.9), is in H3(Ω); this is a very reasonable assumption,
as discussed at the end of this section. Note also that, with some additional
technical work involving the appropriate Sobolev spaces and their duals, such
assumption could be probably avoided.

Theorem 4.2. The solution (w,β) of the problem (2.9) satisfies

Ah(w,β; v,η) = (f, v) ∀(v,η) ∈ Wh × V h . (4.15)

Proof. The definition of the bilinear forms in Method 3.1, recalling (2.9) and
the expression (3.12), we obtain

Bh(w,β; v,η) = a(β,η) −
∑

K∈Ch

αh2
K(Lβ,Lη)K

+
∑

K∈Ch

1

αh2
K

(∇w − β − αh2
KLβ,∇v − η − αh2

KLη)K

= a(β,η) +
∑

K∈Ch

αh2
K(q,Lη)K +

∑

K∈Ch

(q,∇v − η − αh2
KLη)K

= a(β,η) + (q,∇v − η) . (4.16)

First by the definition, then integrating by parts on each triangle, finally
using the regularity of the functions involved and the boundary conditions
of (2.9) on Γc, Γs, we get

a(β,η) + (q,∇v − η) =
∑

K∈Ch

(

(M (β), ε(η))K + (q,∇v − η)K

)

= −
∑

K∈Ch

(Lβ + q,η)K +
∑

e∈Γf,h

(M(β) · n,η)e −
∑

K∈Ch

(div q, v)K

+
∑

e∈Γf

(q · n, v)e . (4.17)

Recalling the first two equations in (2.9), the identity above becomes

a(β,η) + (q,∇v − η) = (f, v) +
∑

e∈Γf,h

(

(M (β) · n,η)e + (q · n, v)e

)

,(4.18)

while, using the boundary conditions of (2.9) on Γf , an integration by parts
along the boundary and the last condition in (2.9), finally leads to

a(β,η) + (q,∇v − η) = (f, v) −
∑

e∈Γf,h

(Mns(β), [∇v − η] · s)e . (4.19)

Again, due to (2.9) and the definition of the bilinear forms in Method 3.1,
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we now get

Dh(w,β; v,η)

=
∑

e∈Γf,h

(

(Mns(β), [∇v − η] · s)e + ([∇w − β] · s,Mns(η))e

+
γ

he

([∇w − β] · s, [∇v − η] · s)e

)

=
∑

e∈Γf,h

(Mns(β), [∇v − η] · s)e . (4.20)

The result directly follows from (4.16), (4.19) and (4.20).

We can now derive the error estimates for the method.

Theorem 4.3. Let 0 < α < CI/4 and γ > 2/C ′
I . Let (w,β) be the solution of

the problem (2.9) and (wh,βh) the solution obtained with Method 3.1. Then
it holds

‖|(w − wh,β − βh)‖|h ≤ Chs‖w‖s+2 (4.21)

for all 1 ≤ s ≤ k.

Proof. Step 1. Let (wI ,βI) ∈ Wh × V h be the usual Lagrange interpolants
to w and β, respectively. Using first the stability result of Theorem 4.1 and
then the consistency result of Theorem 4.2 one has the existence of a pair

(v,η) ∈ Wh × V h , ‖|(v,η)‖|h ≤ C , (4.22)

such that

‖|(wh − wI ,βh − βI)‖|h ≤ Ah(wh − wI ,βh − βI ; v,η)

= Ah(w − wI ,β − βI ; v,η) , (4.23)

where Ah = Bh + Dh.
Step 2. For the Bh-part we have

Bh(w − wI ,β − βI ; v,η) = a(β − βI ,η)

−
∑

K∈Ch

αh2
K(L(β − βI),Lη)K

+
∑

K∈Ch

1

αh2
K

(∇(w − wI) − (β − βI) − αh2
KL(β − βI),

∇v − η − αh2
KLη)K . (4.24)

Due to the first inverse inequality of Lemma 3.1 we get

(

∑

K∈Ch

h2
K‖Lη‖2

0,K

)1/2

≤ C‖|(v,η)‖|h (4.25)
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and
(

∑

K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K

)1/2

≤ C‖|(v,η)‖|h . (4.26)

Using these bounds in (4.24) and recalling (4.22) we obtain

Bh(w − wI ,β − βI ; v,η)

≤ C
(

‖|(w − wI ,β − βI)‖|h +
(

∑

K∈Ch

h2
K |β − βI |

2
2,K

)1/2)

. (4.27)

Substituting the definition of the norm (4.3) in (4.27), using the triangle
inequality, and finally applying the classical interpolation estimates it easily
follows

Bh(w − wI ,β − βI ; v,η) ≤ Chs
(

‖w‖s+2 + ‖β‖s+1

)

. (4.28)

Step 3. For the Dh-part in (4.23) we have, by the definition,

Dh(w − wI ,β − βI ; v,η) =
∑

e∈Γf,h

(

(Mns(β − βI), [∇v − η] · s)e

+([∇(w − wI) − (β − βI)] · s,Mns(η))e

+
γ

he

([∇(w − wI) − (β − βI)] · s, [∇v − η] · s)e

)

=: T1 + T2 + T3 . (4.29)

Note that the Agmon inequality (see [1])

‖v‖0,e ≤ C
(

h
−1/2
K ‖v‖0,K + h

1/2
K ‖v‖1,K

)

