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Chapter 1

Introduction

In practical measurements of physical quantities we have directly observable quantit-
ies and others that cannot be observed. If some of the unobservable quantities are of
our primary interest, we are dealing with an inverse problem. In that case, we need
to discover how to compute the values of the quantities of primary interest from the
observed values of the observable quantities, the measured data. The interdepend-
ence of the quantities in the measurement setting is described through mathematical
models. For solving the inverse problem we have to be able to analyse mathemat-
ically the model of the measurement process. If we have some prior information
about the quantities of primary interest, it is beneficial to use statistical approach
to inverse problems. In statistical inversion theory it is assumed that all quantit-
ies included in the model are represented by random variables. The randomness
describes our degree of knowledge concerning their realizations. Our information
about their values is coded into their distributions. Therefore the randomness is
due to the lack of information, not to the intrinsic randomness of the quantities
in the measurement setting. The statistical inversion theory is based on the Bayes
formula. The prior information of the quantities of primary interest is presented
in the form of a prior distribution. The likelihood function is given by the model
for the measurement process. The solution to the inverse problem is the posterior
distribution of the random variables of interest after performing the measurements.
By the Bayes formula the posterior distribution is proportional to the product of
the prior distribution and likelihood function.

In several applications one encounters a situation in which measurements that con-
stitute the data of an inverse problem are done in a nonstationary environment.
More precisely, it may happen that the physical quantities that are in the focus of
our primary interest are time dependent and the measured data depends on these
quantities at different time instants. Inverse problems of this type are called non-
stationary inverse problems. They are often viewed as a state estimation problem.
Then the quantities in the measurement setting are treated as stochastic processes.
Usually, the time evolution of the quantities of primary interest, the state of the
system, is described by a stochastic differential equation referred to as the state
evolution equation. The measurements are modeled by an observation equation con-
taining the measurement noise. The solution to the state estimation problem is
the conditional expectation of the quantities of primary interest with respect to the
measured data. If our motive is, for instance, to have a real-time monitoring of the
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quantities of primary interest, we are dealing with a filtering problem in which the
estimator is based on the current history of the measurement process.

Often in state estimation approach the time variable is assumed to be discrete and
the space variable to be finite dimensional. This is convenient from the practical
point of view. Observations are usually done at discrete time instants and the compu-
tation requires space discretization. Hence discrete state evolution and observation
equations are needed. They may be derived from the continuous ones, especially
if the state evolution and observation equations are linear. In many applications,
it is assumed that the discretized version of the discrete infinite dimensional state
estimation problem represents the reality. Nevertheless, discretization causes al-
ways an error, which should be included into the state estimation system. If we
analyse the continuous infinite dimensional state evolution and observation equa-
tions, we may be able to present the distribution of the discretization error. The
discretized filtering problem can be solved by the Bayesian filtering method. The
discretized state evolution equation is used to find the prior distribution and the
likelihood function is given by the discretized observation equation. The solution to
the filtering problem is the posterior distribution given by the Bayes formula. As
an example of nonstationary inverse problem we examine the electrical impedance
process tomography problem.

1.1 Electrical Impedance Process Tomography

In this thesis we consider the process tomography problem of imaging the concen-
tration distribution of a given substance in a fluid moving in a pipeline based on
electromagnetic measurements on the surface of the pipe. In electrical impedance
tomography (EIT) electric currents are applied to electrodes on the surface of an
object and the resulting voltages are measured using the same electrodes (Figure
1.1). The conductivity distribution inside the object is reconstructed based on the
voltage measurements. The relation between the conductivity and concentration
depends on the process and is usually non-linear. At least for strong electrolytes
and multiphase mixtures such relations are studied and discussed in the literature
[7, 12]. In traditional EIT it is assumed that the object remains stationary during
the measurement process. A complete set of measurements, also called a frame,
consists of all possible linearly independent injected current patterns and the corres-
ponding set of voltage measurements. In process tomography we cannot in general
assume that the target remains unaltered during a full set of measurements. Thus
conventional reconstruction methods [4, 5, 6, 46, 47, 49] cannot be used. The time
evolution needs to be modeled properly. We view the problem as a state estimation
problem. The concentration distribution is treated as a stochastic process that sat-
isfies a stochastic differential equation referred to as the state evolution equation.
The measurements are described in terms of an observation equation containing the
measurement noise. Our goal is to have a real-time monitoring for the flow in a
pipeline. For that reason the computational time has to be minimized. Therefore,
we use a simple model, the convection—diffusion equation, for the flow. It allows nu-
merical implementation using FEM techniques. Since we cannot be sure that other
features such as turbulence of the flow do not appear, we use stochastic modelling.
The measurement situation is represented by the most realistic model for EIT, the
complete electrode model. The measurements are done in a part of the boundary
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Figure 1.1: EIT in process tomography

of the pipe. We get enough information for an accurate computation only from a
segment of the pipe. It would be natural to choose the domain of the model to be
the segment of the pipe. If the domain is restricted to be a segment of the pipe, we
have to use some boundary conditions in the input and output end of the segment.
The choice of boundary conditions has an effect on the solution. The most com-
monly used boundary conditions do not represent the actual circumstances in the
pipe. Therefore, we do not truncate the domain but instead assume that the pipe
is infinitely long. With the assumption we derive the discrete infinite dimensional
state estimation system.

This problem has been considered in the articles [43, 45, 41] and in the proceedings
papers [40, 44, 42, 38]. Those articles and proceeding papers concentrate on the
numerical implementation of the problem. An experimental evaluation is presented
in the proceeding paper [39]. In those articles and proceeding papers the discretized
state estimation system is assumed to model the real measurement process. The
discretization error is omitted. In this thesis the main interest is in the mathem-
atical formulation of the state evolution and observation equations and presenting
a discretized state estimation system in which the discretization error is taken into
account. Preliminary results have been published in proceedings papers [33, 34]
written by the author.

1.2 Overview of this Thesis

The main purpose of this thesis is to present the state estimation system correspond-
ing to electrical impedance process tomography and to perform discretization in such
a manner that the discretization error is taken into account. We combine the theory
of partial differential equations and stochastic analysis in infinite dimensions to solve
the stochastic convection—diffusion equation. Since only few researchers interested
in inverse problems are familiar with both branches of mathematics, we present
well-known results concerning both fields. This thesis is rather self-contained even
though it is assumed that the reader has a firm background in mathematics. The
Lebesgue integration theory of scalar valued functions and stochastic analysis in R™
are supposed to be known. The reader should also be acquainted with the principles
of functional analysis and theory of partial differential equations. Chapters 2—4 in-
troduce the theory needed to solve the stochastic convection—diffusion equation. In
Chapter 2 we discuss the concept of analytic semigroups and sectorial operators.



4 Introduction

We use analytic semigroups generated by sectorial operators to solve initial value
problems. Elliptic partial differential operators are studied in terms of sectoriality
in Chapter 3. Chapter 4 considers stochastic analysis in infinite dimensional spaces.
As a consequence we are able to solve linear stochastic differential equations. The
existence and uniqueness of the solution to the complete electrode model in un-
bounded domains are proved in Chapter 5. Finally, in Chapter 6 we return to the
electrical impedance process tomography problem. We present the continuous in-
finite dimensional state estimation system concerning the problem. A discretized
state estimation system and the evolution and observation updating formulas of the
Bayesian filtering are also introduced.

In this thesis there are four appendixes which contain theory needed in Chapters
2-4. In Appendix A basic properties of the resolvent set and operator used in
Chapter 2 are introduced. The Bochner integration theory for Banach space valued
functions is handled in Appendix B. The analytic semigroup generated by a sectorial
operator is defined as an integral of an operator valued function along a curve in the
complex plane. In Appendix C we apply the Bochner integration theory and show
that the Cauchy integral theorem and formula are valid for holomorphic operator
valued functions. The covariance operator of a Gaussian measure in a Hilbert space
is a nuclear operator. Proper integrands of the stochastic integral with respect to a
Hilbert space valued Wiener process are processes with values in the space of Hilbert-
Schmidt operators. In Appendix D we present basic properties of Hilbert-Schmidt
and nuclear operators.

In the beginning of each chapter we comment on the references used in that chapter
and related literature. We do not refer to the literature concerning single results
since the proofs of almost all theorems, propositions, lemmas etc. are included in
the thesis. Often the proofs contain more details than those which can be found from
the literature. In Chapter 4 there are few lemmas which we could not find from the
literature in the required form. However, the proofs have only slight differences
between those introduced in the literature. New results are presented in Chapters
5 and 6. All details in the proofs of the results concerning the complete electrode
model in unbounded domains in Chapter 5 are made by the author. The main results
of this thesis are presented in Section 6.3, which is entirely based on the author’s
individual work.



Chapter 2

Analytic Semigroups

In this chapter we introduce some properties of analytic semigroups generated by
unbounded operators. We shall use analytic semigroups to find solutions to initial
value problems. The theory of semigroups can be found among others in the books
of Davies [8], Goldstein [15], Hille and Phillips [16], Lunardi [28], Pazy [31] and
Tanabe [50, 51].

Let (E,| - ||g) be a Banach space. We denote by B(E) the space of bounded linear
operators from E to F equipped with the operator norm

1Al p(r) := sup{||Az||g : x € E, [lzflp <1}

for all A € B(FE). An operator family {T'(t)}+>0 C B(FE) is called a semigroup if

(i) T(t)T(s) =T(s+t) for all s, >0 and
(ii) T(0) = 1.

The linear operator A : D(A) — E defined by

D(A)::{er:Htlir&%},
T(t)r —x

Az = lim
t—0t

if x € D(A),

is called the infinitesimal generator of the semigroup {7T'(t)}:>0. A semigroup
{T'(t) }+>0 is said to be strongly continuous if for all x € E the function ¢t — T'(t)z is
continuous in the interval [0,00). It is said to be analytic if the function ¢ — T'(t)
can be extended to be an analytic function from a sector

{zeC:2+#0, |argz| < 5} (2.1)
with some € (0,7) to the space B(FE), i.e., for every disc B(a,r) in Sector (2.1)

there exists a series
o0
E Ap(z —a)”
n=0

where A,, € B(E) which converges in B(E) to T'(z) for all z € B(a,r).



6 Analytic Semigroups

2.1 Sectorial Operators

This section is based on the beginning of Chapter 2 in the book of Lunardi [28].
Basic properties of the resolvent set p(A) and resolvent operator R(A, A) which will
be used in this section are presented in Appendix A.

Let (E,| - ||z) be a Banach space and A : D(A) C E — E a linear operator with
not necessarily dense domain D(A). If A is a bounded operator and D(A) = E, we
can define the operator ' by the series

2tk Ak
tA
=Y - (2.2)
k=0

for all ¢ > 0. In addition, we denote €’ := I. Then the operator family {etA}tzo
has properties

(i) e* € B(E) for all t > 0,

)
(i)
(i) ¢
)
)

tAgsA — o(st)A for all st > 0,

Q

(iv) the function z — e*4 is holomorphic in the whole complex plane and

(v) lim,_,g+ tAf“’” = Az for all z € F.

Hence a bounded linear operator A defined in the whole E generates a strongly
continuous analytic semigroup {etA}tzo.

If A is unbounded, Series (2.2) does not make sense. Under some specific assumptions
an unbounded linear operator generates an analytic semigroup.

Definition 2.1. A linear operator A is sectorial if there exist constants w € R,
0 € (n/2,7) and M > 0 such that

(1) Spp ={A€C: A #w, |arg(A —w)| < 8} C p(A) and

(ii) |R(N Al Be) < B Mw| for all X € S, 4.
Let A be a sectorial operator with the constants w, 6 and M. Since the resolvent set
of A is not empty, A is closed. According to the conditions (i) and (ii) in Definition
2.1 we can define a bounded linear operator U (¢) in the space E as a uniform Bochner

integral
1

U(t) := 5

e R(\, A) d\ (2.3)

w+Yr,n

for all t > 0 where r > 0, € (7/2,0) and ~,,, is the curve
{AeC:largA =n, [N >r}Uu{reC:|arg| <n, |A =71}
oriented counterclockwise. In addition, we define

U(0)x =z (2.4)
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for all x € E. By Proposition A.2 the function A — e*R(\, A) is holomorphic in
the domain S, ¢. Since w + ¥, C S, for all » and 7, the operator U(t) does not
depend on the choice of r and 7. Details concerning the definition of the integral

can be found from Appendix C.
\/ .

(a) (b)

Figure 2.1: (a) The set S, 9 and (b) the integration path .,

In the following proposition we state the main properties of the operator family
{U(t)}+>0 defined by Formulas (2.3) and (2.4).

Proposition 2.2. Let A be a sectorial operator with the constants w, 0 and M

and the operator family {U(t)}1>o0 defined by Formulas (2.3) and (2.4). Then the
following statements are valid.

(i) U(t)x € D(AF) for allk € N, t >0 and x € E. If v € D(AF) for k € N, then
ARU(t)x = U(t)Akz for all t > 0.
(i) U(t)U(s) =U(s+t) for all s,t > 0.
(i7i) There exist constants My, My, Ma, ... such that
U3z < Moe™  and  [[t*(A —wD)* U ()| ) < Mye”

for all k € N and t > 0. In particular, for all k € N there exists a constant
Cy > 0 such that

[t* ARU ()| p(my < Cre@ !
for allt > 0.

(iv) The function t — U(t) belongs to the space C*°((0,00); B(E)) and

dk

Ut = AFU(t)

for allt > 0. In addition, the function t — U(t) has an analytic extension in
the sector

S:z{ze(C:zyéO, ]argz\<0—g}.
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Proof. (i) Let A € p(A). By the definition of the resolvent operator
AR(MN A) = AR\, A) — T
on E. Since A is sectorial and R(\, A)xz € D(A) for all A € p(A) and x € E,
1

AU (t)z = — e AR, A)z dA
271 Wty
1 1
= — ANePARN, A)z d\ — — / ex dX
270 S gy T Sty
_ 1 tA
=5 A R(N, A)zx dX

w+Yr,n

for all t > 0 because the function A — e is holomorphic, > 7/2 and therefore

/ e d\ = 0.
W‘i"}’r,n

Using induction we are able to prove that

1
AU () = — N AR(N, Az dX
270 Sty
forall k € N, t > 0 and = € E. Since A is sectorial, the integral is well defined for all
k € N. The calculation above proves the beginning of the induction. Let us assume

that )
ARU () = — N R(N, Az dX

20 S,
forall k <mn,t>0and z € E. Since A is sectorial and R(\, A)x € D(A) for all
A€ p(A) and z € E,

1
AU (e = AA"U () = — / NP AR(N, Az dA
270 J iy,
1 1
= _— AL RN, Az dX — — / At d\
270 J iy, 270 Sty
1
= — ATHLEARN, A)x dX
270 S iogmy

for all t > 0 because the function A — \"e!* is holomorphic, > 7/2 and thus

/ At d)\ = 0.
wHYr,n

Hence U(t)z € D(A*) and

1
ARU (e = — / NeAR(N, Az dX
271 wty

forall ke N, ¢t >0and x € F.

We show that A*U(t)x = U(t)AFx for all k € N, ¢ > 0 and = € D(AF) by using the
induction. Let t > 0 and = € D(A). Since A is sectorial and AR(X, A) = R(\,A)A
on D(A) for all X € p(A),
1 1
AU ()2 = N AR Az d) = —— / MR, A) Az dX = U(t) Az,
wHYr,n

270 J iy, 2me



2.1. Sectorial Operators 9

We assume that AU (t)x = U(t)A*z for all k < n, t > 0 and = € D(A¥). Then for
allt >0 and x € D(A™H!)

AU () = AA™U (t)x = AU (1) A"z = U(t) A"z,
Since U(0) = I, the statement is valid also for ¢ = 0.

(ii) We introduce the operator
B:D(A) — E
x +— Br = Az —wz.

Then the resolvent set of B contains the sector Spy and R(\, B) = R(A +w, A) for
all A € Spp. Thus for all A € Spg

M
IR\, Bl gy = R +w, A)|| gy < o
Hence B is sectorial. By changing the variables kK = A + w
1 £\ 1 £\
Up(t) = — e“R(\,B) d\ = — e"RAN+w,A) dA
211 ” 211 ~
n n
_ L t(k—w) _ —wt
=5 e R(k,A) dk = e “"Uax(t)

wWHYr,n

for all t > 0. Thus Ug(t) = e “'Uy(t) for all t > 0.

Let s,t >0 and 7/2 <1’ <n < 6. Then
1\2
Up(t)Ug(s) = <—> / e R(\, B) d)\/ e’ R(u, B) du
21 ~ Vary

1 2
< ) / ePMSHR(N, B)R(u, B) dA\dpu
Yr,n X V2 n!

N

2mi
2
- <L> / e ROB) R B)
2mi Vron XVorq! on— A

by the resolvent identity. Since

sp
/ c dp = 2mie
Vary BT A

2r,n’

tA
/ =0
Yo B A

n

when A € v,.,, and

when 1 € v2,,, the operator family {Up(t)}/~o has the semigroup property for all

s,t >0, i.e.,
Up()Up(s) = [ —— 2/ PR\ B)/ T drr
B B\S) =\ 5= . € ) . )\ H

1\? et
- <2—> / eS“R(,u,B)/ S d\ du
e Y2rn! Yrm H—

1
= _— eGTARN, B) d\ = Ug(s + t).

211 e

Sp

M
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Hence
Ua(t)Us(s) = e*CHDUR () Up(s) = e“CHDUR(s + 1) = Ua(s +t)

for all s,¢ > 0. Since U4(0) = I, the operator family {U4(t)}+>0 has the semigroup
property, i.e., Ua(t)Ua(s) = Ua(s+1t) for all s,¢ > 0.

(iii) Let ¢ > 0. By changing the variables & = tA

1 3 1 3
t) = — SR(>B) d¢e = — frR(>.B) d
Up(t) = 5 %me <t’ > 3 QM.t/We <t’ ) 3

since the integral does not depend on the choice of r and 1. Thus for all ¢ > 0

1Us() | B(E)

0o —in n
e (=) e
2t | J, t B(E) t

n i
+/ re" “®? IR (re ,B> dgo]
—n t B(E)

M, [> "
< — 2/ p—lepcosn dp—l—/ el cosy d§0:| < MO
2 r —

dp+
B(E)

since 7/2 <1 < 6 < m. Hence ||Ua(t)| p(ry < Moe** for all ¢ > 0.

Due to the statement (i) Up(t)z belongs to D(B) = D(A) forallt > 0 and x € E
and .
BUp(t) = — / e R(\, B) dA.
2mi Js,

Let ¢t > 0. By changing the variables £ = tA

_ 1 ep (€ _ 1 en (€
BUg(t) = 5— ce R(t,B> a = 3= [M ce R(t,B> de.

Vtryn

Thus for all ¢ > 0

| BUB(t)| B(E)

dp+
B(E)

00 —in gy
[ (), ¢ R (5 8)
, t B(E) ¢

do

o [ e e (2.0)
- t B(E)

< % 2/00 ePCOS’r) dp+/n T@TCOSLP dso < %
— 2wt ” —n -t

< -
— 27t?

since m/2 < n < 0 < 7. Hence [[t(A —wl)Ua(t)| gy < M1e** for all t > 0.

From the equality BUg(t) = Ug(t)B on D(B) it follows that

BUs(0) = 5" (U @)k - (sus <£>>k
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forallkeNandt>0. Soforallt >0

k k
t Mk _
|B*UB(t)| p(r) < HBUB (E) < <Tl> < (Mye)*Elt=".
(B)

B
Hence |[tF(A — wI)kUA(t)HB(E) < Mye®t for all t > 0 where My, = (Mie)*k!.
By using the induction we are able to prove that for all k € N and ¢ > 0
1" ARUA() | ey < Cr(L 4+t + -+ + tF)e?! < Cre@ DL,
Let t > 0. The beginning of the induction is shown by

[EAUA@) | ey < (A = wD)Ua()| pe) + [wIt|Ua()] B
< Mlewt + |w’tM06Wt

Let us assume that
15 ARUA ()| gy < Cr(1 +t+ -+ tF)e" < Cpel@tV!

forall k <nandt>0. Then for all ¢t >0

n—1
[t AUt 5y < 1" (A= wI)"Ua(®)llpey + Y (1) lw" "t AU | 5k
=0

Z ‘w|n ZC tn l—f—--‘—l—tn)e‘*)t
=0
<Cp(l+t4--+t")e*t < Cpe@tt,

| /\

Hence [|tF A*UA(t) || p(g) < Cre@ V! for all k € N and ¢ > 0.

(iv) For all t > 0

L. i/ AP R(N, A) dX = AU(2).
dt 270 J iy
Ty
Hence
@ U(t) = AU (¢
SU0) = AU()

for all k € N and ¢ > 0. By the statement (iii) the function ¢ — U (t) belongs to the
space C*°((0,00); B(E)).

Let 0 < e < @ —7/2 and choose n = 6 — ¢. Since A is sectorial, the operator valued

function )

2 U(z) = —/+ e R(\, A) dX
WTYr,n

27

is well defined and holomorphic in the sector
T
Sez{zeC:zyéO, | arg z| <0—§—5}.

The union of the sectors S; for all0 <e <0 —7/21is S. O
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Corollary 2.3. The operator family {U(t)}+>0 defined by Formulas (2.3) and (2.4)
s an analytic semigroup.

In the following proposition we study, how the analytic semigroup {U(t) }+>0 behaves
at the origin.

Proposition 2.4. Let A be a sectorial operator with the constants w, 6 and M and
the analytic semigroup {U(t)}i>0 defined by Formulas (2.3) and (2.4). Then the
following statements are valid.

(i) If v € D(A),
lim U(t)x =

t—0t

Conwversely, if there exists
y = lim U(t)x,

t—0t+
x€D(A) andy = .

(ii) For all x € E and t > 0 the integral fo )z ds belongs to the set D(A) and
t
A/ U(s)xds =U(t)x — x.
0
If, in addition, the function s — AU(s)x belongs to the space L'(0,t; E),

Ult)x —x = /0 AU (s)x ds.

(i1i) If v € D(A) and Ax € D(A),

U(t)r —
lim (t)z —2 = Ax.
t—0+ t
Conversely, if there exists
U(t)r —
Y= qim JWE—T
t—0+ t

x € D(A) and z = Ax € D(A).

Proof. (i) Let £ > wand 0 < r < { —w. For every z € D(A) we denote y := £x — Ax.
Then by the resolvent identity,

U(t)z = U()R(E, A)y

1 tA
= — A A A)y dA
271_1 w+,yr7n € R( ) )R(é—’ )y
_ i et)\R()\7A) _R(ng)ydA
27TZ w"l"YT,'r] - )\
1 A A 1 A
RS B A) ) Ao b " _R(¢, A dX
" 2mi W Yrn & — XY 270 Sy, € — A
1 o R A
27 Sy § XY
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since

et)\
dA=10
[)—l—'yrm f - A

when & > w. Hence by Theorems B.20 and C.2,

1 A A
lim U(t)z = lim — / e’»‘My d\
t—0+ =0+ 270 Joyyy, E— A

! R(), A)
_2ni/wﬂ R

for each © € D(A). Since D(A) is dense in D(A) and U(t) is continuous in (0, 0o),
lim; o+ U(t)z = x for all z € D(A).

Conversely, if y = lim;_,g+ U(t)x, then y € D(A) because U(t)x € D(A) for all t > 0
and z € E. Moreover for £ € p(A)

R(&, Ay = tl_lf(])%r R(E,AU)x = tl_l)I(I)IJr U)R(E, A)z = R(§, A)z

since R(§, A)R(\,A) = R(\, A)R(E, A) for all \,€ € p(A) and R(&, A)x € D(A) for
all x € E. Therefore y = .

(i) Let ¢ > 0, 2 € E and £ € p(A). Then for every ¢ € (0, 1)
/8 U(s) ds = / (€ — AVR(E. AU (s)z ds
—¢ / "R(e. AU (s)r ds — / "R(E. A)AU(s)a ds
_ g/ (€, AU (s)z ds — /t js(R(g,A)U(s)x) ds
—;/ (& AU () ds — R(E, AU (1) + RE, AU ()a

= ¢ [ R& A0 (6)e ds - RIE AU + U R(E A
The integral is well defined since U(t) is continuous in (0,00) and ||U(t)||pE) <

max (1, Mo, Moe“") for all t > 0. Since R(¢, A)x € D(A), by Theorem B.20 and the
statement (i),

/ U(s)x ds =ER(E, A) / U(s)x ds — R(&, A)(U(t)x — x).
0 0
Hence fo )x ds belongs to D(A) and

A/o U(s)xds=U(t)xr —x

forallt>0and x € E.

(iii) Let ¢ > 0, x € D(A) and Az € D(A). Then

— t 1 t
MZ_A/ IL‘dS——/ AU(S)IL‘dSZZ/ U(s)Ax ds
0 0
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since A is sectorial and the function s — U(s)Axz is continuous in [0,¢] by the
statement (i). Thus

_ t
lim Ultye — = lim E U(s)Az ds =U(0)Azx = Ax

t—0+ t t—0+ t Jo
by the continuity.

Conversely, if there exists
. Ut)r—=x
z = lim ——
t—0+ t

lim, o+ U(t)x = 2. Thus = € D(A) and therefore z € D(A). For every £ € p(A)

i

R(¢,A)z = lim R(g,A)M.
t—0+ t
By the statement (ii),
(§A)z—hrn R§AA/U :cds—hm(fRfA /U )z ds.

Since z € D(A), the function s — U(s)z is continuous near s = 0. Hence R({, A)z =
ER(E, A)x — x. Therefore x € D(A) and z = Ax. O

Corollary 2.3 and Proposition 2.4 motivate the following definition.

Definition 2.5. Let A : D(A) C E — FE be a sectorial operator. The operator family
{U(t)}+>0 defined by Formulas (2.3) and (2.4) is said to be the analytic semigroup
generated by the operator A.

Often in literature the analytic semigroup {U(t)}:>0 generated by a sectorial op-
erator A is denoted by {e!4};>0. It can be seen as an extension of the exponent
function to unbounded sectorial operators. We prefer the notation {U(t)}+>0.

If the operator A is sectorial with the constants w, § and M, the analytic semigroup
{U(t)}+>0 defined by Formulas (2.3) and (2.4) is analytic in the sector

{zE(C:z;éO, |arg z| <9—g}.
Hence it is strongly continuous if and only if lim; o+ U(t)x = x for all z € E.
According the statement (i) of Proposition 2.4 lim; .o+ U(t)x = « if and only if
x € D(A). Thus the analytic semigroup {U () }+>0 is strongly continuous if and only
if the domain D(A) is dense in E.

In Chapter 3 we shall need the following proposition. It gives sufficient conditions
for a linear operator to be sectorial.

Proposition 2.6. Let A : D(A) C E — E be a linear operator such that the
resolvent set p(A) contains a half plane {\ € C : Re\ > w} and the resolvent
R(\, A) satisfies

IR, Ay < M (25)

if ReA > w with w > 0 and M > 0. Then A is sectorial.
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Proof. According to Proposition A.2 for every r > 0 the resolvent set p(A) contains
the open ball centered at w £ ir with radius |w +4r|/M. The union of such balls and
the half plane {\ € C : Re\ > w} contains the sector

{AeC:larg (A —w)| <7 —arctan M} (2.6)

since A belongs to the open ball centered at w + iImA with radius |w + iImA|/M by

lw +ilmA — A = A - A
tan (m — |arg (A —w)|)  —tan|arg (A — w)|
|TmA| ~[Im)| < |w + i ImA|
—tan (m — arctan M) M — M

if A belongs to Sector (2.6) and Re\ < w. Hence the resolvent set contains a sector.

We need to prove that the norm of the resolvent operator has an upper bound of
the form required in Definition 2.1 in some sector. Let A belong to the sector

{AeC:larg(A —w)| <7 — arctan2M} (2.7)

and ReA < w. Then A = w +ir — 0r/M with r > 0 and 0 < § < 1/2. By Formula
(A1),

1RO, A)llpsy = ||D_ (D" — (w £ ir))"R" (w £ ir, A)
=0 B(E)
<Y A= (@ i) Rw £ i, A5
n=0

=/ O0r\" M \"" <. 0 M
(%) (5im) “Soa

n—O w2 + T2

n=0

M & M 1 oM
<_§ om R -
7 rl—260 r

Since A = w +ir — Or/M where r > 0 and 0 < 6 < 1/2,

or . 92 1
|/\—w—‘—M:tzr =r 1—|—M2 r\/1+m.
Hence
1
1 1 o A
7">< +m> | —w\.
Thus

1
2M 1y
1B, s < 3= (1 * 4M2>

for all A such that A belongs to Sector (2.7) and ReA < w. Furthermore, for all A

with ReA > w
% M

< .
Al T A=l

Hence A is sectorial. O

RN, A)|| gy <




16 Analytic Semigroups

2.2 Homogeneous Initial Value Problems

Let (E,|| - ||g) be a Banach space. Let A : D(A) C E — FE be a linear operator
with not necessarily dense domain D(A). We are dealing with a solution to the
homogeneous initial value problem

{u’(t) = Au(t),

4(0) = w4 (2.8)

in the space F with ¢ > 0 and an arbitrary ug € FE.

Definition 2.7. A function u : [0,00) — E is a (classical) solution to the initial
value problem (2.8) on [0,00), if u is continuous on [0,00), continuously differen-
tiable on (0,00), u(t) € D(A) for 0 < t < oo and Equations (2.8) are satisfied on
[0, 00).

If the operator A is sectorial and the initial value ug belongs to m, by the state-
ment (iv) of Proposition 2.2 and the statement (i) of Proposition 2.4 a solution to
the initial value problem (2.8) is given by the formula u(t) = U(t)ug for all t > 0
where {U(t) }+>0 is the analytic semigroup generated by the operator A. Let u(t) be
a solution to the initial value problem (2.8). Then u(t) € D(A) for all ¢ > 0 and the
E-valued function g(s) = U(t — s)u(s) is differentiable for 0 < s < t. Hence

dg

I —AU(t — s)u(s) + U(t — s)u'(s) =0

for all 0 < s < t. By integrating from 0 to ¢ we get

for all ¢ > 0.

Theorem 2.8. If U(t) is the analytic semigroup generated by a sectorial operator A
and uy € D(A), the unique solution to the initial value problem (2.8) is u(t) = U(t)ug
for allt > 0.

2.3 Nonhomogeneous Initial Value Problems

This section is based on Section 4.2 and 4.3 in the book of Pazy [31].

Let (E,||-||g) be a Banach space. Let A : D(A) C E — FE be a linear operator with
dense domain D(A). We are considering the solution to the nonhomogeneous initial
value problem

(2.9)

{u/(t) = Au(t) + f(t)
u(0) = ug

in the space E with 0 < ¢ < T, a known function f : [0,7) — E and an arbitrary
ug € E.

Definition 2.9. A functionw : [0,T) — E is a (classical) solution to the initial value
problem (2.9) on [0,T), if u is continuous on [0,T), continuously differentiable on
(0,T), u(t) € D(A) for 0 <t <T and Equations (2.9) are satisfied on [0,T).
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We assume that A is sectorial with the constants w, 8 and M. Then the corres-
ponding homogeneous problem has the unique solution for every ug € E, namely
u(t) = U(t)up for all ¢ > 0 where U(t) is the analytic semigroup generated by A.
Let u(t) be a solution to the initial value problem (2.9). Then the E-valued function
g(s) = U(t — s)u(s) is differentiable for 0 < s < t and
dg !

i —AU(t — s)u(s) +U(t — s)u'(s) =U(t — s) f(s).

s
If f € LY(0,T; E), then U(t — s)f(s) is Bochner integrable and by integrating from
0 to t we get

u(t) = Ut + /O Ut — 5)f(s) ds (2.10)
for0<t<T.

Theorem 2.10. If f € L'(0,T; E), for every ug € E the initial value problem (2.9)
has at most one solution. If it has a solution, the solution is given by Formula
(2.10).

For every f € L'(0,T; E) the right-hand side of (2.10) is a continuous function on
[0,T7] since U(t) is strongly continuous semigroup and there exists My > 0 such
that |U(t)|| gy < max {1, Mo, Moe*'} for all 0 < ¢ < T. It is natural to consider
Function (2.10) as a generalized solution to the initial value problem (2.9) even if it
is not differentiable and does not satisfy the equation in the sense of Definition 2.9.

Definition 2.11. Let U(t) be the analytic semigroup generated by a densely defined
sectorial operator A. Letug € E and f € L*(0,T; E). The function u € C([0,T); E)
given by Formula (2.10) for 0 < t < T is the weak solution to the initial value
problem (2.9) on [0,T].






Chapter 3

Sectorial Elliptic Operators

In this chapter we present a family of sectorial elliptic second order differential oper-
ators. The theory introduced in Chapter 2 can be applied to them to solve parabolic
partial differential equations. This chapter is based on Section 3.1 and especially
on Subsection 3.1.1 in the book of Lunardi [28]. Elliptic differential operator of the
order 2m, m > 1, has been handled among others in the books of Pazy [31] and
Tanabe [50].

Let n > 1 and D be either R” or an open subset of R” with uniformly C?-smooth
boundary 0D. We examine a second order differential operator

A(z,0) = Z aij(x)0;0; +Zb (3.1)

1,5=1

with real uniformly continuous and bounded coefficient functions a;;, b; and c for all

1,7 =1,...,n. We assume that the matrix [aij(w)]?”jzl is symmetric for all € D
and .
Ao(z,€) = Y aij(@)&i&; > nléf? (3.2)
i,j=1

for all z € D and & € R” with some g > 0. Hence the differential operator A(z,0)
is elliptic, i.e., Ag(z,£) # 0 for all z € D and £ € R™\ {0}. In addition, if D # R",
we consider a first order differential operator

Zﬂl )0; + () (3.3)

acting on the boundary dD. We assume that the coefficient functions §; and
are real uniformly continuously differentiable and bounded, i.e., belong to the space

UCY(D) for all i = 1,...,n and that the uniform nontangentiality condition
n
inf ; 0 3.4
Jnf ;mm(m) > (3.4)
where v(z) = (v1(x),...,vn(z)) is the exterior unit normal vector to 9D at a point

x € 0D is valid. We are interested in realizations of the operator A(x,d) (with
homogeneous boundary condition B(z,0)u = 0 on 9D if D # R™) in the space
LP(D) with 1 < p < co. As domains of the realizations we have the Sobolev space
W2P(D) or its subspace.

19
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3.1 The Agmon-Douglis-Nirenberg Estimates

Our main purpose is to prove that the realizations of the operator A(x,d) (with
homogeneous boundary condition if D # R™) are sectorial. The fundamental tools
are the Agmon-Douglis-Nirenberg a priori estimates for elliptic problems in the
whole R™ and regular domains of R™ when n > 2. The estimates are valid for
differential operators of the type (3.1) with complex coefficient functions and under
ellipticity assumptions

(1) |27 =1 @i (@)&&5| > plé)? for all x € D, € € R™ with some p > 0 and

ii) if &, € R™ are linearly independent, for all 2 € D the polynomial 7 +— P(7) =
n
szzl aij(x)(& + 1) (&5 + 7n;) has a unique root such that its imaginary part
is positive,

i.e., for differential operators which are uniformly and properly elliptic, respectively.
If n > 3, then the root condition (ii) is not needed since all uniformly elliptic oper-
ators are properly elliptic [26, Proposition 1.2, p. 110]. Since we are also interested
in the two dimensional case, both conditions have to be assumed. The following
theorem formulates the Agmon-Douglis-Nirenberg a priori estimates.

Theorem 3.1 (The Agmon-Douglis-Nirenberg a Priori Estimates).

(i) Let aij, b, ¢ : R™ — C be uniformly continuous and bounded functions for all
i,j=1,...,n. Let A(x,0) be defined by Formula (3.1) and be uniformly and
properly elliptic. Then for all 1 < p < oo there exists such a constant c, > 0
that for each u € W2P(R")

[ullwzr@ny < cp (Ilull Loy + 1A, O)ull Logn)) - (3.5)

(ii) Let D be an open set in R™ with uniformly C%-smooth boundary and aij, by, c:
D — C uniformly continuous and bounded functions for all i,5 = 1,...,n.
Let A(x,0) be defined by Formula (3.1) and be uniformly and properly elliptic.
Assume that B;, v : D — C belong to the space UCY(D) for alli =1,...,n. Let
B(x,0) be defined by Formula (3.3) and satisfy the uniform nontangentiality
condition (3.4). Then for all 1 < p < oo there exists such a constant ¢, > 0
that for each u € W?P(D)

lullwze(py < p ([[ullopy + G, O)ull Lopy + g1 lwre(py) (3.6)

where g1 is any WiP-extension of g = B(-,0)u|sp to the whole D.

Proof. If the domain D is bounded, see [1, Theorem 15.2 pp. 704-706]. If the
domain D is unbounded, see [2, Theorem 12.1 p. 653]. O

The reason why we have to consider complex valued coefficient functions is that in
Section 3.2 we shall use Estimates (3.5) and (3.6) of the Agmon-Douglis-Nirenberg
theorem 3.1 for the operator Ag(z,t,0) = A(x,0) + e?0? where t € R, 0 €
[~7/2,m/2] and = € D. In the following lemma we show that the operator Ag(z, ¢, d)
satisfies the Agmon-Douglis-Nirenberg assumptions if § € [—m/2,7/2].
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Lemma 3.2. The operator Ag(x,t,0) satisfies the Agmon-Douglis-Nirenberg as-
sumptions if t € R, 0 € [~7/2,7/2] and x € D and the operator A(x,d) has real
uniformly continuous and bounded coefficient functions and it satisfies the ellipticity
condition (3.2).

