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1 Introduction

The eigenvalue problem of the p-Laplacian is to find functions u ∈ W 1,p
0 (Ω)

that satisfy the equation

−div(|∇u|p−2∇u) = λ|u|p−2u, 1 < p < ∞, (1.1)

for some λ 6= 0 in an open set Ω ⊂ Rn. This problem was apparently
first studied by Thelin in [26]. The first eigenvalue is defined as the least
real number λ for which the equation (1.1) has a non-trivial solution u. In
defining eigenvalues we shall interpret equation (1.1) in the weak sense. The
first eigenvalue λ1 = λ1(Ω) is obtained by minimizing the Rayleigh quotient

λ1 = inf
u

∫
Ω
|∇u|p dx∫

Ω
|u|p dx

(1.2)

with u ∈ W 1,p
0 (Ω), u 6≡ 0. The minimization problem (1.2) is equivalent to

the corresponding Euler-Lagrange equation (1.1) with λ = λ1.

In this note we consider first eigenfunctions, that is, solutions u of the eigen-
valueproblem (1.2) on a metric measure space X by replacing the standard
Sobolev space W 1,p

0 (Ω) with the Newtonian space N 1,p
0 (Ω). Since differential

equations are problematic in metric measure spaces, we use only the varia-
tional approach. This has been previously studied in Pere [22], where the
author proves that first eigenfunctions always exist in our setting and they
have a locally Hölder continuous representative. The proof of the Hölder
continuity in [22] is based on the famous De Giorgi method (see De Giorgi
[2], Giaquinta [5] and Giusti [6]).

We continue the study of [22] by proving that first eigenfunctions are bounded
and non-negative first eigenfunctions satisfy Harnack’s inequality. Our meth-
ods require that Ω ⊂ X is bounded. The proof of the boundedness is based
on a method by Ladyzhenskaya and Uraltseva [17]. The proof of the Har-
nack’s inequality uses the Moser iteration technique (see Moser [20] and [21]),
which was adapted to the metric setting in Marola [19]. More general func-
tionals of the calculus of variations are studied in Giusti [6]. However, we
obtain different Harnack’s inequality than in [6] when we confine Giusti’s
setting to our case, see Theorem 7.10 in [6] and Theorem 5.5 in Section 5.
We also give a simple proof for the continuity of eigenfunctions by com-
bining the weak Harnack estimates of the two different methods. Observe
here that continuity does not easily follow from Harnack’s inequality since
the sum of an eigenfunction and a constant is not an eigenfunction in general.

The advantage of our methods is that they work under weaker assumptions
than those of Pere [22]. The difference is that we only require the weak
(1, p)-Poincare inequality instead of a weak (1, q)-Poincaré inequality for some
1 < q < p. The latter inequality appears as a basic assumption on several
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papers dealing with nonlinear potential theory in metric spaces. In fact, the
weak (1, q)-Poincaré inequality is crucial for the latter part of the De Giorgi
method which builds up the local Hölder continuity.

The work is organized as follows. In the preliminary section we focus on
notation, definitions and concepts which appear in this work. In the third
section we prove that first eigenfunctions are bounded. The main results
of this paper are included in Section 4, where we establish a Caccioppoli
type estimate and weak Harnack estimates. The final section 5 discusses
Harnack’s inequality and continuity.

2 Preliminaries

We assume that X is a metric measure space equipped with a Borel regu-
lar measure µ. We assume that the measure of every nonempty open set is
positive and that the measure of every bounded set is finite. The further
requirements on the space and the measure are included in the end of this
section. Throughout, Br := B(z, r) refers to an open ball with the center
z and radius r > 0. Constants are usually labeled as c, and their values
may change even in a single line. If A is a subset of X, then χA denotes the
characteristic function of A. We let f+ = max{f, 0} and f− = −min{f, 0}.
If not otherwise stated, p is a real number satisfying 1 < p < ∞.

By a path in X we mean any continuous mapping γ : [a, b] → X, where
[a, b], a < b, is an interval in R. Its image will be denoted by |γ| = γ([a, b])
and l(γ) denotes the length of γ. We say that the curve is rectifiable if
l(γ) < ∞. The collection of all non-constant rectifiable paths γ : [a, b] → X
is denoted by Γrect. Throughout the paper we will assume that every path is
nonconstant, compact and rectifiable. A path can thus be parametrized by
its arc length. See Heinonen [10], Heinonen–Koskela [11] and Väisälä [27] for
the discussion of rectifiable paths and path integration.

The p-modulus of a family of paths Γ in X is the number

Modp(Γ) = inf
ρ

∫

X

ρp dµ,

where the infinum is taken over all non-negative Borel measurable functions
ρ so that ∫

γ

ρ ds ≥ 1

for all rectifiable paths γ belonging to Γ. It is well-known that the p-modulus
is an outer measure on the collection of all paths in X. From the above defi-
nition it is clear that the p-modulus of the family of all non-rectifiable paths
is zero, thus non-rectifiable paths are not interesting in this study. See Fu-
glede [3], [10] and [27] for additional information on p-modulus.