∀v ∈ Pk(K) , (4.30)

combined with the classical inverse estimate

|∇φ|0,K ≤ Ch−1
K ‖φ‖0,K ∀φ ∈ [Pk(K)]2 , (4.31)

gives

‖[∇v − η] · s‖2
0,e ≤ ‖∇v − η‖2

0,e ≤ h−1
Ke
‖∇v − η‖2

0,Ke
(4.32)

for all e ∈ Γf,h, where Ke is the only triangle pertaining to the boundary edge
e. Following the same steps we also get

‖Mns(η)‖2
0,e ≤ h−1

Ke
‖η‖2

1,Ke
∀e ∈ Γf,h . (4.33)

The l2-Cauchy–Schwartz inequality, the bound (4.32) and the norm definition
(4.3) now give

T1 ≤
(

∑

e∈Γf,h

hKe‖Mns(β − βI)‖
2
0,e

)1/2( ∑

e∈Γf,h

h−1
Ke
‖[∇v − η] · s‖2

0,e

)1/2

≤
(

∑

e∈Γf,h

hKe‖Mns(β − βI)‖
2
0,e

)1/2

‖|(v,η)‖|h . (4.34)
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Recalling the bound (4.22), using the Agmon inequality and finally applying
the classical polynomial interpolation properties, it follows

T1 ≤ C
(

∑

e∈Γf,h

‖M (β − βI)‖
2
0,Ke

+ h2
Ke
‖M (β − βI)‖

2
1,Ke

)1/2

≤ Chs‖β‖s+1 . (4.35)

The l2-Cauchy–Schwartz inequality, the bound (4.33) and the norm defi-
nition (4.3) now give

T2 ≤
(

∑

e∈Γf,h

h−1
Ke
‖∇(w − wI) − (β − βI)‖

2
0,e

)1/2( ∑

e∈Γf,h

hKe‖Mns(η)‖2
0,e

)1/2

≤
(

∑

e∈Γf,h

h−1
Ke
‖∇(w − wI) − (β − βI)‖

2
0,e

)1/2

‖|(v,η)‖|h . (4.36)

Again recalling the bound (4.22), using the Agmon inequality, applying the
triangle inequality and the classical polynomial interpolation properties, it
follows

T2 ≤
(

∑

e∈Γf,h

h−2
Ke
‖∇(w − wI) − (β − βI)‖

2
0,Ke

+ ‖∇(w − wI) − (β − βI)‖
2
1,Ke

)1/2

≤ Chs
(

‖β‖s+1 + ‖w‖s+2

)

. (4.37)

The bound for T3 follows combining the same techniques used for T1 and
T2; we get

T3 ≤ Chs
(

‖β‖s+1 + ‖w‖s+2

)

. (4.38)

Now, joining all the bounds (4.23), (4.28), (4.29), (4.35), (4.37) and (4.38)
we obtain

‖|(wh − wI ,βh − βI)‖|h ≤ Chs
(

‖β‖s+1 + ‖w‖s+2

)

. (4.39)

The triangle inequality and the classical polynomial interpolation estimates
(recalling that β = ∇w) then yield

‖|(w − wh,β − βh)‖|h ≤ Chs
(

‖β‖s+1 + ‖w‖s+2

)

≤ Chs‖w‖s+2 . (4.40)

Note that the result holds for real values of the regularity parameter s because
the interpolation results used above are valid for real values of s.

We also have the following result for the shear stress Lagrange multiplier:

Lemma 4.3. It holds

‖q − qh‖−1,∗ ≤ Chk‖w‖k+2 . (4.41)
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Proof. The proof is essentially an application of the ”Pitkäranta–Verfürth
trick”(see [22, 26]). From the definitions (3.12),(3.11), the triangle inequality,
the classical interpolation and the bound (4.40) it easily follows

‖q − qh‖−1,h

≤ ‖|(w − wh,β − βh)‖|h +
(

∑

K∈C

h2
K‖Lβ − Lβh‖

2
0,K

)1/2

≤ Chk‖w‖k+2 . (4.42)

By the definition of the norm ‖ · ‖−1,∗ there exists a function η ∈ V ∗ such
that

‖q − qh‖−1,∗ ≤ (q − qh,η) , ‖η‖1 ≤ C . (4.43)

Using a Clément type interpolant we can find a piecewise linear function
ηI ∈ V ∗ such that, recalling also (4.43), it holds

hs−1
K ‖η − ηI‖s,K ≤ C‖η‖1,K ≤ C ′ , s = 0, 1 (4.44)

for all K ∈ Ch. Using the Cauchy–Schwartz inequality, the bound (4.44) with
s = 0 and the definition (4.4) it follows

(q − qh,η) = (q − qh,η − ηI) + (q − qh,ηI)

≤ C‖q − qh‖−1,h + (q − qh,ηI) . (4.45)

Note that ηI is both in V h and V ∗; moreover LηI = 0 on each single
element K of Ch. As a consequence, using (3.6),(3.11),(3.12) and Theorem
4.2, it follows

(q − qh,ηI)

= −a(β − βh,ηI) −
∑

e∈Γf,h

([∇wh − βh)] · s,Mns(ηI))e

=: T1 + T2 . (4.46)