Proof. The domain of the operator Ag(x,t,0) is D x R C R"*!. The terms of the
second degree are > .., a;;0;0; + €02 Let x € D and ¢ € R*"!. We denote
§:=(¢,6n+1). Then

7,0=1

n
Z aij(z)&&5 + €Z€fi+1
ij=1

2
n

= Z aij(2)&€; | + 26041 cosd Z a5 (2)&ij + Enpr-
i,j=1 i,j=1
Since 0 € [—7/2,7/2], the values of the cosine function are non-negative. According
to the ellipticity condition (3.2) the sum >7',_; a;;(x)&;¢; is positive. Thus

2
n

> aij(x)&g; + €2 | > pPlE 1 + 6nyy

i,j=1
> min (p, 1)*(|€|* + &44y)

mln( 1, 1)?

> €%,

Hence the operator Ag(x,t,0) is uniformly elliptic with the constant min (u, 1)/v/2.

If n > 2, then n + 1 > 3. Thus the uniform ellipticity implies the proper ellipticity.
We still have to prove that the root condition is valid also if n = 1. Then the
operator Ag(x,t,0) is of the form

Ag(2,t,0) = a(2)0? + €07 + b(2)d; + c(z).

Since A(z, 0) satisfies the ellipticity condition (3.2), we know that a(z) > u > 0 for
all z € D. Let &, 1 € R? be linearly independent and = € D. The polynomial P(7)
is

P(r) = (a(2)} + 53 ) 72 +2 (a(@)érm + Péom ) 7 + (@)} + 763,
The discriminant of the second order equation P(7) =0 is
—4e”a(x)(mé — 1) = —4e”a(z)(det [, €])%.
Thus the roots of the polynomial P(7) are
(0t + e 08) [~ (ale)eam +eP6am) + il det I &)/ea()].

a(z)?nt + 2a(x)(cos O)ning + 05

The denominator is always positive. Let us study separately the imaginary parts of
the terms of the numerator. For the first term we get

Im [— ( (x)n7 +e % 2) (a(x)fml + 67;952772)} = —a(x)(sin 0)m1n2 det [, £].

T =
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The imaginary part of the second term is
to | (afe + e 42) |t €]l eal)
4 2 4 2
= va(z)|det [n,&]] |a(x) cos 3 + nm |ny + cos 5~ n

where n = 0, 1. Thus the imaginary parts of the roots are

Imm =

a(x) cos (g) | det [n, £]|
a(z)?n} + 2a(z)(cos )nin? + 0

x { VaGn - sealdetn.6]) (sin§ ) e 4 (cos 2)2 n%}

and

Imm = —

a(x) cos (g) | det [, ]|
a(x)?n} + 2a(x)(cos O)nins + 0y

X { {\/Wx)m + sgn(det [n, £]) <Sin g) nz] 2 + <cos g)Q 775} :

Since 0 € [—7/2,m/2] and the vectors & and n are linearly independent, cos (0/2) €
[1/v/2,1] and det [,£] # 0. Hence Im7; > 0 and Im7y < 0. Thus the root condition
is valid for the operator Ag(z,t,d) if n = 1. O

3.2 Sectoriality

Let D = R"™. We define the operator Ay : D(Ag) — LP(R™) by

D(Ap) := W*P(R"),
Aou = A(-,0)u  if u € D(Ap)

where the operator A(z,d) is defined by Formula (3.1). The operator Ay is said to
be a realization of the operator A(z,d) in LP(R™). The domain D(Ay) is dense in
LP(R™).

Let D be an open subset of R” with uniformly C2-smooth boundary. We define the
operator Ay : D(A;) — LP(D) by

D(Ay) :={u e W?P(D) : B(-,d)u = 0 on dD},
Ayu = A(-,0)u  ifu € D(4)

where the operator B(z, ) is defined by Formula (3.3). The operator A; is called
a realization of the operator A(z,d) in LP(D) with homogeneous Robin boundary
condition. We note that the domain D(A;) is dense in LP(D).

In the following theorem it is shown that the resolvent sets of the realizations Ag
and A; contain complex half planes. The assumptions for the operators A(x, d) and
B(z,0) are those stated in the beginning of this chapter.



3.2. Sectoriality 23

Theorem 3.3. Let 1 < p < o0.

(i) There exists wy € R such that p(Ag) D {X € C: ReX > wp}.

(ii) Let D C R™ be an open set with uniformly C?-smooth boundary. Then there
exists w1 € R such that p(A1) D {\ € C: ReX > wi}. If D is bounded, the
constant w1 does not depend on p.

Proof. See [13, Theorem 4.1. p. 160]. According to Lemma 3.2 the condition (AN;
0) is valid when 6 € [—7/2,7/2]. Hence the resolvent set contains a half plane. [

We want to prove that Ay and A; are sectorial. According to Proposition 2.6 we
need bounds of the type (2.5) for the norms of the resolvents of the operators Ag
and A;. In the following theorem we present the needed estimates.

Theorem 3.4. Let 1 < p < o0.

(i) There exist w, > wy and My, > 0 such that for all u € D(Ap)
Alllull e @ny < Mpll(A = Ao)ull Lo @n)
if ReA > wp.

(ii) Let D C R™ be an open set with uniformly C?-smooth boundary. Then there
ezist wy, > w1 and M, > 0 such that for all u € D(Ay)

(Alllwllze(py < Mpll(A = Av)ul|Le(p)
if ReA > wp.
Proof. Let D be either R™ or an open subset of R” with uniformly CZ-smooth
boundary and 6 € [—7/2,7/2]. We study the operator of n + 1 variables
Ag(z,t,0) := A(x, ) + ¢ d?

where t € R and z € D. According to Lemma 3.2 the operator Ag(x,t,0) satisfies
the Agmon-Douglis-Nirenberg assumptions. Let ¢ € C§°(R) be such that supp{ C
[~1,1] and ¢ = 1 on the interval [—-1/2,1/2]. For every u € W2?(D) and r > 0 we
set v, (x,t) := ((t)e"u(x) for all t € R and x € D. Then for all t € R and = € D

Ag(x,t,0)vp(z,1t)
= ()™ (A(w,0) = r2® ) ulw) + 0 (C(1) + 2ir (1)) u(@).
Let us assume that D = R"™ and u € D(Ap). We use Estimate (3.5) for the function
v,. Then
lvpllw2r@esry < p (lorll Loga+1y + 1A6(: -, O)vr || Lo rn+1))

RY(SS Y

Lp (RnJrl )

+

ei(@-‘ﬂ‘t) (C” + QZTCI)U’

Lp(Rn+1) > ’
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The variables x and ¢ can be separated. Thus
e llw2.p@nt1y < cp [ (ISl oy + 2001 1 Loy + 1€ e Ry ) el Lo ey +

+ 1<l o (m) H <A0 - 7,2610) U’

LP(RH)]'
We denote

¢, := 2cp max {[[Cll Loy, (< Irw)s 1" Ir(w)} -
Then

2 0
o llw2o@nsr) < ¢ [(1 )l + || (Ao = 72 ol LP(RH)] .

On the other hand, since ¢ = 1 on the interval [-1/2,1/2],

p
10l o (-3.)

= |8a(u(:n)e”t)\p dxdt
oy 2

:/n (L4774 ) u(@)P + (1+2r7) > 0u@) P + Y 10;0cu(@)P| de

> TQPHUHip(Rn)-

Hence

P ull ey < [“ )l sy +[| (40 = r7¢”) Lp(RnJ |

We choose r so large that

)

r
C;(l +7) < o
and denote )\ := r2e??. Then

Aull oy < 26, |(A = Ao)ull Lo (rn).

wp 1= max{2c; (c;, + 14/ + 20}) ,wo}

and M), := 2c;, the statement (i) is proved.

By choosing

The statement (ii) is shown in the same way. Instead of Estimate (3.5) we use
Estimate (3.6). We assume that u € D(A;). Hence the proper extension of the
boundary value B(-,0)v,|spxr to D x R is the zero function. The only changes in
the proof are that R™ is replaced by D, Ag by A1 and wy by wy. O

Corollary 3.5. The operators Ag and A; are sectorial.

Proof. We should show that the operators Ay and A; satisfy the assumptions of
Proposition 2.6. According to their definitions the operators Ag and A; are linear.
By Theorem 3.3 the resolvent sets of the operators Ay and A; contain a half plane
{A € C: ReX > wp} where w, > 0. Let D be either R or an open subset of R"
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with uniformly C2-smooth boundary. According to Theorem 3.4 for all u € D(A4;),
i=0,1,
(Alllullze(py < Mpll(A = Ai)ull Lo (D)

if ReA > wy,. By setting u = R(\, 4;)v we get
[AR(N, Ai)vll Le(py < Mpllv]| e (D)
if ReA > w,. Hence
IAR(A, Al B (D)) < Mp

if ReA > wy, i.e., a bound of the type (2.5) is valid for the operator A;, i = 0, 1.
Hence the operators Ay and A satisfy the assumptions of Proposition 2.6 with the
constants wy, and M, and therefore they are sectorial. O






Chapter 4

Stochastic Analysis in Infinite
Dimensions

In this chapter we introduce the stochastic integral of operator valued stochastic
processes with respect to the Hilbert space valued Wiener process. We present the
concepts of the stochastic analysis in Banach and Hilbert spaces. The conditional
expectation, Gaussian measures, martingales and the Wiener process are defined in
this setting. The stochastic integral and its properties, especially the Ito formula,
are the main purpose of this chapter. As an application we are able to solve linear
stochastic initial value problems. This chapter is based on Chapters 1-5 in the
book of Da Prato and Zabczyk [35]. We have included more detailed proofs for
some theorems than those presented in [35]. In addition, we have corrected several
misprints. Theorems 4.9 (partly) and 4.39, Propositions 4.25 and 4.40 and Lemmas
4.26, 4.33, 4.42 and 4.45 are used but not stated in [35]. Lemmas 4.13, 4.34 and
4.35 are Hilbert space versions of known results in R™. We could not find them from
the literature. However, the proofs have only slight differences between those in R™.
The definition of the weak solution to a linear stochastic initial value problem is
different than the one in [35]. We have imitated the definition of the weak solution
to deterministic nonhomogeneous initial value problems in Section 2.3. We assume
that the reader is familiar with the Lebesgue integration theory of scalar valued
functions and stochastic analysis in R™. The Bochner integration theory for vector
valued functions is presented in Appendix B and the theory concerning nuclear and
Hilbert-Schmidt operators in Appendix D.

4.1 Probability space

Let 2 be a set. A collection F of subsets of {2 is said to be a g-algebra in Q if F has
the following properties

(i) Qe F,
(ii) if A € F, then A° € F,

(iii) if A =U2 A, and A, € F for all n € N, then A € F.

27
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If F is a o-algebra in Q, then (2, F) is called a measurable space and the members
of F are called the measurable sets in 2. Let K be a collection of subsets of ).
The smallest o-algebra on 2 which contains K is denoted by ¢(K) and is called the
o-algebra generated by K. Let E be a topological space. Then the Borel o-algebra of
E is the smallest o-algebra containing all open subsets of E. It is denoted by B(FE)
and the elements of B(E) are called the Borel sets of E.

A collection K of subsets of Q is said to be a m-system if ) € K and AN B € K for
all A, B € K. The following proposition is often used for proving that a given set is
measurable.

Proposition 4.1. Let K be a m-system and G the smallest family of subsets of €2
such that

(i) KCg,
(ii) if A€ G, then A° € G,
(iii) if Ap, € G for alln € N and A,,, N A, =0 for all m # n, then US A, € G.

Then G = o(K).

Proof. Let A € G. We define G4 :={B € G:ANB € G}. Since
ANB =AN(ANB)=[A°U(ANB)|°

and AN (ANDB) =0, then ANB® € G if Be€ G4. Hence B € G4 if Be€ Ga. If
B, € G4 for all n € N and B,,, N B,, = () for all m # n,

n=1 n=1

since (AN By,) N (AN By,) =0 for all m # n. Thus G4 satisfies the conditions (ii)
and (iii). Since K is a m-system, K C G4 for all A € K. Since G is the smallest
family satisfying the conditions (i), (ii) and (iii), G4 = G for all A € K. Hence if
BeK,then ANB e G forall A€ G. Thus K C G4 for all A € G and consequently
G4 =G for all A € G. Therefore G is a m-system.

Let A,, € G for all n € N. We define

Bl = Ala
By ::AQ\Bl :AQQBT,
B3 := Aj \ U%:le' =A3zN Bf N Bg,

B, = A \U!'B; = A, N B{N...NB5_,.

Since G is a m-system and satisfies the condition (ii), B,, € G for all n € N. Further-
more, B, N B, = () for all m # n. Thus by the condition (iii),

Ja=Uneo
n=1 n=1

Hence G is a o-algebra. Therefore o(K) C G because £ C G. Since o(K) satisfies
the conditions (i), (ii) and (iii), G C ¢(K). Thus G = o(K). O
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Let (2, F) be a measurable space. A function p : F — [0, 00] is a positive measure
if u(A) < oo at least for one A € F and p is o-additive, i.e., if {A4;}5°, is a disjoint
collection of measurable sets,

Iz (U Ai) = ZM(Ai)-

The triplet (Q, F, p) is called a measure space. If (2, F, ) is a measure space, we
define the completion of F by

F :={A C Q:there exist B,C € F such that BC A C C and u(B) = u(C)}.

Then F is a o-algebra. If F = F, the measure space (£, F, u) is said to be complete.
A function P : F — [0,1] is a probability measure if P is a positive measure and
P(Q2) = 1. The triplet (2, F,P) is called a probability space.

4.2 Random Variables

Let (Q, F,P) be a probability space and (F,G) a measurable space.

Definition 4.2. A function X : Q@ — E such that the set {w € Q : X(w) € A}
belongs to F for each A € G is called a measurable function or a random wvariable
from (Q,F) to (E,G).

If F is a topological vector space, an E-valued random variable is a function X :
) — E which is measurable from (2, F) to (E,B(E)). A random variable is called
simple if it is of the form

X() =3 2rxa, @)
k=1

for all w € Q2 where n € N, x, € E and Ay € F are disjoint for all k =1,...,n and

( ) 1 ifwe A,
w) =
XA 0 ifwéd A

Hence a simple random variable takes only a finite number of values.

Lemma 4.3. Let (E,p) be a separable metric space and X an E-valued random
variable. Then there exists a sequence {X,}°2 of simple E-valued random vari-
ables such that for all w € Q the sequence {p(X(w), X, (w))}5; is monotonically
decreasing to zero.

Proof. Let {e;}32; be a countable dense subset of E. For w € Q and n € N we
define

pn(w) = min{p(X(w)’ 8]'), J=1... ,’I’L},
kin(w) :=min{j <n: pp(w) = p(X(w), €;)},
Xn(w) = e, ()
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Then X, is a simple random variable since X,,(Q) C {e1,... ey}, foralli=1,...,n
{weD: X,(w) =e}
i—1
= ({w € Q: pn(w) # p(X (W), )} N{w € Q: pu(w) = p(X (W), )}
j=1

and p, is a random variable from (2, F) to (R, B(R)). Moreover, by the density of

{ej}52, the sequence {p,(w)};2; is monotonically decreasing to zero for each w € Q.
Since pp(w) = p(X(w), Xp(w)), the conclusion follows. O

If X is a random variable from (Q,F,P) to (E,G), we denote the image of the
probability measure P under the function X by £(X), i.e.,

LX)(A) =PweN: X(w) €A

for all A € G. The probability measure £(X) is called the distribution or the law of
the random variable X.

Let {X;}icr be a family of functions from © to E. Then the smallest o-algebra
o(X; i€ I)on Q such that all functions X; are measurable from (Q,0(X; : ¢ € I))
to (E,G) is called the o-algebra generated by {X;}ic;. Let K be a collection of
subsets of E. If {w € Q: X(w) € A} € F for each A € K, then X is a measurable
function from (2, F) to (E,o(K)) since the family of all sets A € ¢(K) for which
{weQ: X(w) e A} € Fis a o-algebra.

Lemma 4.4. Let (H,(-,-)y) be a separable Hilbert space and F a linearly dense
subset of H. If X is a function from Q to H such that for each f € F the function

(X(), g :92—=C
is measurable, X is a random variable from (Q, F) to (H,B(H)).
Proof. Since span(F’) is dense in H, for every h € H there exists { f,}°2 C span(F)
such that f, — h in H as n — oo. Since (X(:),f)y : & — C is measurable

for every f € F, it is also measurable for every f € span(F). Let h € H and
{fn}>2, Cspan(F) be an approximating sequence of h. Then for all w € Q

(X (@), fa) g — (X (W), B | < [ X () |all fn = Bl — O

as n — oo. Thus (X(:),h)y : Q@ — C is measurable for every h € H. Since by
Corollary B.7 in a separable Banach space the weak measurability is equivalent to
the measurability, X is measurable. O

Let (E,||-||g) be a separable Banach space. An E-valued random variable X is said
to be Bochner integrable or simply integrable if

/WwaEmmo<m.
Q

Then the integral of X is defined by

E(X) := /QX(w) P(dw) := lim [ X,(w)P(dw) := nh_)rgoizxz (A7)
k=1

n—oo QO
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where {X,,}%°, is a sequence of simple random variables X,, = 7' 2¥x Ak conver-
ging pointwise to X and satisfying

g/”xh-u&mEdP—ﬁo
Q

as m,n — oco. We denote by L'(Q2, F,P; E) the set of all equivalence classes of E-
valued integrable random variables with respect to the equivalence relation X (w) =
Y (w) for almost all w € €, i.e., almost surely. The space L!(Q, F,P; E) equipped
with the norm || X||; := E||X||g is a Banach space. In a similar way one can define
LP(Q,F,P;E) for each p > 1 with the norm || X||, = (E|X]|?%)"?. The theory
concerning Banach space valued functions and the Bochner integral is presented in
Appendix B.

4.2.1 Operator Valued Random Variables

Let (U, (-,-)y) and (H,(-,-)y) be separable Hilbert spaces. We denote by B(U, H)
the collection of all bounded linear operator from U to H. If U = H, we use the
notation B(H) := B(H,H). The set B(U, H) is a vector space and equipped with
the operator norm

1Tl 5w,y = sup{l| Tz : © € U, [Jzflv < 1}

for all T € B(U,H) it is a Banach space. However, if U and H are both infin-
ite dimensional, B(U, H) is not separable. The non-separability of B(U, H) has
several consequences. First of all the corresponding Borel o-algebra B(B(U, H)) is
very rich to the extent that very simple B(U, H)-valued functions turn out to be
non-measurable. The lack of separability of B(U, H) implies also that Bochner’s
definition of the integrability cannot be directly applied to the B(U, H)-valued func-
tions.

Definition 4.5. A function ® : Q — B(U, H) is said to be strongly measurable if for
each u € U the function ®(-)u is measurable as a function from (2, F) to (H,B(H)).

Let B(U, H) be the smallest o-algebra on B(U, H) containing all sets of the form
{V € B(U,H) : Yu € A} for each u € U and A € B(H). Then a strongly
measurable function ® : Q@ — B(U,H) is a measurable function from (,F) to
(B(U,H),B(U,H)). The elements of B(U, H) are called strongly measurable sets.

Definition 4.6. A strongly measurable function ® : Q — B(U, H) is said to be
strongly Bochner integrable if for each uw € U the function ®(-)u is Bochner integ-
rable. Then there exists an operator ¥ € B(U, H) such that

/ O (w)u P(dw) = Yu
Q

for each u € U.

The operator ¥ is then denoted by

%:AM@MW)
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and called the strong Bochner integral of ®. More about the Bochner integration
theory of operator valued functions can be found in Appendix B.

For all a,b € H the bounded linear operator a ® b is defined by (a ® b)h := a(h, b) 5
for each h € H. If X € L*(Q,F,P;H), then (X(w) — EX) ® (X(w) — EX) is a
bounded linear operator in H for almost all w € §2. Since X is measurable,

(X(w) —EX) @ (X(w) —EX))h = (X(w) - EX)(h, X (w) - EX) p
is measurable as a function from (2, F) to (H,B(H)) for all h € H. Since X €
L*(Q, F,P; H),
I @) = BX) © (X () ~ EX))bl Pla)
= [ IX@) = EXlal(t X () ~ EX)y | Pla)
< [[hlla X —EXH§ = |[allm (1X113 — IEX %)

for all h € H. Hence (X —EX) ® (X —EX) is strongly Bochner integrable and the
bounded linear operator

Cov(X) := E[(X — EX) ® (X — EX)]

from H to itself is well defined. The operator Cov(X) is called the covariance
operator of X. The operator Cov(X) is a non-negative self-adjoint operator, because

(Cov(X)h,h)yy =E [|(h, X —EX)y|*] >0
and

(Cov(X)h,g) g = (E[(X —EX)(h, X —EX)py],9)y
E[(h, X —EX) (X —EX, g) 4]
El(g, X —EX) (X —EX, h)y]
= (Cov(X)g,h)y = (h, Cov(X)g) 4

for all g,h € H. Let {ex}?2, be an orthonormal basis in H. Then

o0

Tr Cov(X) = Z (Cov(X)er, ex) g = ZIE —EX, er)yl ]
k=1
=E||X -EX|% = | X3 - IIEXHH-
Thus by Proposition D.14 the covariance operator Cov(X) is nuclear.
If X,Y € L*(Q, F,P; H), we may define the correlation operator
Cor(X,Y) =E[(X —EX)® (Y —EY)]

of X and Y as a strong Bochner integral similarly. Then Cor(X,Y) is a bounded
linear operator from H to itself.
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4.2.2 Conditional Expectation and Independence

The conditional expectation of scalar valued random variables is assumed to be
known. The books of Neveu [30] or Williams [53] can be used as a reference.

Theorem 4.7. Let (E,|| - ||g) be a separable Banach space. A random wvariable
X : (Q,F,P) — (E,B(E)) is assumed to be Bochner integrable and G to be a o-
algebra contained in F. Then there exists an integrable E-valued random variable Z
which is measurable with respect to G such that

/XdIP’:/ZdIP’
A A

for all A € G. Furthermore, Z is unique up to a set of probability zero.

The random variable Z is denoted by E(X|G) and called the conditional expectation
of X given G.

Proof. First we show the existence of a conditional expectation. Let X be a simple
random variable. We define Z := Y| xxE(x4,|G) where E(x4,|G) represents the
classical notion of the conditional expectation of the characteristic function x4,
given G. Since x4, is non-negative, E(x4,|G) > 0 almost surely [53, Theorem 9.7].
Thus

E[lZ]lp <E (Z ekl 2E(xa,19) ) Z x| EE(E(x,|9))
k=1

= > larllzE(xa) = ) el eP(Ax) = El|IX]|g-
k=1 k=1

Hence Z is integrable E-valued G-measurable function. Furthermore,

/XdIP’—ka/XAk dP—Zwk/E(XAkg) d]P’—/ZdIP
A =1 A =1 A A

for all A € G. Thus there exists a conditional expectation for a simple random
variable.

Let X € LY(Q, F,P; E). By Theorem B.12 there exists a sequence { X, }°2; of simple
random variables such that X,, converges pointwise to X and E||X,, — X,||[g — 0
as m,n — oo. Furthermore, E||X — X,||g — 0 as n — oo. Let Z,, = E(X,,|G) for
all n € N. Then

ElZm = Znlle < E[|[Xim — Xallz — 0

as m,n — oo. Hence {Z,}2°, is a Cauchy sequence in L'(Q2,G,P; E). Therefore
there exists Z € L'(Q,G,P; E) such that E||Z — Z,||[g — 0 as n — oo. Hence for
each A€ g

/XdIP’zlim X, dP = lim anIP’:/ZdIP’
A A

n—oo n—o0

since X,, — X in LY(Q,F,P;E) and Z, — Z in L'(Q,G,P;E) as n — oo and
Zy, = E(X,|G) for all n € N. Thus there exists a conditional expectation.
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We still have to prove the uniqueness of the conditional expectation. We need
the following lemma. In the proof of the lemma the uniqueness of the conditional
expectation is not expected.

Lemma 4.8. Let (E,| - ||g) be a separable Banach space. A random variable X :
(Q,F,P) — (E,B(FE)) is assumed to be Bochner integrable and G to be a o-algebra
contained in F. If o a continuous linear functional on E,

(E(X]9), ) = E((X, ¥)|9)

almost surely.

Proof. Let X € L}Y(Q, F,P; E) and Z = E(X|G). Then for all A€ G

/A<X,<p> dP:</AXdP,¢>=</AZdIP>,¢>:/A<Z,¢> dp.

Hence (Z, p) = E({X, ¢)|G) almost surely since the conditional expectation of scalar
valued random variable is unique up to a set of probability zero. ]

We assume that there exist two random variables Z and Z such that they have the
properties of the conditional expectation and P(Z — Z # 0) > 0. The separability
of E implies that for some a € F

~ 1
P (]Z—Z—aHE < §||aHE> > 0.

By the Hahn-Banach theorem there exists a continuous linear functional ¢ on E
such that (a,¢) = |ja||g and ||¢||gr = 1. Hence

~ 1
(|2 2.6~ lalle| < glalle ) >0
since B R ~
(2-2.0) = llalls| = (2= Z = a.0)| < |12~ Z — a .
Thus
~ 2
P (122002 2lal) >0

But (Z,¢) = E((X,¢)|G) = (Z,¢) almost surely by Lemma 4.8. The obtained
contradiction implies the uniqueness up to a set of probability zero. ]

Let {F;}ier be a family of sub-o-algebras of F. These o-algebras are said to be
independent if for every finite subset J C I and every family {A;};c; such that

A; € F; for each i € J
P (ﬂ AZ-) =[P4,

icJ ieJ
Random variables {X;}ier are independent if the o-algebras {o(X;)}icr are inde-
pendent.

In the following theorem we have gathered properties of the conditional expectation.
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Theorem 4.9. Let (E,| - ||g) and (F,| - ||r) be separable Banach spaces. Random
variables X,Y : (Q,F,P) — (E,B(E)) are assumed to be Bochner integrable and G
to be a o-algebra contained in F. Then

(1) E(E(X]G)) = E(X),

(ii) if X is G-measurable, E(X|G) = X almost surely,

(i1i) E(aX + BY|G) = oaE(X|G) + BE(Y|G) almost surely for all o, 3 € C,

() if H is a sub-o-algebra of G, then E(E(X|G)|H) = E(X|H) almost surely,

(v) [E(XIG)|e < E(|X|[£|9) almost surely,

(vi) if ® € B(E,F), then E(?X|G) = PE(X|G) almost surely,

(vit) if Z is a bounded scalar valued G-measurable function, E(ZX|G) = ZE(X|G)
almost surely,

(viii) if X is independent of G, then E(X|G) = E(X) almost surely.
Proof. The statements (i)-(iv) are obvious consequences of the definition of the con-
ditional expectation.
(v) Let X be a simple random variable. Then
IE(XIG)E < ) ekl pE(xa,|G) = E(|X | £1G).
k=1

Let X € LY(Q, F,P; E) and {X,,}°°, be a sequence defined in Theorem B.12. Then
X, — X in LY(Q,F,P; E) as n — oo. Therefore || X,||g — || X| g in L*(Q, F,P;R)
as n — oo. Similarly as in the proof of Theorem 4.7 we get E(X,,|G) — E(X|G) in
LY(Q,G,P; E) and E(|| X, ||£|G) — E(|X|||G) in LY(2,G,P;R) as n — oc. Since by
Theorem B.16 every convergent sequence in L' has a subsequence which converges
pointwise almost surely,

[E(XIG) e = lim [E(Xn]G)]p < Jim E(| Xn,]£IG) = B X 5IG)

almost surely.

(vi) Let ® € B(E, F) and X € L'(Q, F,P; E). Then for all A € G

/(I)X dIP:@/XdP:@/E(X\g) dIP’:/@E(X\g) dp.
A A A A

Hence E(®X|G) = PE(X|G) almost surely.

(vii) Let X € LY(Q, F,P; E) and Z be a bounded scalar valued G-measurable func-
tion. Let ¢ be a continuous linear functional on E. Then by the statement (v),

(E(ZX1G),¢) = E(Z(X, 9)|9) = ZE((X, 9)|9) = (ZE(X]G), ¢)

almost surely [53, Theorem 9.7]. Thus E(ZX|G) = ZE(X|G) almost surely.
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(viii) Let X € LY(Q, F,P; E) be independent of G and ¢ a continuous linear func-
tional on E. Then (X, ¢) is independent of G [11, Theorem 4.1.1]. Hence by the
statement (v),

(E(X]G), p) = E((X, 9)|9) = E({X, ¢)) = (E(X), ¢)

almost surely [53, Theorem 9.7]. Thus E(X|G) = E(X) almost surely. O

The following proposition is a useful tool in the construction of the stochastic integral
in Section 4.5.

Proposition 4.10. Let (F1,&1) and (E2,E2) be measurable spaces and ¢ : F1 X By —
R a bounded measurable function. Let X1 and Xo be random variables on (2, F,P)
with values in (E1,&1) and (Fa, &), respectively, and G a sub-o-algebra of F. If X
is G-measurable and X is independent of G,

E(y(X1, X2)|G) = ¥ (X1)

almost surely where 1&(371) =E(¢(z1,X2)) for z1 € Ey.

Proof. We assume first that ¢(x1,x2) = ¥1(x1)e(xe) for all (z1,22) € E1 X Eb
where Y1 : E1 — R and vy : E5 — R are bounded measurable functions. Then
11(X1) is G-measurable and 12(X2) is independent of G [11, Theorem 4.1.1]. Hence

E((X1, X2)|G) = E(¢1(X1)12(X2)|G) = ¢1(X1)E(¥2(X2)|G) = 11 (X1)E(42(X))
almost surely [53, Theorem 9.7]. So the claim is true in this case.

The set K := {A; x Ag : A) € &1, Ay € &} is a w-system and o(K) = & x &s.
Furthermore, E(x 4, x4, (X1, X2)|G) = X4, x4,(X1) almost surely for all A1 x A € K
where

XAl ><A2($1) = X4 (xl)E(XAz(XQ)) = E(XA1><A2 (331,X2))
for all 1 € Eq. Let

H:={A €& x & E(xa(X1, X2)|G) = xa(X1) almost surely}.

Then K C H. Since x4c = 1 — xa and xue 4, = > .2 X4, for all disjoint
Ay, € & x &, the set 'H satisfies the assumptions of Proposition 4.1 [53, Theorem
9.7]. Thus H = &; x &. Therefore the claim is true for all simple functions .

In the general case according to Lemma 4.3 there exists a sequence {¢,}>2; of
simple functions such that |¢,(z1,22) — ¥(x1,22)| | 0 as n — oo for all (z1,29) €
E, x Ey. Hence |1, (X1(w), X2(w)) — ¥(X1(w), X2(w))| | 0 and |¢n(z1, X2(w)) —
Pz, Xo(w))| | 0 asn — oo for all w € Q and x; € E;. By Lebesgue’s mono-
tone convergence theorem v, (X1, Xo) — (X1, X2) and ¥, (21, X2) — ¥(z1, X2)
in L'(Q, F,P;R) as n — oo for all z; € E;. Therefore, similarly as in the proof
of Theorem 4.7 we get E(¢n(X1,X2)|G) — E(¥(X1,X2)|G) in L'(Q,G,P;R) and
Un(z1) — P(x1) as n — oo for all z1 € E). Since E(y, (X1, X2)|G) = ¥n(X1)
almost surely and by Theorem B.16 every convergent sequence in L} has a sub-

sequence which converges pointwise almost surely, E(¢(X1, X2)|G) = ¥ (X1) almost
surely. ]
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The following lemma is used in the proof of the Ito formula in Subsection 4.5.2.

Lemma 4.11. If {n; }J 1 45 a sequence of real valued random variables with finite

second moments and {gj} _1 18 an increasing sequence of o-algebras such that n; is
measurable with respect to G; for all1 < j <i <k,

2

k k k
> =Y EmlG) | = (BEn} — E(E(n;16;))%) -
j=1 j=1

Jj=1

Proof. Since n; € L*(Q, F,P;R) for all j =1,...,k,

E(n,;E(n;1G;)) = E(E(n,;E(n;1G,)1G,)) = E(E(n;1G,))?,
E(miE(n;1G;)) = E(E(nin;1G5)) = E(niny),
E(njE(ilG:)) = E(E(n;E(niG:)|G;)) = E(E(n:]G:)E(n;1G;))

if i < j [53, Theorem 9.7]. Thus

2

M»

k
i — Z E(n;9;)
j=1

Il
Fﬁﬂ Il
> =

(n; — E(n;1G,)) +2EZZ E(nilGi))(n; — E(n;1G;))

Jj=11i<j

.
Il
—

E

™=

(7 — 2n;E(n;1G;) + E(n;1G;)%)+

J

+2EZZ 771773 771 Ug\gg) ("71|gz)+E(7h’gz) (77j|gj))

J=1 1<y

Il
—

'Mw

(En? — E(E(n;16,))?) -

1

J

Hence the statement is proved. O

4.3 Probability Measures

Let (E,|| - ||g) be a real Banach space. A subset of E of the form

{z € E: ((z,91), (,20), -, (,y5)) € A}

where n € N, y} € E' for i = 1,...,n and A € B(R") is called cylindrical. Cyl-
indrical sets form a m-system. If two probability measures are identical on cylindrical

sets, they are equal on B(FE) by Proposition 4.1. If u is a probability measure on
(E,B(E)), the function ¢, on E’
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for all y' € E’ is called the characteristic function of p. Instead of ¢, we also denote
it by . If (H,(-,-)y) is a real Hilbert space, ¢, is regarded as a function on H and

oul) = [ e o)

for all h € H. Probability measures on a real Banach space are uniquely determined
by their characteristic functions.

Lemma 4.12. If u and v are probability measures on (E,B(E)) such that

Pu (y/) = Yv (y/)

for ally' € E', then u=v.

Proof. The claim is true if £ = R™ [3, pp. 333-334]. In the general case we fix
neN,y,...,y, € E' and \1,..., A\, € R. By the hypothesis

/el‘>\1<w,y’1>+-~+i>\n<w,y;> p(da) = / M@ YL ) + o HiAn (2y7,) v(dz). (4.1)
E E

Identity (4.1) implies that the R"-valued mapping  — ({z,v}), ..., (x,y,,)) maps the
measures y and v onto measures i and 7 on (R™, B(R")) with identical characteristic
functions where fi(A) = p(z € E : ((z,y}),...,(z,y,)) € A) for all A € B(R").
Hence the measures ji and U are identical. But this implies that the measures p and
v are equal on all cylindrical sets. Therefore u = v on B(E). O

Next we present some lemmas concerning probability measures that will be used
later in this chapter. By the uniqueness of the characteristic function we are able
to prove the following lemma. The version in R™ can be found from the book of
Karatzas and Shreve [20, Lemma 2.6.13].

Lemma 4.13. Let (H,(-,-)y) be a real separable Hilbert space and X an H-valued
random variable on a probability space (0, F,P). Suppose that G is a sub-o-algebra
of F and that for each w € Q there exists a function ¢(;w) : H — C such that

o(hyw) =E {ei(x’h)H‘g] (w)

for all h € H and almost all w € Q. If o(-;w) is the characteristic function of some
probability measure p,, on (H,B(H)) for each w € §, i.e.,

plhiw) = [ ey dz)
H

forallh € H,
PIX € B|G](w) = pw(B)

for each B € B(H) and almost all w € Q).
Proof. Since for all A € G and B € B(H)

E[P(X € B|G)xa] = E[E(x{xeny|9)xa]l = E(x{xeB}XA)
=P({X € B} N A) = £(X)(B N X(A))



4.3. Probability Measures 39

and P[X € - |G](w) is a probability measure on (H,B(H)) for all almost w € Q [53,
Theorem 9.7],

/ / PIX € dz|G](w) P(dw) = / £(X)(dz)
AJB BNX(A)

for all A € G and B € B(H). Thus

/ / ei(x,h)H IP)[X c dx’g] (w) [P)(dw) = / ei(ﬂﬁ,h)H E(X)(dl’)
AJH X(4)

ei(X,h)H dP

T

for all A € G and h € H. Hence
E {ei(x’h)H‘g] (w) :/ e!@Mu PIX € dx|G)(w) (4.2)
H

for all h € H and almost all w € 2. The set of w for which Equality (4.2) fails may
depend on h. We can choose a countable dense subset D of H and an event QeF
with P(Q) = 1 such that Equality (4.2) holds for every w € Q and h € D. The
continuity in A of both side of Equality (4.2) allows us to conclude its validity for
every w € Q and h € H [53, Theorem 9.7]. Since a probability measure on (H, B(H))
is uniquely determined by its characteristic function, pu, = P[X € - |G](w) for almost
all w € Q. Thus the result follows. (]

In Subsection 4.5.1 we shall need the previous lemma to show properties of the
stochastic integral. The following corollary of Lemma 4.13 is used to prove some
properties of the Hilbert space valued Wiener process in Subsection 4.4.3.