4



In a metric measure space an upper gradient is a counterpart for the Sobolev
gradient.

Definition 2.1. Let u be an extended real-valued function on X. We say
that a non-negative Borel measurable function g is an upper gradient of u if
for all rectifiable paths γ joining points x and y in X we have

|u(x) − u(y)| ≤

∫

γ

g ds. (2.2)

See Cheeger [1], [10], [11] and Shanmugalingam [24] for a discussion on upper
gradients. A property is said to hold for p-almost all paths, if the set of paths
for which the property fails is of zero p-modulus. If (2.2) holds for p-almost
all paths γ, then g is said to be a p-weak upper gradient of u. It is known
that if 1 < p < ∞ and u has a p-weak upper gradient in Lp(X) then u
has the least p-weak upper gradient gu in Lp(X). It is the smallest in the
sense that if g is another p-weak upper gradient in Lp(X) of u then g ≥ gu

µ-almost everywhere. This fact has been proved in Shanmugalingam [23].
An alternative proof is given in [1].

Newtonian spaces

Here we introduce the notion of Sobolev spaces on a metric measure space
based on the concept of upper gradients. Following Shanmugalingam [24] we

define the space Ñ1,p(X) to be the collection of all real-valued p-integrable
functions u on X that have a p-integrable p-weak upper gradient gu. We
equip this space with a seminorm

‖u‖Ñ1,p(X) =
(
‖u‖p

Lp(X) + ‖gu‖
p
Lp(X)

)1/p

,

and say that u and v belong to the same equivalence class, write u ∼ v, if
‖u− v‖Ñ1,p(X) = 0. The Newtonian space N 1,p(X) is defined to be the space

Ñ1,p(X)/ ∼ with the norm

‖u‖N1,p(X) = ‖u‖Ñ1,p(X).

For basic properties of Newtonian space we refer to [24].

Definition 2.3. Let u : X → R be a given function and γ ∈ Γrect arc-length
parametrized path in X. We say that

(i) u is absolutely continuous along a path γ if u◦γ is absolutely continuous
on [0, l(γ)],

(ii) u is absolutely continuous on p-almost every curve, or simply ACCp, if
for p-almost every γ, u ◦ γ is absolutely continuous.

5



It is very useful to know that if u is a function in Ñ1,p(X), then u is ACCp.
See [24] for the proof.

The p-capacity of a set E ⊂ X with respect to the space N 1,p(X) is defined
by

Capp(E) = inf
u
‖u‖p

N1,p(X),

where the infinum is taken over all functions u ∈ Ñ1,p(X) whose restriction
to E is bounded below by 1. Sets of zero capacity are also of measure zero,
but the converse is not true. See Kinnunen–Martio [16] for more properties
of the capacity in the metric setting.

In order to give a definition of first eigenfunctions we need a counterpart of
the Sobolev functions with zero boundary values in a metric measure space.
Let Ω ⊂ X. Following the method of Kilpeläinen–Kinnunen–Martio [12], we

define the space Ñ1,p
0 (Ω) to be the set of functions ũ ∈ Ñ1,p(X) for which

Capp ({x ∈ X \ Ω : ũ(x) 6= 0}) = 0.

The Newtonian space with zero boundary values N 1,p
0 (Ω) is then Ñ1,p

0 (Ω)/ ∼
equipped with the norm

‖u‖N1,p
0

(Ω) = ‖ũ‖Ñ1,p(X).

The norm on N 1,p
0 (Ω) is unambiguously defined by Shanmugalingam [25] and

the obtained space is a Banach space. Note also that if Capp(X \ Ω) = 0,

then N 1,p
0 (Ω) = N 1,p(X). In what follows, we usually identify the equivalence

class with its representative.

The inequalities of Poincaré and Sobolev

We will impose some further requirements on the space and the measure.
Namely, the measure µ is said to be doubling if there is a constant cµ ≥ 1,
called the doubling constant of µ, so that

µ(B(z, 2r)) ≤ cµµ(B(z, r)) (2.4)

for every open ball B(z, r) in X. By the doubling property, if B(y,R) is a
ball in X, z ∈ B(y,R) and 0 < r ≤ R < ∞, then

µ(B(z, r))

µ(B(y,R))
≥ c

( r

R

)Q

(2.5)

for c = c(cµ) > 0 and Q = log2 cµ. The exponent Q serves as a counterpart
of dimension related to the measure. A metric space X is said to be doubling

if there exists a constant c < ∞ such that every ball B(z, r) can be covered
by at most c balls with the radius r/2. If X is equipped with a doubling
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measure, then X is doubling.