Due to the continuity of the bilinear form and using bound (4.44) with
s = 1 it immediately follows

T1 ≤ C‖β − βh‖1

≤ C‖|(w − wh,β − βh)‖|h . (4.47)

Using first the Cauchy–Schwartz inequality, then the Agmon inequality, fi-
nally the bound (4.44) with s = 1, Lemma 3.1 and the definition (4.3), we
get

T2 ≤
(

∑

e∈Γf,h

h−1
e ‖∇wh − βh)‖

2
0,e

)1/2( ∑

e∈Γf,h

he‖Mns(ηI)‖
2
0,e

)1/2

≤
(

∑

K∈Ch

h−2
K ‖∇wh − βh)‖

2
0,K

)1/2

‖ηI‖1

≤ C‖|(w − wh,β − βh)‖|h , (4.48)
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where in the last inequality we implicitly used the relation ∇w − β = 0.
Combining (4.43), (4.45) with (4.46), (4.47) and (4.48) it follows

‖q − qh‖−1,∗ ≤ C
(

‖q − qh‖−1,h + ‖|(w − wh,β − βh)‖|h
)

. (4.49)

Joining (4.49), (4.42) and using Theorem 4.3 the proposition immediately
follows.

Combining Theorem 4.3 and Lemma 4.3 with the regularity of the solution
w finally grants the convergence of the method.

The regularity of the solution of the Kirchhoff plate problems for convex
polygonal domains, with all the three main types of boundary conditions, is
very case dependent. We refer for example to the work [21] where a rather
complete study is accomplished. Note that, if f ∈ H−1(Ω), in most cases of
interest the regularity condition w ∈ H3(Ω) is indeed achieved.

Note that with classical duality arguments and technical calculations it
is also possible to derive the error bound

‖w − wh‖0 ≤ Chk+1‖w‖k+1 , (4.50)

if the regularity estimate

‖w‖3 ≤ C‖f‖0 (4.51)

holds, and

‖w − wh‖1 ≤ Chk+1‖w‖k+1 , (4.52)

with the regularity estimate

‖w‖3 ≤ C‖f‖−1 . (4.53)

Moreover, if k ≥ 2 and the regularity estimate

‖w‖4 ≤ C‖f‖0 (4.54)

is satisfied, then the improved estimate holds:

‖w − wh‖0 ≤ Chk+2‖w‖k+2 . (4.55)

5 A-posteriori error estimates

In this section we prove the reliability and the efficiency for an a-posteriori
error estimator for our method. To this end, we introduce

η̃2
K := h4

K‖fh + div qh‖
2
0,K + h−2

K ‖∇wh − βh‖
2
0,K , (5.1)

η2
e := h3

e‖Jqh · nK‖2
0,e + he‖JM (βh)nK‖2

0,e , (5.2)

η2
s,e := he‖Mnn(βh)‖

2
0,e , (5.3)

η2
f,e := he‖Mnn(βh)‖

2
0,e + h3

e‖
∂

∂s
Mns(βh) − qh · n‖2

0,e , (5.4)
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where fh is some approximation of the load f , he denotes the length of the
edge e and J·K represents the jump operator (which is assumed to be equal
to the function value on boundary edges). Here the normal unit vector n is
fixed for each edge e.

Given any element K ∈ Ch, let the local error indicator be

ηK :=
(

η̃2
K +

1

2

∑

e∈Γi,h∩∂K

η2
e +

∑

e∈Γs,h∩∂K

η2
s,e +

∑

e∈Γf,h∩∂K

η2
f,e

)1/2

, (5.5)

where Γi,h represents the set of all the internal edges, while Γc,h, Γs,h and Γf,h

represent the sets of all the boundary edges in Γc, Γs and Γf , respectively.

Finally, the global error indicator is defined as

η :=
(

∑

K∈Ch

η2
K

)1/2

. (5.6)

5.1 Upper bounds

In order to derive the reliability of the method we need the following satura-
tion assumption.

Assumption 5.1. Given a mesh Ch, let Ch/2 be the mesh obtained by splitting
each triangle K ∈ Ch into four triangles connecting the edge midpoints. Let
(wh/2,βh/2, qh/2) be the discrete solution corresponding to the mesh Ch/2. We
assume that there exists a constant ρ, 0 < ρ < 1, such that

‖|(w − wh/2,β − βh/2)‖|h/2 + ‖q − qh/2‖−1,∗

≤ ρ
(

‖|(w − wh,β − βh)‖|h + ‖q − qh‖−1,∗

)

, (5.7)

where by ‖| · ‖|h/2 we indicate the ‖| · ‖|h norm with respect to the new mesh
Ch/2.

In the sequel we will also need the following lemma:

Lemma 5.1. Let, for v ∈ Wh/2, the local seminorm be

|v|2,h/2,K =
(

∑

K′∈Ch/2∩K

|v|22,K′

)1/2

. (5.8)

Then, there is a positive constant C such that for all v ∈ Wh/2 there exists
vI ∈ Wh such that

‖v − vI‖0,K ≤ Ch2
K |v|2,h/2,K ∀K ∈ Ch . (5.9)

Moreover, vI interpolates v at all the vertices of the triangulation Ch/2.
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Proof. We choose vI as the only function in H1(Ω) such that

vI |K ∈ P2(K) ∀K ∈ Ch ,

vI(N) = v(N) ∀N ∈ Vh/2 , (5.10)

where Vh/2 represents the set of all the vertices of Ch/2. Note that it is trivial
to check that vI ∈ Wh for all k ≥ 1. Observing that

|v|2,h/2,K +
∑

N∈Vh/2∩K

|v(N)| , v ∈ Wh/2 , K ∈ Ch , (5.11)

is indeed a norm on the finite dimensional space of the functions v ∈ Wh/2

restricted to K, the result follows applying the classical scaling argument.