Corollary 4.14. Let (H,(-,-)y) be a real separable Hilbert space and X an H-
valued random variable on a probability space (Q, F,P). Suppose that G;, i = 1,2,
are sub-c-algebras of F and

E (ei(X,h)H‘g1> —E (ei(X,h)H‘g2)

almost surely for all h € H. If for each w € Q there exists a function p(;w) : H — C
such that

p(hiw) = E [¢X0n|g,] ()

for all h € H and almost all w € Q and ¢(-;w) is the characteristic function of some
probability measure p,, on (H,B(H)) for each w € €, i.e.,

p(hyw) = /Hei(x’h)Huw(d:L')
for allh € H,
E(f(X)|G1) = E(f(X)[G2)

almost surely for all measurable function f from H to C such that f is integrable
with respect to the measure L(X).
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Proof. By the proof of Lemma 4.13,
E [/(X)|6:] (w / f(2) PIX € dalg)(w)
for all f € LY(H,B(H),L(X);C), almost all w € Q and i = 1,2. Since according to

Lemma 4.13,
PIX € B|Gi|(w) = pus(B) = P[X € B|Gs](w)

for each B € B(H) and almost all w € €,

E (f(X)|61) =E (£(X)|G2)

almost surely for all f € L'(H,B(H),L(X);C). O

In Subsection 4.3.1 we use the following lemma to define the characteristic function
of a Gaussian measure on a real Hilbert space.

Lemma 4.15. Let (H,(-,-)y) be a real Hilbert space and v a probability measure on
(H,B(H)). If for some k € N

/ (z, h) y|* v(de) < oo
H
for all h € H, the transformation from H* to R

(hl,..., »—)/ Z, h1 .’L‘ hk) (dw)

is a bounded symmetric k-linear form.

Proof. The transformation is obviously symmetric and k-linear. We define for each
n € N the set U, by

Uy = {heH:/H|(:v,h)H|k y(d:p)gn}.

By the hypothesis H = U2 ,U,,. Since H is a Hilbert space, by Baire’s category
theorem there exist ng € N, hg € U, and 9 > 0 such that B(hg,r9) C Uy,. Hence

/ (@, ho + 1)l (dz) < no
H
for all y € B(0,7). But for each y € B(0, )
/|xy W(dz) < 2k1/|xh0—|—y)H|k V(dz) + 2k1/|a:h0 * 1(da)
< 2kn0.

For all h € H different for zero y = € B(0,79). Hence

2||h||

/ (1) () < 2% l[R]fyr*
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for all h € H. By the generalized Holder inequality the transformation is bounded
since

[ iy oy v

< (/H (2, h1) " u(daz)>i (/H (2, hi) g |* u(d@)’i

< 22kn0r0_th1HH Pkl

for all (hy,...,hy) € H*. O

4.3.1 Gaussian Measures

Let Q be a positive definite symmetric n X n matrix and m a vector in R™. The
function

1 1 TH-1
L —<(xz—m)* Q~(xz—m)
T r) =——-¢€ 2
m.() (27 det Q)n/2
for all x € R” is the density of a probability measure on R" called the non-degenerate
Gaussian distribution and denoted by N (m, Q). Its characteristic function is of the
form

N(m, Q)(\) = e A2 QX (4.3)

for each A € R™. The general Gaussian distribution on R™ is an image of a non-
degenerate Gaussian distribution under a linear mapping. Its characteristic function
is of the form (4.3) and is determined by m € R™ and a non-negative symmetric mat-
rix Q. If X : (Q,F,P) — (R", B(R™)) is a random variable and £(X) = N(m, Q),
then X is said to be a Gaussian random variable and EX = m and Cov(X) = Q. If
m = 0, the measure N (0, Q) is symmetric in the sense that it associates the same
value on the sets which are symmetric with respect to the origin.

Let (E,||-||g) be a real Banach space. A probability measure p on (E,B(E)) is said
to be a Gaussian measure if and only if the law of an arbitrary continuous linear
functional considered as a random variable on (E, B(E), i) is a Gaussian measure on
(R, B(R)). If the law of each ¢ € F’ is in addition symmetric (zero mean) Gaussian
distribution on R, then p is called a symmetric Gaussian measure. A random variable
X : (Q,F,P) — (E,B(E)) is Gaussian if its law L£(X) is a Gaussian measure on
(E,B(E)). Hence X is a Gaussian random variable if and only if (X, ¢) is a real
valued Gaussian random variable for all ¢ € E’ since

L((-#))(A)

LIX)(xeE: (x,p) €A
PlweQ: X(w)e{xe E: (z,p) € A})
PlweQ: (X (w),p) € A)

for all A € B(R).

Let (H,(-,-)y) be a real Hilbert space. A probability measure p on (H,B(H)) is
Gaussian if for each h € H there exist mj € R and ¢ > 0 such that

LI ) (A) = plw e H: (z,h) g € A) = N(mn, qn)(A)



42 Stochastic Analysis in Infinite Dimensions

for all A € B(R). If i is a Gaussian measure, the functionals

H-ER, he [ @)y ),
HxH—R,  (hh)— /H (2, h1) (2, ha) gy pa(dl)

are well defined since

/ (a0, 1) u(dr) =
H

< </H (2, h1)% u(dx))é (/H (2, ha)Fy u(dar)>

1 1
= (th —|—m,211)2 (th +mi212)2 .

and

=

‘/H(x,hl)H(x,hQ)H u(da)

The first functional is linear and the second one is bilinear. According to Lemma
4.15 they are also bounded and symmetric. By the Riesz representation theorem
and the Lax-Milgram lemma there exist an element m € H and a bounded linear
operator () such that

/ (2, 1) () = (hym) g
H

for all h € H and
| (@)t o)y () = (), = (@)

for all hy, ho € H. The operator @ is non-negative and self-adjoint since

2
@ty = [ (e plar) - ( [ iy u(dw)>
> [ (@ utde) = [ (. utde) =0
for all h € H by Jensen’s inequality and

(th,hQ)H = (Qh?vhl)H = (h17Qh2)H

for all hi,ho € H. The element m is called the mean and the operator ) the
covariance operator of . A Gaussian measure y on H with mean m and covariance
(@ has the characteristic function

) = [ ) = [ () ) dt) = et @
H R

for all h € H. Therefore p is uniquely determined by m and . It is also denoted
by N(m, Q).

If (H,(-,-) ) is a real separable Hilbert space, the covariance operator of a Gaussian
measure is nuclear.

Proposition 4.16. Let (H, (-,-) ) be a real separable Hilbert space and p a Gaussian
measure with mean 0 and covariance Q. Then @ is a trace class operator.
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Proof. We consider the characteristic function of the measure
H
for all h € H. Since ji(h) € R, for all h € H and each ¢ > 0

1= () = [ (1= cos (.1} ) )

1
S—A (2, 1), () + 20z € H + ol > o)
x| g <c

2
1
= §(Qch, h)y +2u(z e H: ||z|g > c)

where (). is the bounded linear operator defined by

@k = [ (@)l by i)

el <e

for all hi,ho € H. Let h € H be such that (Q.h,h); < 1. Then
1
e 2@ > 1 = Qe )y~ 2pu(a € H < o] > o)
1
> 5 —2u(zr € H : ||z||g > ¢).

We choose ¢ such that

FN

pwlex e H:||z||lg >c) <
Then
1
(Qh,h)y < —2log <§ —2u(zr € H : ||z||lg > c)> = f.

Let h € H. We denote oy, := (Qch, h)y. Then ap > 0. Hence for all h € H such
that ap, # 0

Thus

h h
— ] =
(07, ="
for all h € H such that oy, # 0. If (Qch, h); = 0 for some h € H, then (Qh, h); = 0.

Therefore (Qh,h)y; < B(Qch,h)y for all h € H. The operator Q. is a trace class
operator by Proposition D.14 since (). is non-negative and self-adjoint and

TQ=Y Qenedy= [ S eyutdn) = [ el i) < &
n=1 llzllm<c,,— llzl i <c

where {e,}°°, is an orthonormal basis in H. Thus @ is a trace class operator
because

TrQ=> (Qenen)y <> AQeensen)y =BT Qe
n=1 n=1

and @ is non-negative and self-adjoint. O
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The following proposition shows that there exist Gaussian measures in a real separ-
able Hilbert space.

Proposition 4.17. Let (H,(-,-)y) be a real separable Hilbert space, m € H and Q
be a positive self-adjoint trace class operator in H with Ker Q = {0}. Then there
exists a Gaussian measure with mean m and covariance Q.

Proof. Since @ is nuclear, by Proposition D.9 it is compact. Since () is a compact
self-adjoint operator with Ker @ = {0}, the normalized eigenvectors {e;}?°, form
an orthonormal basis in H [14, Theorem 5.1, Observation 6.1.b, pp. 113-116].
We denote by {A;}72, the corresponding set of eigenvalues of ). Then Tr@Q =

heq Ak < 00 by Proposition D.14. Let {£,}72, be a sequence of independent real
N(0,1)-random variables on a probability space (2, F,P) [3, Theorem 20.4]. We set

Xi=m+> v Arérer (4.4)
k=1

Let ¢, € N and j > ¢. Then

2

zj:ffkek - Z VAkren

H
Z VAkEker, Z \/7§k€k>
k=i+1 k=i+1
—E Z M2 = Z Ak < Z A, — 0
k=i+1 k=i+1 k=i+1

as i — oo. Hence the series on the right hand side of Definition (4.4) converges in
L?*(Q, F,P; H). Therefore X € L?(Q, F,P; H).

We prove that the law £(X) of the random variable X is Gaussian, i.e., for h € H
L((h)p)(A) = LX) (x € H = (z,h) y € A) = N (cn, qn)(A)

for all A € B(R) with some ¢;, € R and g5, > 0. Let h € H be fixed. We show that
(,h) is a Gaussian random variable from (H,B(H),L(X)) to (R,B(R)). We use
the characteristic function. Let 7 € R. Then

pean(T) = [ €™ L)) = [ e £00)(da) = [ T ap.
R H Q

By Lebesgue’s dominated convergence theorem,

exp (Z i M (e, h)[{)]

k=1

_ eiT(m,h)HE ﬁ exp (iT\/kak(ek, h)H)
k=1

PL((h) ) (T) = em Mg

— MM E im E H exp (iTmfk(ekv h)H) :
k=1
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Since & are independent and & ~ N(0, 1),

wg((.,h)H)( T)=¢€' ir(mh) g Jim H E [exp <17'\/7 (ex, h kaﬂ

n—oo

_ eiT(myh)H H exp (—;)\k(ek, h)?{TQ)

k=1
: 1 )
= exp (W(m, h) gy — 5 z:l k(e h)H72>
_ eiT(m,h) 7—7 (Qh h) gy

Thus L((-,h) ) = N((m, h)y, (Qh,h) ). Hence (-, h)y is a Gaussian random vari-
able for all h € H. Therefore £(X) is a Gaussian measure in H. Furthermore, for
all he H

/H (2, )y L(X)(dz) = /Q (X, h), dP = </QX dP, h>H = (B(X),h) .

Since EX = m, the mean of £(X) is m. Since for all hy,hy € H

/H (,h1) g (z, ho) y L(X)(dx) — (h1,m) gy (h2,m) g

= /Q (X, h1) g (X, he) gy dP — (h1, E(X)) y(he, E(X)) 5
= [ (0, X = BX)) (2, X~ B(X)) P

= (COV(X)hl,hQ)H

and by Lebesgue’s dominated convergence theorem,

(Cov(X)hi, ha) —E(ZW& h. ex) ZJ_& ha, ) )
:ZZ\/_\/’hhek (h2, 1) gE(&k&1)
=

o0
— >\k‘ hlaek h27€k‘)H
1

= (Qh1,h2) g
the covariance of £(X) is Q. O

Remark 4.18 If £(X) is a Gaussian measure with mean m and covariance @), then
EX =m and Cov X = Q.

4.4 Stochastic Processes

Let (E,| - ||g) be a separable Banach space, (£, F,P) a probability space and I an
interval in R. A family X = {X(¢)}ser of E-valued random variables defined on
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is called a stochastic process. The definition of stochastic processes does not assume
anything about the behaviour of processes with respect to the index ¢t. However, it
is appropriate to be interested in X as a function of ¢, as well. We set X (¢t,w) :=
X(t)(w) for all t € I and w € Q. The function X (-,w) for a fixed w € Q is called a
trajectory of X. In the following definition it has been gathered some measurability
and continuity properties of stochastic processes with respect to the index t.

Definition 4.19. Let X be an E-valued stochastic process. Then

(i) X is measurable if the mapping X : I x Q — E is B(I) x F-measurable,

(i) X is stochastically continuous at to € I if for alle > 0 and § > 0 there exists
p > 0 such that
P([|X(t) — X(to)l|le =€) <0

for allt € [ty — p,to+ p] N1,

(i1i) X is stochastically continuous on I if it is stochastically continuous at every
point in I,

(iv) X is uniformly stochastically continuous on I if for alle > 0 and § > 0 there
exists p > 0 such that

P([X(@#) = X(s)le =€) <6
for all s,t € I such that |t — s| < p,

(v) X is mean square continuous at tg € I if

lim EJIX(2) - X(to)|[} = 0,

(vi) X is mean square continuous on I if it is mean square continuous at every
point in I,

(vii) X is continuous (with probability 1) if its trajectories X (-,w) are continuous
for almost all w € Q.

In the following lemma we show the relation between stochastically and mean square
continuous processes.

Lemma 4.20. A mean square continuous process is stochastically continuous.

Proof. Let X be mean square continuous on [ and tg € I. Let ¢ > 0 and 0 > 0. Then
there exists p > 0 such that E|| X (t) — X (to)||% < €26 for all t € [to — p,to + p] N L.
By Tsebysev’s inequality,

E[IX(t) — X (to)|%

3 <9

P([X(t) = X(to)llz =€) < .

for all t € [to — p,to + p] N I. Thus X is stochastically continuous on I. O

The stochastical continuity is uniform if the interval is compact.
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Lemma 4.21. If I is a compact interval, a stochastically continuous process on I
1s uniformly stochastically continuous.

Proof. Let X be a stochastically continuous process on I. Let ¢ > 0 and § > 0.
Then for all r € I there exists a closed interval [r — p,, 7 + p,] with p, > 0 such that

€ o
P(IX(s) - Xlle=5) <3
for all s € [r — pr,r + pr] N I. Consequently, for all s,t € [r — pp, 7+ p,| N1

P(|X(s) = X(W)llz = &) < P (IX(s) = X()llp = 5 or |X(t) = X(r)|e > )
<0105
-2 2

Since the interval I is compact, there exists a finite family of intervals [r; — py, /2,7 +
pr; /2] which covers I. The common p is then min; (p;, /2). O

A stochastic process Y is called a modification or a version of X if
PlweQ: X(t,w) #Y(t,w) =0

forall t € I. If X is a stochastic process on I, then X needs not to be measurable in
the product space I x €. If X is stochastically continuous on a compact interval, X
has a measurable modification. We use the notation Q7 := [0,7] x €2 for all T > 0.
We mark with P7 the product measure of the Lebesgue measures on [0, 7] with the
probability measure P for all 7" > 0.

Proposition 4.22. Let X(t), t € [0,T], be a stochastically continuous process. Then
X has a measurable modification.

Proof. A stochastically continuous process X on [0,7] is uniformly stochastically
continuous by Lemma 4.21. Thus for each positive integer m there exists a partition
0=tmo <tm1<...< tmm(m) =T such that for all t € (th{;, tm7k+1]

POIX (tmp,w) = X(tw)|p = 27") <277

if k=0,1,...,n(m) — 1. We define

{X@Mg ift =0,

Xn(t,w) =
(t,w) X(tmp,w) ift € (tmp, tmirr1) and k <n(m) — 1,

for all ¢ € [0,7] and w € . Since for all B € B(E)

n(m)—1
{(t,w) € Qr : Xp(t,w) € B} ={0} x CoU | (tmks tmpr1] X Ci
k=1

where Cy, € F for all k = 0,1,...,n(m) — 1, the process X,, is measurable with
respect to the o-algebra B([0,7]) x F. We denote by A the set of all those (t,w) € Qrp
for which the sequence { X, (t,w)}5°_; is convergent. Then A € B([0,T]) x F since

(S CIe ]

A= U N N {ewretr 1o - Xaole < 1}

k=1 N=1m=N n=N
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Hence the process Y defined by

Y(t,w) = lim xa(t,w)Xn(t,w)

m—00

is B([0,7T]) x F-measurable since by Corollary B.7 in a separable Banach space
the weak measurability is equivalent to the measurability and therefore the limit of
random variables is a random variable in a separable Banach space.

For a fixed ¢ € [0,T] we denote
Bp i={w e Q: || Xn(t,w) — X(t,w)||g > 27"}

Then P(B,,) < 27™. Since

m=1 m=1

according to the Borel-Cantelli lemma P(limsup B,,) = 0. Hence for almost all
w € Q there exists m(w) > 0 such that || X,,(t,w)— X (t,w)||p < 27" for all n > m(w).
Therefore Pp(A) = 1 and X,,(¢,w) converges pointwise to X (t,w) for all ¢t € [0,7]
and almost all w € . Hence X (t) = Y (¢) almost surely for all ¢ € [0, 7] and the
process Y is the required modification. ]

4.4.1 Processes with Filtration

Let I be an interval. A family {F;}ies of o-algebras F; C F is called a filtration if
Fs C F; for all s,t € I such that s < t. We denote by F;+ the intersection of all Fj
where s > t, i.e.,

F+ = ﬂ Fs.

s>t

Then F;+ is a o-algebra for all ¢ € I. The family {F;}ier is said to be right-
continuous if Fy = Fy+ for all t € I. The filtration {F;}ser is called normal if it is
right-continuous and Fy contains all A € F such that P(A4) = 0.

If the random variable X (t) is F;-measurable for all ¢ € I, the process X is said to
be adapted (to the filtration {F;}er). If X(¢), t € I, is a stochastic process, the
filtration {F;X }sc; generated by the process X is defined by Fi¥ := (X (s), s < )
for all t € I. Every process is adapted to the filtration generated by its own history.

We denote the collection of P-null sets by
NF = {A C Q: there exists B € F such that A C B and P(B) = 0}.

The augmentation {F} }se; of the filtration {F; }es is defined by F} := o(F UNT)
for allt € I. The augmentation is a filtration in (£2, F, P) if and only if the probability
space (2, F,P) is complete. In that case {F} };c; is called the augmented filtration.

Let 7' > 0 and {F;}cjo,m be a filtration. We denote by Pr the o-algebra on Qr
generated by sets of the form

{(s,t]xF where 0 < s <t <T and F € F;, (4.5)

{0} x F where F € Fy.
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Then Pr C B([0,7T]) x F. Hence (Qp, Pr,Pr) is a measure space. The o-algebra
Pr is said to be the predictable o-algebra and its element are called the predictable
sets.

Lemma 4.23. Let T > 0 and A be a predictable subset of Qr. Then for all e > 0
there exists a finite union I' of disjoint sets of the form (4.5) such that

Pr((A\NT)U(T\ 4)) <e.

Proof. Let K denote the family of all finite unions of disjoint sets of the form (4.5).
Then K is closed under finite unions and intersections and the complement since
((Sl,tl] X Fl) N ((Sg,tg] X FQ)
_ (51V82,t1/\t2]X(F1ﬂF2) if s1V sy <t1 Atg,
0 if 81V s9 > t1 Atg,

for s1 < 89

((Sl,tl] X Fl) U ((Sg,tg] X Fg)

((Sl,tl] X Fl) U ((SQ,tQ] X Fg) if t1 < s9,
= ((81,82] XFl)U((SQ,tl] XF1UF2)U((t1,t2] XFQ) if s9 < t1 < to,
((81,82] X Fl) @] ((Sg,tg] x Fy U Fg) U ((tg,tl] X Fl) if 89 <tg <ty

and
((s,t] x F)° = ({0} x Q) U ((0,s] x Q) U ((s,t] x (2\ F)) U ((¢,T] x ).

Thus K is a w-system. Let G be the family of such A € Pp that for all € > 0
there exists I' € IC such that Pr((A\T)U(I'\ A)) <e. Then L C G. Let A€ g
and € > 0. Then there exists I' € K such that Pp((A\T)U(I'\ A)) < e. Thus
Pr((A°\T¢) U (I'“\ A9)) < ¢ since

(A\NT)U(D\ A) = (ANT) U (LN A°) = ([°\ A°) U (A°\ I°).

Hence A° € G because I'“ € K. Let A; € G for all ¢ € N be such that A;NA; = ? for
all i £ j and € > 0 . Then there exist I'; € K for all 4 € N such that

e

PT((AZ‘ \ Fi) @) (Fi \ AZ)) < SR

Let m € N be such that

Then U T'; € K,

(3

i=m-+1
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and
(91 (@)-0 () QoD
Thus
<<t_4 ) (u )U(Q“) (U+))

siﬁwM\nw(\A»

< Z 21—}-1 %
Hence - . . .

(G (U (n) 1 (94)) <

Therefore U2, A; € G. Thus G = o(K) = Pr by Proposition 4.1. O

A measurable function from (Qr, Pr,Pr) to (E, B(E)) is called a predictable process.
A predictable process is necessarily an adapted one.

Proposition 4.24. Let X be an adapted stochastically continuous process on the
interval [0, T). Then the process X has a predictable version on [0,T].

Proof. The proof is exactly the same as the one of Proposition 4.22. Since X is
adapted, X,, is predictable. Hence the set A is a predictable set and the process Y
is predictable. ]

A E-valued stochastic process X (t), t € [0,T], taking only a finite number of values
is said to be elementary if there exist a sequence 0 = tg < t; < ... <t =T and
a sequence {X,, ]:n;lo of F-valued simple random variables such that X,, is F;,,-
measurable and X (t) = X, if t € (ty, tynt1] for all m =0,1,...,k — 1. Elementary
processes are a simple example of predictable processes. Actually, predictable pro-
cesses can be approximated by elementary processes if they are integrable.

Proposition 4.25. Let X (t), t € [0,T], be an E-valued predictable process. If

T
IE/O I1X ()] dt < oo, (4.6)

there exists a sequence {X,,}52, of elementary processes such that

T
EAHX@xummmaﬂo

as n — oQ.
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Proof. Let X be an E-valued predictable process satisfying Condition (4.6). Then
by the Fubini theorem X € L'(Qr,Pr,Pr; E). According to Theorem B.12 there
exists a sequence {X,,}5° ; of simple E-valued predictable processes such that

T
/Q | X(t,w) — X, (t,w)||g Pr(dt,dw) = IE/ | X (t) — Xn(t)||g dt — 0
T 0
as n — oo. Since X, is a simple E-valued Ppr-measurable function, it is of the form

Z X (

for all (t,w) € Qr where m, € N and X! € F and Al € Prforalll =1,...,m,
and A%, N A}, = 0 if i # j. We denote C := > ;"% || X]||g. According to Lemma 4.23

for all I = 1,...,m, there exists a finite union T}, of disjoint sets of the form (4.5)
such that )
Pr((4}\Th) U (T \ A1) < =~

Then
Mn
w) = ZXLXM (t,w)
=1

for all (t,w) € Qr is an elementary process and
T Mn
B [ 1X0(tw) - Yaltw)le di < CBr (Jlal\ T U T\ A1)
0 =1

< c%PT«Aé\m) U\ 4,) < =

=1
Thus {Y,,}2° is a sequence of elementary processes such that for every ¢ > 0
1X = Yallzrpprprie) S NX = Xallovrprpre) + 11X = Yalloi@p prpre) <€

if n € N is so large that | X — Xu[|1 (02 prie) <€/2 and n > 2/e. O

The integral of an integrable predictable process has a predictable version.

Lemma 4.26. If X € LY(Qr, Pr,Pr; E), the process

Y (t) = {fotX(S) ds if [ylIX(s)|p ds < oo,
0 if fyIX(s)]|g ds = oo

on [0,T] is continuous and has a predictable version.

Proof. Since X € LI(QT,PT,IP’T, ) the trajectories of X are Bochner integrable
almost surely. Hence Y (¢ fo ) ds almost surely and Y () is Fi-measurable for
all ¢ € [0,T]. Since for all 0<s< t S T

r) dr—/OSX(r) dr

1Y () =Y (s)lle =

T
EgA N (X ()15 dr
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almost surely and X € L' (Qp, Pr,Pr; E), the process Y is continuous by Lebesgue’s
dominated convergence theorem. Furthermore, by Lebesgue’s dominated conver-
gence theorem for all 0 < s <t < T

T
E|Y () - Y(s)l|p <E /0 X (X ()| dr — 0

as |t —s| — 0. Thus for all ¢ > 0 and § > 0 there exists p > 0 such that E||Y(t) —
Y(s)||g <edif |t — s| < p. Hence

EY () = Y(s)lle
9

P([Y(t) = Y(s)lle =€) < <9

if |t — s| < p. Therefore Y is stochastically continuous. By Proposition 4.24 the
process Y (t) has a predictable version. O

In future if X € L'(Q7, Pr,Pr; E), we denote the integral process by fg X(s) ds,
0 <t < T, even though in a set of probability zero its value is zero.

4.4.2 Martingales

If E|X(t)]|r < oo for all ¢t € I, the process X(t) is called integrable. Let {Fi}ier
be a filtration. An integrable adapted E-valued process X (t), t € I, is said to be a
martingale if

E(X(®)|Fs) = X(s) (4.7)

almost surely for all s,f € I such that s < ¢t. A real valued integrable adapted
process X (t), t € I, is said to be a submartingale if

E(X ()| Fs) = X(s)
almost surely for all s,¢ € I such that s <t.

Proposition 4.27. Let I = [0,T] for some T > 0.

(i) If M(t), t € I, is a martingale, | M (t)||g, t € I, is a submartingale.

(ii) If M(t), t € I, is a martingale, g is an increasing convez function from [0, o)
to [0,00) and E[g(||M(t)||g)] < oo for allt € I, then g(||M(t)||g), t € I, is a
submartingale.

Proof. (i) Let M be a martingale and s,t € I such that s < t. Then according to
Theorem 4.9,
1M (s)||e = [[E(M(&)|Fs) e < E(|M@)] ] Fs)

almost surely. Hence ||M(¢)||g, t € I, is a submartingale.

(ii) Since M is a martingale, ||M(¢)||g, t € I, is a submartingale by the statement
(i). Since g is increasing,

g(IM ()l &) < g(E[|M (1)]| [ Fs])
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almost surely for all s < t. Since g is convex and E[g(||M(t)||g)] < oo for all t € I,

g([M(s)[[z) < E[g(|M )|l £)|Fs]
almost surely for all s < t [53, Theorem 9.7]. Hence g(||M(t)||g), t € I, is a
submartingale. ]
We need the maximal inequality for real valued submartingales.

Theorem 4.28. [20, Theorem 1.3.8] Let X (t), t € I, be a real valued continuous
submartingale. If X (t) is non-negative for allt € I and p > 1,

E <sup<X<t>>p) < (%)psupw)f(t))p.

tel tel

As an immediate consequence of Proposition 4.27 and Theorem 4.28 we have the
following corollary.

Corollary 4.29. Let M(t), t € I, be an E-valued continuous martingale. If p > 1,

V4
D
E (supuMu)u%) < (—) supE[ M)
tel p— 1 tel

—

f M(t), t € [0,T], is an E-valued continuous martingale and E||M (t)||}, < oo for all
t €10,7],

sup E|M(t)| = E|M(T)|%
te[0,7

for all p > 1 by Theorem 4.9 and Proposition 4.27.

Theorem 4.30. Let us denote by M%(E) the vector space of E-valued continuous
square integrable martingales on [0,T). Then M2(E) equipped with the norm

1

2

M| pez2, 5y == (E sup IIM(t)H%>
te[0,7)

for all M € MZ(E) is a Banach space.

Proof. If M € MA4(E),

1M 32z =E sup [|[M(#)|E <4 sup E[|M@)|E =4E|M(T)|E < oo
T t€[0,T] te[0,T)

by Theorem 4.9, Proposition 4.27 and Corollary 4.29. Since for all M € MZ(E)

2\ 2
M vz = | E (ts[lélzr] ”M(t)HE) = 1M || o 0,1:) | L2, 7 P:R)>
€10,

Il m2, () is & norm. Hence MZ(E) is a norm space.
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To prove the completeness we assume that { My, }2° ; is a Cauchy sequence in M%(E),
ie.,

E < sup || Mp(t) — Mm(t)HQE> —0

te[0,7]

as m,n — 0o. Since

AP ( sup || My (t) — My (1) £ > c) <E ( sup || My, (t) — MMOH%) 7

t€[0,7) t€[0,T

one can find a subsequence {M,, }3°, such that

P ( sup || My, ., (t) = My, (8) ||z > 2"“) <27",
t€[0,T]

We denote

Ay = {w € Q: sup [|My,,, (1) — My, (t)||g > 2_1"’} )
t€[0,T]

Then P(A) < 27%. Since
Sra) <32
k=1 k=1

according to the Borel-Cantelli lemma P(lim sup Ax) = 0. Thus for almost all w € Q
there exists [(w) € N such that w & Ay, i.e.,

sup || My, (t) = My, ()|l < 27

te[0,T]
for all k > I(w). Hence
7—1
sup HMn](t) - nk HE < Z sSup HMm-H( ) - an(t)”E
te[0,T) i—k t€[0,T]

< 22—1‘ < Z2—i _ g—k+1
i=k i=k

for all j > k > Il(w) for almost all w € Q. Thus {M,, (-, w)}?2, is a Cauchy
sequence in L>°(0,T; E) for almost all w € Q. Therefore for almost all w € Q
there exists M (-,w) € L*>(0,T; E) such that M, (-,w) - M(-,w) in L*>(0,T; E) as
k — oo. Since M, is continuous for all £ € N and the convergence is uniform, M is
continuous.

Let t € [0,T] be fixed. Then
E|| My, (t) — M, ()| <E (ts[lép [ M () — an(t)|2E) —0
€

as k,l — oo. Thus {M,,(t)}?2, is a Cauchy sequence in L*(Q,F,P;E) for all
€ [0,T]. Therefore for all t € [0,7] there exists N(t) € L?(Q,F,P; E) such that
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M, (t) — N(t) in L*(Q,F,P;E) as k — oo. By Theorem B.16 for all ¢ € [0,T]
there exists a subsequence {My, (f,w)}2; which converges pointwise to N(t,w) for
almost all w € Q. Since M, (,w) — M(-,w) in L*(0,T; E) as k — oo for almost
all w € Q and M, and M are continuous, My, (t,w) converges pointwise to M (t,w)
for all ¢ € [0, 7] and almost all w € Q. Hence N(t,w) = M(t,w) for all t € [0,T] and
almost all w € . Thus M is square integrable.

If 0 <s <t <T, then E(M,, (t)|Fs) = M,,(s) almost surely for all & € N. By
Theorem 4.9 for all 0 < s <t S T

[E(Mh, (t) — M(@)|Fs)l| 2 < E(| M, (£) — M (8)| 6] F5)

almost surely. Thus for all t € [0,7] and s <

[0 - M@ @ < [ B0 - 2(0)]517,) dP
Q Q
= [ 1M0 = M) P

< (EJ| My (£) — M(D[2)* — 0

as k — oo. Hence E(M,, (t)|Fs) — E(M(t)|Fs) in LY(Q, F,P; E) as k — oo for all
0<s<t<T. Thus by Theorem B.16 for all 0 < s < ¢t < T there exists a sub-
sequence { My, (1)};2; such that E(Mpy, (t)[Fs) converges pointwise to E(M (t)|Fs)
almost surely. Then

E(M(t)|Fs) = hm IE( niy (0 Fs) = llim M, (s) = M(s)
almost surely for all 0 < s < ¢t < T. Hence M is a martingale. Therefore M €
ME(E).

Since M, converges pointwise to M for all 0 < ¢ < T almost surely, by Fatou’s
lemma,

t€[0,T

M, — M3 ) = E ( Sup. My, (1) - M(ﬂll%)

=00 e0,1]

=F <llm sup || My, (t) — Mm(ﬂ”%)

. 2
< hﬁg}f | My, — My, HMQT(E) <é€

for k € N large enough. Thus M,, — M in M%(FE) as k — oo and hence M%(E) is
complete. 0

4.4.3 Hilbert Space Valued Wiener Processes

Let (H,(-,-)y) be a real separable Hilbert space and Q € B(H) a positive self-
adjoint trace class operator with Ker @ = {0}. Then there exist an orthonormal
basis {ey}3; in H and a bounded sequence {\,}32; of positive numbers such that
Qe = Mgey for all k € N since @ is compact by Proposition D.9 [14, Theorem 5.1,
Observation 6.1.b, pp. 113-116].
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Definition 4.31. An H-valued stochastic process W (t), t > 0, is called a Q-Wiener
process if

(i) W(0) =0,
(i) W is continuous,

(i1i) W has independent increments, i.e., W(u) — W (t) and W(s) — W(r) are in-
dependent for all 0 <r <s <t <u < oo and

(iv) LW (t) — W (s)) =N(0,(t —s)Q) for all0 < s <t < 0.

If a process W (t), t € [0,T], satisfies (i)-(ii) and (iii)-(iv) for r,s,¢,u € [0,7T], then
W is a @Q-Wiener process on [0, T].

Let (E,||-||g) be a real Banach space. An E-valued stochastic process X on [ is said
to be Gaussian if for any n € N and for all t,to,...,t, € I the E"-valued random
variable (X (t1), X (t2),..., X (t5)) is Gaussian.

Proposition 4.32. Let W be a Q-Wiener process. Then W is a Gaussian process
on H such that EW (t) = 0 and Cov(W (t)) =tQ for allt > 0. Furthermore, W has

the expansion
W(t) =V ABr(t)ex (4.8)
k=1

for each t > 0 where
1
Br(t) = \/—)\?(W(t),ek)H

for all k € N and t > 0 are mutually independent real valued Wiener processes on
(2, F,P) and the series on the right hand side of (4.8) converges in L*(Q, F,P; H).

Proof. Let W be a Q-Wiener process. We want to show that for all ¢1,...,t, € [0,00)
the H™-valued random variable (W (t1),...,W(t,)) is Gaussian. Thus we need to
prove that

Z = ((W(ta), ... W(tan)), (o b)) = (W (ti), hi) gy
=1

is a real valued Gaussian random variable for all hy,..., h, € H. We may assume
that 0 < t1 < ... <t, < co. Then

S (W(tl)azn:hz>
=1

Since W has independent increments, W (t;) and W (t;) — W(t;—1) for i =2,...,n
are mutually independent Gaussian random variables. Hence (W (t1),> ", hi)y
and (W(tz) — W(ti_l),E?:i hj)H for 1 = 2,...,n are mutually independent real
Gaussian random variables. Thus Z is Gaussian and therefore W is a Gaussian

process. Additionally, EW (t) = 0 and Cov(W(t)) = tQ for all ¢ > 0 by Remark 4.18
and the conditions (i) and (iv) in Definition 4.31.

n

+ zn: W(tﬁ - W(ti_l), Z hj
1=2
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By the definition i (t), t > 0, is a real valued Gaussian process for every k € N [21,
Theorem A.5]. In addition, F(t), t > 0, satisfies the conditions (i)-(iii) in Definition
4.31. Let 0 < s < t. Since the Wiener process has independent increments,

E(Br(t)5i(s))

Yy [E(W () = W(s), ex) g (W(s), er) g + E(W (s), ex) g (W(s), e1) ]

= e EW () = W(s), e yE(W (s),e0) y +E(W(s), e0) g (W (5), 1) ]

Ak
= m(Qek,ez)H =54/ )\*lfSkz = 50k

for all k,1 € N. Since fi(t), t > 0, is Gaussian for all k& € N, the calculation
above implies that they are mutually independent. Furthermore, the covariance of
Br(t) — Br(s) ist —s for all k € Nand 0 < s < t. Hence ((t), t > 0, is a real valued
Wiener process. For m,n € N such that m > n

> VAkBi(t)er

3

-

2 m m
E =E< > Amﬁ@)) = > MEB®)
k=n+1 H k=n+1 k=n+1
=1 Z A, — 0
k=n-+1

as m,n — oo since Tr@Q = > 72 A\, < oo by Proposition D.14. Therefore the series
on the right hand side of (4.8) converges in L?(, F,P; H). The set {e;}?2, is an
orthonormal basis in H. Thus

W(t) =Y VAiBi(t)e;
j=1
for all ¢ > 0. ]

Some basic properties of Q)-Wiener processes has been gathered in the following
lemma.

Lemma 4.33. Let W be a Q-Wiener process. Then

(i) E|W(t) — W(s)ll}
(i) E[[W(t) = W(s)]

(t—s)TrQ,
‘}{ <3(TrQ)3(t — 5)?

for all0 <s <t < oo.

Proof. (i) Since Cov(W (t) — W (s)) = (t —s)Q for all 0 < s < t < 0o, by Lebesgue’s
monotone convergence theorem,

[e.e]

EY (W(t)—W(s),er)f = Y E(W(t) — W(s),er)}
1 k=1

E[W(t) - W ()%

i

((t —s)Qex, ex) g = (t — ) TrQ

=
I

1
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forall 0 < s <t < oo.

(ii) By Proposition 4.32 for all k € N

Bult) = V%(W(txem

are mutually independent real valued Wiener processes on [0,00). Then for all
0<s<t<

E[[W(t) — W ()5
=E (Z (W(t) = W(s), 6k)§{> =E (Z Ak (Br(t) — /Bk(s))2>
k=1

= Ei N (Br(t) = Br(s))* + 2E i D MA(Be(t) — Br(9))2(Bi(t) — Bils)*.

k=1 k=1 I<k

Since Bk (t) — Br(s) ~ N(0,t—s) and Bx(t) — Br(s) and G;(t) — B;(s) are independent,
E(Br(t) — Bi(s))* = 3(t — 5)? and

E(Br(t) = Bu()*(Bi(t) — Bis))* = E(Br(t) = Bu(s)*E(Bi(t) — Bis))® = (t - 5)*

for all kK # 1 and 0 < s < t < oo. Thus by Lebesgue’s monotone convergence
theorem,

E||W(t) — W(s)||% = 3(t — s) Z)\ +2(t —s) ZZAM

k=1 I<k
o o0 2
=2(t— )Y A+ (t—s) (Z/\k>
k=1 k=1

forall 0 < s <t < 0. O

Let {Fi}t>0 be a filtration and W a @-Wiener process. We say that W is a Q-
Wiener process with respect to the filtration {F;}>¢ if W(t) is Fi-measurable and
W (t+ h) — W (t) is independent of F; for all ¢ > 0 and h > 0. In that case W is a
martingale because by Theorem 4.9,

E(W(t)|Fs) = E(W(t) — W(s)|Fs) + E(W(s)[Fs)
E(W(t) —W(s))+ W(s) =W(s)

almost surely for all 0 < s < t < 0o. Let {F}V};>0 be the filtration generated by the
Wiener process W, i.e., 7}V = o(W(s), s < t) for all £ > 0. Since W is a Q-Wiener
process with respect to the filtration {F}V };>0, then W is a martingale with respect
to its own history.