Let 1 < p < ∞. The space X is said to support a weak (1, p)-Poincaré

inequality if there are constants c > 0 and τ ≥ 1 such that

∫

B(z,r)

|u − uB(z,r)| dµ ≤ cr

( ∫

B(z,τr)

gp
u dµ

)1/p

(2.6)

for all balls B(z, r) in X, for all integrable functions u in B(z, r) and for
all p-weak upper gradients gu of u. If τ = 1, the space is said to support a
(1, p)-Poincaré inequality. A result in HajÃlasz–Koskela [7] (see also HajÃlasz–
Koskela [8]) shows that in a doubling measure space a weak (1, p)-Poincaré
inequality implies a Sobolev-Poincaré inequality. More precisely, there is
c = c(p, κ, cµ) > 0 such that

( ∫

B(z,r)

|u − uB(z,r)|
κp dµ

)1/κp
≤ cr

( ∫

B(z,5τr)

gp
u dµ

)1/p

, (2.7)

where 1 ≤ κ ≤ Q/(Q − p) if 1 < p < Q and κ = 2 if p ≥ Q, for all
balls B(z, r) in X, for all integrable functions u in B(z, r) and for all p-
weak upper gradients gu of u. We will also need an inequality for Newtonian
functions with zero boundary values. If u ∈ N 1,p

0 ((B(z, r)), then there exists
c = c(p, cµ) > 0 such that

( ∫

B(z,r)

|u|κp dµ

)1/κp

≤ cr

( ∫

B(z,r)

gp
u dµ

)1/p

, (2.8)

where 0 < 2r < diam(X). For this result we refer to Kinnunen–Shanmugalin-
gam [13]. In [13] the space was assumed to support a weak (1, q)-Poincaré
inequality for some q with 1 < q < p. However, this assumption is not needed
in the proof of (2.8).

Minimizers and superminimizers

We next introduce the concept of p-(super)minimizer of the p-energy integral
by following Kinnunen–Martio [14].

Definition 2.9. A function u ∈ N 1,p
loc (Ω) is a p-minimizer of the p-energy

integral in Ω if ∫

Ω′

gp
u dµ ≤

∫

Ω′

gp
v dµ (2.10)

holds for all open Ω′ b Ω for every v ∈ N 1,p(Ω′) such that v − u ∈ N 1,p
0 (Ω′).

A function u ∈ N 1,p
loc (Ω) is called a p-superminimizer in Ω if (2.10) holds

for all open Ω′ b Ω for every v ∈ N 1,p(Ω′) such that v − u ∈ N 1,p
0 (Ω′) and

v ≥ u µ-almost everywhere. A function is called a p-subminimizer if −u is a
p-superminimizer.
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A function is a p-minimizer in Ω if, and only if, both u and −u are p-
superminimizer or it is both a p-superminimizer and p-subminimizer in Ω.
Clearly if u is a p-superminimizer, then αu + β is a p-superminimizer when
α ≥ 0 and β ∈ R. Check Kinnunen–Martio [14, 15] for (super)minimizers in
metric measure spaces.

Eigenfunctions

We define a first eigenfunction of the p-Laplacian using the variational ap-
proach. In the Euclidean space this definition is equivalent to equation (1.1)
with λ = λ1.

Definition 2.11. Let Ω ⊂ X be a bounded domain with Capp(X\Ω) > 0 and

1 < p < ∞. If u ∈ N 1,p
0 (Ω), u 6= 0, minimizes the functional J : N 1,p

0 (Ω) → R,

J(v) =

∫
Ω

gp
v dµ∫

Ω
|v|p dµ

,

in N 1,p
0 (Ω), then u is called a first eigenfunction of the p-Laplacian and λ1 =

J(u) > 0 is the corresponding first eigenvalue. In what follows we drop the
subscript 1 from λ1.

Remark 2.12. Observe that N 1,p
0 (Ω) = N 1,p(X) if Capp(X \ Ω) = 0. If,

in addition, µ(X) < ∞, constant functions minimize the functional J and
λ = 0 is the corresponding eigenvalue. Hence we have excluded this trivial
case in Definition 2.11. If Capp(X \Ω) > 0, we have an explicit lower bound
for λ. Indeed, the Sobolev inequality (2.8) implies

λ ≥
1

cp diam(Ω)p
,

where c = c(p, cµ) > 0 is the same constant as in (2.8).

The existence of first eigenfunctions is proved in Pere [22]. Note that the
minimizers of the Rayleigh quotient also minimize the following functional,
see [22].

Lemma 2.13. Let u ∈ N 1,p
0 (Ω) be a first eigenfunction of the p-Laplacian in

Ω, and let λ be the corresponding eigenvalue. Then u minimizes the integral

Ĵ(v) =

∫

Ω

(gp
v − λ|v|p) dµ

in the set N1,p
0 (Ω).

We enclose this preliminary section by a simple lemma, which states that the
absolute value of a first eigenfunction is a first eigenfunction.