For simplicity, in the sequel we will treat the case Γs = ∅, the general
case following with identical arguments as the ones that follow. We have the
following preliminary result:

Theorem 5.1. It holds

‖|(wh/2 − wh,βh/2 − βh)‖|h/2 ≤ C
(

∑

K∈Ch

η2
K + h4

K‖f − fh‖
2
0,K

)1/2

. (5.12)

Proof. Step 1. Due to the stability of the discrete formulation, proved in
Theorem 4.1, there exists a couple (v,η) ∈ Wh/2 × V h/2 such that

‖|(v,η)‖|h/2 ≤ C (5.13)

and

‖|(wh/2 − wh,βh/2 − βh)‖|h/2 ≤ Ah/2(wh/2 − wh,βh/2 − βh; v,η) . (5.14)

We also have

Ah/2(wh/2,βh/2; v,η) = (f, v) . (5.15)

Simple calculations and the definition (3.11) give

Bh/2(wh,βh; v,η) = a(βh,η) −
∑

K∈Ch/2

αh2
K(Lβh,Lη)K

+
∑

K∈Ch/2

1

αh2
K

(∇wh − βh − αh2
KLβh,∇v − η − αh2

KLη)K

= a(βh,η) −
∑

K∈Ch/2

(∇wh − βh,Lη)K +
∑

K∈Ch/2

(qh,∇v − η)K

+R(wh,βh; v,η)

= Bh(wh,βh; v,η) + R(wh,βh; v,η) , (5.16)
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where qh is defined as in (3.11), i.e. based on the coarser mesh, and

R(wh,βh; v,η) =
∑

K∈Ch/2

1

αh2
K

(∇wh − βh,∇v − η)K

−
∑

K∈Ch

1

αh2
K

(∇wh − βh,∇v − η)K . (5.17)

Note that the last term on the right hand side is well defined since ∇v − η

is piecewise L2.

Let now Th, Th/2 indicate respectively the set of all the edges of Ch and
Ch/2, while Γf,h, Γf,h/2 represent the subset of all the edges on Γf . Adding
and subtracting the difference between the two forms it then follows

Dh/2(wh,βh; v,η) = Dh(wh,βh; v,η) + R′(wh,βh; v,η) , (5.18)

where

R′(wh,βh; v,η) =
∑

e∈Γf,h/2

γ

he

([∇wh − βh] · s, [∇v − η] · s)e

−
∑

e∈Γf,h

γ

he

([∇wh − βh] · s, [∇v − η] · s)e , (5.19)

and where the first member on the right hand side is indeed well defined
because of the piecewise regularity of (v,η).

Step 2. Finally, let vI ∈ Wh be the interpolant of v described in Lemma
5.1, and ηI ∈ V h the classical piecewise linear node interpolant of η for the
mesh Ch. Joining (5.15), (5.16), (5.18) and using

Bh(wh,βh; vI ,ηI) + Dh(wh,βh; vI ,ηI) = Ah(wh,βh; vI ,ηI)

= (f, vI) , (5.20)

some simple algebra gives

Ah/2(wh/2 − wh,βh/2 − βh; v,η)

= (f, v − vI) − Bh(wh,βh; v − vI ,η − ηI)

−Dh(wh,βh; v − vI ,η − ηI) − R(wh,βh; v,η)

−R′(wh,βh; v,η) . (5.21)

From the definitions (3.8), (2.8), (3.11), (2.10) and (2.11), integrating by
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parts on each element K ∈ Ch and rearranging the terms we obtain

(f, v − vI) − Bh(wh,βh; v − vI ,η − ηI)

= (f, v − vI) − a(βh,η − ηI)

+
∑

K∈Ch

(∇wh − βh,L(η − ηI))K −
∑

K∈Ch

(qh,∇(v − vI) − (η − ηI))K

=
∑

K∈Ch

(

(f + div qh, v − vI)K + (qh + Lβh,η − ηI)K

−(∇wh − βh,L(η − ηI))K

)

+
∑

e∈Γi,h

(

(JM (βh)nK,η − ηI)e + (Jqh · nK, v − vI)e

)

+
∑

e∈Γf,h

(

(qh · n, v − vI)e + (M (βh)n,η − ηI)e

)

. (5.22)

In order to treat the boundary pieces we need two observations. First,
note that integration by parts along the boundary edges gives

∑

e∈Γf,h

(Mns(βh),∇(v − vI) · s)e = −
∑

e∈Γf,h

(
∂

∂s
Mns(βh), v − vI) , (5.23)

where there are no additional terms because vI(N) = v(N) for all the vertices
N of Ch. Second, note that the last term in (5.22) can be splitted as

∑

e∈Γf,h

(M (βh)n,η − ηI)e

=
∑

e∈Γf,h

(

(Mnn(βh), (η − ηI) · n)e + (Mns(βh), (η − ηI) · s)e

)