Let I be an interval. We denote all functions from I to H by F(I,H). Let F(I,H)
be the o-algebra generated by set of the form

(feF(ILH): f(t1) € Ay, ..., f(ty) € Ap} (4.9)
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where n € Nand ¢; € [ and A; € B(H) fori =1,...,n. If {X(¢)}er is an H-valued
stochastic process, X(-,w) belongs to F(I,H) for all w € Q and X : (Q,F,P) —
(F(I,H),F(I,H)) is measurable. We want to prove that the augmentation of the
filtration generated by a Wiener process is right-continuous. We need the following
lemma.

Lemma 4.34. Let t > 0 and {Y(s)}scio be an H-valued stochastic process. A
random variable X : Q — R is o(Y(s), s < t)-measurable if and only if X = g(Y")
where g is F([0,t], H)-measurable function from F([0,t],H) to R.

Proof. “<” The statement is obvious.

“=" Tt is enough to prove that if X : Q — R is a bounded o(Y (s), s < t)-measurable
function, there exists a bounded F([0, ¢], H)-measurable function ¢ from F'([0,t], H)
to R such that X = ¢(Y). We define H to be the set of all bounded random
variables X : @ — R such that X = g(Y") for some bounded F([0, ¢], H)-measurable
function. Then H is a vector space and the constant function 1 belongs to H.
Let {X,}5°, be a sequence of non-negative random variables in H such that X,
increases monotonically pointwise to X and X is bounded, ie., 0 < X < M for
some M > 0. Then for all n € N there exists a bounded F([0,t], H)-measurable
function g, such that X,, = ¢,(Y). We denote g := x4 limsup,,_,., g, where A :=
{limsup,,_,o, gn € [0, M]}. Then g is a bounded F([0,¢t], H)-measurable function
and X = g(Y). Hence X belongs to H. We define Z to be the set of all sets of form
{w:Y(t1) € A1,...,Y(t,) € Ay} wheren € Nand 0 <t; <t and A; € B(H) for all
i=1,...,n. Then Z is a m-system and o(Z) = o(Y (s), s < t). Furthermore,

X{weQ:Y (t1)€AL,....Y (tn)EA,} = X{feF([o,t],H):f(tl)eAl,...,f(tn)eAn}(Y)

foralln e Nand 0 <t; <tand A; € B(H) fori =1,...,n. Therefore xp € H for all
B € 7. By the monotone class theorem H contains every bounded o(Y (s), s < t)-
measurable random variable. O

Proposition 4.35. If W is a Q-Wiener process, the augmentation {ftw’P}tZO of
the filtration {F}V Yy>o is right-continuous. If, in addition, (Q, F,P) is a complete
probability space, the augmented filtration {FtW’P}tZO s mormal.

Proof. Since W is a Wiener process with respect to its own history {F}V }i>0, it is

a Wiener process with respect to the augmented filtration {]-'tW’P}tzo. Let s < t.
Then for all h € H

E (ei(W(t),h)Hu_-SW,P) — W) rR (ei(W(t)—W(s),h)H|]_—8W,IP)
— JW) g (exW(t)fW(s),h)H)

— (W (s),h) =5 (t=5)(Qh.h)
almost surely. Let € be such that 0 < e <t —s. Then

E <ei(W(t>,h>H | fsvgl?) _E (E <€i(W(t),h)H | fsW#f) | fjfp)

— ( W (se)1) =5 (t=s=2)(Qh:h) | vaK,P)
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for all h € H almost surely. By passing to the limit € — 0
E (ez’wv(t),h)H | ;:VKJP’) — (i(W(s)h) =5 (t=5)(Qh,h)
S

for all h € H almost surely since W is continuous and @ is positive [53, Theorem
9.7]. Furthermore,

E<ei<W(t>,h>H,W(S)) — (W (s)h) g (ez’(wo W)W W (s ))
(ez‘(W(w—W(s),h)H)
— (W (s)h) g =3 (t—=5)(Qhh)

for all h € H almost surely. Thus
E <€i(W(t),h)H ]W(s)) _F (ei(W(t),h)Hu_—SW,P) _E <6i(W(t),h)H‘f~sVlJ:,IP’>
for all h € H almost surely. Therefore according to Corollary 4.14,

E(f(W(E)IW(s)) = E (FWEIFTF) = E (Fw (i) £Y")

for all bounded measurable functions f from H to R almost surely since

(W (5),h) =5 (t=5)(Qh,h) :/ e @Mu N(W (s), (t — 5)Q)(dx)

H

forall h € H. Let s < t1 < t9 and f1, fo : H — R be bounded measurable functions.
Then

E (fl(W(tl))fQ(W(tg)ﬂf;’V’P) -

almost surely because there exists a bounded measurable function f from H to R
such that E[fo(W (¢2))|W (t1)] = f(W(t1)) [53, Lemma A3.2]. By induction,

(H fi(W ‘fWP> =E (H fi(W(ti))‘fg’P> (4.10)
i=1
almost surely where n € N and 0 < ¢; < co and f; are bounded measurable functions
from HtoRfori=1,...,n
We define H to be the set of all bounded functions g from F'(]0,00), H) to R such
that
E (g(W)|IFF) = E (g(W)|710")

almost surely. Then H is a vector space and the constant function 1 is an element
of H. Furthermore if {g,, }°°; is a sequence of non-negative functions in H such that
gn increases monotonically pointwise to g and g is bounded, g belongs to H [53,
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Theorem 9.7]. Let Z be the set of all sets of the form (4.9) where I = [0,00). Then
7 is a m-system. Since

X{fGF([0,00),H) f(tl)EAL vf(tn GA } HXA

when n € Nand 0 < t; < oo and A; € B(H) for i = 1,...,n, by Formula (4.10)
the characteristic functions of all sets in Z belong to H. According to the monotone

class theorem H contains every bounded F([0,00), H)-measurable functions from
F([0,00), H) to R. Hence

E (g(W)IFF) = E (g(w) 7117

almost surely for all bounded F ([0, c0), H )-measurable functions g from F'([0, c0), H)
to R.

Let s < t. According to Lemma 4.34,
B (X|FF) = E (x|707)

almost surely for every bounded ftW’P—measurable function X : @ — R and hence
for every F;"-measurable function X : @ — R [53, Theorem 9.7]. Let X : Q — R
be an ]:;/K’P—measurable function. Then E(X|FY") = X almost surely. Since Fa'"
is a complete o-algebra, X is FVF measurable. Consequently, F ot WE c 7VF The

. . P P. P
reverse inclusion .7-"![/ T C .7:8W+’ is obvious. Hence .7'—5 = .7-":5: for all s > 0.

If (2, F,P) is complete, {.7-" }t>0 is a filtration. Since -7:0 P contains all A € F
such that P(A) = 0, the right-continuity assures the normality. O

The version in R of the previous proposition can be found from the book of Liptser
and Shiryayev [27].

4.5 The Stochastic Integral

Let (H,(-,-)y) and (U, (-,-);;) be real separable Hilbert spaces and @ € B(U) a

positive self-adjoint trace class operator with Ker @ = {0}. Then there exist a com-

plete orthonormal system {e;}7°, in U and a bounded sequence {\}72, of positive

numbers such that Qer = Apep for all £ € N since @) is compact by Proposition

D.9 [14, Theorem 5.1, Observation 6.1.b, pp. 113-116]. We introduce the subspace
0 := QY2(U) of U, which endowed with the inner product

L= D ey (v ey = (@20, ),

=1 "k

is a Hilbert space. Then {gk}zozl where g := v/ Areg for all k£ € N is an orthonormal
basis in Uy. In the construction of the stochastic integral an important role is played
by the space Bo(Uy, H) of Hilbert-Schmidt operators from Uy to H. Let {fi}32,
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be an orthonormal basis in H. The space B2(Uy, H) is a separable Hilbert space
equipped with the norm

o (o]
10 w00 = D 1%kl =D 19Qexl3r = QY213 1)
k=1 k=1

= QYW Gy = D 1Q W fill7

= (WQU* fi, i)y = Tr[TQT"]

k=1

for all ¥ € By(Uy, H). Clearly, B(U,H) C B2(Uy, H) but not all operators in
By(Uy, H) can be regarded as restrictions of operators in B(U, H). The space
By (Uy, H) contains genuinely unbounded operators on U.

Let W(t), t € [0,T], be a Q-Wiener process in a probability space (2, F,P) with
values in U with respect to a normal filtration {F;}c(om) for a fixed 7" > 0. Let
®(t), t € [0,T], be a B(U, H)-valued elementary process, i.e., there exist a sequence
0=ty <ty <...<t =T and a sequence {®,, fn_:lo of B(U, H)-valued simple
random variables such that ®,, is F, -measurable and ®(t) = @y, if t € (ty, tint1]
forallm=0,1,...,k—1. We define the stochastic integral for elementary processes
® by the formula

S

-1

/0 t B(s) AW (s) := > Bp(W (tmar At) — W(tm At))
0

3
I

and denote the stochastic integral by ® - W (t), t € [0,T]. Let ®(t), t € [0,T7], be a
By (Uy, H)-valued stochastic process. We define the norms

ot s= (5 [ 106 dsy - (= [ meere) dsf

for all t € [0,7T]. If ® is an elementary process, ||®||; < oo for all ¢ € [0,T].

Proposition 4.36. If ® is an elementary process, the stochastic process ® - W is a
continuous square integrable H-valued martingale on [0,T] and

E[@- W) = [l (4.11)

for all0 <t <T. Furthermore, E(®-W(t)) =0 for all0 <t <T.

Proof. Since W (t) is a continuous square integrable U-valued martingale and ® is a
B(U, H)-valued elementary process,

k—1
By (W (1 A L) — W (tm A )

m=0

is a continuous H-valued adapted process on [0,7]. Since ®,, is a simple Fy, -
measurable random variable, also ®}, is for all m = 0,...,k — 1. Hence ®} h is a
simple F;, -measurable random variable for all h € H and m = 0,...,k — 1. Since
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W (t) — W (t,,) is independent of F;, for all ¢t > t,,,, by Theorem 4.9 and Proposition
410,

(E (@ (W(t) = W(tm)) | Ftn) s 1) g = E(Pon(W(t) = W (tm)), h) | Fe,)
(W(t) = W(tm), ©3,h) | Ft,,) = 0
almost surely for all h € H and m =0,...,k — 1. Hence

E[Qn(W(t) = W(tm))] = E [E(®m(W(t) = W(tm))|Fm)] =0

for all t > t,, and m =0,...,k — 1 and therefore E(® - W (t)) =0 for all 0 <¢ <T.

=K
E

Let s <t,, <t. Then
E (®m(W(t) = W(tm))|Fs) = E(E(@m(W(t) — W(tm))| Fr,,) | Fs) = 0
almost surely. If ¢, <t < s, according to the measurability
E (@ (W (t) = W (tm))|Fs) = Prn(W(t) — W (tm))
almost surely. If ¢t,, < s <,

E (@, (W(t) = W(tm))|Fs)
= E(®n(W(t) = W(s)[Fs) + E (Pm(W(s) = W(tm))| Fs)
= P (W(s) = W(tm))

almost surely. Hence E(® - W (t)|F;) = - W(s) almost surely for all 0 < s <t < T,
ie., - W(t) is a martingale on [0, 7.

We still have to prove that ® - W (t) is square integrable. Let t,, < t < t,,11. We
denote

{cj =W(tjp1) - W(ty), j=0,....,m—1,
Cn 1= W () — W(tm).

Then

E|® W) =E Z‘I’CJ _EZ|’(I)CJHH+2EZ i ©5Gj) g

H 1<j=1

Since (; is independent of F; and ®7h is Fy -measurable for all h € H and j =
0,...,m, by Lebesgue’s monotone convergence theorem, Theorem 4.9 and Proposi-
tion 4.10,

EH(I)JCJHH _EZ ]C]afl ZE Cpq) fl)

Sr(elonin)

E(Q®} fi, @} f1),,

Mg

= (tj+1 Nt — 1)
z

Il
R

M8

= (i Nt —t)E Y (2,Q]fi, fi),

~

1
= (tjr1 At — )IETr(@-Q(I);‘-)
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for all j =0,...,m. Thus

m

m
EY 19615 =B (tia At —t) 5015, w0,
i=1 =1

Let ¢ < j. Then by Lebesgue’s dominated convergence theorem,

[ee)

B2, ®;¢) = Y B [(@iGi fi) 5 (P3¢, fi) ] -

k=1

Since ®; is Fy,-measurable and (; is Fy,, ,-measurable, (®;(;, fix)y is Fy,, -measur-
able. Since (; is independent of 73, and ®; is simple, (®;(j, fx), is independent of
Fi;. Hence (®,¢;, fr) y and (®;(j, fi) are independent random variables. Thus

E(®iGi, ©;¢) = > E(®iCi, f1) g B(R;5 fr) -
k=1

Since E(‘I’ZQ, fk)H = (E(I)ZCu fk)H =0 for all £ € N, then E((I)ZCZ, (I)jCj>H = 0. Thus
El@-WE)IE =EY (s At = )85 w0.m)
j=1

t
& /O 10(5)113, 0y s = 112

Hence ® - W (t) is square integrable and Equality (4.11) holds. O

By Corollary 4.29 for all M € MZ(H)
B M) < 1M ) < 4EIMD)|.
Hence by Equality (4.11),
@l < 19 - Wil pez ) < 2@l

for all elementary processes ®. Therefore the stochastic integral is a bounded linear
operator from the space of elementary processes with the norm || - ||z to the space
MZ(H) of H-valued continuous square integrable martingales.

The definition of the stochastic integral can be extended to more general processes.
The proper class of integrands is predictable processes with values in Bo(Uy, H),
more precisely, measurable mappings from (Qr, Pr) to (B2(Up, H), B(B2(Up, H))).

Proposition 4.37. (i) If ® is a B(U, H)-valued predictable process, ® is also a
Bs(Uy, H)-valued predictable process. In particular, elementary processes are
Bs(Uy, H)-valued predictable processes.

(i1) If ® is a Ba(Up, H)-valued predictable process such that ||®||r < oo, there
exists a sequence {®,}5° | of elementary processes such that

@ — @nllz — 0O

as n — oQ.
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Proof. (i) Operators (fx ® gj)u = fi(u, g;);, for all j,k € N and u € Uy are linearly
dense in By(Uy, H) by the proof of Propos1t10n D.6. For all T' € By(Uy, H)

(fk®gj7 Bo(Ug,H Z fk®gj glaTgl) (fkaTgJ)H - \/)\_j<Tejafk)H
=1

Let @ : (Qp,Pr) — (B(U,H),B(U,H)) be a random variable. Then
VA (®@ej, fi) g = (Qr, Pr) — (R, B(R))

is measurable for all j, k € N. Thus
(frx ® g5, (I))BQ(UO,H) Qr — R

is Pr-measurable for all j,k € N. Hence ® is a random variable from (Qr,Pr) to
(B2(Uy, H), B(B2(Uy, H))) according to Lemma 4.4.

Elementary processes are B(U, H)-valued predictable processes by definition. Hence
they are By(Uy, H)-valued predictable processes.

(ii) The proof is similar to the one of Proposition 4.25. Let ® be a Bo(Uy, H)-valued
predictable process. Since (B2(Uo, H), || - || By(vy,m)) 18 @ separable Hilbert space, by
Lemma 4.3 there exists a sequence {®,,}>° ; of simple By(Uy, H)-valued predictable
processes such that ||®,(t,w) — ®(t,w)| Bywy,m) | 0 as n — oo for all (t,w) € Qr.
Since operators fi ® g; = @fk ® e; are linearly dense in By(Up, H) and belong to
B(U, H), the space B(U, H) is densely embedded to By (Uy, H). Hence, because @,
is simple, there exists a B(U, H)-valued simple predictable process ¥,, such that

1
”\I/n(tvw) - (I)n(t7w)HBz(Uo,H) < E

for all n € N. Thus {¥,}°°, is a sequence of simple B(U, H)-valued predictable
processes such that

[®(t, w) — Wi (t, )| By (o, 1)
<|@(t, w) — Pult, W) By, i)y + 1Pt w) — Wi (t, w) |l By, m) L O

as n — oo for all (t,w) € Qp. According to Lebesgue’s monotone convergence
theorem,

/Q 10(t, ) — oty )12, 0 11y Pr(dt, d) — 0
T

as n — oo. Hence by the Fubini theorem,

T
E /0 10 (t,0) — Wt ) 0ty = 19— Wl — 0
as n — Q.

Since ¥, is a simple B(U, H)-valued Pr-measurable random variable, it is of the

form
Mn
w) =Y Ty (tw)
=1

for all (t,w) € Qr where m,, € N and ¥, € B(U,H) and A, € Pr for all | =
1,...,m, and AL NA) =0 if i # j. We denote C := Y7 || Wh HB2 Uo.1)- According
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to Lemma 4.23 for all [ = 1,...,m,, there exists a finite union I', of disjoint sets of
the form (4.5) such that

1

(AL \ T U T\ A) <

Then

Mn
\I}n(ta w) = Z \IIZXF% (ta w)
=1

for all (¢t,w) € Qp is an elementary process and

T
1%, — B3 =E /O 190 (1) — Gty 0) 2 0y

< CPy (UA; VT oy Am)

=1

< O3S Pr((AL T, U AL) < .
=1

Thus {\f/n}ff:l is a sequence of elementary processes such that for every € > 0
® = Ynllr < [[® = Ynllr + [[Vn — Wnllr <€

if n € N is so large that ||® — ¥, ||r < /2 and n > 2/e. O

We are able to extend the stochastic integral for Bo(Uy, H)-valued predictable pro-
cesses ® such that [[|®[|r < co. They form the space N3 (0,T). Since N3 (0,T) =
L?(Qq, Pr,Pr; Bo(Uy, H)), it is a Hilbert space. By Proposition 4.37 elementary
processes form a dense set in J\/’I?V(O,T). Let ® € NZ(0,T). Then there exists a
sequence {®,,}°2; C N3,(0,T) of elementary processes such that ||® — @, ||z — 0 as
n — oo. Then the sequence {®,, - W}5° , is a Cauchy sequence in M2 (H) because
the stochastic integral is a bounded linear operator for elementary processes. Since
MZ(H) is complete, there exists M € M2 (H) such that ||®, - W — MHMQT(H) — 0
as n — 0o. We define ® - W (t) := M(t) for all t € [0,T]. Thus ®- W is an H-valued
continuous square integrable martingale for every ® € ./\/%/(O,T). There are two
equivalent norms in M2 (H). Hence

El@-W(n)} = lim E|@, W)} = lim 1o, = |2

for all t € [0,7]. Thus Equality (4.11) is valid for all ® € NZ.(0,T). The following
theorem summarizes the main results of this section.

Theorem 4.38. Let ® € N3 (0,T). Then the stochastic integral ® - W is an H-
valued continuous square integrable martingale and

E[® W7 = [l

for allt €[0,T7.
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4.5.1 Properties of the Stochastic Integral

In this subsection we introduce some further properties of the stochastic integral. In
the following theorem we show that the stochastic integral is similar to the determ-
inistic integral.

Theorem 4.39. The stochastic integral is a bounded linear operator from NI/QV (0,7)
to M%(H). Furthermore if ® € N3,(0,T),
(1) for allt € [0,T]
T t T
/ O(s) dW (s) :/ O(s) dW (s) +/ O(s) dW (s),
0 0 t

(it) if (E,(-,-)g) is a real separable Hilbert space and A € B(H,E),

A /0 B(s) dWW (s) = /0 AD(s) dVV(s)

for all t €[0,T).

Proof. Since ® - W € MZ(H) and E||® - W (t)||% = ||®]|? for all ® € NZ(0,T) and
t € [0, 7], the stochastic integral is bounded by Corollary 4.29. Since the stochastic
integral is linear on elementary processes and elementary processes are dense in
NE(0,T), it is linear also on N3 (0,T). The statements (i) and (ii) are valid for
elementary processes. By the density they are valid also in N 3[, (0,7). O

The stochastic integral has a predictable version.

Proposition 4.40. Let ® € N3,(0,T). Then the stochastic integral ® - W has a
predictable modification and E(® - W (t)) =0 for all t € [0,T].

Proof. Let ® € N2,(0,T) and s < t. Then the stochastic integral ® - W is mean
square continuous since

E|@ - W(t) — @ Ws)% = El(1— xio.)®) - WO = llxeq®]?
T
_E /0 Neott MO, a1y

and by Lebesgue’s dominated convergence theorem E||® - W (t) — ® - W (s)||% — 0 as
|t—s| — 0. By Lemma 4.20 the stochastic integral ® - is stochastically continuous.
Since ® - W is adapted, it has a predictable version by Proposition 4.24.

We still need to prove that E(® - W (t)) =0 for all t € [0,T]. Let ® € N§3,(0,T) and
{®,}22, be a sequence of elementary processes defined by Proposition 4.37. Then
for each t € [0, T

[E(® - W(t) = E(Pn - W(E) |z = [E[(® = Pn) - W(D)|lr < E[[(® = Pn) - W(H)|[ 1
< (E[(@—@n) WH[F)? = |12~ Pufle — 0

as n — oo. Since E(®, - W (t)) = 0 for all n € N, then E(® - W(t)) = 0 for all
t e [0, 7). 0
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The correlation operator of two stochastic integrals is presented in the following
proposition.

Proposition 4.41. Let ®1,®y € N3,(0,T). Then the correlation operator of the
stochastic integrals ®1 - W (t) and ®o - W(s) is given by the formula

Cor(®y - W(t), Do - W(s)) = ]E/OSAt(<I>1(r)Ql/Q)(<1>2(r)Q1/2)* dr (4.12)

for all s,t € [0,T].

Proof. Let ®1,®y € NZ,(0,T). Then ®;(t)QY/2, t € [0,T], is a Ba(U, H)-valued
predictable process for both i = 1,2. Therefore (®1(t)QY/?)(®o(t)QY/?)*, t € [0, T,
is a B1(H)-valued strongly measurable function on (Qp, Pp, Pr) and

|@®ae ) @me 2y

: < H‘I)l(t)Ql/Q‘

)H‘Pz(t)Ql/z‘

Bi(H By (U,H B>(U,H)
for all t € [0,T] by Proposition D.12. Consequently, for all h € H
T
B[ @0 ) @me |, a
T
ghE/ 1 (1) QY ) (P4 (1) Q) dt
P [ @@ @me )|,
T 4.13
<l [ @@ @swey|, )
0 B1(H)

T
< Hthﬂi/0 121 ()| 5, (1, 1) 192(0) | By w0, 1

< |2/l @[l 2]l P2l

Therefore the right hand side of (4.12) exists for all s,t € [0, 7] as a strong Bochner
integral.

The correlation operator Cor(®y - W(t), ®o - W(s)) is defined by
(Cor(®q - W(t), P2 - W(s))a,b)y =E[(P1- W(t),b) (P2 - W(s),a)y]

for all a,b € H and s,t € [0,T]. If ®; and ®, are elementary processes, there exists
a partition 0 = tg < t; < ... < t = T such that ®;(t) = &}, and ®o(t) = &2, if
t € (tm,tm+1] and ®% and ®2 are simple B(U, H)-valued F;, -measurable random
variables for all m = 0,1,...,k — 1. Let s,t € [0,T]. Then there exist [ and m such
that t; < s <41 and ¢, < t < t1. We denote

ny = W(tj-‘rl) - W(tj)7 J=0,...,0—1,
m = Wi(s) — W(t)

and
G =W(tjy1) —W(t), j=0,....,m—1,
m = W(t) — W(tn).



4.5. The Stochastic Integral 69

Then 7; = ¢; for all j <1l Am and

E[(®1-W(t),b) (P2 W(s),

o) )
pRRICEIHCTEN

for all a,b € H. We notice that ®!(; is F,,,-measurable and independent of F,
for all ¢ = 0,...,m and q)?nj is Ft,,,-measurable and independent of F, for all
7 =0,...,1because <I>;- is a simple random variable foralli = 1,2and j =0, ..., k—1.
Hence (®](;,b), and (@?nj,a)H are independent for all a,b € H if i # j. Thus if
i F s
E|(®16.0) ; (¥05,0) | = E(1G:b) yE(n;,0) .

On the other hand since <I>§- is a simple B(U, H)-valued JFi;-measurable random
variable, also (®%)* is for all i = 1,2 and j = 0,...,k — 1. Thus by Proposition 4.10,

E(®]¢i,b) ;= E (G, (0)*b) , = E (B [(G, (2])7D) ;1 F2]) =0

foralli =0,...,m and b € H. Similarly E(@?nj,a)H =0 forall j =0,...,] and
a € H. Hence

IAm

E (@1 W(t),b)5 (P2 W ZE[@%, CATOM

for all a,b € H. Let j <IAm. Then for all a,b € H

E[(21¢,5),,(8205,0) .| = B[ (G- (®1)78) (G, (@2)°a) ]
= E [E (¢ (@))) (¢ (#D)a) |7, )|
= E [((t+1 — 1)Q(82)"a, (21)'D)
= (tj1 — t))E(;Q(D})a,b) ,

by Proposition 4.10. If Il Am =m and j =m, for all a,b € H

[ [(q)}ngm b)H ((I)gnnm )H]

=E[(W(t) = W(tm ) (W (tmg1 A 8) = W(tm), (91,)"a) ]

=E[(W() - W(S/\t )*) 1y (W (tmg1 A s) — W(SAt) (®2)*a gl +
+E[(W(t) - W(s/\t), ) 0) (W (s At) = W(tn), (®5,)%a) ;] +
+E[(W(sAt) = W(tn), <I>,1n )*D) (W (tms1 A s) — (s At), (@%)*G)H]
+E[(W(sAt) = W(tm), (2,,)°0) (W (s At) = W(tn), (®3,)*a) ;]

=E[(W(sAt)— W(tn), (<1>1 )*b) (W (s At) = W(tm), (®5,)*a) ]

= (s At —tp)E(®,,Q(P2)*a,b) ;-
Similarly if [Am =1 and j =1,

E [(®/¢,b) , (®7m,a) ;] = (s At — 8)E(®;Q(®7)*a,b) ,
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for all a,b € H. Hence
E[(®1-W(t),0) (P2 - W(s), a) ]

IAm

= (i1 AsAt—1)E(jQ(DF) a,b)

[en]

<

B
—

=ED (i1 AsAt—t; AsAt)(2;Q(P7)a,b)

<
Il
n O

At

(@1(r)QP5(r)a, b)py dr

Il
S~

sAL
= <IE/ O (r)QP5(r)a dr, b)
0
for all a,b € H. Thus

H

SN\t
Cor(®y - W(t), &z - W(s)) = E / 1 (1) QD3 (r) dr
0
for elementary processes ®; and ®,.

Let ®1,®5 € N3,(0,7) and s,t € [0,T]. By Proposition 4.37 for both i = 1,2 there
exists a sequence {®I}°°, of elementary processes such that [|®; — @7 |7 — 0 as
n — oo. Then for all a,b € H

[E[(®1-W(2),0) (P2 - W(s),a) ] = B[] - W(1),0) (B3 - W(s), a) ]|
< [E[((D1 = @F) - W(t), ) (P2 - W(s), @) ][ +
+E[(®F - W(2),0) 5 (P2 — ®37) - W(s), a) ]
< llallz |0l ZE[(®1 — D7) - W (B[ (|2 - W (s)l| r+
+ llallz Dl HENDT - W) ||| (@2 — @3") - W(s)l|
< llall bl (EN(®1 - @F) - W(H)IF) 2 (El®2- W(s)lIF)? +
+ lallzllolm (BT - W(©)[7)* (Ell(®2 — @) - W(s)||)?
= llallzllbllz (@1 — Tl P2ls + lLTl P2 — @5*[lls] -

Since {®7}2°, is convergent in N3 (0,T), it is bounded, i.e., there exists M > 0
such that ||®7|r < M for all n € N. Thus

| Cor(®y - W(t), P2 - W(s)) — Cor(® - W(t), ®5" - W(s))ll gy — 0
as m,n — oo. On the other hand, for all h € H

HE/OS/\ (@I(T)Ql/Q)((I>2(T)Q1/2)*h dT—E/OSA (@?(T)Ql/Q)(q)gn(r)Ql/Q)*h dr

H
< [[h]l4E /0 (@1(1Q"*)(@2(r)Q'*)" = (21 (rQVA)(@F Q)| dr
< |h|4E /0 (21(r)Q")(@2(1)Q2)" — (@1(r)QV)(@F QY|

dr+
B (H)

<tk [ [(@10) - 8102)@"7] @)@

SAt *
n 1/2 &M 1/2
et [ [ @rmQ ) @ -epene ]|,
< s (11 = B el @l + 1@ 182 — 85'llz] — 0

dr
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as m,n — oo by Inequality (4.13). Thus

SAt
Cor(®y - W(t), Do - W(s)) = E/ (®1(r)QY?) (Do (r) Q)" dr
0
for all &1, Py € N3,(0,T) and s,t € [0, 7). O

The Gaussianity of the Wiener process is inherited to the stochastic integral if the
integrand is deterministic.

Lemma 4.42. If ® € L*(0,T; Bo(Uy, H)), then ® - W is a Gaussian process in H.
The covariance operator of ® - W (t) is

Cov(@ - W (1)) = /0 (B(5)Q2)(B(s)Q1/?)" ds

for allt € [0,T]. Furthermore, ® - W(t) is independent of Fo for all t € [0,T].

Proof. If ® € L?(0,T; Bo(Uy, H)), then ® is a deterministic By (Up, H)-valued pre-
dictable process such that [|®f|r = ||®||L2(0,7;B,(vs,m))- By Proposition 4.41 the
covariance of ® - W (t) is

Cov(@ - W (1) = E / (B(5)QV2)(@(5)QY2)* ds = / (@(5)QY2)(B()Q2)" ds

0 0

for all ¢t € [0, 7.

Let ® be a deterministic elementary process, i.e., there exist a sequence 0 = ¢y <
t;1 < ... <t =T and a sequence {®,, 121—210 of bounded linear operators such that
O(t) = @, if t € (ty, tms1] for all m = 0,...,k — 1. Then for all ¢ € [0, 7]

k—1
By (W (1 At) — W (tm A L))

m=0

Since W (t) — W (s) is independent of Fs for all 0 < s < ¢t < T, the stochastic integral
® - W (t) is independent of Fy for all ¢ € [0,7]. We want to show that for all { € N
and s1,...,8 € [0,T] the H'-valued random variable (® - W (s1),...,® - W(s;)) is
Gaussian. Let hq,...,h; € H. We need to prove that

l
(D-W(s1),...,® -W(s))),(h1,...,h = (2 W(si), hi) gy
=1
is a real valued Gaussian random variable. We may assume that 0 < s1 < ... <

s < T. We combine {t,,,}¥ _, and {s;}._; to be a partition {rj}?iiﬂ

[0, T]. Thus

of the interval

l l k+1+1 _
D (D W(si), i) Z > (W (rjra Asi) — W(rs Asi)), b
i=1 i=1 j=1

H

l
z ) («f»j<w<rj+l>—w<rj»,zhn)
=1y < H

n=1u
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where (i)j =&, ifr; =t,orr; =s;and t, < 8 < tyyp forall j =1,...k+
I+ 1. Since ®;(W (rj11) — W(r;)) is a F., ;41-measurable Gaussian random variable
independent of F,., for all j =1,...,k+1+1 and the sum of mutually independent
real valued Gaussian random variables is Gaussian, ® - W is a Gaussian process.

Let ® € L?(0,T; Bo(Uy, H)). Then there exists a sequence {®,}°°; of elementary
processes such that ||®—®,[|r — 0 as n — oo by Proposition 4.37. The sequence can
be chosen such a way that ®,, are deterministic since ® is deterministic. Thus ®,,-W
is a Gaussian process. We want to show that for all k € N and t1,...,t; € [0,7] the
H*-valued random variable (®-W (t1), ..., ®-W (t;)) is Gaussian. Let hy,...,h; € H.
Since

k k 2\ 3
E (D (@ -W(t)hi)y — Y (P W(ti).hi)y
i=1 =1
k 1 k )
<> (BU@ = @) - Wit b)) <D kil (BI@ — @) - W (L) )
=1 =1
k k
= > allall® = @ull, < 1@ = ulle > 1hilla — 0
=1 =1

as n — oo and the limit of real valued Gaussian random variables in L%(Q, F,P;R)
is Gaussian [21, Theorem A.7],

k
DR W(ti) ha) gy = (- W(ta), ..., 8- W(tk)), (b1, .., 1)) e
=1

is a real valued Gaussian random variable. Hence ® - W is a Gaussian process.
Since ®,, - W(t) is independent of Fy, for all A€ Fy, h€ H,n e Nand t € [0, T
B [/ W OMiy | = PA)E [ W O]

Since @, - W — ® - W in M%4(H) as n — oo, then ®, - W(t) — & - W(t) in
L*(Q,F,P;H) as n — oo for all t € [0,T]. Thus for all ¢t € [0,T] there exists a
subsequence {®,, }7° , such that ®,, - W(t) converges pointwise to ® - W (t) almost
surely. Hence by Lebesgue’s dominated convergence theorem,

‘E [ei@nk-w(t),h)HXA] _E [ei(d%W(t),h)HXA} ‘

<E [ o (@ny W(Lh) y _ Li(®-W(E

Virfxa) —0
as k — oo for all A € Fy and h € H. Therefore
E [ei(é.W(t),h)HXA} — P(A)E [ei(ovv(t)ﬁ),,}
for all A € Fy, h€ H and t € [0,T]. Thus
[ i(®-W(2) ’fo} _ [ i(@-W(t),h)H]

almost surely for all h € H and ¢ € [0,T]. Since

E{ei(wv(t),h)ff] - / WDy gp — / M L(© W (1)) (dx)
Q H
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for all h € H, by Lemma 4.13 for all B € B(H) and t € [0,T]
P(®-W(t) € B|Fy) = L(®-W(t))(B) =P(®-W(t) € B).
If Ae Fyand B € B(H), for all t € [0,T]

P(An{® - W(t) € B}) = E(xaX{s-w(1)eB}) = /AX{cp.W(t)eB} dP
- / P(® - W(t) € B|Fo) dP = P(AYP(® - W (1) € B).
A

Thus ® - W(t) is independent of Fy for all ¢ € [0, T]. O

4.5.2 The Ito Formula

Let ¢ € LY(Qp,Pr,Pp; H), ® € NEV(O,T) and X be an Fy-measurable H-valued
random variable. Then the process

X(t) = Xo +/0 ©(s) ds +/0 O(s) dW (s)

for all t € [0,T] is well defined since the trajectories of ¢ are Bochner integrable
almost surely. The process X is continuous and has a predictable version by Lemma
4.26, Theorem 4.38 and Proposition 4.40. Let us assume that the function F' :
[0,7]x H — R is continuously differentiable with respect to ¢ and twice continuously
differentiable with respect to h. Moreover, we assume that F}, and F} are bounded,
F; and Fyy, are uniformly continuous on bounded subsets of [0,7] x H and F} is
Lipschitz continuous with respect to A with integrable Lipschitz constant, i.e., for
all t € [0,T] there exists L(t) > 0 such that

[Ee(t h) = (&, Al < L = flla
for all f,h € H and L € L*(0,T).
Theorem 4.43. Under the above conditions for all t € [0,T] the Ito formula

F(t,X(t)) = F(0,Xo) —i—/o (Fn(s, X(s)), ®(s)dW(s)) —i—/o Fi(s,X(s)) ds+

+/0 (Fn(s, X (s)), () g d8+%/0 Tr(Fpn(s, X (s))P(s)QP"(s)) ds

1s valid almost surely.

Proof. Let us assume that there exist pg € H and ®y € B(U, H) such that ¢(t) = ¢
and ®(t) = ¢ for all t € [0, T]. Then X (t) = Xg + tpo + PeW (t) for all t € [0,T].
Since the Wiener process is continuous and W (t), ¢t € [0,T], is Fi-measurable, X is
continuous and adapted. Let s,¢ € [0,T] such that s <t. Then

(EIX(£) = X(s)[|12)7 = (B[[(t — s)p0 + ®o(W(t) — W(s)[3)?

E|(t — )poll3)? + Ell@o(W () — W(s))I[3)
(t — 9)llollar + 1ol s, EIW (1) — W(s))|I%
( _

t = s)llwollm + 1%l ) v/ (t = 8) Tr Q

NI

IN
~—
N[

IN

IN
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by Lemma 4.33. Hence X is mean square continuous. Therefore X has a predictable
version by Lemma 4.20 and Proposition 4.24.

Let the points 0 = tg < t1 < ... <t = t define a partition 7 of a fixed interval
[O,t] - [O,T] We denote |7T‘ = maxogjgk_l(tjﬂ - tj). Then

F(t,X(t)) — F(0, Xo)

N
—_

k—
= Y [Ftj1, X (1) = Fty, X (t00)] + D_[F(t5, X (t41)) — Ft5, X (1)),
— .