Lemma 2.14. Let u ∈ N 1,p
0 (Ω) be a first eigenfunction of the p-Laplacian in

Ω. Then |u| is a first eigenfunction of the p-Laplacian in Ω.
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Proof. It is obvious that |u| ∈ N 1,p
0 (Ω). Note also that in Definition 2.9 we

could replace the integral of the minimal upper gradient gv with

inf

∫

Ω

gp dµ,

where the infimum is taken over all upper gradients of v. Let u be a first
eigenfunction of the p-Laplacian, and let g be an upper gradient of u. Then

∣∣∣|u(x)| − |u(y)|
∣∣∣ ≤ |u(x) − u(y)| ≤

∫

γ

g ds

for any x, y ∈ Ω and for any rectifiable path γ joining x and y in Ω. Therefore
g is also an upper gradient of |u|. Since this holds for any upper gradient g
of u, we have ∫

Ω

gp
|u| dµ ≤

∫

Ω

gp
u dµ.

Therefore |u| minimizes the functional J . 2

General setup

From now on we assume that the complete metric measure space X is equipped

with a doubling Borel regular measure for which the measure of every nonempty

open set is positive and the measure of every bounded set is finite. Further-

more we assume that the space supports a weak (1, p)-Poincaré inequality.

3 Boundedness

Let us first show that first eigenfunctions are bounded whenever Ω ⊂ X
is bounded. The proof uses the method in Ladyzhenskaya–Ural’tseva [17,
Lemma 5.1, p.71], see also Lindqvist [18]. Throughout this section, we fix a
radius R > 0 such that 0 < 2R < diam(X) and Ω ⊂ BR ⊂ X.

Theorem 3.1. Let u be a first eigenfunction of the p-Laplacian in a bounded

open set Ω ⊂ X. Then u is bounded and satisfies the inequality

ess sup
Ω

|u| ≤ cλκ/κ−1

∫

Ω

|u| dµ.

The constant c depends only on p, κ, cµ, the measure of the ball BR and the

radius R.

Proof. Since |u| is a first eigenfunction as well, we are free to assume that
u ≥ 0. We may also assume that u is not identically zero in Ω. Set

Ak = {x ∈ Ω : u(x) > k} , k ≥ 0,

and denote
v = u − max{u − k, 0} = u − (u − k)+.

9



Since u ∈ N 1,p
0 (Ω) is a first eigenfunction the inequality

∫

Ω

(gp
u − λ|u|p) dµ ≤

∫

Ω

(gp
w − λ|w|p) dµ (3.2)

holds for all w ∈ N 1,p
0 (Ω). If we plug in the chosen v and (3.2), we have

∫

Ak

gp
u dµ ≤ λ

∫

Ak

(up − kp) dµ. (3.3)

By the elementary inequality we have that up ≤ kp + p(u − k)up−1. Hence
∫

Ak

gp
u dµ ≤ pλ

∫

Ak

(u − k)up−1 dµ (3.4)

≤ p2p−1λ

∫

Ak

(u − k)p dµ + p2p−1kp−1λ

∫

Ak

(u − k) dµ,

where we used (u − k)up−1 ≤ 2p−1(u − k)p + 2p−1kp−1(u − k) to obtain the
second inequality. Since (u − k)+ ∈ N1,p

0 (B(z, R)), Sobolev inequality (2.8)
can be restated as

( ∫

BR

(u − k)κp
+ dµ

)1/κp

≤ c

( ∫

BR

gp
(u−k)+

dµ

)1/p

,

where c = c(p, κ, cµ, R, µ(BR)) > 0. It follows that

( ∫

Ak

(u − k)κp dµ

)1/κp

≤ c

( ∫

Ak

gp
u dµ

)1/p

(3.5)

with the same constant c as above. Inequality (3.5) yields
∫

Ak

(u − k)p dµ ≤ cµ(Ak)
(κ−1)/κ

∫

Ak

gp
u dµ, (3.6)

where c = c(p, κ, cµ, R, µ(BR)) > 0. If we plug in (3.6) and (3.4) we have

(
1 − c2p−1λµ(Ak)

(κ−1)/κ
) ∫

Ak

(u − k)p dµ ≤ c(2k)p−1λ

· µ(Ak)
(κ−1)/κ

∫

Ak

(u − k) dµ.

Clearly we have that kµ(Ak) ≤ ‖u‖L1(Ω). Therefore in the first factor on the
left-hand side

c2p−1λµ(Ak)
(κ−1)/κ ≤

1

2
,

when k ≥ k0 = (c2pλ)κ/κ−1‖u‖L1(Ω). Using this and Hölder’s inequality we
obtain for k ≥ k0

µ(Ak)
1−p

( ∫

Ak

(u − k) dµ

)p

≤ c2pkp−1λµ(Ak)
(κ−1)/κ

∫

Ak

(u − k) dµ,
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from which we finally obtain
∫