.(5.24)

As a consequence, applying (5.23) and (5.24) we obtain

∑

e∈Γf,h

(

(M (βh)n,η − ηI)e + (qh · n, v − vI)e

)

+ Dh(wh,βh; v − vI ,η − ηI)

=
∑

e∈Γf,h

(

(Mnn(βh), (η − ηI) · n)e − (
∂

∂s
Mns(βh) − qh · n, v − vI)e

+([∇wh − βh] · s,Mns(η − ηI))e

+
γ

he

([∇wh − βh] · s, [∇(v − vI) − (η − ηI)] · s)e

)

. (5.25)
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Combining (5.21), (5.22) and (5.25) we have

Ah/2(wh/2 − wh,βh/2 − βh; v,η)

=
∑

K∈Ch

(

(f + div qh, v − vI)K + (qh + Lβh,η − ηI)K

−(∇wh − βh,L(η − ηI))K

)

+
∑

e∈Γi,h

(

(JM(βh)nK,η − ηI)e + (Jqh · nK, v − vI)e

)

+
∑

e∈Γf,h

(

(Mnn(βh), (η − ηI) · n)e

−(
∂

∂s
Mns(βh) − qh · n, v − vI)e + ([∇wh − βh] · s,Mns(η − ηI))e

+
γ

he

([∇wh − βh] · s, [∇(v − vI) − (η − ηI)] · s)e

)

−R(wh,βh; v,η) − R′(wh,βh; v,η) . (5.26)

Step 3. Finally, we have to bound all the terms above. We first treat the
last two addenda (see (5.17) and (5.19) for the definitions). First recalling
that Ch/2 is a subdivision of Ch, then from the Hölder inequality and finally
from (4.3),(5.13) it follows

|R(wh,βh; v,η)| ≤ 2|
∑

K∈Ch/2

1

αh2
K

(∇wh − βh,∇v − η)K |

≤ C
(

∑

K∈Ch/2

1

h2
K

‖∇wh − βh‖
2
0,K

)1/2( ∑

K∈Ch/2

1

h2
K

‖∇v − η‖2
0,K

)1/2

≤ C
(

∑

K∈Ch/2

1

h2
K

‖∇wh − βh‖
2
0,K

)1/2

. (5.27)

Using the Agmon inequality with arguments similar to those already adopted
in (5.27) it can be checked that

|R′(wh,βh; v,η)| ≤
(

∑

K∈Ch/2

1

h2
K

‖∇wh − βh‖
2
0,K

)1/2

. (5.28)

Combining (5.27) and (5.28) we get

| − R(wh,βh; v,η) − R′(wh,βh; v,η)| ≤ C
(

∑

K∈Ch

η̃2
K

)1/2

. (5.29)

For the other terms in (5.26), we show in detail only a couple of examples,
because the remaining cases easily follow applying the same arguments. We
start by observing that from the definitions (5.8), (4.2), (4.3) and the bound
(5.13) it follows immediately that

∑

K∈Ch

|v|22,h/2,K ≤ C‖|(v,η)‖|h/2 ≤ C ′ . (5.30)
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We have
∑

K∈Ch

(f + div qh, v − vI)K

=
∑

K∈Ch

(fh + div qh, v − vI)K + (f − fh, v − vI)K . (5.31)

Recalling Lemma 5.1 and using (5.30) we get
∑

K∈Ch

(fh + div qh, v − vI)K

≤
(

∑

K∈Ch

h4
K‖fh + div qh‖

2
0,K

)1/2( ∑

K∈Ch

h−4
K ‖v − vI‖

2
0,K

)1/2

≤ C
(

∑

K∈Ch

h4
K‖fh + div qh‖0,K

)1/2( ∑

K∈Ch

|v|22,h/2,K

)1/2

≤ C
(

∑

K∈Ch

η̃2
K

)1/2

. (5.32)

The same argument gives

∑

K∈Ch

(f − fh, v − vI)K ≤
(

∑

K∈Ch

h4
K‖f − fh‖

2
0,K

)1/2

, (5.33)

which, joined with (5.31) and (5.32), bounds the first term in (5.26).
First using the Agmon and the inverse inequality, then again applying

Lemma 5.1 and (5.30), we have

∑

e∈Γf,h

(
∂

∂s
Mns(βh) − qh · n, v − vI)e

≤
(

∑

e∈Γf,h

h3
e‖

∂

∂s
Mns(βh) − qh · n‖2

0,e

)1/2( ∑

e∈Γf,h

h−3
e ‖v − vI‖

2
0,e

)1/2

≤ C
(

∑

e∈Γf,h

η2
f,e

)1/2( ∑

K∈Ch

h−4
e ‖v − vI‖

2
0,K

)1/2

≤ C
(

∑

e∈Γf,h

η2
f,e

)1/2

. (5.34)

The remaining terms are bounded using the same techniques.
It is worth noting that, by the definition (3.11),

(qh + Lβh)|K =
1

αh2
k

(∇wh − βh)|K ∀K ∈ Ch , (5.35)

which is the reason why there appears no terms of the kind ‖qh + Lβh‖0,K

in the error estimator. Note also that the Agmon and the inverse inequality
easily give

∑

e∈Γf,h

h−1
e ‖∇wh − βh‖

2
0,e ≤ C

∑

K∈Ch

h−2
K ‖∇wh − βh‖

2
0,K , (5.36)
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which is the reason why there appears no boundary terms of the kind ‖∇wh−
βh‖0,e. We finally get

Ah/2(wh/2 − wh,βh/2 − βh; v,η) ≤ C
(

η2
K + h4

K‖f − fh‖
2
0,K

)1/2
, (5.37)

which combined with (5.14) proves the proposition.