<
I
o

Since F' is continuously differentiable with respect to ¢ and twice continuously dif-
ferentiable with respect to h and X is continuous, by applying Taylor’s formula for
almost all w € Q there exist 0,01, ...,0k_1,%0,%1,...,9_1 € [0,1] such that

B(t, X(t)) — F(0, Xo)

k—1
= ZFt(tj+1aX(tj+1))Atj + Z[Ft(fjaX(th)) — Fi(tjp1, X (t41))]At+
+Z Fy(ty, X (t; AXj)H+% (Fun(tj, X () AXj, AX;) y+
Jj= 7=0
+1kzl (IFhnt5: %5) = a5, X (4))]AX;, AX; )
2 J 7 J H
Jj=

vzhere Atj = tj+1 — tj, fj = tj + Hj(tj—i-l - t]’), AX] = X(tj+1) — X(tj) and
X = X(tj) +0;(X(tj41) — X(t;)) for all j =0,...,k — 1. We examine the terms
of the Taylor expansion one by one.

Since F} is continuous from [0,7] x H to R and X is continuous,
D Filtisn, X (ti41)) At
is an approximation of the Riemann integral fg Fi(s,X(s)) ds almost surely. Thus

k—1 :
> Bty X(ta)At — [ Fils, X(s)) ds
=0 0

as || — 0 almost surely.
Since X is continuous, for almost all w € € the set
Ay, :={h € H:X(s,w)=h for some s € [0,T]}

is bounded in H. Since F} is uniformly continuous on bounded subsets of [0, 7] x H,
for all £ > 0 there exists d(w) > 0 such that |Fy(s, h)— Fi(r, h)| < € for all s,r € [0, 1],
he A, and |s — 7| < 0(w). Let |7| < (w). Then

k—1
> [Fulty, X (tj11)) — Fultjpn, X (t41))]At;

=0
k—1 k—1
| Fy(t5, X (tj11)) — Fi(tjen, X(t0))|At; <) eAt; =et
=0 =0
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since |t; —tj11] = (1 —0;)(tj41 — tj) < d(w) for all j =0,...,k — 1. Hence

E
—_

[Fi(tj, X (tj11)) = Fi(tj1, X (tj41))]AL; — 0

<.
Il
o

as || — 0 almost surely.

The third term has to be divided in two parts

k—1

D (Bt X (1)), AX;)

i=0

’ k—1 k—1

= Z (Fh(tja X(tj))a QPO)HAtj + (Fh(tj’ X(tj))a q)OAVVJ)H
j=0 Jj=0

where AW, := W (tj11) —W(t;) for all j =0,...,k—1. Since F}, is continuous from
[0,7] x H to H and X is continuous, (Fp(s, X(s)),¥0)y, s € [0,T7], is continuous.
Hence

N
—

t
(Ea(t), X (1)), 00) y Aty — /0 (Fn(s, X(5)), 0(s))  ds

<.
Il
o

as |m| — 0 almost surely. Since F} is bounded, there exists C' > 0 such that
| Fr(s,h)||g < C for all s € [0,T] and h € H. Since (Fj(s,h),Po)y : U — Ris a
bounded linear operator, (Fj(s,h), ®o-)y € B2(Up,R) for all s € [0,7] and h € H.
Furthermore,

[(Fr(s,h), @0) gl Bo(vo,r) < NER(S P) || @ By (g, 5y < Cll®| 5w,y v/ Tr Q-

Since X has a predictable version and F}, is continuous, (Fp(s, X (s)),®o-) has a
predictable version with values in Bs(Up, R). Since

I(En (-, X (), Por) g llF = E/O 1(En(s, X (), Ro) gl (170 ) 5

< tC?|| @By T Q,

(Fh(aX())>q)0)H € NI/2V(07t; B2(U0>R)) Hence f()s (Fh(’I”,X(’I")),(I)(T)dW(’I“))H S
MZ?(R). On the other hand,
k—1
Gr(s) =) (Fn(t;, X(t5)), Po) yX(t; ;4. (5)
§=0

is a B(U, H)-valued predictable process for all s € [0,¢] since X (t;) is F;,-measurable
forall j =0,...,k—1, and

k—1

IGHI7 =B I1(Fnlty, X (£5)), o) | By iy Ati < CP @ B0y Tr Q-
§=0
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Hence G € Ni%,(0,t; B2(Up, R)). Then

e
|
-

EA(&@X@MQ@MW$M (Fa(t;, X (1)), ®oAW;)
J
=EAHuMaX@»¢wH—GA$%th@

t k—1
= E/O D (Fn(s, X (), @0 gy — (Falts, X (£))s P07) g By 0 my Xt 15111 (5) s
=0

Il
o

t k—1
< 1@l w,m TrQ E/O D I Fn(s, X () = Fulty, X)) 7rX (1,841 (5) ds.

Since Fj, is continuous and X is continuous, Fj(s, X (s)), s € [0,T], is continuous.
Thus

e
—_

1Fn(s, X (5)) = Fn(ts, X G Ex(t; 540 (5) — 0

Il
=)

J

as |m| — 0 almost surely. Since

e
—_

1Fn(s, X (5)) = Fn(ts, X G Frx(e; 54 (5) < 4C?

<.
I
o

for all s € [0,T], by Lebesgue’s dominated convergence theorem,

E
—

Eéwwmwmmmm (Fa(ty, X (1)), 20AW;) ;| — 0

<.
Il
o

as || — 0. Hence there exists a subsequence such that

o

Y (Fh(tj,X(tj)),QJOAWj)H—>/Ot (Fi(s, X (), ®(s)dW (5)) 1

<.
Il
o

as |r| — 0 almost surely.

The fourth term has to be divided in three parts

k—1
> (Fan(ty, X(1))AX;, AX;)
7=0
k—1 k—1
Z Fyp tij( ))9007900) (At )2+ (th(tij( ))(I)OAij(I)OAW)
Jj=0 Jj=0
k—1

+ 2 [(Fhn(ty, X(&5)) 0, QoAW;) gy + (Fun(ts, X (7)) RoAWS, o) ] At ;.

j=

Since Fpp, is a bounded function from [0,7] x H to B(H), i.e., there exists D > 0
such that || Fpp(t, h)|| gy < D for all (t,h) € [0,T] x H,

o

k—1

k—1
S (Fnlty, X (4))90, 90) 5 (A)?| < Dlollyy (At
7=0 j=0
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as |r| — 0. Thus
k—1
Z th t]7 )()007@0) (Atj>2 —0
7=0

as |m| — 0 for all w € . Since W is continuous, for almost all w € € and all
e > 0 there exists d(w) > 0 such that ||WW(¢t) — W (s)||y < ¢ for all s,¢ € [0,7] and
|t —s] < d(w). Let |7| < §(w). Then

k—
Z Fhn(ts, X (t5)) 0, PoAW;) i + (Fra(ts, X (t5))PoAW;, o) ] At;
=0

k-1
< 2D ol ull®oll s,y Y IW (tj11) = Wt lu Aty < 2tD|loll ll®oll e
J=0
Hence
-1
[(Fhn(ty, X(t5)) w0, PoAW;) 4+ (Frn(ty, X (t;))PoAW;, @o) y]At; — 0
7=0

as || — 0 almost surely. Let {f;};°, be an orthonormal basis in H. Then by the
Lebesgue’s dominated convergence theorem,

Elxa(Fhn(tj, X (t;))PoAW;, oAW;) ]

=E |xa Z (Frn(tj, X(t;))PoAWS, f1) 1 (R0 AW, f1)
=1

o

Elxa(Fnn(ty, X () PoAWS, fi) g (PoAWS, fi) 4]

-
I

1

for all A€ F;; and j =0,...,k — 1 because for all n € N

Z\ Fun(tj, X ()P0 AW;, fi) (B AW, fi) |
S Hth(tj»X(tj))‘I’oAWjHHH‘I)oAWjHH < D[ @ol[ G307, m 1AW I

and E||AW;||# = At; TrQ for all j =0,...,k— 1. Since AW} is independent of Fi;
and ®GFy, (t;, X (t;)) fi is Fi;-measurable, according to Proposition 4.10,

Elxa(Fpn(ty, X(t5)PoAW;, fi) 1 (PoAWS, fi) ]
= E[xa(AW;, @5Fy, (15, X(tj))fl)H(AWj> (I)Sfl)H]
= EAE((AW;, @6 Fy, (L5, X (85)) i) 1 (AW, @0 f1) | F,)]
= E[xa(At;QPq f1, o Fpp (L5, X (85)) /1) 4]
= AGE[xA(Fhn(ty, X (1)) 20QPo f1, [1) ]
for all A€ F;, and j =0,...,k—1and [ € N. Thus

Elxa(Fhn(ty, X(t;))PoAW;, DoAWS) 4]

= Z AtExa(Frn(ty, X (t5))PoQPp f1, f1) ]
=1
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for all A € 7, and j =0,...,k — 1. Since

ZI Fin(t5, X (1)) 20Q®0 1, fi) | < 1 Fnnn(ts, X () PoQ®o | 5, (11

< D@0l By Tr Q
for all n € N, by Lebesgue’s dominated convergence theorem,
Elxa(Fha(ty, X (t;))PoAW;, ®oAW;) 4]
= AtE[xa Y (Fan(ty, X () 20QP i, f1) 4]
=1
= At Exa Tr(Fhn(t;, X () 2oQP;)]
for all A€ F; and j =0,...,k — 1. Hence

E[(Fun(t), X (7)) @AW, ®oAW;) | Fi,] = At Tr(Fun(t, X (1)) BoQPp)

almost surely for all j = 0,...,k — 1. Since (Fpp(t;, X(t;))PoAW;, PgAW;),, is
Fi;-measurable for all 0 < j < i <k —1 and by Lemma 4.33,

E(Fhn (s, X (t5)) 2o AW, RoAW;)F; < D?(| @0l a1 EI AW, 17
< 3D?|[Po|| .11 (Tr Q) (Aty)?,
we can use Lemma 4.11. Thus

k—1
(Fnn(t5, X (7)) LoAW;, ®oAW;) = > Tr(Fpn(t, X (¢7)) 2oQ®G) At
j=0

&=
> ~
T >
o —
o

|
—

[E(th(tja X (t;))PoAW;, ®oAW;) 5, — E(Tr(Fun(t5, X (7)) 20Q®5) At;)

IN
> .
Il
= O

E(Fhn(ts, X (t;)) 2o AW, BoAW;)F,
0

J

??‘
._.

< 3D?|| o[ g7y (Tr Q)2 (At ) — 0

<.
Il
o

as |r| — 0. Hence there exists a subsequence such that

el
—

k—1
(Fun(t, X (£5) R0 AW;, RoAW) i — > Tr(Fpn(t, X (1)) B0QPg) At; — 0
j=0

<.
I
o

as || — 0 almost surely. Since F}, is continuous, X is continuous and Tr A—Tr B =
Tr(A — B) for all A, B € B;(H), the process Tr(Fpp(s, X (s))PoQ®P;) is continuous
on [0,7]. Therefore

k—1 t
ZTr(th(tj,X(tj))fon@a)Atj —>/0 Tr(Fpp(s, X(5))PoQPg) ds
=0
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as |w| — 0 almost surely. Thus

=

-1 t
(th(tj,X(tj))(I)oAWj,q)oAWj)H —>/0v TI‘(th(S,X(S))q)()Q(I)S) ds

<.
Il
o

as || — 0 almost surely.

Since Fpp, is uniformly continuous on bounded subsets of [0,7] x H, for all ¢ > 0
and almost all w € €2 there exists §(w) > 0 such that || Fyn(s, h) — Fpn(s, f)ll s < €
for all s € [0,¢], f,h € A, and ||h — f||g < d(w). Since X is continuous, for almost
all w € O there exists p(w) > 0 such that || X(s) — X (r)||g < d(w) for all r, s € [0, ¢]
and |s —r| < p(w). Let |7] < p(w). Then

E
—

k-1
<[th(tjan) — Fn(ty, X (t5))]AX;, AXJ>H < 52 (AX;, AXG) gy
=0

I
o

J

since || X; — X (t)|lgr = 95| X (tj+1) — X (t;)|lgr < 6(w) for all j =0,...,k — 1. The
examination of the fourth term showed that there exists a subsequence such that

E

—1 ¢
(AXj, AXj)y — / Tr(®eQ®f) ds = t Tr(PeQd})
0

<.
Il
o

as |r| — 0 almost surely. Thus there exists a subsequence such that {Zf;é 1AX; %}
is a bounded sequence almost surely. By using the subsequence

o
—_

([th(tjan) — Fun(ty, X(t5))]AX;, AXJ)H —0

<.
Il
o

as || — 0 almost surely.

Therefore, if X(t) = Xo + to + oW (1), for all t € [0,T]
F(t, X (£)) — F(0, Xo)
- /Ot Fy(s, X (s)) ds + /Ot (Fi(s, X(5)), 00) g ds-+
+ /0 (Fa(s, X(5)), Bod IV (5)) +3 /0 Te(Fn (5, X () 20Q®%) ds

almost surely.

If ¢ and ® are elementary processes, there exist a sequence 0 =tg <t; <... <t =
T and a number n,, € N and sets {AL }/" C F, for allm =0,...,k—1 such that

k-1 ny,

et,w)=> > ohxar (W X(tmtmi) 1)
m=0 [=1
k-1 ny,

(I)(t, w) = Z (b'lmXAlm (w)X(tm,tm+1] (t)

ﬁ
=)
Il
—
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for all (t,w) € Qr where ¢!, € H and ®., € B(U, H) for all m = 0,...,k — 1 and
l=1,...,npy. Thus

k=1 nm
X(t)=Xo+ Y D> mXay, (tmi1t At =t At)+
m=0 [=1
k—1 nm
+ ) B (Wltmea At) — Witm At))
m=0 [=1

for all ¢t € [0,7]. Hence

X(t) = X(tm) + @by (t — tm) + @L(W(E) — W(ty))
= X(tm) = Phptm — @b, W (tm) + byt + L, W (1)

if t € [ty,tme1] and w € Al for some m = 0,....,k —1land [l = 1,...,n,,. Since
X (ty) — @hotm — ®L W (t,,) is F,, -measurable and the Ito formula is valid pointwise
almost surely for processes of the form X (t) = Xo + tgo + oW (t), the Ito formula
is valid also almost surely for elementary processes ¢ and ®.

If ¢ € LY(Qp, Pr,Pp; H) and ® € N3, (0,T), by Propositions 4.25 and 4.37 there
exist a sequence {p, }°° ; of H-valued elementary processes and a sequence {®,,}7°_;
of B(U, H)-valued elementary processes such that ||®,, — @[z — 0 and |¢, —
ol L1 (@r prpri) — 0 as m,n — co. We define the processes X and X, ;, by

X(t) := Xp +/0 ©o(s) ds +/0 O(s) dW (s)

Xnm(t) == Xo +/0 on(s) ds +/O D, (s) dW(s)

for all t € [0, 7] and m,n € N. Then X and X, , for all m,n € N have a predictable
version. Furthermore, by the Fubini theorem,

/Q | X (t,w) — Xn,m(t7w)||H Py (dt, dw)
T
aéwmw—&mwmﬁ

SATh%%wﬁ—%@wHw+EM@—@wWW$m}ﬁ
T

D=

< [ (100 = Clorrprerm + (EI@ = 0) - W(s) )] a

T
=AM%—Mm%m%mHMw@Mdt
<T [HSOn - <P”L1(QT,7DT,PT;H) + | ®m — ‘D\”T] —0

as m,n — oo. Hence Xy, — X in L'(Qr,Pr,Pr; H) as m,n — oco. Therefore
there exists a subsequence such that X, ,,(t,w) converges pointwise to X (¢,w) for
almost all (t,w) € Qp. Thus F(t, X, n(t)) — F(t,X(t)) as m,n — oo almost surely
for almost all ¢ € [0,T] because F' is continuous.

Since F} is Lipschitz continuous with respect to A with integrable Lipschitz constant,
i.e., forall ¢t € [0, T] there exists L(t) > 0 such that |Fy(t,h)—Fi(t, f)| < L()||h—f|lz
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for all f,h € H and L € L*(0,T), for all t € [0, T]

t t
E /0 Fi(s, Xnm(s)) ds—/o Fi(s,X(s)) ds

<E /0 L) | Xnm(s) — X (5)]|1r ds

- /0 L(S)E| Xnm(s) — X(5)]lr ds

< HLHLl(O,T) [||80n - 90||L1(QT,7>T,PT;H) + | @m — ‘I)’HT] —0
as m,n — oo. Hence for all ¢ € [0, T] there exists a subsequence such that

/Ot Fi(s, X m(s)) ds — /Ot Fi(s. X(s)) ds

as m,n — oo almost surely.

Since Fj, is bounded, for all ¢t € [0, 7]

E /0 (Fn(5, X (), 9n(5))y ds — /0 (Fa(s, X(5)), (5)) r ds

< [ 15 K 5)): pa(5) = () ] s+

+E [ 10 Xom5) = Fils X)), 006D
<E [ 106, K 6Dlonts) — o)l s

+B [ 15 X (5)) = Fulo, XDl (o) s

t
< Clien = @llr@rprprim) + E/O 1En(s, Xnm(5)) = Fi(s, X () llp(s) | ds.

Since F}, is continuous and ¢ € L'(Q, Pr,Pr; H), by Lebesgue’s dominated con-
vergence theorem for all ¢t € [0, T]

t

E /0 (En(5, X)), 9n(5)) y ds — /0 (Fa(s, X(5)), (5)) g ds| — 0

as m,n — oco. Hence for all ¢t € [0, T] there exists a subsequence such that

/ (5, Xngn(5)), 9n(s)) g ds — / (Fa(s, X(5)), (5)) 1 ds
0 0

as m,n — oo almost surely.
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Since F}, is bounded, for all ¢ € [0, 7]

(E

N

t

/ (Fn(5, Xoyn(5)), ®on (5)dW (5)) ; — / (Fa(s, X(5)), B(5)dW (5))

0

)

(SIS

2
= ( $)Fp (s, Xnm(s)) — ®*(s)Fy(s, X (s5)),dW(s)), )
_ ( / @(5) (5, X (5)) = () B (5, X)), ds>§
< (& [ 1o XD (5) = 0y 0 )+

+ (E/O I([Fn (s, Xnm(5)) = Fin(s, X (s))], @() )| By ) dS) 2

1

t 3
< (E /0 1F (5, Xona (DI 1@ () = D), 010 ds) +

S

+ (E/O 1Fn (s, Xnm () = Fn(s, X (SDIE NP () | By, d8>

1
2

t
< |, — |y + (E /0 | Fi(, X (5)) = Fi(s, X () 319(3) 3, 5 ds) -

Since F}, is continuous and ® € N3, (0,T), by Lebesgue’s dominated convergence
theorem for all ¢ € [0, 7]

t 2

E / (Fn(5, Xy (5)), on(5)dW (5)) ;7 — / (Fa(s, X(5)), ®()dW () ;y| — 0
0 0

as m,n — oo. Hence for all ¢ € [0, T] there exists a subsequence such that

[ it Xm0 — [ Bt X6, 2006

as m,n — oo almost surely.

Since Fpp (s, Xnm(5))Pm(s)QP;,(s) and Fpp(s, X(s))P(s)QP*(s) are nuclear oper-
ators for all s € [0,T7,

| Tr[Fhn (8, Xn,m(8)) @ (8)QP;, (8)] — Tr[Fin(s, X (s)) @ (s)QP (s)]]
= | Te[Fhn (s, X (5)) P (s)QPr, () — Fan(s, X (5))P(s)QP"(s)]|
< [ Enn (s, Xnm (8)) P (s) QD7 (5) — Fiun(s, X (5))(s)QP™(5)| 5, (1)
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Since Fpy, is bounded, for all ¢ € [0, 7]

E / Tr(Fpp (s, Xnm(5))Pm(5)QPr,(s)) ds—/ Tr(Fpp(s, X(s))®(s)QP"(s)) ds
0 0

< 105 Ko () P ()03 (5) — s, X (5))0(5)Q0 5,
< [ 1Funts. Xon(s)) ~ Funto, X(6))I2(6)Q0" () )
FE [ 15 X () 5) — (), s+
P [ 105 X () )~ #(6)Q036) s
< 105 Ko (6)) ~ Fon 5 X 6D 106) ) s+
FE [ 13000 K () 106 0 1 (5) — 6y it
P [ 1305 o ()0 1 (5) ~ 2060 )| o) s, 5

t
< E/O 1Fn (8, Xnm (5)) = Fun(s, X ()| e 19(3) 1, 020 ds+

+ D(l12llz + @) | Lm — Pl

Since {®,, }2°_; is a convergent sequence in N2 (0,T), it is also bounded. Therefore
by Lebesgue’s dominated convergence theorem for all ¢ € [0, 7

E /O [Tr(Fhin (8, Xnm(5))Pm (8)QPy,(s)) — Tr(Fan(s, X (s))@(s)QP"(s))] ds| — 0

as m,n — 0o since Fyy, is continuous and ® € N3 (0,T). Hence for all ¢t € [0,7]
there exists a subsequence such that

[T 5 Ko (600 (10560 ds — [ TeFin X(9)0()Q0 () s
as m,n — oo almost surely.
Therefore
F(t, X (1) — F(0, Xo)
- /Ot Fi(s, X(s)) ds + /Ot (Fu(s, X(5)), 0(s)) yr ds+

t 1t .
+ [ (Pl XD () + 5 [ Te(Fun s X () 0(5)Q0" (1)) s

for almost all (¢,w) € Qr. Since both sides are continuous with respect to ¢, the Ito
formula is valid almost surely for all ¢ € [0, 7. O

4.6 Linear Equation with Additive Noise

Let (2, F,P) be a probability space and {F}+>0 a normal filtration. Let (H, (-,-) )
and (U, (-,-)) be real separable Hilbert spaces and @ € B(U) a positive self-adjoint
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trace class operator with Ker @ = {0}. Let W (t), t > 0, be a -Wiener process in
(Q, F,P) with values in U with respect to the filtration {F;};>0. We consider the
linear equation

{dX(t) = [AX(t) + f(t)]dt + BAW (t), (4.14)

X(0) = Xo
where A : D(A) C H — H and B : U — H are linear operators and f is an H-
valued stochastic process. We assume that A is sectorial and hence generates an
analytic semigroup {U(t)}+>0 in H. In addition, D(A) is dense in H. Therefore the
semigroup U (t) is strongly continuous. The operator B is assumed to be bounded.
It is natural to require that f € LY(Qp,Pr,Pr; H) for some T > 0, i.e., f is an
integrable H-valued predictable process and X is Fp-measurable.

Definition 4.44. An H-valued predictable process X (t), t € [0,T], is said to be a
(strong) solution to the stochastic initial value problem (4.14) if X (t,w) € D(A) for
almost all (t,w) € Qr, AX € L*(Qr, Pr,Pr; H) and for all t € [0,T)

X(t) = Xo + /0 t[AX(s) + f(s)] ds + BW(t)

almost surely.

A strong solution has a continuous modification by Lemma 4.26 and Theorem 4.38.
We denote
¢
:/ U(t—s)f(s)ds and Wa(t / U(t —s)B dW(s)
0

for all ¢t € [0,T]. The processes fa and W4 have a great importance in our study of
linear equations. The following lemma and proposition present the basic properties
of f4 and Wy.

Lemma 4.45. The process fa has a predictable version.

Proof. Since U (t) is strongly continuous, it is measurable from [0,7] to B(H). By
Proposition 2.2 there exist § € R and M > 0 such that |U(t)| gy < Me? for all
t > 0. Thus U(t — -)f is a predictable process on €, for all t € [0, T] and

/||Ut—s >qus<E/ WUt = )l | F () ds
< max{1, M, MeGT}IE/ f ()| ds
0

= max{1, M, MeeT}HfHLl(QT,PT,IP’T;H)-

Hence the process f4 is well-defined because the trajectories of U(t—-) f are Bochner
integrable almost surely. Furthermore, f4 is adapted. Let 0 < s <t <T. Then

Ellfa(t) = fa(s)llm

:E‘ /OS(U(t—r) —U(s — ) f(r) dr—i—/StU(t—r)f(r) dr

H

T
SE/O Xjo,s] (MU (¢ =) = U(s =)l a1 (1)l dr+

T
+E [ o OIUGE = lnll S0l .
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Since U is strongly continuous and |U(t)|| gy < max (1, M, M) for all t €
[0,7] and f € L'(Qr,Pr,Pr; H), by Lebesgue’s dominated convergence theorem
E|fa(t) = fa(s)||lg — 0 as |t — s| — 0. Therefore f4 is stochastically continuous
since for all € > 0 and 6 > 0 there exists p > 0 such that E|| fa(t) — fa(s)||g < €d if
|t — s| < p, and hence

B(Ifa(t) — fa(s)llar > ¢) < 1A0) - fa®la _

if |t — s| < p. Therefore f4 has a predictable version by Proposition 4.24. O

The process Wy is called a stochastic convolution.

Proposition 4.46. The process Wy is Gaussian, continuous in mean square and
has a predictable version. In addition,

Cov Wa(t) = /Ot U(t — s)BOB*U*(t — 5) ds

for all t € [0,T].

Proof. Since U (t) is strongly continuous, it is measurable from [0,7] to B(H). Fur-
thermore, for all ¢ € [0, 7]

t t
L= 81 s < [ 1= ) By Te @ s
t
< |BlBwm TYQ/ M?e*00=2) ds
0

< MG gz T,
Y, B(U,H)

Hence U(t — -)B € L%(0,t; Bo(Uy, H) for all t € [0, T]. Thus the process W4 is well
defined and adapted. Let 0 < s <t <T. Then

Wa(t) — Wal(s)

s t
= /0 (U(t—r)—U(s—r)BdW(r)+ / U(t—r)B dW (r)
T ° T
- /0 Xosl (VU (E =) — Uls — 1) B dW(r) + /0 N (MUt — ) B dWW (1),
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Thus

D=

(EIWa(t) = Wa(s)ll)

2\ 3
_.I_
H

T

< <IE H /0 Xosl (VT (E =) — (s — ) B dW(r)
T 2\ 2

+ (E H/ X[s,0] (r)U(t —r)B dW(r) )
0 H
T

~ ([ 1o 1) = Uls =Bl ds) +
. :

(& [ 10U = )3l 05

<13 \/TrQ</T MU= 1)~ U(s = )2 ds)i

= B(U,H) ) X[0,s] B(H)

1Bl /TG </O N T =)0 )

Since ||U (?)|| p(ary < max (1, M, Me9T) for all t € [0,T] and U is strongly continuous,
by Lebesgue’s dominated convergence theorem E||W(t) —Wa(s)||%, — 0 as [t—s| —
0. Therefore W4 is mean square continuous. Hence W4 has a predictable version
by Lemma 4.20 and Proposition 4.24.

N[

We want to show that for all n € N and ¢y,...,t, € [0,7] the H"-valued random
variable (Wy(t1),...,Wa(t,)) is Gaussian. Let hi,...,h, € H. We need to prove
that

(Walt1),...,Wa(tn)), (h1,...,hp))gn == Z (Walti), hi) i
i=1

is a real valued Gaussian random variable. We may assume that 0 <1 < ... <t, <

T. Then
</Ot Ulti — $)B dW(s), hi> )

D (Walti), hi) gy =
Z/tj i — $)B dW(s), hi

=1

i i

=1

H

t.
/] U(t; — 5)B dW (s ZU*t 1)

1 \Jti-1

I
NE

<.
Il

Since U(t — -)B € L*(0,t; Bo(Uy, H) for all t € [0,T],

/t U(t—r)BdW(r)

is a Gaussian Fi;-measurable random variable independent of Fy for all 0 < s <
t < T by Lemma 4.42. The sum of mutually independent real valued Gaussian
random variables is Gaussian. Hence W4 is a Gaussian process. By Lemma 4.42
the covariance of W4 (t) is as claimed. O
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Let X(t), t € [0,T], be a strong solution to the stochastic initial value problem (4.14)
and ¢t € [0,T]. Then there exists a sequence {t, }°°; such that t,, < ¢ for alln € N and
tn, — tasn — oo. Let h € H and n € N. We define the function F': [0,¢,] x H — R
by F(s,z) = (U(t — s)x,h)y. Then F is continuously differentiable with respect to
s and twice continuously differentiable with respect to x and

Fs(quU) = (_AU(t - 3)337 h)Hv
Fy(s,x) =U*(t — s)h,
Firp(s,2) =0

since U (t) is strongly continuous, AU (t) is continuous on (0,00) and for all ¢ > 0

U ()| ey < Me,
AU ()| p(ary < Ct~te@+D!

for some 8§ € R, M > 0 and C > 0 according to Proposition 2.2. Furthermore, Fj
is uniformly continuous on bounded subsets of [0,t,] x H and Lipschitz continuous
with respect to x with Lipschitz constant

L(s) = C||h[| eV (1 — 5) 7,
which is integrable on [0, ¢,], and F, is bounded. Then by the Ito formula,

Flt, X (ta)) = F(0, Xo) + /0 " (Fuls, X(5)), BAW (5)) +
+/O Fy(s, X(s)) ds+/0 (Fy(s,X(s)), AX(s) + f(s))y ds
— (U(£)Xo,h)y + /0 T (Ut — ), AX () + f(5))y dst
+/0"(—AU(t—s)X(s),h)H d5+/0"(U*(t—s)h,BdW(s))H
— (U() X0, h)yy + /0 (Ut — ) AX(s) — AU(t — )X (s), h) ; ds+

+/0 (Ut —19)f(s),h)y ds+/0 (U(t —s)BdW (s),h) 5

almost surely. Since AU (t)x = U(t)Ax for all x € D(A) and X(t,w) € D(A) for
almost all (t,w) € Qp,

(U(t_tn)X(tn>vh>H
_ <U(t)X0+ /0 “U(t— ) f(s) ds + /O ' U(t—s)BdW(s),h>

almost surely. Thus

H

Ut — )X (6) = U Xo + [ Ult—s)f(s)ds + | Ut - s)BaW (s)
0 0

almost surely. Since the strong solution has a continuous modification, the ana-

lytic semigroup is strongly continuous and the integrals are continuous processes by
Lemma 4.26 and Theorem 4.38,

X(t):U(t)X0+/O U(t - s)f(s) ds+/0 U(t — s)BdW (s)

for all t € [0, 7] almost surely.
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Theorem 4.47. Under the above assumptions if the stochastic initial value problem
(4.14) has a strong solution, it is given by the formula

X(t)=U(t)Xo+ /Ot U(t—s)f(s)ds+ /Ot U(t — s)BdW (s) (4.15)
for allt € [0,T] almost surely.

By Lemma 4.45 and Proposition 4.46 the right hand side of (4.15) has a predictable
modification. It is natural to consider Process (4.15) as a generalized solution to
the stochastic initial value problem (4.14) even if it is not the strong solution in the
sense of Definition 4.44.

Definition 4.48. The predictable process given by the formula

X(t)=U(t)Xo —i—/o U(t—s)f(s)ds+ /0 U(t — s)BdW (s)

for all t € [0,T] almost surely is called the weak solution to the stochastic initial
value problem (4.14).



Chapter 5

Complete Electrode Model

In electrical impedance tomography (EIT) electric currents are applied to electrodes
on the surface of an object and the resulting voltages are measured using the same
electrodes. If the conductivity distribution inside the object is known, the forward
problem of EIT is to calculate the electrode potentials corresponding to given elec-
trode currents. In this chapter we introduce the most realistic model for the EIT, the
complete electrode model (CEM). It takes into account the electrodes on the surface
of the object as well as contact impedances between the object and electrodes. The
existence and uniqueness of the weak solution to the complete electrode model in
bounded domains has been shown in the article [48]. Usually in applications the
requirement of the boundedness of the object is fulfilled. Since we are interested in
electrical impedance process tomography and assume that the pipeline is infinitely
long, we need the analogous result in unbounded domains. Because of the state
estimation approach to the electrical impedance process tomography problem we
examine the Fréchet differentiability of the electrode potentials with respect to the
conductivity distribution. The results concerning unbounded domains are made by
the author.

5.1 Complete Electrode Model in Bounded Domains

Let D be a bounded domain in R™, n > 2, with a smooth boundary 0D and o a
conductivity distribution in D. We assume that ¢ € L>(D), i.e., o is essentially
bounded in the domain D up to the boundary. To the surface of the body D we
attach L electrodes. We identify the electrode with the part of the surface it contacts.
These subsets of 0D we denote by ¢; for all 1 <[ < L. The electrodes e; are assumed
to be open connected subsets of D for all 1 <[ < L whose closures are disjoint.
In the case n > 3 we assume that the boundaries of electrodes are smooth curves
on 0D. Through these electrodes we inject current into the body and on the same
electrodes we measure the resulting voltages. The current applied to the electrode e,
is marked with I; for all 1 <1 < L. We call a vector I := (I,...,I1)T of L currents
a current pattern if it satisfies the conservation of charge condition Zlel I, =0.
The corresponding voltage pattern we denote by U := (Uy, ..., UL)T. We choose the
ground or reference potential so that Uy = 0. If the voltage pattern U instead of the
current pattern I were given, the electric potential v in the interior of the domain
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D would satisfy the boundary value problem

V:-oVu=0 in D, (5.1)
ou
U+Zl05 =U, one, 1<I<L, (5.2)
0% =0 ondD\UL, ¢ (5.3)
where z; € Ry is the contact impedance on the electrode ¢; for all 1 <1 < L and v
is the exterior unit normal on 9D. We denote z := (z1,...,z5)T. The weak solution

to the boundary value problem (5.1)—(5.3) is defined to be the solution u € H*(D)
to the variational problem

L

L
1
/D o(z)Vu(z) - Vo(z) da:—i—lZ;Z—l /q u(z)v(z) dS(z) = Z Ul / v(z) dS(x)

11 €

for all v € HY(D) with appropriate assumptions on the conductivity o and contact
impedances z. The corresponding current pattern would be given by

I = / o— ds

forall 1 <1 < L. Since we want to inject current and measure voltage, the boundary
value problem we are interested in is

V-oVu=0 in D, (5.4)
ou

o5 = 0 ondD\U e, (5.5)

a%ds_ll, 1<1<L (5.6)

when the current pattern I is known. Since the boundary value problem (5.4)-(5.6)
does not have a unique solution, we add an extra boundary condition, namely

u+zlag—u =U; one, 1<I<L. (5.7)
v

The boundary value problem (5.4)—(5.7) is called the complete electrode model. We
assume that the conductivity distribution and contact impedances are known. For
a given current pattern I the solution to the complete electrode model contains the
electric potential u in the interior of the body as well as L surface potentials U. We
are looking for the solution from the space H := H'(D) @ RL. In the article [48] it
has been shown that the complete electrode model has the variational formulation

B((u,U), Zm (5.8)

for all (v,V) € H where B : H x H — R is the bilinear form

“q
B((u,U), (v,V)) ::/Da(:v)Vu(x)-Vv(a:) da:—l—g Z—l/(u(x)—Ul)(v(w)—Vl) ds(z)
=1 €l

for all (u,U),(v,V) € H. We notice that if B((u,U), (u,U)) = 0, then u = Uy =

.. = Up, = constant. Hence the variational problem (5.8) for all (v,V) € H cannot
have a unique solution in H. We can always add a constant to the solution. Thus
we need to choose the ground potential.
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Theorem 5.1. [48, Theorem 3.3 and Corollary 3.4] Let us assume that there are
strictly positive constants oo, o1 and Z such that oy < o(x) < o1 for almost all
x €D and z > Z for all1 <1< L. Then for a given current pattern (II)ZL:1 e RE
there exists a unique (u,U) € H satisfying

L
B((u’ U)v (Ua V)) = Z Lv
=1
for all (v, V') € H if the ground potential is chosen such a way that Uy = 0.

In the article [48] it is assumed that o is continuously differentiable in the domain
D up to the boundary, i.e., ¢ € C'(D) and the ground potential is chosen such a
way that Zle U; = 0. Nevertheless, in the proof of Theorem 5.1 the assumption of
continuous differentiability is not required and any appropriate choice of the ground
potential ensures the uniqueness. Hence by Theorem 5.1 for all current patterns the
complete electrode model has a unique weak solution in H if it is assumed that the
ground potential is chosen such a way that U; = 0.

5.2 Complete Electrode Model in Unbounded Domains

Let D be an unbounded domain in R™, n > 2. We use the same notation as above.
All assumptions made in Section 5.1 are expected to be valid also in this section.
In addition, we suppose that the electrode ¢; is a bounded subset of 9D for all
1 <1 < L. We are interested in such a weak solution to the complete electrode
model that the electric potential u is locally square integrable function and its weak
derivatives are square integrable, i.e., u € LIQOC(D) and Vu € L?(D;R"). The local
integrability is needed in unbounded domains since we allow the electric potential to
be constant and the only square integrable constant function in unbounded domains
is the zero function. Our aim is to prove that the complete electrode model has
a unique weak solution. We need to modify the definition of the solution space
H. Let K be a bounded connected open subset of D such that K is smooth and
UL e, € K. We define the norm || - ||H}<(D) by

1
2
1l () = ( | 19e(@ln do+ [ ot dw)

for all p € C§°(R™) and the space Hk (D) to be the closure of the set {p|p : ¢ €
Cg°(R™)} in the norm | - |31 (py. Then u € L*(K) and Vu € L*(D;R™) for all
u € H} (D). We denote H := H1 (D) ® RF and

1

I e = (lullp ) + 1012 )
for all (u,U) € H. We define another norm in ‘H by

1
2

L
[(w, U)o := (HWH%(D;W) +Z/ lu(z) — Uy|? dS(z) + \U1!2>
=1"¢

for all (u,U) € H. The norms || - || and || - || are equivalent.
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Lemma 5.2. There exist constants 0 < A < A < oo such that
All(w, U)o < [[(w, U)[[1 < Afl(w, U)llo
for all (u,U) € H.