Ak

(u − k) dµ ≤ (c2pλ)1/(p−1)kµ(Ak)
(κp−1)/κ(p−1) (3.7)

when k ≥ k0. We need inequality (3.7) to bound u, see [17, Lemma 5.1, p.71].
The rest of the proof resembles somehow De Giorgi’s argument. Writing

f(k) =

∫

Ak

(u − k) dµ =

∫

Ω

(u − k)+ dµ =

∫ ∞

k

µ(At) dt,

we have f ′(k) = −µ(Ak) µ-almost everywhere and hence (3.7) can be written
as

f(k) ≤ (c2pλ)1/(p−1)k(−f ′(k))(κp−1)/κ(p−1)

µ-almost everywhere when k ≥ k0. If f is positive on the interval [k0, k] and
we integrate the differential inequality from k0 to k, we obtain

kα − kα
0 ≤ (c2pλ)κ/(κp−1) (f(k0)

α − f(k)α) ,

where α = (κ−1)/(κp−1). This bounds k, since 0 ≤ f(k) ≤ f(k0) ≤ f(0) =
‖u‖L1(Ω) on the right-hand side. Therefore, f(k) is zero sooner or later. The
quantitative bound is

k ≤ c2(2κp−1)/(κ−1)λκ/(κ−1)

∫

Ω

|u| dµ,

where c = c(p, κ, cµ, R, µ(BR)) > 0. This means that f(k) is zero outside the
given bound which implies

u ≤ cλκ/(κ−1)

∫

Ω

|u| dµ (3.8)

µ-almost everywhere on Ω. Taking the essential supremum in (3.8) we get
the desired result. If we consider the function −u, we get the bound for
ess inf u. 2

4 Caccioppoli estimate and weak Harnack in-

equalities

In this section we prove weak Harnack’s inequalities for non-negative first
eigenfunctions. For this purpose we first establish a Caccioppoli type esti-
mate and then apply Moser’s iteration technique to obtain the upper weak
Harnack inequality. The lower weak Harnack estimate follows from the re-
sults of Marola [19] together with the fact that non-negative first eigenfunc-
tions are p-superminimizers of the p-energy integral, see Definition 2.9

Throughout this section we assume that Ω ⊂ X is bounded and we denote by
R the radius of the ball BR for which Ω ⊂ BR ⊂ X and 0 < 2R < diam(X).

Let us start by proving a suitable Caccioppoli type inequality.
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Lemma 4.1. Suppose that u is a non-negative first eigenfunction of the p-
Laplacian in Ω and let ε ≥ 1. Let η be a compactly supported Lipschitz

continuous function in Ω such that 0 ≤ η ≤ 1 and gη ≤ C/r. Then
∫

supp(η)

gp
uu

ε−1ηp dµ ≤
c

rp

∫

supp(η)

up+ε−1 dµ, (4.2)

where c = ((p/ε)pCp + (p/ε)λRp) > 0.

Proof. Let η be a Lipschitz continuous function in Ω such that supp(η) b Ω
and 0 ≤ η ≤ 1. Since u is bounded due to Theorem 3.1, there is 0 < α < ∞
so that εαεuε−1 ≤ 1. Choosing

w = u − ηp(αu)ε,

we have w ≤ u. Let Γrect denote the family of all rectifiable paths γ :
[0, 1] → X. Let the family Γ ⊂ Γrect be such that Modp(Γ) = 0 and γ be
the arc-length parametrization of the path in Γrect \ Γ on which the function
u is absolutely continuous. Since η is Lipschitz continuous, it is absolutely
continuous on γ. We define h : [0, l(γ)] → [0,∞),

h(s) = (u ◦ γ)(s) − (η ◦ γ)(s)p(αu ◦ γ)(s)ε.

Then h is absolutely continuous and for L1-almost every s ∈ [0, l(γ)] we have

h′(s) = (u ◦ γ)′(s) − p(η ◦ γ)(s)p−1(η ◦ γ)′(s)(αu ◦ γ)(s)ε

− ε(η ◦ γ)(s)p(αu ◦ γ)(s)ε−1α(u ◦ γ)′(s)

=
(
1 − εα(η ◦ γ)(s)p(αu ◦ γ)(s)ε−1

)
(u ◦ γ)′(s)

− p(η ◦ γ)(s)p−1(η ◦ γ)′(s)(αu ◦ γ)(s)ε.

Since |(u ◦ γ)′(s)| ≤ gu(γ(s)) and |(η ◦ γ)′(s)| ≤ gη(γ(s)) for L1-almost every
s ∈ [0, l(γ)], we obtain

|(w ◦ γ)′(s)| = |h′(s)| ≤
(
1 − εαη(γ(s))p(αu(γ(s)))ε−1

)
gu(γ(s))

+ pη(γ(s))p−1(αu(γ(s)))εgη(γ(s))

for L1-almost every s ∈ [0, l(γ)]. Thus we have

gw ≤
(
1 − εαεηpuε−1

)
gu + pηp−1(αu)εgη

µ-almost everywhere in Ω. Since 0 ≤ εαεηpuε−1 ≤ 1, we may exploit the
convexity of the function t 7→ tp. We obtain

gp
w ≤

(
1 − εαεηpuε−1

)
gp

u + ε1−pppαεup+ε−1gp
η.