We also have the following lemma for the shear stress:

Lemma 5.2. It holds

‖qh/2 − qh‖
2
−1,∗ ≤ C

(

‖|(wh/2 − wh,βh/2 − βh)‖|
2
h/2 +

∑

K∈Ch

η̃2
K

)

. (5.38)

Proof. We start observing that, referring to the definition (3.11) and its ”h/2”
counterpart, qh and qh/2 are defined on different meshes and therefore with
different h2

K coefficients. However, recalling that the size ratio between the
two meshes is bounded, it is easy to check that an opportune splitting and
the triangle inequality give

‖qh/2 − qh‖
2
−1,h ≤ C

(

∑

K∈Ch/2

‖∇(wh/2 − wh) − (βh/2 − βh)‖
2
0,K

+
∑

K∈Ch

‖∇wh − βh‖
2
0,K +

∑

K∈Ch/2

h2
K‖Lβh/2 − Lβh‖

2
0,K

)

. (5.39)

The first and the last term in (5.39) can be bounded in terms of the ‖| · ‖|h/2

norm, simply using the definition (4.3) and the inverse inequality

h2
K‖Lβh/2 − Lβh‖

2
0,K ≤ C‖βh/2 − βh‖

2
1,K . (5.40)

Therefore, recalling the definition (5.1), we get

‖qh/2 − qh‖
2
−1,h ≤ C‖|(wh/2 − wh,βh/2 − βh)‖|

2
h/2 +

∑

K∈Ch

η̃2
K .(5.41)

The transition from the ‖qh/2 − qh‖−1,h norm to the ‖qh/2 − qh‖−1,∗ norm
is done using the ”Pitkäranta-Verfürth trick” with steps almost identical to
those used in Lemma 4.3, therefore omitted.

Joining Theorem 5.1 and Lemma 5.2 gives the following a-posteriori upper
bound for the method:

Theorem 5.2. It holds

‖|(w − wh,β − βh)‖|h + ‖q − qh‖−1,∗ ≤ C
(

∑

K∈Ch

η2
K + h4

K‖f − fh‖
2
0,K

)1/2

.(5.42)

Proof. Theorem 5.1 combined with Lemma 5.2 trivially gives

‖|(wh/2 − wh,βh/2 − βh)‖|h/2 + ‖qh/2 − qh‖−1,∗

≤ C
(

∑

K∈Ch

η2
K + h4

K‖f − fh‖
2
0,K

)1/2

, (5.43)

which, by recalling the saturation assumption, proves the theorem.
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5.2 Lower bounds

In this section we prove the efficiency of the error estimator. Given any edge
e of the triangulation, we define ωe as the set of all the triangles K ∈ Ch

that have e as an edge. Given any K ∈ Ch, we define ωK as the set of all
the triangles K ∈ Ch that share an edge with K. We then have the following
lemma [20]:

Lemma 5.3. Given any edge e of the triangulation Ch, let Pk(e) be the space
of polynomials of degree at most k on e. There exists a linear operator

Πe : Pk(e) −→ H2
0 (ωe) (5.44)

such that for all pk ∈ Pk(e) it holds

C1‖pk‖
2
0,e ≤ (pk, Πe(pk))e ≤ ‖pk‖

2
0,e , (5.45)

‖Πe(pk)‖0,ωe ≤ C2h
1/2
e ‖pk‖0,e , (5.46)

where the positive constants Ci above depend only on k and the minimum
angle of the triangles in Ch.

We have the following efficiency result:

Theorem 5.3. It holds

ηK ≤ ‖|(w − wh,β − βh)‖|h,ωK
+ ‖q − qh‖−1,∗,ωK

+ h2
K‖f − fh‖0,ωK

,(5.47)

where ‖| · ‖|h,ωK
, ‖ · ‖−1,∗,ωK

, ‖ · ‖0,ωK
represent respectively the norms ‖| · ‖|h,

‖ · ‖−1,∗, ‖ · ‖0 restricted to the domain ωK.

Proof. Step 1. The proof consists of bounding separately all the addenda in
ηK . First we bound the terms of η̃2

K in (5.1). Given any K ∈ Ch, let bK

indicate the standard third order polynomial bubble on K, scaled such that
‖bK‖L∞(K) = 1. Given K ∈ Ch, let now ϕK ∈ H2

0 (K) be defined as

ϕK = (fh + div qh) b2
K . (5.48)

The standard scaling arguments then easily show that

‖fh + div qh‖
2
0,K ≤ C(fh + div qh, ϕK)K , (5.49)

‖ϕK‖0,K ≤ C‖fh + div qh‖0,K . (5.50)

Recalling (2.9), integration by parts gives

h2
K‖fh + div qh‖

2
0,K ≤ Ch2

K(fh + div qh, ϕK)K

= Ch2
K

(

(f + div qh, ϕK)K + (fh − f, ϕK)K

)