Proof. Let (u,U) € H. By examining the norm || - ||, we obtain that

L
1w, I3 = IVullZ2 Dy +Z/ lu(z) — Uy* dS(z) + |U:|?
l=17¢€

L L
< IVul gy + 23 [ [u(@) dS(a) + 23 mllUif + Ui
=1"¢ =1
2 2 2
< IVl + 2l + (2 s (m(e) + 1) 1012,
where m(e;) is the area of the I*h electrode for all 1 < [ < L. By the continuous

imbedding H%(aK) C L*(0K) and the trace theorem,

lull 2oy < llull 1 < Cllull k) < Cllully ()

H? (9K)

for all u € HL (D). Hence
1w, DIIE < C (llull3, py + 1UlIge ) = Cli(u. U3
k(D)
Thus the first part of the claim is proved.

Let us assume that there does not exist a constant A > 0 such that ||(u,U)||n <
A||(u,U)llo for all (u,U) € H. We pick a sequence {(u",U™)}5°; C H such that
[(u™,U™)|l3 =1 and [|(u",U")||c < 2 for all n € N. Then {u"}52, is a bounded
sequence in H!(K) since

™[y < Nu" M3 oy < (W™, U™l =1

for all n € N. By the compact imbedding theorem of Sobolev spaces over bounded
domains there exists a subsequence {u"}2° | such that u™* — w in L*(K) as k — oo
for some u € L?(K). However, because for all n € N

1
VU™ 2(gmny < (IVU"|lL2(pmey < [[(u™, U)o < o
{u™}2° | is a Cauchy sequence in H'(K). Hence u"* — wu in H'(K) as k — oo.
Since Vu™ — 0 in L?(D;R") as n — oo, the limit u satisfies Vu = 0 in K, i.e.,
u = constant = ¢ in K. If we define u to be the constant ¢ in D, then u™ — u in
H} (D) as k — oo. In addition,

/a"( —UPP dS(x) /\u )= c— (U — o) dS(x)
/ () — ef? dS(x) + |UF — e[Pm(er) +
—2(Ul"—c)/(u”(x)—c) dS(x)

> _alup — ¢ / (@) — ¢ dS(z) + [UF — cl*m(er)
el
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for all 1 <1< L and n € N. Since ||(u", U")]o < 2

1
m(e)|U;" — c|2 < o +2|U" — c|/ |u"(x) — ¢| dS(x)
el

forall 1 <! <L and n € N. Since

o - [ u(a) = el dS(e) < (7] + ) () (/ () = o is(z))

< (14 Jel) v/mGen " ~ ellz2ory
< O (1 +lel) Vimen ™ ~ ell sy
we get
m(e)|Uf — ef? <~ +2C (1 -+ |el) (e " — el i

forall1 <! < L and n € N. Thus Ul"’“ converges to cas k — oo forall 1 <[ < L.
Since [U7| < [|(u™, U)o < L for all n € N, we have U’ — 0 as n — oco. Thus
¢ = 0. This is a contradiction because

2
L= (™, U™l = [u™ 150 py + 10U 7 — 0

as k — oo. Hence the second part of the claim is valid. O

Since the norms || - |3 and || - || are equivalent and the norm || - ||, does not depend
on the set K, the Banach space H is independent of K, despite of the definition. If
(u,U) € H, then u is square integrable in all bounded connected open subsets K of
D such that 9K is smooth and UZL: 1€1 C OK. Therefore u is locally square integrable
in D. Thus we may expect to find a weak solution to the complete electrode model
from the space H. Since we want to choose the ground potential such a way that
U1 = 0, we are looking for the weak solution to the complete electrode model from
a subspace of H, namely Ho := {(u,U) € H : U; = 0}.

Theorem 5.3. Let us assume that there are strictly positive constants og, o1 and Z
such that o9 < o(x) < a1 for almost all x € D and 2z > Z for all 1 <1< L. Then
for a given current pattern (I})_; € RL there exists a unique (u,U) € Hy satisfying

L
B((uv U)v (Ua V)) = Z LV
=1
for all (v, V') € Hyp.

Proof. The norm ||- ||, defines an inner product (-, -), in H in a natural way. Hence H
is a Hilbert space. Since the subspace H is closed, it is a Hilbert space. Furthermore,

L
|, D)2 = 1Vul 32 gy + Y / [u(x) — Uyf? dS(z)
=17¢

for all (u,U) € Hy. We want to use the Lax-Milgram lemma [54, Theorem III.7] in
Ho. The form B is coercive in Hg since

L
B ). (0| = [ a@IVu@)e o+~ [ fula) - Vi as(@)
I=1 €l

1 1
- min <JO,—,...,—) I, 02
21 2L
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for all (u,U) € Hy. By Hélder’s inequality,

IB((w.0), (v.V))
< [ s@IVut@) - Vola |dx+2 /|u ~ Ulllu(x) — Vil dS (@)

<or ([ 1u@)l o) : ([ 1otaiz. dw)2 '
+ ;g (/el lu(z) — U|* dS(x ) </ lv(z) — Vj|? dS(x))é (5.9)

< 1| Vull 2 (pre) I VYl L2(Dyrry +

+%<2L:/ u(z) — U dS(x )(ZL:/ [o(z) = Vif? dS (x )>

< (o4 3) 1w DIV B

1
2

for all (u,U), (v,V) € Ho. Hence the bilinear form B is bounded in Hy. Therefore
the form B fulfills the assumptions of the Lax-Milgram lemma. We need to show
that the right hand side of the variational formulation (5.8) is a linear continuous
mapping for all current patterns. The linear mapping

L
fiHo =R, (v, V)= > IV

is well defined for all current patterns (I;)%, € RE. Let (v, V) € Ho. Then
[f (0, V)] < I llge IV lre < ([ llrell(o, V)l < Al [[ge [ (0, V) lo-

Hence the mapping f is continuous. Thus by the Lax-Milgram lemma there exists a
unique element in Hy satisfying the variational formula (5.8) for all (v, V) € Ho. O

The form B is independent of K. Hence for all current patterns (I;)~, € RE the
unique (u,U) € Hy satisfying the variational formulation (5.8) for all (v,V) € Hy
does not depend on the choice of K.

Corollary 5.4. Let us assume that the hypotheses of Theorem 5.3 are satisfied.
Then there exists a unique (u,U) € Ho satisfying the variational formulation (5.8)
for all (v,V) € H.

Proof. Let (u,U) be the unique element in H satisfying the variational formulation
(5.8) for all ( ,V) € Hp given by Theorem 5.3. For an arbitrary (v,V) € H we
define (w, W) := (v — V4,V — Vj). Then (w, W) € Hy. Hence B((u,U), (w,W)) =
S LW Since YF I = 0 and B((u,U), (¢, (¢, ...,¢)T)) = 0 for all ¢ € R and
(u,U) € H, we obtain B((u,U), (v,V)) = Zlel LV, for all (v,V) € H. Since
B(u,U), (v,V)) =0 for all (v,V) € H if and only if u = U; = ... = U, = constant,
(u,U) is the unique element in H satisfying the variational formulation (5.8) for all

(v, V) € H. O]
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We still need to prove that the solution to the variational problem (5.8) for all
(v, V) € H satisfies the complete electrode model.

Lemma 5.5. If (u,U) € H satisfies the variational formulation (5.8) for all (v, V') €
H, then (u,U) also satisfies the complete electrode model (5.4)-(5.7).

Proof. If (u,U) € H satisfies the variational formulation (5.8) for all (v,V) € H,
Equations (5.4)—(5.7) are obtained by considering particular choices of (v,V') € H.
Let v € C§°(D) and V = 0. Then the variational formulation (5.8) is

/ o(x)Vu(z) - Vou(z) de = 0.
D

Hence in the weak sense u satisfies V- oVu =0 in D. Let v € C§°(R™) and R > 0
be such a constant that suppv C B(0, R). Then by Green’s formula,

0= /D o(2)V - o(2)Vu(z) de = /D o VY @ Vu)
_ /@ e a(:):)ag(f)v(:):) dS(z) — /D o ST Vo)
_ /8 ) a(x)ag(f)v(x) dS(z) — /D o(2)Vu(z) - Vo(z) da.
e / o(2)Vu(z) - Vo(z) do = / (@) 245 (2 ds (@)
; o " oy

for all v € C§°(R"). If v € C§°(R™) and V =0,

L
1
0= /D o(z)Vu(zx) - Vou(x) dx + ; P /q(u(a:) —Upv(z) dS(z)

ou Lo
o=+ Y —Xe(u—U) =0 (5.10)

on 0D. Hence (u,U) satisfies the boundary conditions (5.5) and (5.7). Let v €
C§°(R™) and V € RE. Then

3 _ Ou(x) L
IZ;IZVI_/BDU(JJ) ov v(z) dS(ar)-i-lz;Z—l 6l(u(x)—Ul)(v(x)—Vl) dS(z)
— ol ou(z) 1 N » )
_/6D< @)=, +;Z1Xez( ) (u(x) Ul)> (z) dS(z)+
"1
N Z Z_ZVE (u(z) — Up) dS(x)
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Since V € R” is arbitrary,

L (et = [ u() dse)) =1
% (mienvi = f o) asto)

for all 1 < < L. Then by the boundary condition (5.10),

/ o0l dS(a) = / (U - u(x)) dS(z) =

Zl €]
for all 1 <[ < L. Hence (u,U) satisfies the complete electrode model. O

Definition 5.6. For all current patterns the weak solution to the complete electrode
model (5.4)—(5.7) in unbounded domains is the solution to the variational problem
(5.8) for all for all (v,V) € H given by Corollary 5.4.

In the article [48] the proof of the existence and uniqueness of the weak solution to
the complete electrode model in bounded domains is done by using the quotient space
H/R. The same procedure would also work in unbounded domains by replacing H
with H. Since the choice of the ground potential is essential for the uniqueness, we
wanted to restrict ourselves to the subspace Hy and hence avoid the quotient space
H/R. It seems to be the natural way to solve the problem.

5.3 The Fréchet Differentiability of U

In the forward problem of EIT we are interested in the surface potentials U. The
electric potential u in the interior of the domain D is needed in the mathemat-
ical formulation of the problem. By Corollary 5.4 there exists a function which
maps the conductivity distribution, contact impedances and current pattern to the
corresponding voltage pattern, i.e., (o,2,I) — U if the ground potential is chosen
such a way that U; = 0. We want to show that this mapping is Fréchet differenti-
able with respect to the conductivity distribution ¢. In Theorem 5.3 it is assumed
that ¢ € L*°(D) and there are strictly positive constants oo, o1 and Z such that
oo < o(z) < o1 for almost all x € D and z; > Z for all 1 < < L. We define the
subset ¥(D) of L*>°(D) by

(D) := {o € L*™(D) : there are strictly positive constants oo and o
such that o9 < o(z) < oy for almost all x € D}.

Then (0,1/2) € X(D)®RY if and only if o and z satisfy the assumptions of Theorem
5.3. If (0,2) € (D) ® RE, we denote

BU,Z((U’ U)a (’U, V))
L
= / o(x)Vu(z) - Vou(z) de + Z zl/ (u(z) = Up)(v(z) — V}) dS(x)
D =1 ‘e

for all (u,U), (v,V) € H.
Theorem 5.7. Let (I))L | € RY be a current pattern. The mapping
M:S(D) & RE - Mo, (0,2) — (u, D)
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where (u,U) is the solution the variational problem

By ((u,U), ZIlV
for all (v,V)) € H is Fréchet differentiable. The derivative M'(c,z) satisfies the

following equation: Let (s,¢) € L>®(D) @ RE. Then M'(a,2)(s,¢) =: (w, W) € Hy

1s the solution to the variational problem

By . ((w, W), (v,V))
:—/Ds(:c)Vuo(:c) dm—ZCz/e UP)(v(z) — Vi) dS()

for all (v,V) € H where (u°,U°%) := M(o, 2).

(5.11)

The Fréchet differentiability of a mapping (o, 2) — [u, U] where [u, U] € H/R is the
solution the variational problem

L
BU,Z([U’ U]a [U> V]) = le‘/l
=1

for all [v, V] € H/R is shown in the article [18] with the assumption that the domain
D is bounded and the conductivity distribution is piecewise continuous.

Proof of Theorem 5.7. 1f (0,2) € (D) @ R%, by Corollary 5.4 the variational prob-
lem

B, .((u,U), ZI,V

for all (v, V) € H has a unique solution (u,U) € Hp. Hence the mapping M is well
defined.

Let (0,2) € (D) ® RY and (s,() € L>(D) & RL. We denote (u°,U°) := M(o, 2).
We notice that

| s@vi@) v d$+ZCl | 0@ vt Vo dstr)

= BS,C((uoa UO)? (Ua V))
for all (v, V) € H. Since (s,¢) € L>=(D) @ RE, by Inequality (5.9),

Boc(®,U°), (0, V) < (Il ey + 1€l ) |, U], Hiw, V) o

for all (v, V') € Ho. Thus the right hand side of (5.11) is a continuous linear mapping
from Hp to R. By the Lax-Milgram lemma there exists a unique (w, W) € Hg such
that (w, W) satisfies the variational formulation (5.11) for all (v, V') € Hyp. Similarly
to the proof of Corollary 5.4 we can show that (w, W) satisfies the variational for-
mulation (5.11) for all (v, V) € H. Thus the mapping T, : (s,() — (w, W) is well
defined. Obviously, T, is linear. We define the norm in L>°(D) @ R% to be

1(8: Oll oo (pyare =[5l e () + [I¢liee
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for all (s,¢) € L*>°(D) @ RE. Hence the operator T, , is also bounded since by the
coercivity of the form B, . in Hy,

1w, W2 < C (0, 2)| B, ((w, W), (w, W))]

< C(o,2) {/D |s(2)||Vu®(z) - Vw(z)| dz+

L
#2006l [ @) - Ufllute) - Wil dS(a)
=1 €l
< C(0,2) (sl ooy + 1o ) (1€, U, e, W)

We want to show that 7Ty . is the Fréchet derivative of the mapping M in the point
(0,2) € B(D) ® RE. The set £(D) @ RE is an open subset of L*(D) & RL in the
norm |- || oo 5y + || - - Let

1

o

-1
~ 3y RZ1ye-s 2L | -
Lee(D)

Then (o +s,z+() € 3(D) ®RE. Let us denote (u,U) := M(o + 5,2+ ). We know
that for all (v, V) € H

1 .
||(37<)HL°°(D)@RL < §m111 (

L

Bmz((uov UO)? (Uv V)) = Z NS BG+S,Z+C((U7 U)? (U, V))
=1

Thus for all (v,V) € H
B, ((u—u® u—0U", (v,V))

L
—— [ s@)Vu@) Volw) da = 36 [ (ul) - V) (o(a) - 1) dS().
D =1 e

Hence

BU,Z((“’ — UO —w,U — U’ — W)7 (’U, V))

= —/ s(x)V(u — u?)(z) - Vo(z) do+
D
L

-3¢ / ((u— u)(@) — (U — UP))(v(z) — V) dS(x)
=1 €l

for all (v,V') € H. Therefore by the coercivity of the form B, , in Hy,

H(ufuofw,U—UO—W) z

< 0(0,2)|By((u—u® —w, U U = W), (u—u® —w, U - U - W))|

< C(o,2) [/D Is(2)||V (v —u0)(z) - V(u—u’ —w)(z)| de+

L
+Z|clr/ (u— u®)(z) — (U) - UP)|x
=1 €l

< |(u—u — w)(z) - (U) - U — Wy)| dS(x)

< C(0,2) (I8l gm0y + Il ) 1w 0) = @O, U0, [0, 0) = (0, T°) = (a, W),
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Furthermore,
H(ufuo,U— U°)
< 0(07 Z)’BUJ((’U’ - 'LLO, U- UO)7 (u - UO, U - UO))|

< (o, 2) [ /D 15(2)|| Vau(z) - V(u — u®) (z)] dat

2
o

L
#3000 [ o) = Uilles =) @) - (01— 0P dS(xﬂ
=1 €l

< C(0,2) (Il (0 + 1€l ) 1, D, [0, 0) = (2, D),
Hence
2
Jw = —w,U =00 = W), < Co,2) (Isll ooy + 1<l ) N1 Dl

Since (u,U) depends on (s, (), we need to estimate its norm. By the coercivity of
the form By, .4¢ in Ho,

1w, U) |12 < Co, 5,2, Q) Bots,zrc((u,U), (w,U))]
= C(0,5,2,Q)|Bs:((u",U°), (u,U))]
< Clo,5,2,Q) [|(®, UM, I (w, V)] -
Therefore
= w0, U = 00~ W], < Clo.5.2.0) @ U], (sl + €l
where the constant C(o, s, z,() is of the form

1
o-+s

1 1
C(o,8,2,() = C(0, z) max e )
( ¢)=Clo,2) ( LDy 21+ G zr + CL)

Thus
[M(o+5,2+() = M0, 2) = T52(s,Ollo
81l oo (py + lI€1l1ee

< C(0,5,2, Q)M ) o (18l () + ¢l ) — 0

as ||(s, Q)| e (pyere — 0. Hence T, . is the Fréchet derivative of M at the point
(0,2) € £(D) @ RE. O

We define the projection 7 : H — R” by (u,U) — U for all (u,U) € H.
Corollary 5.8. Let (Il)lel € RY be a current pattern. The mapping
U:%(D)eRY = RE, (0,2) = U(o,2)
where U(o, z) = nM(o, z) is Fréchet differentiable and
U'(o,2) =7 M'(0,2)
for all (0,2) € (D) & RE.
Proof. By Theorem 5.7 the mapping M is Fréchet differentiable. Since the projec-

tion 7 is a bounded linear operator, the mapping U is Fréchet differentiable. The
Fréchet derivative of U is obtained from the definition. O






Chapter 6

Statistical Inversion Theory

In realistic measurements we have directly observable quantities and others that can-
not be observed. If some of the unobservable quantities are of our primary interest,
we are dealing with an inverse problem. The interdependence of the quantities in
the measurement setting is described through mathematical models. In the stat-
istical inversion theory it is assumed that all quantities included in the model are
represented by random variables. The randomness describes our degree of knowledge
concerning their realizations. Our information about their values is coded into their
distributions. The solution to the inverse problem is the posterior distribution of the
random variables of interest after performing the measurements. We introduce the
basic concepts of the statistical inversion theory. The Bayes theorem of inverse prob-
lems and Bayesian filtering method are presented. As an example of non-stationary
inverse problems we study the electrical impedance process tomography problem.
We view it as a state estimation problem. A discretized state estimation system is
the goal of this chapter. Sections 6.1 and 6.2 are based on the book of Kaipio and
Somersalo [19]. The results concerning electrical impedance process tomography
(Section 6.3) are made by the author.

6.1 The Bayes Formula

In realistic measurement setting we are able to measure only a finitely many values of
the directly observable quantities. For example, the measurement frame in electrical
impedance tomography consists of all linearly independent injected current patterns
and the corresponding set of voltage measurements. These measured values are
called the data. From the data we want to compute the values of the quantities
of primary interest. Usually this sort of problems are underdetermined. Hence we
are able to compute only partly the quantities of primary interest. Furthermore,
in numerical implementations we need to discretize our model for the measurement
process. Therefore there exist only finitely many variables describing the quantities
of primary interest. Thus in statistical approach to inverse problems we may assume
that random variables in a model have values in R"™ with some n € N. In addition,
we suppose that the distributions of the random variables are absolutely continuous
with respect to the Lebesgue measure. This requirement is not necessary but since
we restrict ourselves to Gaussian random variables, it is acceptable. Hence the
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distributions of the random variables are determined by their probability densities.
We denote random variables by capital letters and their realizations by lower case
letters.

The statistical inversion theory is based on the Bayes formula. Let (2, F,P) be
a probability space. Let X and Y be random variables with values in R™ and
R™, respectively. We suppose that the random variable X is unobservable and of
our primary interest and Y is directly observable. We call X the unknown, Y the
measurement and its realization y in the actual measurement process the data. We
assume that before performing the measurement of Y we have some information
about the random variable X. This prior knowledge is coded into the probability
density x +— mp(z) called the prior density. In addition, we suppose that after
analysing the measurement setting as well as all additional information available
about the random variables we have found the joint probability density of X and Y
denoted by 7(z,y). On the other hand, if we knew the value of the unknown, the
conditional probability density of Y given this information would be

R C2Y)
m(y | ) —r

if mpe(z) # 0. The conditional probability density of Y is called the likelihood
function because it expresses the likehood of different measurement outcomes with
given X = z. We assume finally that the measurement data Y = y is given. The
conditional probability density

if 7(y) = [gmm(z,y) do # 0, is called the posterior density of X. This density
expresses what we know about X after the observation ¥ = y. In the Bayesian
framework the inverse problem can be formulated as follows: Given the data Y =y,
find the conditional probability density w(x | y) of the variable X. We summarize
the notation and results in the following theorem, which can be referred to as the
Bayes theorem of inverse problems.

Theorem 6.1. Let the random variable X with values in R™ have a known prior
probability density mp(x) and the data consists of the observed value y of the observ-
able random wvariable Y with values in R™ such that 7(y) > 0. Then the posterior
probability density of X given the data y is

e}y | )

) (6.1)

Tpost(7) = (7w [ y) =

The marginal density

7o) = [ rlew)de= [ mpe)ny| o) do

plays the role of a normalising constant and is usually of little importance. By
looking at the Bayes formula (6.1) solving an inverse problem may be broken into
three subtasks: (1) based on all prior information of the unknown X find a prior
probability density mp,, (2) find the likelihood function 7(y | «) that describes the
interrelation between the observation and the unknown and (3) develop methods to
explore the posterior probability density.
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6.2 Nonstationary Inverse Problems

In several applications one encounters a situation in which measurements that con-
stitute the data of an inverse problem are done in a nonstationary environment.
More precisely, it may happen that the physical quantities that are in the focus of
our primary interest are time dependent and the measured data depends on these
quantities at different time instants. Inverse problems of this type are called non-
stationary inverse problems. In some applications the time evolution model of the
quantities of primary interest is given by a stochastic differential equation. The
electrical impedance process tomography problem is an example of nonstationary
inverse problems. The concentration distribution in a pipeline is time varying and
the EIT measurement frame depends on the concentration distribution at different
time instants. The time evolution of the concentration distribution is given by the
stochastic convection—diffusion equation.

6.2.1 State Estimation

Often non-stationary inverse problems are viewed as a state estimation problem.
Let D C R™ be a domain that corresponds to the object of interest. We denote by
X = X(t,z), x € D, a distributed parameter describing the state of the object — the
unknown distribution of a physical target — at time ¢ > 0. We assume that we have a
model for the time evolution of the parameter X. We suppose that instead of being
a deterministic function X is a stochastic process satisfying a stochastic differential
equation. This allows us to incorporate phenomena such as modelling uncertainties
into the model. Let Y = Y (¢) denote a quantity that is directly observable at time
t > 0. We assume that the dependence of Y upon the state X is known up to
observation noise and modelling errors. The state estimation system consists of a
pair of equations

dX(t) = F(t, X, R)dt + dW (¢), (6.2)
Y(t) = G(t, X, ). (6.3)

Equation (6.2) is called the state evolution equation and is to be interpreted as
a stochastic differential equation in which the function F' is the evolution model
function and R = R(t) and W = W (t) are stochastic processes. The processes
R and W may represent modelling errors and uncertainties in the time evolution
model. Equation (6.3) is called the observation equation. The function G is the
observation model function and S = S(t) is a stochastic process. The process S
describes modelling errors and noise in the measurement process. The evolution
and observation model functions are known and allowed to be nonlinear. The state
estimation problem can be formulated as follows: Estimate the state X satisfying an
evolution equation of the type (6.2) based on the observed values of Y. To be able to
estimate the state X we have to solve a stochastic differential equation and represent
the state evolution equation in a more useful form. Estimators of the state X are
calculated by taking conditional expectation with respect to the measurements. The
most commonly used estimator is the filter E(X (¢)|Y (s),s < t) which is based on
the current history of the measurement process.

Usually the measurements are done at discrete time instants. Hence a discrete
state evolution and observation equations are needed. They may be derived from
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the continuous ones, especially if the evolution and observation model functions
are linear. Since the computation requires space discretization, we need discretized
versions of the state evolution and observation equations. Then we have two discrete
stochastic processes { X}, and {Y}}7°, with values in finite dimensional spaces
and the state estimation system

Xit1 = Frqa1(tos ta, - tioyr, Xoo X, oo, X, Wh, o0, Wig1), k€ Ny,
Yk:Gk(tk,Xo,Xl,...,Xk,Sl,...,Sk>, keN

where {W;}72, and {S,}}2, are discrete stochastic processes and are called the
state and observation noise processes, respectively.

6.2.2 Bayesian Filtering

Let (€2, F,P) be a probability space. Let {X;}72, and {Y;}72, be two discrete
stochastic processes. The random variable X with values in R™* for k € Ny repres-
ents the quantities we are primarily interested in and is called the state vector. The
random variable Y} with values in R™* for k € N represents the measurement. We
refer to it as the observation at the k™ time instant. We assume that the distribu-
tions of the random variables are absolutely continuous with respect to the Lebesgue
measure. We postulate the following four properties of these processes:

1. The process { X}, is a Markov process, i.e.,
(ke | 2o, @1, 7)) = T(Tpy | k)
for all £ € Ny.

2. The process {Y;}7°, is a Markov process with respect to the history of the
process {X}72,, ie.,

m(yk | o, 21, ..., 2k) = 7(yx | Tk)
for all £ € N.
3. The process {X}}7°, depends on the past observations only through its own
history, i.e.,
T(Th+1 | 20, 15 oo, Ths Y1, Y25 - -+, Yk) = T(Ttr | k)
for all k € N.

4. The process {Y},}7° | depends on the past observations only through the history
of the process { X1 }72,, i.e.,

Tr(yk—l-l ‘ L0y L1yeve sy Th+1,Y1,Y2,y - - - )yk) = Tr(yk-i-l ’ xk-‘rl)
for all kK € N.
If the stochastic processes { X}, and {Y3}72, satisfy the condition 1-4 above, we

call this pair an evolution—observation model. The evolution—observation model is
completely specified if we know the probability density of the initial state X, Markov
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transition kernels m(xg41 | ) for all k € Ny and likelihood functions 7(ys | z) for
all k € N. Both the Markov transition kernels 7(z;4+1 | ) and likelihood functions
7(yk | 1) are allowed to vary in time. An example of evolution—observation models
is the state estimation system

Xit1 = Frp1 (X, W), k€ No,
Yy = Gi(Xk,Sk), keN

if the state and observation noise processes satisfy the following assumptions. For
all k # [ the noise vectors Wy and W; as well as S and .S; are mutually independent
and also mutually independent of the initial state X. In addition, the noise vectors
Wi and S; are mutually independent for all k € Ny and [ € N.

The inverse problem considered is to extract information of the state vectors Xj
based on measurements Y; for all & € N. In the Bayesian approach we try to
get the posterior distribution of the state vector conditioned on the observations.
Let us denote Dy := {y1,y2,...,yx} for all & € N. The conditional probability
density of the state vector X conditioned on all the measurements yi,...,1; is
denoted by 7(x | D;) := 7(xg | y1,...,y;) for all k € Ny and | € N. Additionally,
m(xy | Do) := m(xy) for all k € Np.

Definition 6.2. Let the stochastic processes { X }72, and {Y3.}72, form an evolu-
tion—observation model. The problem of determining the conditional probability dens-
ity m(xky1 | D) for k € No is called a prediction problem and w(zy | Dy) for k € N
a filtering problem.

Often the prediction problem is just an intermediate step for the filtering problem.
To be able to solve the state estimation problem we need to derive a recursive up-
dating scheme where the evolution and observation updates alternate. In this type
of recursive scheme the state evolution equation is used for solving the prediction
problem from the filtering problem of the previous time level while the new observa-
tion is used to update the predicted probability density. Therefore we need to find
formulas for the following updating steps:

1. Evolution updating: Given 7(zy | Dy), find m(xg4+1 | Dy) based on the Markov
transition kernel 7(zy11 | zx) for k € Ny.

2. Observation updating: Given m(zyy1 | Dk), find 7(zk41 | Dky1) based on the
new observation yi41 and likelihood function m(yg11 | x+1) for k& € Ny.

The updating formulas are given in the following theorem.

Theorem 6.3. [19, Theorem 4.2] Let us assume that stochastic processes { X},
and {Y}32, form an evolution-observation model. Then for all k € Ng

(i) the evolution updating formula is

(wrss | Dy) = / (wn | 30)m(@n | Dy) dag, (6.4)
R"k
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(ii) the observation updating formula is

T(Ykt1 | T )™ (X1 | Di)
(Y1 | Di)

T(Tht1 | Der1) = (6.5)

where

T(Yk+1 | D) =/ T(Yk1 | Thr1)m(Tpy1 | Di) dogr.

R™k+1

The integrand on the right hand side of (6.4) is simply the joint probability density of
the variables X} and X1 conditioned on the observations Dy. Hence Formula (6.4)
is the conditional marginal probability density of X,1. We consider the probability
density m(xg+1 | Di) as the prior density of X1 when the new observation yj1
arrives. Then Equation (6.5) is nothing other than the Bayes formula. Therefore this
method is called the Bayesian filtering method. If the joint probability densities of
the variables X, and X1 as well as X1 and Yy 1 conditioned on the observations
Dy, are Gaussian, the evolution and observation updating formulas (6.4) and (6.5)
can be derived by the following theorem.

Theorem 6.4. [19, Theorems 3.5 and 3.6] Let X : Q@ — R and Y : Q@ — R™ be two
Gaussian random variables whose joint probability density m: R™ x R™ — Ry is of

the form
r(z,y) o< exp | — 1 {x - iUO]T [Fn Flz} B {w - 960}
’ 2 y—vo] [I'z1 T2 Y=o
where x9 € R", yo € R™, I'1y € R™*", T'yp € R™*™ and

' F12:|
F =
[Fm IS

is a positive definite symmetric (n +m) x (n 4+ m) matriz. Then
(i) the marginal density of X is
_ N
m(x) = m(x,y) dy x exp 2(:(: x0) 'y (x — o) |,
(ii) the density of X conditioned on'Y =y is
1 T _
m(x | y) < exp <—§(JL‘ — a:)TF221(1‘ — :1:))

where T = xg + F12F2_21 (y — yo) and f22 =TI — F12F2_21F21.

6.3 Electrical Impedance Process Tomography

We examine a concentration distribution of a given substance in a fluid moving in
a pipeline by doing electromagnetic measurements at the boundary of the pipe. In
electrical impedance tomography (EIT) electric currents are applied to electrodes on
the surface of an object and the resulting voltages are measured using the same elec-
trodes. A complete set of measurements consists of all possible linearly independent
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injected current patterns and the corresponding set of voltage measurements. The
conductivity distribution inside the object is reconstructed based on the voltage
measurements. The relation between the conductivity and concentration depends
on the process and is usually non-linear. In process tomography we cannot in general
assume that the target remains unaltered during a full set of measurements. The
time evolution of the concentration distribution needs to be modeled properly. We
view the problem as a state estimation problem. The concentration distribution is
treated as a stochastic process that satisfies a stochastic differential equation referred
to as the state evolution equation. The measurements are described in terms of an
observation equation containing the measurement noise.

Let D be an infinitely long pipe {x = (z1,2') € R? : |2/| < r} with d > 2 and
r > 0. Let k = k(z) be the diffusion coefficient of the substance of our interest and
v = v(z) the velocity of the flow for all z € D. The diffusion coefficient and velocity
distribution are assumed to be known and stationary. Let (2, F,P) be a probability
space. We assume that the concentration distribution C(¢) is a stochastic process
satisfying the stochastic differential equation

dC(t) = [LC(t) + f(t))dt + dW (¢) (6.6)

for every ¢t > 0 with the initial value C'(0) = Cy. The operator L is the deterministic
convection—diffusion operator

L:D(L) — L*(D)
c¢c— V.- (kVe)—v-Ve
~Oc

AN 0} . (6.8)

The boundary condition at the boundary of the pipe is included in the domain of
the operator L. We assume that there is no diffusion through the pipe walls. We
model with f a possible control of the system. We assume that f(¢), ¢ > 0, is
an L?(D)-valued stochastic process. The term dW (t) is a source term representing
possible modelling errors where W (t), t > 0, is an L?(D)-valued Wiener process.

(6.7)

with the domain
D(L) = {c € H*(D)

We assume that on the surface of the pipe there are L electrodes. We identify the
electrode with the part of the surface it contacts. We denote these subsets of 0D
by ¢ for all 1 <[ < L. At time ¢t > 0 an electric current [;(¢) is applied to the
electrode e; and the resulting voltage U;(t) is measured using the same electrode for
all 1 <1 < L. We describe the electric potential u(¢,z) inside the pipe and voltage
pattern U(t) := (Uy(t),...,Ur(t))" by the complete electrode model

V-oVu=0 inD (6.9)
u + zm% =U;, one, 1<I<L (6.10)
ou
oo, =0 ondD \UE ¢ (6.11)
ou
—dS=1, 1<I<L 12
eloay S I, << (6.12)

where o = o(t, z) is the conductivity distribution inside the pipe and z; is the contact
impedance on the electrode ¢; for all 1 <! < L. We assume that the current pattern
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I(t) == (Iy(t), ..., I (t))" satisfies the conservation of charge condition Y1, Ij(t) =
0 and the ground potential is chosen such a way that U;(t) = 0. In Chapter 5
it was shown that under appropriate regularity assumptions on the conductivity
distribution, electrodes and contact impedances the complete electrode model (6.9)—
(6.12) has a unique weak solution (u,U). We suppose that the contact impedances
are known positive numbers. By the uniqueness of the solution to the complete
electrode model the mapping o (t) — U(c(t); I(t)) from $(D) to R* is well defined for
all current patterns I(¢) where %(D) is a subset of L>°(D) defined by X(D) := {0 €
L>®(D) : 0 < 0p < o(x) < 01 < oo for almost all z € D}. The interdependence
of the conductivity and concentration distributions is usually non-linear, i.e., there
exists a non-linear function g : L?(D) — X(D) such that o(t) = g(C(t)) for all
t > 0. In addition, we assume that the measurement noise is additive. Then the
observation equation is

V(t) = U(g(C(1)); 1()) + 5(t)

where S(t), t > 0, is an R%-valued stochastic process independent of the process
C(t), t > 0. Hence the voltage pattern depends non-linearly on the concentration
distribution.

We assume that the measurements are done in time instants 0 < t1 < ... < t,.
We use the notation I* := I(ty), Cy = C(ty), S* := S(tx) and VF := V(t;) for
all k = 1,...,n. The state estimation system concerning the electrical impedance
process tomography problem is

dC(t) = [LC(t) + f()]dt + dW (t), >0,
VFE = U(g(Cr); I*) + S*, k=1,...,n.

We are interested in a real-time monitoring for the flow. Therefore we should be
able to solve the filtering problem E(Cy | V!, I < k) for all K = 1,...,n. For that
reason we need to solve the stochastic convection-diffusion equation (6.6) and to
present the discrete evolution equation for the concentration distribution.

6.3.1 Analytic Semigroup

According to Section 4.6 to be able to solve the stochastic convection—diffusion
equation we need to show that under certain assumptions the operator L defined
by (6.7) and (6.8) generates a strongly continuous analytic semigroup. We use the
theory introduced in Chapters 2 and 3. Since the boundary of D is {z = (z1,2') €
RY @ |2/| = r}, it is C™-smooth. Hence we want to know the requirements of
the coefficient functions x and v such that the realization of the operator A =
V - kV — v -V generates an analytic semigroup if the boundary condition is defined
by the operator B = v -V where v is the exterior unit normal on the boundary 0D.
We modify the operators A and B into the form used in Chapter 3. Then

n

Al2,0) = k(@)0F + > [0ins(x) — vi(2))0;
=1

=1

and
n

B(x,0) =Y vi(x)0;

=1
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where v = (vy,...,v,)" and v = (v1,...,v,)". In Chapter 3 we assumed that the

coefficient functions of the operator A are real uniformly continuous and bounded
and the coefficient functions of the operator B belong to the space UC!(D). Hence
the functions k and v have to fulfill the conditions

k:D—R, keUCYHD),

v:D—-RY veUCD).
The operator A has to satisfy the ellipticity condition (3.2). The principal part of
Ais S8 k(2)02. Let £ € R? and 2 € D. Then

n

>_ (@)l = r@)lg* = ik r(@)lel”

i=1
Hence the function x has to be bounded from below. We assume that there exists
§ > 0 such that x(z) > § for all z € D. The operator B has to fulfill the uni-
form nontangentiality condition (3.4). The first order terms of B are y .-, v;(x)0;.
Therefore Condition (3.4) is valid since

S (@) = (@) = 1
=1

for all x € dD. Under these assumptions the sectoriality of L follows according
to Corollary 3.5. Since the domain of L is dense in L?(D), the analytic semigroup
generated by L is strongly continuous.

Theorem 6.5. The operator L is sectorial if the diffusion coefficient k is positive
and bounded from below, k(x) > 6 > 0 for all x € D, and the diffusion coefficient
and velocity of the flow satisfy the conditions

k:D—R, reUCYD),
v:D—RY veUC(D).