By the minimizing property of u, we have
∫

Ω

gp
u dµ ≤

∫

Ω

gp
w dµ + λ

∫

Ω

(up − wp) dµ

≤

∫

Ω

gp
u dµ − εαε

∫

Ω

ηpuε−1gp
u dµ

+ ε1−pαεpp

∫

Ω

up+ε−1gp
η dµ + λ

∫

Ω

(up − wp) dµ,

12



which implies
∫

supp(η)

ηpuε−1gp
u dµ ≤

(p

ε

)p
∫

supp(η)

up+ε−1gp
η dµ+

λ

εαε

∫

Ω

(up−wp) dµ. (4.3)

If we consider the last term on the right-hand side in more detail, we may
write u = w + ηp(αu)ε and use the elementary inequality (a + b)p ≤ ap +
pb(a + b)p−1 to obtain

∫

Ω

(up − wp) dµ =

∫

Ω

((w + ηp(αu)ε)p − wp) dµ (4.4)

≤

∫

Ω

(
wp + pηp(αu)εup−1 − wp

)
dµ

=

∫

supp(η)

pηpαεup+ε−1 dµ.

If we plug in (4.4) and (4.3) and use the fact that gη ≤ C/r we have
∫

supp(η)

ηpuε−1gp
u dµ ≤

((p

ε

)p

Cp +
p

ε
λRp

) 1

rp

∫

supp(η)

up+ε−1 dµ,

which is the desired estimate. 2

Remark 4.5. The estimate of Lemma 4.1 actually holds also for 0 < ε < 1.
In fact, the proof above works in verbatim once we have shown that the
function u is stricly positive and continuous, see Theorem 5.1 and Corollary
5.6 below. The point is that we may then choose a constant α > 0 such that

0 ≤ εαεuε−1 ≤ 1.

Moser’s iteration argument yields the following weak Harnack inequality.

Theorem 4.6. Suppose that u is a non-negative first eigenfunction of the

p-Laplacian in Ω. Then for every ball B(z, r) with B(z, 2r) ⊂ Ω and any

q > 0 we have

ess sup
B(z,r)

u ≤ c

( ∫

B(z,2r)

uq dµ

)1/q

, (4.7)

where 0 < c = c(p, q, κ, cµ, λ, R) < ∞.

Proof. First we assume that q ≥ p. Write Bl = B(z, rl), rl = (1 + 2−l)r for
l = 0, 1, 2, . . ., thus, B(z, 2r) = B0 ⊃ B1 ⊃ B2 ⊃ . . . Let ηl be a Lipschitz
continuous function such that 0 ≤ ηl ≤ 1, ηl = 1 on Bl+1, ηl = 0 in X\Bl and
gηl

≤ 4 · 2l/r (choose, e.g., ηl(x) = min(max((rl − d(x, z))/(rl − rl+1))+, 1)).
Fix 1 ≤ t < ∞ and let

wl = ηlu
1+(t−1)/p = ηlu

τ/p,

where τ := p + t− 1. As in the proof of Lemma 4.1 for µ-almost everywhere
in Ω we have

gwl
≤ gηl

uτ/p +
τ

p
u(t−1)/pguηl

13



and consequently

gp
wl

≤ 2p−1gp
ηl
uτ + 2p−1

(
τ

p

)p

ut−1gp
uη

p
l

µ-almost everywhere in Ω. By using the Caccioppoli estimate, Lemma 4.1,
with ε = t and gηl

≤ 4 · 2l/r we obtain

( ∫

Bl

gp
wl

dµ

)1/p

≤ 2(p−1)/p

( ∫

Bl

(
gp

ηl
uτ +

(
τ

p

)p

ut−1gp
uη

p
l

)
dµ

)1/p

≤ 2(1 + λRp)τ
4 · 2l

r

(∫

Bl

uτ dµ

)1/p

.

The Sobolev inequality (2.8) implies

( ∫

Bl

wκp
l dµ

)1/κp

≤ c(p, cµ)rl

( ∫

Bl

gp
wl

dµ

)1/p

≤ c(p, cµ)(1 + λRp)τ(1 + 2−l)r
2l

r

( ∫

Bl

uτ dµ

)1/p

≤ c(p, cµ, λ, R)τ2l

( ∫

Bl

uτ dµ

)1/p

Since wl = uτ/p on Bl+1, by the doubling property of µ we obtain

( ∫

Bl+1

uκτ dµ

)1/κτ

≤
(
c(p, cµ, λ, R)τ2l

)p/τ
( ∫

Bl

uτ dµ

)1/τ

.

This estimate holds for all τ ≥ p. We apply the estimate with τ = qκl for all
l = 0, 1, 2, . . ., we have

( ∫

Bl+1

uqκl+1

dµ

)1/qκl+1

≤
(
c(p, cµ, λ, R)(qκl)2l

)p/qκl

( ∫

Bl

uqκl

dµ

)1/qκl

.