= Ch2
K

(

(−div q + div qh, ϕK)K + (fh − f, ϕK)K

)

≤ Ch2
K

(

(qh − q,∇ϕK)K + (fh − f, ϕK)K

)

. (5.51)

24



Note that in particular ∇ϕK ∈ V ∗ (see the definition (4.5)). Therefore
the duality inequality and the Cauchy–Schwartz inequality, followed by the
inverse inequality and the bound (5.50) lead to the estimate

Ch2
K

(

(qh − q,∇ϕK)K + (fh − f, ϕK)
)

≤ C‖q − qh‖−1,∗,K h2
K‖∇ϕK‖1,K + Ch2

K‖f − fh‖0,K‖ϕK‖0,K

≤ C
(

‖q − qh‖−1,∗,K + h2
K‖f − fh‖0,K

)

‖fh + div qh‖0,K . (5.52)

Combining (5.51) with (5.52) finally gives

h2
K‖fh + div qh‖0,K ≤ C

(

‖q − qh‖−1,∗,K + h2
K‖f − fh‖0,K

)

. (5.53)

The second term in (5.1) can be bounded directly using (2.9)3

h−1
K ‖∇wh − βh‖0,K = h−1

K ‖∇(w − wh) − (β − βh)‖
2
0,K

≤ ‖|(w − wh,β − βh)‖|h,K . (5.54)

Step 2. Second we bound the terms of η2
e in (5.2). Given now e in the set

Γi,h of the internal edges of Ch, let

ϕe = Πe(JM (βh)nK) , (5.55)

where, with a little abuse of notation, the operator Πe is intended as applied
on each single component. Then, from (5.45) and with integration by parts,
it follows

h1/2
e ‖JM (βh)nK‖2

0,e

≤ Ch1/2
e (JM (βh)nK,ϕe)e

= Ch1/2
e

(

(Lβh,ϕe)ωe + (M (βh),∇ϕe)ωe

)

, (5.56)

where we recall that ωe was defined at the start of this section. Integration
by parts and the first identity in (2.9) immediately yield

(M (β),∇ϕe)ωe = −(Lβ,ϕe)ωe

= (q,ϕe)ωe , (5.57)

which, used in (5.56), gives

h1/2
e ‖JM(βh)nK‖2

0,e

≤ Ch1/2
e

(

(Lβh + q,ϕe)ωe + (M (βh) − M (β),∇ϕe)ωe

)

= Ch1/2
e

(

(Lβh + qh,ϕe)ωe + (q − qh,ϕe)ωe

+(M (βh) − M (β),∇ϕe)ωe

)

. (5.58)

We now bound the three terms on the right hand side of (5.58). The
identity (5.35), the Cauchy–Schwartz inequality, the definition (5.55) and
the bound (5.46) give

h1/2
e (Lβh + qh,ϕe)ωe

≤ C
(

∑

K∈Ch∩ωe

h−2
K ‖∇wh − βh‖

2
0,K

)1/2

‖JM (βh)nK‖0,e

≤ C ‖|(w − wh,β − βh)‖|h,ωe‖JM (βh)nK‖0,e . (5.59)
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Note that in particular ϕe ∈ V ∗ (see the definition (4.5)). Therefore, first
the duality inequality, then the definition (5.55) combined with the bound
(5.46) and the inverse inequality give

h1/2
e (q − qh,ϕe)ωe ≤ h1/2

e ‖q − qh‖−1,∗,ωe‖ϕe‖1,ωe

≤ C‖q − qh‖−1,∗,ωe‖JM (βh)nK‖0,e . (5.60)

Now again the Cauchy–Schwartz inequality, then the inverse inequality and
finally (5.55) combined with the bound (5.46) lead to the estimate

h1/2
e (M(βh) − M (β),∇ϕe)ωe ≤ C‖β − βh‖1,ωeh

−1/2
K ‖ϕe‖0,ωe

≤ C‖β − βh‖1,ωe‖JM(βh)nK‖0,e . (5.61)

Combining (5.59),(5.60) and (5.61) with (5.58) it follows

h1/2
e ‖JM(βh)nK‖0,e ≤ C

(

‖|(w − wh,β − βh)‖|h,ωe + ‖q − qh‖−1,∗,ωe

)

,(5.62)

while the remaining term in (5.2) is bounded with similar arguments:

h3/2
e ‖Jqh · nK‖0,e ≤ C

(

‖q − qh‖−1,∗,K + h2
K‖f − fh‖0,K

)

. (5.63)

Step 3. Third we bound the only term of η2
s,e in (5.3) which appears also

in (5.4). Given now a triangulation edge e in Γf,h ∪ Γs,h, let

ϕe = Πe(Mnn(βh)) . (5.64)

Due to (5.45) and (2.9)6 integration by parts gives

h1/2
e ‖Mnn(βh)‖

2
0,e ≤ h1/2

e (Mnn(βh − β), ϕe)e

= h1/2
e (Mn(βh − β), ϕen)e

= h1/2
e

(

(M (βh − β),∇(ϕen))ωe + (L(βh − β), ϕen)ωe

)