Hence under these assumptions the operator L generates a strongly continuous ana-
lytic semigroup {U(t)}+>0.

6.3.2 Stochastic Convection—Diffusion Equation

We assume that the diffusion coefficient and velocity of the flow fulfill the re-
quirements of Theorem 6.5. Let 7" > 0 and {F;}ic[o,7] be a normal filtration in
(2, F,P). Let Q be a positive self-adjoint trace class operator from L?(D) to it-
self with Ker @ = {0} and W(t), t € [0,T], a Q-Wiener process in (2, F,P) with
values in L?(D) with respect to the filtration {Ft}eepo,m)- According to Section 4.6
under some assumptions of the initial value Cy and control term f the stochastic
convection—diffusion equation has the weak solution.

Theorem 6.6. If f € L'(Qp, Pr,Pr; L?(D)) and Cy is Fo-measurable, the stoch-
astic convection—diffusion equation has the weak solution C(t), t € [0,T], which is
the predictable process given by the formula

C(t):L{(t)Co+/0 Ut —s)f(s) ds—i—/o Ut —s) dIV(s)

for allt € [0,T] almost surely.
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There are some parameters in our model which we can choose rather freely and
still have the weak solution to the stochastic convection—diffusion equation. The
diffusion coefficient and velocity of the flow should only satisfy the requirements of
Theorem 6.5. The covariance operator ) of the Wiener process can be an arbitrary
positive self-adjoint trace class operator from L?(D) to itself with Ker @ = {0} by
Proposition 4.17. The natural choice of the filtration is the filtration defined by the
Wiener process, i.e., 7}V = o(W(s), s < t) for all t € [0,T]. Since the filtration
should be normal, by Proposition 4.35 the augmented filtration {]—"tW’P}tE[O’T} is an
appropriate choice assuming that the probability space is complete. We want that
the initial value Cy is a Gaussian L?(D)-valued Fy-measurable function with mean
co and covariance I'g. The benefits of this requirement will appear later in this
section. Then the mean ¢y can be an arbitrary L?(D)-function and the covariance
operator I'g has same requirements as ) by Proposition 4.17. The control term f
should be an L?(D)-valued integrable predictable process.

6.3.3 Discrete Evolution Equation Without Control

We assume that there is no control in our system, i.e., f = 0. Then the weak solution
of the stochastic convection—diffusion equation is the predictable process given by
the formula

Ct) = U)o + /0 Ut — ) aw(s) (6.13)

for all t € [0,7] almost surely. Since the initial value Cp is a Gaussian random
variable with mean ¢y and covariance I'y, the concentration distribution C' has a
Gaussian modification by Lemma 4.42 and Proposition 4.46. Furthermore, the mean
of the Gaussian modification is U(t)cy and the covariance operator is

U)Told™ (t) + /Otbl(t —$)QU*(t — s) ds (6.14)

for all ¢ € [0,7]. We assume that the measurements are done in time instants
0 <tg <...<ty, <T. We use the notation ty := 0 and Cy := C(t;) and
Ap :=1tgy1 —tx for all k =0,...,n— 1. Then the discrete evolution equation for the
concentration distribution is

Cr1 =U(AR)Cl + Wi

for all k =0,...,n — 1 almost surely where

tet1
Wk+1 = / u(tk—I—l - S) dW(S)

tk

by Theorem 4.39. The term Wy can be seen as a state noise for all k =0,...,n—1.
The state noise W11 is a Gaussian random variable with mean 0 and covariance
operator

let1

Cov(Wis1) = /t Ultssr — 5)QU (tort — s) ds (6.15)

k
and it is independent of F;, for all k =0,...,n —1 by Lemma 4.42 and Proposition
4.46. Thus Cy and Wy, 1 are independent for all k = 0,...,n — 1. Furthermore, the
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state noises at different time instants are uncorrelated since
Cor(Wi1, Wis1)
ter1 /b1 .
= / Xltwstera] )X [tt01] (U1 — $)QUT (L1 — 8) ds =0
0

for all k # | by Proposition 4.41.

The discrete state estimation system for the electrical impedance process tomo-
graphy problem is

Crr1 =UAL)Cr + Wiy, k=0,...,n—1, (6.16)
VE=U(g(Cp); 1)+ S*, k=1,...,n. (6.17)

Since the observation model function U o g is non-linear, the filtering problem is
much more demanding than in the linear case. In the numerical implementations of
this problem in the articles and proceedings papers [43, 44, 45, 40, 41, 42, 38, 39]
the observation model function is linearized. In Theorem 5.8 we have shown that
the mapping o — U(o;I) is Fréchet differentiable. If the function ¢ is Fréchet
differentiable, the observation equation may be linearized.

6.3.4 Space Discretization

The realizations of the concentration distribution C' are in the space L?(D). The
computation requires space discretization. We need to choose a finite dimensional
subspace of L2(D) and assume that the realizations of the concentration distribution
are in that subspace. This causes a discretization error. Usually the discretization
error is ignored in numerical implementations. The discretized state estimation
system is assumed to represent the reality. In this subsection we want to analyse
the stochastic nature of the discretization error in the case of electrical impedance
process tomography.

Let {Vn}°_; be a sequence of finite dimensional subspaces of L?(D) such that
Vi C Vi1 for all m € N and UV, = L*(D). Since L?(D) is a separable Hilbert
space, there exists such a sequence, for example, V,, may be the subspace spanned
by the m first functions in an orthonormal basis of L?(D). Let {golm}f\;q be an
orthonormal basis of V,, for all m € N. We denote by (-,-) the inner product in
L?(D). We define the orthogonal projection Py, : L?(D) — V,, for m € N by

Np,
=1

for all f € L?(D). The subspaces V,, are appropriate discretization spaces if P, f —
fin L?(D) as m — oo for all f € L?(D), i.e., the orthogonal projections P, converge
strongly to the identity operator.

Let X : (Q,F,P) — L?(D) be a random variable. Then for all w € Q

N N

PuX(w) =) (X(W), o)l = D (X™(w)ef"

=1 =1
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where X" (w) = (X (w), @), ..., (X(w),% )T is an R¥m-valued random vari-
able. We view X™ as a discretized version of the random variable X at the dis-
cretization level m. If X is a Gaussian random variable with mean T and covari-
ance I', then X™ is also Gaussian [21, Theorem A.5]. Furthermore, the mean of
X™is EX™ = ((a‘c,tp?),...,(i,goﬁm))T and the covariance matrix is defined by
(Cov X™);5 := (L', ¢]) since

E(X™)i(X™); = E(X, oi") (X, 9]") = (Toi", ¢7") + (T, 07" )(Z, ")

foralli,j=1,..., Np,.

Evolution Equation

We want to discretize the discrete evolution equation (6.16). We use the discretiza-
tion level m. We form an evolution equation for the discrete RVm-valued stochastic
process {C;"}_, where Cy* := ((Ck, "), ..., (Cr, % )T for all k = 0,...,n. By
using the discrete evolution equation (6.16),
(Ci)i = (Crsr, 9]") = UAR)Cr + Witr, 97")
= (U(AR)PnCl, ;") + UAR) I = Pp)Chy 07") + (Wit1, 97)

Non
=D UG G+ (B)i + (Wil
=1

foralli=1,...,N,, and £k =0,...,n—1 almost surely where the discrete stochastic
process

Eﬁ-l = ((Ckv (I - Pm)U*(Ak)SOTIn)v ceey (Ck7 (I - Pm)U*(Ak)SOTNnm))T

represent the discretization error and W), is the state noise vector. Thus the
discretized evolution equation is

Cil = A O + B + Wil (6.18)
for all k =0,...,n — 1 almost surely where the matrix A}’ , is defined by
(AR 1)is = UAR)ET, @) (6.19)

for all i,57 = 1,...,N,,. The discretized evolution equation (6.18) is used in the
evolution updating step of the Bayesian filtering. Thereby we need to define the
statistical quantities of the discrete stochastic processes {E}Z}H}Z;é and {Wﬂl}z;é.

The state noise W11 is a Gaussian random variable with mean 0 and covariance
given by Formula (6.15) for all K = 0,...,n — 1. Hence the state noise vector W'} |
is Gaussian with mean 0 and covariance matrix

tet1
(Cov(Wiliy))ij = </ U(tp1r — 8)QU (te41 — 8) ds ¢}, <P3'n>

tg

let1
B / (U(thsr — )QU (ter — 8)@]", @) ds

173

foralli,j=1,..., Ny, and k=0,...,n — 1. We define the matrix Q’gfl(s) by

(Qr(8))ij == Ut — s)QU*(ty — s)9i", ¢5")
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foralli,j=1,...,Np, k,l=0,...,n—1and s € [0,t; At;]. Then

tr4+1
COV(W]{/‘W}H[) = ’ QZL+1,k+1(S) ds (6.20)
k
for all Kk =0,...,n — 1. Since the state noises W, and W; are uncorrelated for all

k # 1, by the Gaussianity the state noise vectors W;" and W™ are independent if
k #1.

We use our knowledge of the stochastic behaviour of the continuous evolution equa-
tion (6.13) for the examination of the discretization error £} | forallk = 0,...,n—1.
The concentration distribution Cj has a Gaussian modification with mean U (x)co
and covariance given by Formula (6.14) where ¢t = ¢ for all k = 0,...,n — 1. Hence
the discretization error £ | has a Gaussian version for all £ = 0,...,n — 1. The
mean of the Gaussian version is given by

(EEY )i = E(Cr, (I = Po)U™ (Ag)#]") = (ECk, (I — P )U™ (A1) ;")
= (U(tr)co, (I = Po)U™(Ar)i") = (co, U (tk) (I = P)U™ (Ar)")

foralli=1,...,N, and k=0,...,n— 1. Thus

NT'!L

(EEF1)i = (co, U™ (trsn) @) = D (UG, ") (co, U™ (t1) of")
I=1
forall e =1,..., N, because
N
U = Po)U*(s)f =U(t+8)f =D (U (s)f, o] WU ()]
I=1

N
=UN(E+s)f =Y U U ()"
=1

for all f € L?(D) and s,t € [0,T]. Hence

U (tk+1)co, #T) (U(tk)co, o71")
EEf . = : + A : (6.21)
(U(tkr1)co, €3, U (tr)co, )
for all k =0,...,n — 1. The covariance matrix of the Gaussian version is given by

(COV E]Zrl)ij
= (Cov(Ci)(I = P )U™ (A)p]", (I = P )U™ (Ak) ")
= U(tR)Told™ (tr)(I = Po)U™ (Ak) @i, (I = P )U (Ak) 95" )+

+ ( Otk Uty — $)QU* (ty, — 8) ds (I — P )U* (Ag)l", (I — PMU*(AQ@}”)
= (Lold™ (te) (I = P )U (A", U () (1 = P )UT (Ak) 05"+

+ /Otk (QU*(tr — )(I — Po)U* (AR, U (1, — 8)(I — P)U(Ag)}') ds
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foralli,j=1,...,Ny and k=0,...,n— 1. Since I'yg and @Q are self-adjoint as the
covariance operator of Gaussian random variables,

(COV E}Zr_ﬁ_l)ij
= (FOU*(tkH)%”,U*(tk+1)<ﬂ§”)+

- Z (Ar)er™, o) (Lold™ ()l U™ (1) i)+
—Z (Ar)er", o) (Lol (te) i, U (trt1) 95" )+

- Z (A)el™, i) UAR) ey @) Told* (b)) o], U (t) o)+

7p_

tg
+/ (QU(trr1 — 8) " U (g — )] ds+
o

tg

—Z (D)l &) /0 (QUE (th — ) U (tgs — 5)0™) dst
tg

—Z (DRl ™) /0 (QUP (th — ) U (s — 8)@) s+

tg
+ Z (Ak)pr™, v )(U(Ak)w;?l,soT)/o (QU™(tk — )], U (tr, — 5)') ds

l,p=1

foralli,j=1,...,Nynand k=0,...,n— 1. We define the matrix anl,k by

(T o= Ut Dol (b))l o)

forall,j=1,..., Ny, and k, 0l =0,...,n — 1. Then

1 KINT k1 k T
Cov By = Tgh — (AR To )T = ARLTo ™ + AT (AT )T+

ty

tg
+ i Qi1 kr1(s) ds —/0 (A?+1Q?+1,k(3)>T ds+ (6.22)

tE 173
- [ Q) ds+ [ ARLQR AT ds
0 0

for all Kk =0,...,n — 1 where the integration is done componentwise.

Since Cf and Wy are independent, also C}" and W,'} | as well as E" | and W},
are mutually independent for all k =0,...,n—1. On the other hand, C;" and E}" |
are correlated for all k£ = 0,...,n—1. The correlation matrix of C7" and EJ", | can be
calculated by using the continuous evolution equation (6.13) for all k = 0,...,n—1.
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Then
(Cor(C, )iy = (Cov(Ch)el, (T — Paltd* (Bi)el)
= U () (T — Pl (Ao +
# ([t = o= ds g1 - P @0y
= (DU ()l U () (T — P (Al
[ QU= ) = )0 Pt (80057
foralli,5=1,...,N,, and k=0,...,n— 1. Thus

(Cor(CF", Ex'i1))ig = (Lold™ (tr) @i, U (trs1 )y )+

N
- Z UAR)P™, @) ol ™ ()™, U™ (tr) 05" )+
l:;
—i—/o (QL[*(t/€ —s)p U (tgs1 — 3)90;7”) ds+
Ny, e
=S @@ ) [ QU = o (=)o) s
=1

forall 7,5 =1,..., Ny, and hence

Cor(Cy", By 1)

m.k+1 m kT LI . m s T (6.23)
=Tor  —(AfaTor) + ; (@1 x(s) — (A1 QFk(5))") ds

forall k=0,...,n—1.

According to the discretized evolution equation (6.18) the random variable C}7 | has
a Gaussian version. The mean of the Gaussian version is

EC/, =E (AZ‘HC’,T + B+ W,ﬁl) = AL ECY + EE (6.24)
and the covariance matrix is
Cov City = Cov (A CF + By + Wiy
= Cov(A}L 1 C) + Cor (AL O Ef )+
+ Cor (£} 4, AP CFY) + Cov By + Cov WL, (6.25)
= Aj'tq Cov(Ci")( ZIH)T + A1 Cor(CF, Eq)+
+ Cor(Cy, B )T (A )T + Cov By + Cov Wi,

forallk=0,...,n—1.

Observation Equation

Since both the operator U and mapping g are non-linear, the space discretization
of the observation equation (6.17) is far more difficult than the evolution equation
(6.16), especially when we are interested in the discretization error. We assume
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that the function g is Fréchet differentiable. Then we can linearize the observation
equation (6.17). Forallk=1,...,n

VF = U(g(Cp); 1) + *
~U(g(f): 1% + U (g(f); %) (F)(Cr — f) + S*
=U(g(f); %) = U'(g(£); I*Vg' () f + U (g(£); I¥)g' (£)Cr + S*

where f € L?(D). The point f in which the linearization is done should be chosen
wisely. It may be, for example, the mean of the initial value. The linearization
induces error. However, in future we ignore the linearization error. We denote by, :=
U(g(f); 1F) = U'(g(f); I¥)g' (f) f and By := U'(g(f); I¥)g'(f) for all k = 1,...,n.
Then b, € R and By, : L?(D) — R” is a bounded linear operator for all k = 1,..., n.
The linearized observation equation is

VF = BLCy + by, + S* (6.26)
for all k =1,...,n. Then the discretized observation equation is
V¥ = BiPuCi + Bi(I — Pu)C + by + S* = [Bro]CF' + E + b, + 5% (6.27)

for all k = 1,...,n where [Byp| := [Brp!" ... Brply, ] is the L x N, matrix whose
I*" column is Byop* for all | = 1,..., Ny, and & := By(I — Py,)C}, represents
the discretization error. The discretized observation equation (6.27) is used in the
observation updating step of the Bayesian filtering. We need to define the statistical

quantities of the processes {£}?_, and {V*}7_,.

We use our knowledge of the stochastic behaviour of the continuous evolution equa-
tion (6.13). We assume that the process S(t), ¢ > 0, is a Gaussian process inde-
pendent of the process C(t), t > 0. Then S* is independent of Ot and & for all
k =1,...,n. On the other hand, C}"* and & are correlated for all £k = 1,...,n.
The concentration distribution Cj has a Gaussian modification with mean U (tx)co
and covariance given by Formula (6.14) where t = ¢}, for all k = 1,...,n. Hence the
discretization error £ has a Gaussian version for all k = 1,...,n. The mean of the
Gaussian version is

E&" = Br(I — Py)U(tr)co

and the covariance matrix is
Cov &* = Br(I — Pp)U(ti)Told* (t)(I — Pp) Bi+

4 / " BT — Pty — $)QU(t — $)(T — Po)BE ds
0

for all k = 1,...,n. The correlation matrix of C}* and & can be calculated by
using the continuous evolution equation (6.13) for all k = 1,...,n. First of all,

Cor([Brp|Cy", &) = Cor(By P Cr, Bx(I — Pr)Ck)
= BkPm COV(Ck)(I - Pm)BZ
= B Pl (ti)Told* (t) (I — Pp,) Bi+

ty
+ | BuPnlU(ty — s)QU*(ty — s)(I — Pn) B} ds
0
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for all k =1,...,n. If the matrix [Bjy]| is invertable,
Cor(Cy*, &) = [Bry] ™! Cor([BrelCF, &)
forall k=1,...,n.

In the observation updating step of the Bayesian filtering we need the joint prob-
ability distribution of C7"* and V¥ for all k =1,...,n. By the continuous evolution
equation (6.13) the random variable C}"* has a Gaussian version. According to the
discretized observation equation (6.27) the random variable V¥ has a Gaussian ver-
sion and the joint probability distribution of C}* and Vk is Gaussian. In addition,
the mean of the Gaussian version of V* is

EVF =E ([BW]C,;” FEM £ b+ sk) = [Buo|ECT + EEP" + by + ES*  (6.28)
and the covariance matrix is

Cov V¥ = Cov ([BW]C,;” FEM 4 by + S’“)
= Cov([Brp|C}") + Cor([Brel O}, &)+
+ Cor(E]", [Brp]C™) + Cov(EM) + Cov(S*) (6.29)
= [Biy] Cov(C{")[Bry]" + Cor([BrelCt, €17+
+ Cor([Bre|CF, &)Y + Cov(E) 4 Cov(S*)

for all k =1,...,n. The correlation matrix of C}* and VF s

Cor(CT", V) = Cor (c;ga [Brp|CF" + E + by + sk)
= Cor(C}", [BrglCy) + Cor(Cy, 1) (6.30)
= Cov(CIM[Bipl ™ + [Bre] ™" Cor([BiglCp, £17)

forall k=1,...,n.
Bayesian Filtering

The discretized state estimation system concerning the electrical impedance process
tomography problem is

VP = [Bep]Clt + EF +bp + 5%, k=1,...,n. (6.32)

The state noise vectors W)* and W™ are mutually independent and also independent
of Cf* for all k # l. We assume that the observation noise vectors S* are chosen
such a way that S* and S! are mutually independent and also independent of CJ* for
all k # 1 and S* and W™ are mutually independent for all k,/ =1,...,n. Then the
stochastic processes {CI"}1_, and {V*}?_, form an evolution-observation model.
Therefore we may use the Bayesian filtering method.

In the evolution updating step of the Bayesian filtering it is assumed that we know
the conditional probability density of C}* with respect to some measurements Dy, :=
{vt 02 ... ,vk}. We need to calculate the conditional probability density of C}7
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with respect to the data Dj. We suppose that the conditional expectation E(C}"|Dy,)
is a Gaussian random variable with mean ¢, and covariance matrix I'y. According to
the discretized evolution equation (6.31) we are able to present the joint distribution
of C7* and C’,’JfH conditioned on the measurements D;, and know that it is Gaussian.
By Theorems 6.3 and 6.4 and Formulas (6.24) and (6.25) the Gaussianity of the
joint probability density implies that the conditional marginal probability density of
Cyly 1 is Gaussian with mean

Cit1 = A cr + EE (6.33)
and covariance matrix

Fit1 = A;gn+1rk(A;cn+1)T + Ay Cor(CF, By )+

6.34
+ Cor(CY", Eﬂl)T( ZLH)T + Cov B} 1 + Cov Wit 4. ( )

Thus the evolution updating step is defined if we are able to calculate the vector
EE7 , and matrices A", ;, Cov E}" |, Cov W}t | and Cor(C}", £} ;) given by For-
mulas (6.19)-(6.23) for all k =0,...,n — 1.

In the observation updating step of the Bayesian filtering it is assumed that we
know the conditional probability density of C}" ; with respect to some measured
data Dy := {vl,vz,...,vk}. A new measurement v*t! is obtained. We need
to calculate the conditional probability density of Cj7; with respect to measure-
ments Dyyq = {vh,0%,..., 01}, We suppose that the conditional expectation
E(C{L,|Dy) is a Gaussian random variable with mean ¢4 and covariance matrix
I'k+1. By Theorems 6.3 and 6.4 the conditional probability density of C7", with
respect to the data D1 is Gaussian with mean

Eri1 = Cry1 + Cor(Cy, VEFL) Cov (V) 7L (0P — EVA+ (6.35)
and covariance matrix
Tpst = Dppr — Cor(Cyy 1, VALY Cov(VEH 7L Cor(Cyl 4, yhhT, (6.36)

Thus the observation updating step is defined if we are able to calculate the vector
EVF*! and matrices Cov(V*™) and Cor(Cy,, V1) given by Formulas (6.28)-
(6.30) for all k =0,...,n — 1.

The evaluation of the matrices needed in the Bayesian filtering method depends on
the discretization space V,,, analytic semigroup {U(t)}+>0, function ¢, operators
Ty, @Q and By, vector b, and statistics of the observation noise S for all k =1,...,n.
Usually the discretization space V,, is chosen such a way that the projection P, is
fairly easy to calculate. For example, the basis functions ;" have compact supports
and they are piecewise polynomial. The function ¢y and operator I'g represent our
prior knowledge of the concentration distribution. The mean cg should illustrate
the expected concentration distribution in the pipe and hence it depends heavily
on the application. Since the diffusion is a smoothing operation, we may assume
that the initial state is rather smooth. Thus the covariance operator I'g should have
some smoothness properties. Our certainty of the time evolution model is coded
into the Wiener process and hence into the operator (). The choice of () depends on
the application. The crucial factor in the evaluation of the matrices is the analytic
semigroup {U(t) }+>0. Since it is defined by Formula (2.3), only in some special cases
we can present the analytic semigroup in a closed form. In Subsection 6.3.5 we
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study the one dimensional version of the problem. Then the analytic semigroup is a
convolution operator. The operator By and vector b for all k = 1,...,n are related
to the measurement situation. We need to be able to solve the complete electrode
model for a known concentration distribution and also to calculate the Fréchet de-
rivatives of mappings U and ¢ for that concentration distribution. The function g
depends on the application. At least for strong electrolytes and multiphase mixtures
relations between the conductivity and concentration distribution are studied and
discussed in the literature. The observation noise S represents the accuracy of the
measurement equipment.

6.3.5 One Dimensional Model Case

As an example we examine the one dimensional case. Then the pipeline is modeled by
the real line. In one dimension the electrical impedance tomography is not defined,
especially not in unbounded domains. We have to use some other measurement
process. Since we are interested in electrical impedance process tomography, the
observation equation in this model case is not specified. One possibility is to observe
point values of the concentration distribution through a blurring kernel and additive
noise. Then the observation equation is linear. From the point of view of the
evolution equation the one dimensional example is reasonable. We present some
aspects of the approach introduced in this section. Numerical implementations are
not included in this thesis.

Let (Q2,F,P) be a complete probability space. We examine the stochastic initial
value problem

) = Co (6.37)

where the operator L is defined by

{dC(t) = LC(t)dt +dW (t), t>0,

L: H*R) — L*(R)
d d d
Fro g (W@ ) = o) g s

For simplicity we assume that the diffusion coefficient and velocity of the flow do
not depend on the space variable, i.e., K(x) = kK > 0 and v(z) = v > 0 for all z € R.
Let W be an L?(R)-valued Q-Wiener process where @ is a positive self-adjoint trace
class operator from L%R) to itself with Ker Q = {0}. As a normal filtration we have
the augmentation {F; ’P}tzo of the filtration generated by the Wiener process.

Analytic Semigroup

By Theorem 6.5 the convection—diffusion operator

L:D(L) C L*(R) — L*(R)
d? d
[ (H@ - U@) !

where D(L) = H?(R) and s,v > 0 generates an analytic semigroup. Furthermore,
the semigroup is strongly continuous. The semigroup is defined by Formula (2.3). We
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do not want to examine the spectral properties of the convection—diffusion operator.
We try to find an easier way to calculate the analytic semigroup. According to
Theorem 2.8 the solution to the initial value problem

{%c(t, x) = /*ig—;c(t»x) —vgpe(t,z), t>0, (6.38)

c(0,x) = co(x)

where ¢o € L?(R) is given by the analytic semigroup generated by the convection—
diffusion operator L. By solving the initial value problem (6.38) using other tech-
niques we are able to find the analytic semigroup generated by the convection—
diffusion operator. We may use a Ito diffusion to solve the initial value problem
(6.38) when ¢y € C3(R) and then try to generalize the form of the solution to the
initial values co € L?(R).

Definition 6.7. Let (2, F,P) be a probability space. A Ito diffusion is a stochastic
process X (t)(w) = X(t,w) : [0,00) x Q@ — R™ satisfying a stochastic differential
equation

{dX(t) = b(X(t))dt + o(X(t))dB(t), t>0, (6.39)

X(0) ==z

where x € R, B(t) is m-dimensional Brownian motion and b : R — R™ and
o : R™ — R™™ gre measurable functions satisfying

[b(2)[|rn + llo(2)][Rnxm < C(1 + [|z]|n)
for all x € R™ with some constant C > 0 and
[b(z) = b(y)l[en + [lo(z) — o (y)[Rnxm < Dz — yllrn
for all x,y € R™ with some constant D > 0.
We denote the (unique) solution of the stochastic differential equation (6.39) by

{X*(t)}+>0. The existence and uniqueness of a solution is proved in [21, Theorem
5.2.1].

Definition 6.8. Let {X(t)}:>0 be an Ito diffusion in R™. The (infinitesimal) gen-
erator A of X is defined by

Af(e) — i EFED)] - @)

t—0+t t

for x € R™ where E” is the expectation with respect to the law of the Ito diffusion X
assuming that X (0) =z, i.e.,

E*[f(X ()] = E[f(X*(1))] = /Qf(Xx(t)) ®=| fy) LX) (dy)-

The set of functions f : R™ — R such that the limit exists at x is denoted by Dx(A)
while D(A) denotes the set of functions for which the limit exists for all x € R™.

The infinitesimal generator of an Ito diffusion has a presentation as a differential
operator.
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Theorem 6.9. [21, Theorem 7.3.3] Let X be the Ito diffusion
dX(t) =b(X(t))dt +o(X(t))dB(t), t>0.
If f € C2(R"), then f € D(A) and
S @2 LSS (o ()L
Af(@) =Y _bile) g5 D (00 @) 5o

i=1 1,7=1

for all x € R™.

Theorem 6.9 indicates that Ito diffusions may be used for solving initial value prob-
lems.

Theorem 6.10. [21, Theorem 8.1.1] Let X be an Ito diffusion in R™ with generator
A. Let f € C3(R").

(i) We define

u(t, z) = E*[f(X ()] (6.40)

forallt >0 and x € R™. Then u(t,-) € D(A) for each t >0 and
%u(t,x) = Au(t,z), t>0, ze€R", (6.41)
u(0,z) = f(z), xr e R" (6.42)

where the right hand side of (6.41) is to be interpreted as A applied to the
function x — u(t,x) for each t > 0.

(ii) Moreover, if w(t,z) € CL2(Rx R") is a bounded function satisfying (6.41) and
(6.42), then w(t,x) = u(t,x) given by (6.40) for allt > 0 and x € R™.

By Theorem 6.9 the generator of the Ito diffusion

dX (t) = —vdt + 2kdB(t),
X(0) ==z

is the convection—diffusion operator
@ d
and C3(R) C D(A). Thus according to Theorem 6.10 the solution to the initial
value problem (6.38) where ¢y € C3(R) is
c(t, z) = E*leo(X ()]
for all t > 0 and x € R. But
X*(t) =z — vt + V2kB(t)
for all t > 0. Thus for all £ > 0

X*(t) ~ N(z — vt, 2kt)
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and the density function of X*(t) is

= o ()

for all y € R. Hence

c(t,z) = E[co(X*(t))] = E[co(z — vt + V2kB(t))]

_(a—y—vt)?

1
= — Ci e 4kt d
2E&[m0@) y

for all ¢ > 0 and x € R. Let us denote

@@ww:=zvéaﬁexp(_Ez:£Qi>

for all t > 0 and x € R. Then
c(t,z) = (P(t,-) * co)(x) (6.43)

for all ¢t > 0 and = € R where

@w»*ﬁmw=/m¢mx—wﬂMdy

—00

for all f € L?(R). Thus the solution to the initial value problem (6.38) is the
convolution of the intial value ¢y with the probability density ® if co € CZ(R). We
want to generalize this result to L2-initial values.

We define an operator family {U(¢)}:>0 by

{()f f,
U f)(@) = (B(t,-) * f)(z), t>0,

for all f € L?(R). Then U(t) is clearly linear for all + > 0. Furthermore, U(t) is
bounded for all ¢ > 0 since

2+ @) < [ @t -yl fw)] dy

—0o0

< </_Z O(t,x — y) dy>% (/_Z o(t,x —y)|f(y) dy>%

:(/ @@x—wuwwd@2
and hence

U0 sy = [ 1000 P do< [ [ b=l dy da

/ /‘ O(t,x —y) d | f(y)? dy = |32z
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for all f € L?(R). Thus U(t) is a bounded linear operator from L2(R)) to itself for
all ¢ > 0. Additionally,

1 [0 (@—w-e)? _ (y= 20— vs)?
Ut)U(s x:4/ / e 4rt e 1rs z) dzd
(U () (@) i () dzdy
/ / <(t+4&>yt(:i )tz)z J _((z—i>ztz}+<t>+s>>2f( ) d
KRS S e K S Z Z
47r/{\/_ 4

/ ~ (z—2)— 1)(1‘+9))2
2\/7m +5)

wtts) f(z) dz
—U(t+5)f(@)

for all f € L?(R), s,t > 0 and € R. Therefore {U(t)}¢>0 is a semigroup since
U)U0) =U(t) =U0)U(t) for all t > 0.

Let ¢y € L2(R). The solution to the initial value problem (6.38) is c(t, ) = U(t)co(x)
for all £ > 0 and x € R because ¢(0,z) = U(0)co(z) = co(z) and

8 62 8 8 82 a
(E (9x2 + U%> c(t,:c) = <<E - KW + v%> <I>(t7 )) * Co(l’) —0.

Hence according to Theorem 2.8 the semigroup {U(t) }+>0 is the strongly continuous
analytic semigroup generated by the convection—diffusion operator.

Wiener Process and the Initial Value

Our prior knowledge of the application we are interested in is coded into the choice
of the initial value and covariance operator of the Wiener process. The initial value
Cp is a Gaussian random variable measurable with respect to the o-algebra .’FOW P
Hence we need to choose the mean ¢y and covariance operator I'g. In this model
case our prior assumption is that the concentration distribution is almost uniform
because in some real life applications that may be expected. Hence the mean could
be a constant function. Since it should belong to L?(R), we have to do a cutting.
In electrical impedance process tomography only finite number of electrodes are
set on the surface of the pipe. Therefore we get information only from a part of
the pipe. Our knowledge of the concentration distribution outside the so called
measurement region is slight. Hence we may assume that the mean is a constant in
the measurement region |z| < M for some M > 0 and decays exponentially outside

of it, for instance
o if || < M,
co(x) = 6.44
o) {coe(mM) if |z| > M, (6.44)

for all z € R where ¢ is a positive constant.

We need to choose an appropriate covariance operator for the initial value Cy. If the
stochastic initial value problem (6.37) has the strong solution, by Definition 4.44 for
almost all (t,w) € Qr the solution C(t,w) belongs to the domain of the convection—
diffusion operator, i.e., C(t,w) € H?(R) for almost all (t,w) € Q7. Thus we may
expect that the initial value has some sort of smoothness properties. We assume

that 2
<1 d 2) OO - T]



124 Statistical Inversion Theory

where 7 is the Gaussian white noise in L*(R). Then E[(f,1)(g,n)] = (f, g) for all
f,g € L*(R). Thus for all f,g € C°(R)

(1)) (- )nc)
(£ £):)

We assume that I'g is a convolution operator, i.e., Tof = o * f for some 7 € L?(R).
Then by the Parseval formula,

1= (3 (- )1) #((1-£)9))
= (Bo(1+ &), (1+£)9) = (1 +€*)*F,4)

for all f,g € C§°(R). Hence we have 49(¢) = (1 + £2)72 for all £ € R. Thus by the
calculus of residues,

B 1 00 eixf B E el
wio) = 7= [ e = 50

for all x € R. Unfortunately, I'g defined as an integral operator having the integral
kernel yo(z—y) is not a trace class operator. We have to do some sort of modification.
We define an integral operator I'y with the integral kernel o(x,y) = w(x)yo(x —
y)w(y) where the function w is exponentially decaying at infinity, w(z) = 1 when
|| < N with some N > 0 and 0 < w(z) <1 for all z € R. Then T’y is self-adjoint
since yo(x — y) = v (y — z) for all z,y € R. By the Parseval formula,

(Fof, 1) = (v0 * (wf), wf) = (Gowfwf) = / T (@) de

— 00

for all f € L?(R). Since 4(¢) > 0 for all £ € R, the operator Ty is positive. If
To f =0, then (fo fyf) =0. Thus ﬂ;l\f = 0 almost everywhere. Hence f = 0 almost
everywhere because w > 0. Therefore the kernel of I'y is trivial. The operator 'y is
a composition of three operators, fo = My,m4,M,, where

M, : L*(R) — L*(R), f+— wf

is a multiplier and
ms, : L(R) — LAR), [ T (%0f)
is a Fourier multiplier. Furthermore, ms, = m?, 2+ S0
Y0
o = Mym?, M. ::(m@m%L@)<nhuﬂW@>::BfB

Yo Y Yo

where .
Bf i=m_12Myf =57 (%“wf) — g1 (:yg/?) % (wf)
0

for all f € L?(R). Thus B is an integral operator with the integral kernel

ei(l‘_y)g
1+ &2

) =5 (30/7) -t =2 [~ de = [5e )
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for all 2,y € R. Since b is square integrable in R?, by Example D.7 the operator B is
a Hilbert-Schmidt operator. Hence according to Proposition D.12 the operator Ty is
nuclear. Therefore I'y is an appropriate covariance operator for a Gaussian random
variable and it is a smoothing operator. In future we shall mark it without the tilde.

In this model case we assume that our model for the flow is rather accurate. Hence
we use the same covariance operator for the Wiener process than for the initial value.

Discretization Space

We need a family {V,,}5°_; of finite dimensional subspaces of L%(R) satisfying the
following conditions

(i) Vi € Vypy1 for all m € N,
(ii) UpmVm = L*(R) and
(iii) Py f — f in L3(R) as m — oo for all f € L?(R) where P, is the orthogonal

projection from L?(R) to Vp,.

Let us choose
Vm = Span {\/EX[Z__l_m i—m]ﬂ I = 17 RS 2m2}

for all m € N. Then V,, C V,,1 and dim V,, < 2m? for all m € N.

Lemma 6.11. U,,V,, = L*(R).

Proof. Since V,, C L%(R) for all m € N, then U,,V,, is a closed subspace of L%(R).
We want to show that the orthocomplement of U,,V,, is trivial. Let f € L?(R) be

such that (f,¢) = 0 for all ¢¥» € U, V,,. Specially, for all intervals I C R such that
m(I) < oo we have (f, x7) = 0 because x; € Up,Vp,. Thus

1
W/If(x)dx:O

for all intervals I C R such that m(I) < co. Since f € L%(R), then f € L'(I) for all
intervals I C R such that m(I) < co. Since for L!-functions almost all points are
the Lebesgue points,

f(z) = lim ! /I f(z)dz =0

w2 (T,
for almost all z € R where [, := (x — rp,x + 1) and lim,, oo 7, = 0. Hence f =0

and the orthocomplement of U,,V,, is trivial. Thus U,,V,, = L*(R). O

We denote
Y= \/EX[Z—Tl_m#_m]
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for all { = 1,...,2m? and m € N. Since ( 7)) = 045 for all 4, j = 1,...,2m?2, the

family {1/);”},2312 is an orthonormal basis of V,, for all m € N. Thus dim V,, = 2m?2.
We can define the orthogonal projections P, : L?(R) — V,, by

2m? m? L
Puf = (fofwi= >, m o fdexpe 1
=1 =—m2y1

for all f € L*(R).
Lemma 6.12. P,,f — f in L?(R) as m — oo for all f € L*(R).

Proof. We can change the basis of V,, such a way that the new basis {@?1}127:“12 is an
orthonormal basis of V,, and

—142(m—1)2 2m?2
o SN G (PO Vil

for all m € N. We start with the basis of V;. The new basis of V» is made by adding
linearly independent members of the old basis to the basis of V; and by using the
Gram-Schmidt orthogonalization procedure. So, the new basis at level m is obtained
by adding linearly independent members of the old basis to the basis at level m — 1
and by using the Gram-Schmidt orthogonalization procedure. Thus the basis is a
growing family of functions and we can index them by the appearance. In this way
we get an orthonormal basis {¢;}7°; of Uy, V. The change of the basis does not
change the projection, since

2 2

2m?2 2m 2m 2m?2
Pof =Y (LUer => (£ Y W e)es =Y (F05)9;
=1 =1 j=1 j=1

for all f € L?(R).