By iterating we obtain the desired estimate

ess sup
B(z,r)

u ≤
(
c(p, cµ, λ, R)

∑∞
i=0 κ−i

∞∏

i=0

2iκ−i

∞∏

i=0

(qκi)κ−i

)p/q( ∫

B(z,2r)

uq dµ

)1/q

≤
(
(c(p, cµ, λ, R)q)κ/(κ−1)(2κ)κ/(κ−1)2

)p/q
( ∫

B(z,2r)

uq dµ

)1/q

≤ c(p, q, κ, cµ, λ, R)

( ∫

B(z,2r)

uq dµ

)1/q

. (4.8)

The theorem is proved for q ≥ p.
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By the doubling property of the measure and (2.5), it is easy to see that (4.8)
can be reformulated in a bit different manner. Namely, if 0 ≤ ρ < r̃ ≤ 2r,
then

ess sup
B(z,ρ)

u ≤
c

(1 − ρ/r̃)Q/q

( ∫

B(z,r̃)

uq dµ

)1/q

, (4.9)

where 0 < c = c(p, q, κ, cµ, λ, R) < ∞. See Remark 4.4 in Kinnunen–
Shanmugalingam [13].

If 0 < q < p we want to prove that there is a postive constant c so that

ess sup
B(z,ρ)

u ≤
c

(1 − ρ/2r)Q/q

( ∫

B(z,2r)

uq dµ

)1/q

,

when 0 ≤ ρ < 2r < ∞. Now suppose that 0 < q < p and let 0 ≤ ρ < r̃ ≤ 2r.
We choose q = p in (4.9), then

ess sup
B(z,ρ)

u ≤
c

(1 − ρ/r̃)Q/p

( ∫

B(z,r̃)

uqup−q dµ

)1/p

≤
c

(1 − ρ/r̃)Q/p

(
ess sup
B(z,r̃)

u
)1−q/p

(∫

B(z,r̃)

uq dµ

)1/p

By Young’s inequality

ess sup
B(z,ρ)

u ≤
p − q

p
ess sup
B(z,r̃)

u +
c

(1 − ρ/r̃)Q/q

( ∫

B(z,r̃)

uq dµ

)1/q

≤
p − q

p
ess sup
B(z,r̃)

u +
c

(r̃ − ρ)Q/q

(
(2r)Q

∫

B(z,2r)

uq dµ

)1/q

,

where the doubling property (2.5) was used to obtain the last inequality.
We need to get rid of the first term on the right-hand side. By applying a
technical lemma, see Giaquinta [4, Lemma 3.1, p. 161], we obtain

ess sup
B(z,ρ)

u ≤
c

(1 − ρ/2r)Q/q

( ∫

B(z,2r)

uq dµ

)1/q

for all 0 ≤ ρ < 2r, where 0 < c = c(p, q, κ, cµ, λ, R) < ∞. If we set ρ = r, we
obtain (4.8) for every 0 < q < p and the proof is complete. 2

Remark 4.10. The statement of Theorem 4.6 was originally proved in
Marola [19] for minimizers of the p-energy integral. However, the submin-
imizing property is not really needed. As our proof shows, it is enough to
have a Caccioppoli type estimate in the spirit of (4.2).

The following lemma states that non-negative first eigenfunctions are p-
superminimizers in the sense of Definition 2.9.
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Lemma 4.11. Let u be a non-negative first eigenfunction of the p-Laplacian

in Ω. Then u is a p-superminimizer in Ω.

Proof. Let Ω′ b Ω be open and let v ∈ N 1,p(Ω) such that v − u ∈ N 1,p
0 (Ω′)

and v ≥ u µ-almost everywhere in Ω′. Define

ψ =

{
v, µ-a.e. in Ω′

u, µ-a.e. in Ω \ Ω′

Since u ∈ N 1,p
0 (Ω), we have ψ ∈ N 1,p

0 (Ω). Moreover,
∫

Ω

ψp dµ ≥

∫

Ω

up dµ.

By the minimizing property of u
∫

Ω\Ω′

gp
u dµ +

∫

Ω′

gp
u dµ =

∫

Ω

gp
u dµ

≤

( ∫

Ω

gp
ψ dµ

)( ∫

Ω

ψp dµ

)−1( ∫

Ω

up dµ

)
≤

∫

Ω

gp
ψ dµ

=

∫

Ω\Ω′

gp
u dµ +

∫

Ω′

gp
v dµ.

Hence ∫

Ω′

gp
u dµ ≤

∫

Ω′

gp
v dµ,

and we are done. 2

Lemma 4.11 yields together with results of [19] the following weak Harnack
inequality.

Theorem 4.12. Let u be a non-negative first eigenfunction of the p-Laplacian

in Ω. Then there are q > 0 and c = c(p, q, κ, cµ) > 0 such that

(∫

B(z,2r)

uq dµ

)1/q

≤ c ess inf
B(z,r)

u (4.13)

for every ball B(z, r) such that B(z, 10τr) ⊂ Ω.