, (5.65)

where n is, as usual, the chosen normal unit vector to e. Using the Cauchy–
Schwartz inequality, then the inverse inequality and finally the bound (5.46)
we easily get

h1/2
e (M (βh − β),∇(ϕen))ωe ≤ h1/2

e ‖β − βh‖1,ωe‖∇(ϕen)‖0,ωe

≤ C‖β − βh‖1,ωe‖Mnn(βh)‖0,e . (5.66)

Recalling (2.9)1, for the second term in (5.65), we have

h1/2
e (L(βh − β), ϕen)ωe

= h1/2
e (Lβh + qh, ϕen)ωe + h1/2

e (q − qh, ϕen)ωe . (5.67)

Observing that ϕen ∈ V ∗, the two terms on the right hand side of (5.67) can
be bounded with the same arguments used respectively in (5.59) and (5.60).
Omitting the details, we therefore get

h1/2
e (L(βh − β), ϕen)ωe ≤ C

(

‖|(w − wh,β − βh)‖|h,ωe

+‖q − qh‖−1,∗,ωe

)

‖Mnn(βh)‖0,e . (5.68)
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From (5.65), (5.66) and (5.68) we get

h1/2
e ‖Mnn(βh)‖0,e ≤ C

(

‖|(w − wh,β − βh)‖|h,ωe + ‖q − qh‖−1,∗,ωe

)

. (5.69)

Step 4. Finally we bound the last term of η2
f,e in (5.4). Given again a

triangulation edge e in Γf,h, let

ϕe = Πe(
∂

∂s
Mns(βh) − qh · n) . (5.70)

Using (5.45) and recalling (2.9)6 we obtain

h3/2
e ‖

∂

∂s
Mns(βh) − qh · n‖2

0,e

≤ h3/2
e

(

(
∂

∂s
Mns(βh − β), ϕe)e + ((q − qh) · n, ϕe)e

)

. (5.71)

For the first term, integration by parts on the edge and simple algebra give

h3/2
e (

∂

∂s
Mns(βh − β), ϕe)e = h3/2

e (Mns(β − βh),∇ϕe · s)e

= h3/2
e

(

(M(β − βh)n,∇ϕe)e − (Mnn(β − βh),∇ϕe · n)e

)

. (5.72)

Using again integration by parts, the first term in (5.72) can be written as

h3/2
e (M (β − βh)n,∇ϕe)e

= h3/2
e

(

(L(β − βh),∇ϕe)ωe + (M(β − βh),∇∇ϕe)ωe

)

. (5.73)

The second term in (5.71), again due to integration by parts and also recalling
(2.9)2, is instead equivalent to

h3/2
e ((q − qh) · n, ϕe)e = h3/2

e

(

(q − qh,∇ϕe)ωe

−(fh + div qh, ϕe)ωe − (f − fh, ϕe)ωe

)

. (5.74)

For the first term, due to (2.9)1 and (3.11), we now have

h3/2
e (q − qh,∇ϕe)ωe

= h3/2
e

(

(Lβh − Lβ,∇ϕe)ωe −
1

αh2
ωe

(∇wh − βh,∇ϕe)ωe

)

, (5.75)

where hωe is the size of the triangle ωe. Combining all the identities from
(5.71) to (5.75) it follows that

h3/2
e ‖

∂

∂s
Mns(βh) − qh · n‖2

0,e

≤ h3/2
e

(

(M(β − βh),∇∇ϕe)ωe − (Mnn(β − βh),∇ϕe · n)e

−
1

αh2
ωe

(∇wh − βh,∇ϕe)ωe − (fh + div qh, ϕe)ωe

−(f − fh, ϕe)ωe

)

. (5.76)
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For the second term on the right hand side of (5.76), recalling (2.9)6, using
the Cauchy–Schwartz inequality and due to the bound (5.69) we have

h3/2
e (Mnn(β − βh),∇ϕe · n)e ≤ h1/2

e ‖Mnn(βh)‖0,ehe‖∇ϕe‖0,e

≤ C
(

‖|(w − wh,β − βh)‖|h,ωe + ‖q − qh‖−1,∗,ωe

)

he‖∇ϕe‖0,e ,(5.77)

which, using the inverse inequality and the bound (5.46) gives

h3/2
e (Mnn(β − βh),∇ϕe · n)e ≤ C

(

‖|(w − wh,β − βh)‖|h,ωe

+‖q − qh‖−1,∗,ωe

)

‖
∂

∂s
Mns(βh) − qh · n‖0,e . (5.78)

The remaining terms on the right hand side of (5.76) can all be bounded using
the Cauchy–Schwartz inequality, the inverse inequality and the bounds (5.53),
(5.46) as already shown for the similar previous cases. Without showing all
the details, we finally get

h3/2
e ‖

∂

∂s
Mns(βh) − qh · n‖2

0,e

≤ C
(

‖|(w − wh,β − βh)‖|h,ωe + ‖q − qh‖−1,h,ωe

+h2
K‖f − fh‖0,K

)

‖|h,ωe‖
∂

∂s
Mns(βh) − qh · n‖0,e , (5.79)

or, trivially,

h3/2
e ‖

∂

∂s
Mns(βh) − qh · n‖0,e

≤ C
(

‖|(w − wh,β − βh)‖|h,ωe + ‖q − qh‖−1,h,ωe

+h2
K‖f − fh‖0,K

)

. (5.80)

The proposition is now proved.
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