Proof. By Lemma 4.11, u is a p-superminimizer in Ω. It is evident that u+β
is a p-superminimizer in Ω for all constants β > 0. Hence we may apply [19,
Theorem 5.19] to obtain that

(∫

B(z,2r)

(u + β)q dµ

)1/q

≤ c ess inf
B(z,r)

(u + β)

for all β > 0 and for every ball B(z, r) such that B(z, 10τr) ⊂ Ω. The claim
follows by letting β → 0+. 2

The constant τ ≥ 1 comes from the weak (1, p)-Poincaré inequality (2.6).
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5 Continuity and Harnack’s inequality

We first give a simple proof for the continuity of u by combining the upper
weak Harnack estimate of the De Giorgi method together with the lower weak
Harnack estimate (4.13). Observe here that only (1, p)-Poincare inequality
is needed for the estimate in Pere [22, Theorem 5.18, p. 15]. Next, for a
function u we let

ess lim inf
x→z

u(x) = lim
r→0

ess inf
B(z,r)

u.

Theorem 5.1. The first eigenfunction u is continuous in Ω.

Proof. By Lemma 2.14, we are free to assume that u is non-negative. Let
z ∈ Ω and let mr = ess infB(z,r) u for sufficiently small radii r. The same
argumentation as in Heinonen–Kilpeläinen–Martio [9, pp. 76–77] yields that

lim
r→0

∫

B(z,r)

(u − mr) dµ = 0 (5.2)

and that

ess lim inf
x→z

u(x) = lim
r→0

∫

B(z,r)

u dµ. (5.3)

Define u pointwise by (5.3). Then u is lower semicontinuous, u − mr is
non-negative in Br, and

∫

B(z,r)

|u − u(z)| dµ =

∫

B(z,r)

|u − mr| dµ +

∫

B(z,r)

|mr − u(z)| dµ.

By (5.2) and (5.3), both terms on the right hand side tend to zero as r → 0.
Hence we conclude that u has Lebesgue points everywhere in Ω. Since u is
bounded, we get

lim
r→0

∫

B(z,r)

|u − u(z)|p dµ = 0 (5.4)

by using the trivial estimate
∫

B(z,r)

|u − u(z)|p dµ ≤
(

sup
B(z,r)

u
)p−1

∫

B(z,r)

|u − u(z)| dµ

for small radii. Next, we recall the estimate

ess sup
B(z,r/2)

u ≤ k0(1 + r) + c

( ∫

B(z,r)

((u − k0)
+)p dµ

)1/p (
µ(A(k0, r))

µ(B(z, r)

)α/p

from [22, p. 15]. Here k0 is any non-negative number and A(k0, r) = B(z, r)∩
{u > k0}. Now it is enough to choose k0 = u(z), let r → 0, and use (5.4) to
conclude that

ess lim sup
x→z

u(x) ≤ u(z).

Hence u is also upper semicontinuous and the claim follows. 2

Combining Theorem 4.6 and Theorem 4.12 we obtain immediately Harnack’s
inequality.
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Theorem 5.5. Let u be a non-negative first eigenfunction of the p-Laplacian

in Ω. Then there exists a constant c = c(p, q, κ, cµ, λ, R) > 0 so that

sup
B(z,r)

u ≤ c inf
B(z,r)

u

for every ball B(z, r) for which B(z, 10τr) ⊂ Ω. The constant c is indepen-

dent of the ball B(z, r) and the function u. The constant τ ≥ 1 comes from

the weak (1, p)-Poincaré inequality.

Observe here that continuity does not follow easily from Harnack’s inequality
since the sum of an eigenfunction and a constant is not an eigenfunction in
general.

By continuity and Harnack’s inequality we obtain that first eigenfunctions
do not change sign in any bounded domain.

Corollary 5.6. Let u be a non-negative first eigenfunction in a bounded

domain Ω ⊂ X. Then u is strictly positive in Ω.

Proof. Denote U1 = { z ∈ Ω : u(z) > 0 }, U2 = { z ∈ Ω : u(z) = 0 }, and
assume that U1 and U2 are both non-empty. By connectedness, we are free
to assume that at least one of the sets U1 and U2 is not open. If U1 is not
open, there is z ∈ U1 which does not belong to the interior of U1. Hence, for
some r > 0, we may apply the Harnack’s inequality to conclude that

sup
B(z,r)

u ≤ c inf
B(z,r)

u = 0.

This contradicts the fact that x ∈ U1. The case that U2 is not open is treated
similarly. 2

Corollary 5.7. Let u be a first eigenfunction in a bounded domain Ω ⊂ X.

Then u does not change sign in Ω.

Proof. Since |u| is a non-negative first eigenfunction in Ω, Corollary 5.6 im-
plies that

Ω = {u > 0 } ∩ {u < 0 }.

By continuity, both {u > 0 } and {u < 0 } is open. The assumption that
both level sets are non-empty contradicts the connectedness. 2
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