Let ¢ > 0 and f € L?(R). Then by Lemma 6.11 there exists f. € U;,V,, such that
If = fellzz@) < €/3. Since {¢;}72; is an orthonormal basis of U, Vp,, there exists
M. € N such that || fe — Py fe|l2ry < /3. Thus

1 Pre f = fllzwy < N Paaf — Pu fellzwy + 1P fe — fellLew) + 1fe — fllzm)
<Pl fe = Fllzw) + 11Pare fe = fellrzmy + [1fe = fllzzm) <e.

Hence Py, f — f in L*(R) as n — oo for all f € L*(R). Furthermore, {¢;}2, is a
basis of L?(R). O

According to Lemmas 6.11 and 6.12 the family {V,, }7°_, form a family of appropriate
discretization spaces in L*(R). The basis functions of V,, are the simplest one,
constant functions with finite supports.

Discretized Evolution Equation

The choice of the discretization level m depends on how accurate and how fast
computation we want to have. The support of a function in V,, belongs to the
interval [—m,m|. Since we know that the measurements give information only from
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a part of the pipe, the discretization level need not to be bigger than half of the width
of the measurement region. By the calculation in Subsection 6.3.4 the discretized
evolution equation is

Cii1 = A CF + By + Wity

for all k =0,...,n — 1. The matrix A}, is defined by (A}, ,)ij := (U(Ax)YT", ¢")
for all 3,5 = 1,...,2m?2. We are able to calculate the elements of the matrix Al
forall k=0,...,n—1. First of all, forall I =1,...,2m?, ¢t >0 and z € R

mz— l+1+m —mut

mo (z y ’Ut)2 2mV/kt 2
U () = == e d
()wl (x) QW/ y /mz I+m2 —mut i

2m/kt
e

r—1+1+m? —mvt> _I<mx—l+m —mvt)}
2m~/kt 2my/kt

where

1 r 1 1 * 1
I(x) ::ﬁ/—me_zQ dz:2—|—ﬁ/0 e dZ:§—|—2€I‘f($)

for all x € R and erf is the so called error function. Thus
UAR)YT" ¥i")

T Cmr— 1+ m® — muly, mx — j +m? — muly,
—m I 7 dx
o 2m/rAy 2my/il

i—j+l-mvAg i—j—mvAp
TN I(y) dy — 2m /ﬁ}Ak/ VRS I(y) dy
i—j—muvAp i—j—l-—-mvlAy
2ma/KA 27n\/W
for all 4,7 = 1,...,2m?. Since

2 2

/:C I(y)dy:%—l—xl( ) = 2\;_4- + 2z erf(x)

for all z € R, the elements of the matrix A", are given by functions known by
mathematical softwares.

Since both E7; and W', are Gaussian random variables, the knowledge of the
means and covariance and correlation operators is sufficient to be able to present the
distribution of €7\ | for all k = 0,...,n — 1. By the calculation in the previous sub-
section only the vector EE}" | and matrices Cov E}7 |, Cov W't | and Cor(C}", EfY )
forall k =0,...,n—1 are required. According to Formulas (6.21)—(6.23) it is enough
to know how to calculate the inner products (U(t)co, ¥;") and (U(#)T'ol™(s)y;", ¢7T")
and the integral

) U(u — T)QU(t — 7)™, Y7 dr (6.45)

,
for all 3,5 = 1,...,2m? and 0 < r < s <t < u < T. We shall need the adjoint
operator of U(t) for all t > 0. Let f,g € L?(R). Then

wore - [ T (@) * )(@)g(a) de

—00

=/oof()/oo 2\/;7 %g(w)dxdy

:/ ) (@ (L) % 9)(y) dy
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where

1 t)?
for all ¢ > 0 and = € R. Thus

{ (0)f = .
U @) f)(x) = (®*(t,-) * f)(x), >0,
for all f € L?(R). Hence similarly as above
X myoN mx — 14+ 1+ m? + mut max — 1 +m? + muot
i) = v 1 (St - ()|

forall I =1,...,2m2,t > 0 and € R. The function cq is given by Formula (6.44).
Since the mean of the initial value has exponentially decaying tails, we need to know
how to calculate integrals of e~ 21#I[(z) for some 8 > 0. Let o € R. Then

/_C:o "I (x) do = %eO‘BI( ) — %eﬁf[ <a - g)

= % <e°‘ﬂ - e€42> —i—% (eaﬁerf(a) - e§ erf <a - g))

/aooe_ﬂxl(m) dr = ;e_aﬁl(a)+; g (1_] <a+ g))
1 i

2 (o 2 B
>+B<e erf(a) — e erf<a+2>>.

Therefore (U(t)co, Y") = (co,U*(t)y") for all [ = 1,...,2m? is given by functions
known by the mathematical softwares because

(co, U™ (8)¢r")

—M -1 l
e M r—=+m+ut r——+m+ut
= copv/m e I -1 dr+
0 /oo [ ( 2V kKt ) ( 24/ Kt
M z— =L pm ot z— L4+ m+ot
+ cov/m I mn -1 m dr+
0 /M[ ( 2V Kt AV
dzx

-1 l
—i—cO\/ﬁ/ooe:“M I T tmt -1 Tt mt
M 2V Kt 2V kKt

—m]\/I—l+1+m2+mvt

— myV/kt
= 2copVmkt e_M+lTI_m_”t/ e e2myl(y) dy+

— 00

7771]\/Ifl+m2+mvt
fMJr#fmfvt 2mVit 62\/ntyj(y) dy+

—0o0

— 2covVmkt e

mM— l+1+m +mut mM— l+m +m11t

2m+/kt 2m+/rt
+ 2covVm I(z) dz — 2covV'm I(z) dz
—mM—1+14+m2+mut —mM—Il+m2+muot
2my/ kKt 2m~/kt

— )
+ 2c0V/mrt M~ tmvt / ) e 2R I (y) dy+
mM—Il4+14+m=+mut

2mvkt

. ()
+ 2cov/mrt eM—mTmt / e_2myl(y) dy.
mM l+m2+mut

2myV/kt
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We have chosen that the covariance operators I'g and ) are the integral operator
with the integral kernel w(z)vo(z —y)w(y) where 49 (¢) = (1+£2)~2 for all € € R and
w is exponentially decaying at infinity, w(xz) = 1 when |z| < N with some N > 0
and 0 < w(z) < 1 for all x € R. We are not able to calculate the inner product
UOT U ()i, 5 ford,j = 1,... .2m? and 0 < s <t < T in a closed form. By
using the Parseval formula we notice that

U@RTU™ ()™, ¥5") = (o * (W™ ()Y ), wld* (£)¢5")
= (NI (wld* (s)¢i"), F(wld™ () ¢5"))

foralli,j =1,...,2m? and 0 < s <t < T. The Fourier transform of ~ is known.
We can use the fast Fourier transform (FFT) algorithm to compute the Fourier
transform of wl*(t)y™ for all i = 1,...,2m? and 0 < t < T. We need use some
numerical quadrature to calculate an approximation of the integral

/ Yo(&)F (wld* ()" ) (§)F (wld™ () 15") (&) de.
In addition, Integral (6.45) has to be computed numerically. Consequently, we have
all information needed to perform the evolution updating step of the Bayesian fil-
tering.

6.4 Conclusions

In this thesis we have examined the non-stationary inverse problem concerning elec-
trical impedance process tomography. We have viewed it as a state estimation
problem. We have presented the continuous infinite dimensional state estimation
system corresponding to the problem. By studying the infinite dimensional evolu-
tion equation and linearizing the observation equation we have been able to introduce
the discretized state estimation system relating to the problem. The finite dimen-
sional state estimation problem has been solved in the Gaussian context by using
the Bayesian filtering method. However, the method introduced in Section 6.3 can
be applied to all non-stationary inverse problems in which the time evolution is
modeled by a linear stochastic differential equation with a sectorial operator and
the observation equation is linear or linearizable.

The solution (6.33)—(6.36) to the Bayesian filtering is valid only in the Gaussian
case. The assumption of Gaussianity seemed to be natural since the solution to
the infinite dimensional state evolution equation is a Gaussian process if the initial
value is assumed be a Gaussian random variable. Despite of the initial value the
state noise is always a Gaussian process. In some application non-Gaussian initial
values may be reasonable. Nonetheless, the non-Gaussian case is beyond the scope
of this thesis.

The main weakness of the method introduced in this thesis is the use of analytic
semigroups in solving the infinite dimensional state evolution equation. Since the
analytic semigroup is defined by using the spectral properties of the infinitesimal gen-
erator, only in some special cases we can present the analytic semigroup in a closed
form. Some other ways of solving infinite dimensional linear stochastic differential
equations should be researched.
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The examination of the continuous infinite dimensional state evolution equation
is beneficial for solving non-stationary inverse problems by the state estimation
method. The numerical computation requires space discretization. The discret-
ization error can be considered only by knowing the stochastic nature of the time
evolution of the object of interest. As was seen in the electrical impedance pro-
cess tomography problem in Section 6.3 the knowledge of the continuous infinite
dimensional state evolution equation of the concentration distribution allows us to
calculate the probability distribution of the discretization errors both in the evolu-
tion and observation equation. When the discretization error is taken into account,
the state estimation system is discretization invariant and hence the solution to the
non-stationary inverse problem does not depend on the discretization. Then we need
not choose the discretization level as high as possible for ensuring the accuracy of the
computation. If the aim in the Bayesian filtering is to have a real time monitoring of
the object of interest, we may use such a discretization level that the computation is
fast enough. Other discretization invariant estimation methods have been developed
in the PhD thesis of Lasanen [25].

In Subsection 6.3.5 we have studied a one dimensional version of the process tomo-
graphy problem. Since electrical impedance tomography is not defined in the one
dimension, the model case only illustrates the time evolution model used in the elec-
trical impedance process tomography problem. By numerical implementation of the
one dimensional version we would be able to visualize the discretization invariance
of the method. Unfortunately, we were not able to include numerical results to this
thesis. They will be presented in further publications of the author.



Appendix A

Resolvent

In this appendix we introduce basic properties of the resolvent set and operator of
a linear operator. Let (E, || - ||g) be a Banach space. We denote by B(E) the space
of bounded linear operators from E to E equipped with the operator norm

1Al B(e) = sup{[|Az||g : z € E, [lz|p < 1}
for all A € B(E).

Definition A.1. Let A: D(A) C E — E be linear. The resolvent set p(A) and the
spectrum o(A) of the operator A are

p(A):={AeC:IN-A)eBE)} and o(A) :=C\p(A).

If A € p(A), we denote R(\, A) := (M — A)~!. The operator R(\, A) is said to
be the resolvent operator or simply the resolvent of the operator A. The so called
resolvent identity

RO\ A) — R(s, A) = (1 — \RO\, A)R(p, 4)
is valid for all A, u € p(A).

Let D C C be open. The function A — T'(\) from D to B(E) is said to be analytic
(or holomorphic) if for every disc B(a,r) in D there exists a series

> An(A—
n=0

where A,, € B(E) which converges in B(E) to T'(\) for all A € B(a,r).
Proposition A.2. Let Ao € p(A). Then the disc

B (20, |RO0, )50, ) == {A € C1 1A= o] < RO, Itz }
is contained in p(A) and for all X in that disc

R(\A) = R(Ao, AT+ (A = Ao)R(No, A)] 7!

_ Z )\ Ao anJrl(/\o,A) (Al)

Therefore the resolvent set p(A) is open in C and the mapping X — R(\ A) is
analytic in p(A).
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Proof. Let A\g € p(A). For every y € E the equation Ax — Ax = y is equivalent to the
equation z+(A—Ao) R(Xo, A)z = y where 2 := (A\g—A)x. If [[(A=Xo)R(Xo, A)||pr) <
1, then I + (A — Ag)R(\o, A) is invertable with a bounded inverse. Hence

o0

2= R(Ao, A) [T+ (A= X)R(Ao, A)] "y =D (= 1)" (A = Ao)" R (Mo, A)y.
n=0
Thus
R(M A) = R(Ao, A) [T+ (A= Xo)R(No, A)] ! = i(—l)"(/\ — X0)" R (N, A)
n=0

if [A = Aol < [R(Xo, A)|| 3¢ So the disc

{reC:n =20l < 1RG0, A)l 55 }

belongs to p(A) and Expansion (A.1) is valid in that disc. Therefore p(A) is open
and the mapping A — R(A, A) is holomorphic in p(A). O



Appendix B

Vector Valued Functions

In this appendix we introduce the Bochner integration theory for Banach space
valued functions. In Section B.1 we have gathered measure theoretical notation
used in this appendix. The Bochner integration theory for functions with values
in an arbitrary Banach space is presented in Sections B.2 and B.4. The special
case of operator valued functions is considered in Sections B.3 and B.5. The main
references of this appendix are the books of Hille and Phillips [16] and Kuttler [24].
The Bochner integral can also be found among others in the books of Diestel and
Uhl [9] and Yosida [54], in the master’s thesis of Hytonen [17] and in the PhD thesis
of Mikkola [29].

B.1 Basic Definitions of Measure Theory

In this section we recall the basic notation of the measure theory on account of
consistence. Nevertheless, we assume the Lebesgue integration theory for scalar
valued functions to be known. The books of Kuttler [24] or Rudin [37] can be used
as a reference.

Let 2 be a set. A collection F of subsets of {2 is said to be a g-algebra in Q if F has
the following properties

(i) Qe F,

(ii) if A € F, then A° € F,
(ili) if A=U32, Ay, and A,, € F for all n € N, then A € F.
If F is a o-algebra in Q, then (2, F) is called a measurable space and the members of
F are called the measurable sets in Q. Let (2, F) and (E,G) be measurable spaces.

A function z : Q — E is said to be measurable if z71(A) € F for all A € G, i.e., the
inverse image of a measurable set is measurable.

Let E be a topological space. Then the Borel o-algebra of E is the smallest o-
algebra containing all open subsets of E. It is denoted by B(E) and the elements of
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B(E) are called the Borel sets of E. An E-valued measurable function is a mapping
x : Q — E which is measurable from (Q, F) to (E,B(E)).

Let (©,F) be a measurable space. A function p : F — [0, 00] is a positive measure
if p(A) < oo at least for one A € F and p is o-additive, i.e., if {A;} is a disjoint
countable collection of measurable sets,

I <U Ai) = ZM(Az‘)-

The triplet (2, F, u) is called a measure space. The measure space (2, F, u) is o-
finite if Q is a countable union of sets ; with u(€;) < occ.

Let (Q,F, 1) be a measure space and (F,G) a measurable vector space. A function
x: Q) — FE is called simple if it is of the form

1) = 3 apxa, )
k=1

for allw € Q where n € N, ap € E, Ay € F such that u(Ag) <ooforallk=1,...,n
and A;NA; =0ifi+#j, and

( ) 1 ifwe Ay,
w) .=
XA 0 ifwd A

A simple function has only a finite number of values and the measure of the set in
which a simple function is nonzero is finite.

B.2 Strong and Weak Measurability

Let (2, F, 1) be a o-finite measure space and (E, || - ||g) a Banach space. We define
two different kinds of measurabilities for functions from Q to E. They will be used
in the definition of the Bochner integral.

Definition B.1. (i) A function z : Q — E is said to be strongly measurable if
there exists a sequence {x,}22 1 of simple functions converging pointwise to .

(i) A function x : Q — E is said to be weakly measurable if for each f € E’ the
scalar function w— (x(w), f) is measurable.

Clearly, if = is measurable from (2, F) to (E,B(E)), it is weakly measurable. Our
task it to verify that strongly and weakly measurable functions are often measurable
and vice versa. The separability of the range of a function is the necessary and
sufficient condition.

Theorem B.2. A function x is strongly measurable if and only if it is measurable
and x(Q2) is separable.

Proof. “<” Let us assume that z is measurable and x() is separable. Let {ax}}2,
be dense in () and n € N. We set for all k=1,...,n

Ul =qz€l:|z—- < mi -
pim{remi -l < min e - als}
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and By := 7 1(U}?). Then U}" is a Borel set in E and hence B} is measurable for
all k=1,...,n. We form disjoint sets D} by

Dy =By \ (U B[‘)

<k

for all k =1,...,n. We define a sequence {z,}°2 ; of measurable functions by

Tn(w) = Z%XD;; (w)
k=1

for all w € Q. Thus x, is the nearest approximation of z in the set {aj}}_;.
Since {ay}7°, is dense in x(2), the functions x, converge pointwise to x. Since
(Q,F, ) is o-finite, there exist sets €2, T Q such that p(,) < oco. We define
Yn(w) := xq, (W)zy(w) for all n € N. Then y,, converges pointwise to x since for all
w € Q and n large enough w € Q,. Functions y, are simple because u(€2,) < oo.
Hence x is strongly measurable.

“=" Let us assume that z is strongly measurable. Then there exists a sequence
{x,}22; of simple functions converging pointwise to z. A set z,;1(U) is measurable
for all open U C E and n € N since it is a finite union of measurable sets. Let
U C E be open and {V;,,}>°_; a sequence of open sets satisfying the conditions

Vo CU, VmQVm+1 and U:UVm.

m=1
Then
mfl(Vm) c U ﬂ SCEI(Vm) < xil(vm)
n=1k=n

since x, converges pointwise to x. Hence

)= Jz 'V S | U NV € | 27 (Vi) S ().
m=1 m=1n=1k=n m=1
Thus

(o ClNNe Sl 9]

)= U N Vi)

1n=1k=n

Since x; !(Vy,) is measurable for all k,m € N, then 27 1(U) is measurable for all
open U C E as a countable intersection and unions of measurable sets. Since
{C:271(C) € F} is a o-algebra containing all open sets, x~!(B) is measurable for
all Borel sets B in E. Hence z is measurable.

We still have to show that x(2) is separable. Let
D :={a € E: 3n € N such that z,(w) = a for some w € Q}.

Then x,(2) C D for all n € N and D is a countable set and dense in D. Since
converges pointwise to x, then x(2) C D. As a subset of a separable set x() is
separable. O



136 Vector Valued Functions

To be able to prove that the measurabilities coincide if the ranges of functions are
separable, we need the following lemma. The lemma is interesting itself.

Lemma B.3. If E is separable and x is weakly measurable, the scalar function
lz(-)||z is measurable.

Proof. Let x be a weakly measurable function. Let us set
A={weQ: ||z(w)|g <a} and A :={weQ:|[(z(w), )| <a}

where a € R and f € E’. Tt is enough to prove that A is measurable. By the
definition,
Ac () Ap
£l zr <1
If w e Ny <14y, then [(z(w), f)| < a for all f € B’ where B’ is the unit ball of
E’. But by the Hahn-Banach theorem there exists f,, € E’ such that ||f,|z =1
and (z(w), fu) = ||lz(w)||g. Hence ||z(w)|g < a and

A= (] A4

£l <1

We need the functional analytic fact that for separable Banach spaces the unit ball
of the dual space is weak*-separable.

Lemma B.4. [54, pp. 131-132] Let E be a separable Banach space and B’ the unit
ball in E'. Then there exists a sequence {fn}>2y C B’ with the property that for

every fo € B’ there exists a subsequence {fn,}32, of {fn}oey such that (z, fo) =
limy, oo (2, fn,) for every x € E.

Let {fn}s2; be the sequence in Lemma B.4. If w € N5 Ay, then |(z(w), fn)| < a
for all n. Therefore [(z(w), f)| = limg— 00 |[(x(w), fn,)| < a for all f € B’. Thus

oo
A= () Ar=()4.
n=1

1f1lgr <1

Since z is weakly measurable, Ay is measurable for all n € N. As a countable
intersection of measurable sets A is measurable. Hence the scalar function ||z(-)|| g
is measurable. O

The following theorem combines the strong and weak measurability.

Theorem B.5. A function x is strongly measurable if and only if it is weakly meas-
urable and x(2) is separable.

Proof. “=" Let z be strongly measurable. Then z() is separable by Theorem B.2.
Since z is strongly measurable, there exists a sequence {z,}22; of simple functions
such that z,, converges pointwise to x. Then by the continuity of the dual operation
(xn(w), f) — (x(w), f) as n — oo for each w € Q and for all f € E’. Since (xz(-), f)
is a limit of measurable complex functions, it is measurable. Hence x is weakly
measurable.



B.3. Operator Valued Functions 137

“<" Let « be weakly measurable and x({2) separable. Let {aj}, be dense in z(£2).
Then x — ay, is weakly measurable for all £ € N. Since z(2) separable, by Lemma
B.3 the norm ||z(-) — ax| g is measurable for all k£ € N. Let £ > 0. We define for all
keN

Li={weQ:|z(w) —akllg < e}

Then A € F and U, Aj = Q since {a;}72, is dense in z(€2). We set

Dj = A\ J A
<k

for all £ € N. Then the sets D;j are measurable, disjoint and U, D; = €). We define

ze(w) ==Y arxps ()
p

for all w € Q. Clearly, x. is a countable valued function and ||z(w) —z.(w)|| g < € for
all w € Q. Since (2, F, u) is o-finite, there exist sets €, T Q such that u(€Q,) < co.
We define for all n € N and w € 2

n

w) = a w) = w
Yn(w) 2 kXDk%an( ) = X ( )XngnD,?

—~
€

~—
8
3=

£

Then {y,}>2, is a sequence of simple function converging pointwise to . Thus x is
strongly measurable. O

We have actually proved a somewhat stronger result that the statement of the the-
orem would indicate.
Corollary B.6. A function x is strongly measurable if and only if it is the uniform
limit of a sequence of countable valued functions.
The following corollary is the summary of this section.
Corollary B.7. Let x be a function from Q to E. Then the following three state-
ments are equivalent:

(i) x is measurable and x(2) is separable,

(ii) x is strongly measurable,

(iii) x is weakly measurable and x(§2) is separable.

In a separable Banach space all three measurabilities are equivalent.

B.3 Operator Valued Functions

Let (2, F, i) be a o-finite measure space and (F, ||-||z) and (F, ||-||7) Banach spaces.
We denote by B(E, F') the space of bounded linear operator from E to F' with the
operator norm

Ul Be,ry = sup{[|U||r -z € B, ||z]|p < 1}
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for all U € B(E,F). Since B(E,F) is a Banach space, the theory introduced in
the previous section can be applied to operator valued functions. Nevertheless, it is
convenient to define the strong and weak measurability for operator valued functions
differently than in Definition B.1.

Definition B.8. (i) The operator valued function U : Q@ — B(E,F) is said to
be uniformly measurable if there exists a sequence of simple operator valued
functions converging pointwise to U in the uniform operator topology.

(i) The operator valued function U : Q — B(E, F) is said to be strongly measur-
able if the vector valued function U(-)x is strongly measurable in the sense of
Definition B.1 for oll xz € F.

(i1i) The operator valued function U : Q — B(E,F) is said to be weakly measur-
able if the vector valued function U(-)x is weakly measurable in the sense of
Definition B.1 for all x € E.

It is clear that the uniform measurability of an operator valued function U is the
same as the strong measurability of U considered as a vector valued function in the
Banach space B(E, F).

The connection between the three different types of measurability for operator valued
functions is given by the following theorem.

Theorem B.9. (i) The operator valued function U is strongly measurable if and
only if it is weakly measurable and U()x is separable for each x € E.

(i) The operator valued function U is uniformly measurable if and only if it is
weakly measurable and U(Q) is separable.

Proof. The statement (i) is an immediate consequence of Theorem B.5. The state-
ment (ii) is not as obvious. The proof is similar to the one of Theorem B.5.

=" Let us assume that U is uniformly measurable. Then there exists a sequence
{Un}52, of simple operator valued functions converging pointwise to U in the uni-
form operator topology, i.e., ||Up(w) — U(w)| g, — 0 as n — oo for all w € Q.
Thus for each x € E and f € F’

(Un(@)z, f) = (Uw)z, f)| < [|Un(w)z = U(w)z|[r|fF
< ||Un(w) = U)llpermlzlel fllr — 0
as n — oo for all w € Q. Finite valued scalar functions (U,(-)z, f) are measurable

for each z € E and f € F’. Therefore (U(-)x, f) is measurable for each z € E and
f € F' as a limit of measurable scalar functions. Hence U is weakly measurable.

We still have to show that U(£2) is separable. Let
D:={A e B(E,F):3n € N such that U,(w) = A for some w € Q}.

Then U, (Q2) C D for all n € N. In addition, D is a countable set and dense in D.
Since U,, converges pointwise to U, then U()) C D. As a subset of a separable set
U() is separable.
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7<" Let U be weakly measurable and U(2) separable. Let {U,}>°, C B(E,F) be
dense in U(Q2). For every n € N we can find a sequence {z],}>°_; C E such that
|zplle =1 and
1

[UnzpllF 2 |UnllBe,F) — —
for all m € N. Since U(f2) is separable, also U(Q2)z is separable for all z € E.
Since U is weakly measurable, U is strongly measurable by Theorem B.5. Since U
is strongly measurable, for every x € E there exists a sequence { f,"f}le of simple
F-valued functions such that f? converges pointwise to U(-)z. Thus

U (W)zllr =z )lel < [[UW)z = fr(@)lr — 0

as n — oo for all w € Q. Hence ||U(:)z||F is measurable for each x € E as a limit of
measurable scalar functions. Thus ||U(-)z},||F is measurable for all m,n € N. Also

the function
Fw) = sup [|U(w)zy,|r
m,neN
for all w € ) is measurable. Clearly, F(w) < ||U(w)||p(g,F) for all w € Q. Actually,
an equality holds. For given w €  and m € N there exists n € N depending on w

and m such that 1

1U(w) = Unllpe,r < —-

m
Hence for all m € N and w € Q
F(w) > lUW)zmllr = Uz |F — [|U(w)zy, — Unay, || F

1
> |Unllge,r) — 1U(w) = Unllpe,r) — -

2 3
> |UnllBE,F) — — > U|lpe,r) — .

Thus F(w) = |[U(w)|lp(e,r) for all w € Q and |U(-)||p(g,F) is measurable.

Since U is weakly measurable, U — U, is weakly measurable for all n € N. Hence
IU() = UnllB(E,F) is measurable for all n € N. Let € > 0. We define for all n € N

Ai = {w e 0: HU(U.)) — UTLHB(E,F) < E}.
Then A5 € F and U, A5, = Q since {U,}72; is dense in U(£2). We set

Di = A5\ | 45

k<n

for all n € N. Then the sets D;, are measurable, disjoint and U, D;, = 2. We define
Ue(w) = ZUnXD%(w)'
n=1

Clearly, U. is a countable valued function and ||U(w) — Us(w)|lpp,r) < € for all
w € Q. Since (2, F, ) is o-finite, there exist sets Qy, T © such that pu(€,) < co. We
define for all m € N and w € Q

Vi) =30 Un o 6 = X0y, a4 ()

Then {V}, }2°_; is a sequence of simple operator valued function converging pointwise
to U in the uniform operator topology. Thus U is uniformly measurable. O
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B.4 The Bochner Integral
Let (Q,F,n) be a o-finite measure space and (F, || - ||g) a Banach space. Let z be

a simple function
n
r= Y aea,
k=1

from Q to E. We define the Bochner integral of x to be
[ #() di= S anst4n).
Q k=1
Then the Bochner integral is well defined and linear on the set of simple functions.

Definition B.10. A strongly measurable function x is Bochner integrable if there
exists a sequence {x,}5° | of simple functions converging pointwise to x and satisfy-
mg

/ 2 (@) — (@) |2 dt — O (B.1)
Q

as m,n — oco. If x is Bochner integrable, we define the Bochner integral of x to be

/ z(w)dp:= lim [ z,(w) du.
Q

n—oo 0

We need to prove that the previous definition is appropriate.

Lemma B.11. The Bochner integral of a Bochner integrable function is well defined.

Proof. Let x be a simple function. Then

o

E

<> llallzn(Ar)

E k=1

> app(Ar)
i

- /Q > ol ) = /Q le@)l| du.

o

for each simple function x.

Hence

< /Q le@)ll du

Let 2 be a Bochner integrable function and {x,}5° ; a sequence of simple functions
converging pointwise to x and satisfying Condition (B.1). Then {fQ ZTn(w) du}zozl
is a Cauchy sequence in F since

| [ ont) d= [ )

as m,n — o0o. Since F is complete,

< /Q 2 (@) — (@) 2 djr — O

lim [ x,(w) du

n—oo QO
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exists in F.

We need to show that the Bochner integral does not depend on the choice of the
sequence satisfying Condition (B.1). Let {z,}2%, and {yn}>_; be two sequences
satisfying Condition (B.1) and converging pointwise to z. Let ¢ > 0. Then by
Fatou’s lemma,

E

S/Qllﬂfn(w)w(w)llfs du+/ﬂllym(w)w(w)HE dp

<liminf | ||zp(w) — 2k (w)||E du + liminf/ |ym (W) — yx(w)|| £ due
Q k—oo Jo

k—o0

<£+E—€
2 2

if m,n € N are large enough. Since € > 0 is arbitrary, this shows that the integrals
converge to the same limit. Hence the Bochner integral is well defined. O
There is an equivalent way to define Bochner integrable functions.

Theorem B.12. A function x is Bochner integrable if and only if it is strongly
measurable and

[ )l du < .
Q
If x is Bochner integrable, there exists a sequence {yn}o2, of simple functions such

that y, converges pointwise to x and satisfies ||yn(w)|| g < 2||z(w)||g for alln € N
and w € Q) and

/ Hyn(w) - ym(w)HE dpy — 0
Q

as m,n — oo. In addition,

lim | () = ya(w) & du = 0.

n—oQ [¢)

Proof. “=" Let x be Bochner integrable. By the definition it is strongly measur-
able. Let {x,}5°; be a sequence of simple functions satisfying Condition (B.1) and
converging pointwise to x. By Fatou’s lemma,

/ lo(@) ]l di < lim inf / l2n ()| di
Q n—oo Q

The right hand side is finite since the sequence {z,}2° satisfies Condition (B.1)
and thus { [, lzn(w)||e d,u}zo:l is a Cauchy sequence in R. So

/ le@)lle du < o0
Q

for each Bochner integrable x.
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“«<" Let x be a strongly measurable function and

[ el dn < .
Q

Then there exists a sequence {x,}72 ; of simple functions converging pointwise to .
Let us define

o @) i len@)ls < 2e@)lle,
i) {o if [z (W)l > 2]2(@)] &,

foralln € N. If x(w) = 0, then y,(w) =0 for alln € N. If ||[z(w)||g > 0, for alln € N
large enough y,(w) = z,(w). Thus y, converges pointwise to x and |y, (w)||g <
2||z(w)||g for all n € N and w € Q. Since |lyp(w) — ym(w)||g < 4||z(w)|| g for all
m,n € Nand w € Q and ||z(-)||g € L'(Q), by Lebesgue’s dominated convergence
theorem,

) 19n @) = ym (@)l dps = 0.

m,n— 00

Hence the sequence {y, }7 ; satisfies Condition (B.1). Therefore = is Bochner integ-
rable.

Since y,, converges pointwise to x and ||y, (w) —ym(w)||g < 4||z(w)| g for allm,n € N
and w € Q and ||z(")|| g € LY(Q),

0= tim T [ ) = v @)l dp = lim [ () = 2(0) e

n—0o0 Mm—00

by Lebesgue’s dominated convergence theorem. ]

Main properties of the Bochner integral are presented in the following theorem.

Theorem B.13. (i) If © and & are Bochner integrable and o, 3 € C,

o [ al)du+ 8 [ 3) dn= [ (@a) +53() du.

i.e., the Bochner integral is a linear operator from the set of Bochner integrable
functions to E.

(ii) If x is Bochner integrable,

H/Qx(w) dp ES/QHWU)IE dp.

(iii) Let F' be a Banach space. If x is Bochner integrable and A is a bounded linear
operator from E to F,

A/Qx(w) du:/ﬂAac(w) .

Proof. (i) Let {y,}52, and {7, }°2, be sequences of simple functions stated in The-
orem B.12 corresponding to the Bochner integrable functions x and Z, respectively.
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If a, 8 € C, then ax + 8% is Bochner integrable since the simple function ay, + By,
converges pointwise to ax + 8z and

/ lyn(@) + Bin(@) — (@Y (@) + Bim(@))l| dp

<o / 190 (@) — (@)1 da + 15 / [0(@) — (@) 5 it — 0

as m,n — o0o. The Bochner integral is linear on the set of simple functions. Hence

o /Q yn(w) dps + B /Q () dpt = /Q (an(w) + Bin(w)) du

for all o, 3 € C. Therefore

a/ﬂx(w) dﬂ+ﬁ/9i“(w) dp = lim (a/gyn(w) du+ﬁ/§2@n(w) du)

— lim Q(ayn(w)Jrﬁzjn(w)) dp

- / (ax(w) + fE(w)) du
Q

for all o, 8 € C.

(i) Let {yn}>2, be a sequence of simple functions stated in Theorem B.12 corres-
ponding to the Bochner integrable function z. In the proof of Lemma B.11 we

showed that
H/w | < [ lat)le d
Q E Q

for each simple function . By the continuity of a norm,

| #(w) du

Since y,, converges pointwise to z, ||y,(w)|g < 2||z(w)||g for all n € N and w €
and ||z(-)||g € L*(Q), according to Lebesgue’s dominated convergence theorem,

| [ o) an < [tz dn

for each Bochner integrable x.
(iii) Let A € B(E, F) and x be a simple function. Then

= lim
n—oo

Yn(w) dp
Q

< i [ a@)le du.

A/fo(w) dp =AD" app(Ay) =) Aagp(Ay)

k=1 k=1

/Q 3 Aoy, (@) /Q Aw(w) dp.

k=1

Let {yn}>2, be a sequence of simple functions stated in Theorem B.12 corresponding
to the Bochner integrable function . Then Ay, converges pointwise to Az and

/Q [Ayn(w) = Aym(W)||F dp < || AllBe,F) /Q [yn(w) = ym (W) & dp — 0
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as m,n — oo Hence Ax is Bochner integrable. By the continuity of the operator A,

A/ z(w) dp = lim A/ yn(w) dp = lim | Ay,(w) du = / Azx(w) dp
Q Q n—eo Ja Q

n—oo

for each Bochner integrable x. O

Theorem B.12 allows us to define the space of Bochner integrable functions.

Definition B.14. A function x belongs to the space LP(Q2, F,u; E) for 1 < p < oo
if x is strongly measurable and

/Q (@) [, ds < oo,

We identify two functions in LP(Q, F, u; E) if they are equal almost everywhere, i.e.,
z(w) = y(w) for allw € Q\ A with u(A) = 0.

We denote )
P
llp == 1zl Lo, 7 s E) = </Q ()% du) : (B.2)

It is clear that LP(§2, F, u; E) is a norm space with the norm given by Formula (B.2).
In fact, LP(Q), F, u; E) is a Banach space. In the proof of the completeness we use
the following lemma.

Lemma B.15. If {z,}2° is a sequence in LP(), F, u; E) satisfying

o

Z Hanrl - xn”p < 00,

n=1

there exists x € LP(Q, F, pu; E) such that z,, converges pointwise almost everywhere
and in LP(Q, F,u; E) to x.

Proof. Let {z,}2°, be a sequence in LP(Q2, F, u; E) satisfying the assumption. We
denote

gn(w) =Y llzer (@) — 2 @)e
k=1

for all n € N and w € Q. Then g, belongs to LP(Q2) since it is measurable and

n

lgnllzri) <D llzkes — kllp < 00
k=1

for all n € N. We set
9(@) = Tim go(w) = 3 et (@) — 7)1z
k=1

for all w € €. By Lebesgue’s monotone convergence theorem,

o0

9l o (@) =l {|gnl o) < Z |Zk+1 — Tkl < 00
=1



B.4. The Bochner Integral 145

Hence g € LP(Q2) and thus g(w) < oo for almost all w € . We mark the set in
which g(w) = co with A. Then p(A) = 0.

Let m > n. Then

for all w € . Thus
m—1 00
[2m (@) = Zn@)llg < D ok (@) = ze@)lle < ope (@) — 2x(w)]e
k=n k=n
forallwe Q. lfw ¢ A,
D k(W) — ze(@)lle — 0
k=n

as n — oo. Hence if w ¢ A, then {x,(w)}72; is a Cauchy sequence in E and
lim,, 00 Zp (w) exists. We denote

2(w) = limy, oo p(w) fw ¢ A,
0 ifwe A.

Since x,, is strongly measurable, x,(£2) is separable for all n € N by Theorem B.2.
Let {ap}32, be a dense subset of z,((2) for all n € N. Let us set D = {ap}75,_;.
Then DN, () is dense in x,(2) and D is separable. Additionally, by the definition
z(2) C D. Hence z(Q) is separable. If f € E’, according to continuity of the dual
operation (z(w), f) = limy, o0 (xn(w), f) if w ¢ A, and (x(w), f) = 0if w € A. Hence
(x(+), f) is measurable as a limit of measurable scalar functions (z,(-)xac(-), f). So
x is weakly measurable. Since z is weakly measurable and x(f2) is separable, z is
strongly measurable by Theorem B.5.

Let € > 0. By Fatou’s lemma,

o) = ()1 die < timinf [ () = )l

For n large enough

m—1 p
Jm — ally < [ /Q (Z ks (@) - xk<w>uE> ]
k=n

if m > n. Since € > 0 is arbitrary, lim, . ||z — 25/, = 0.

S

o
< ks — 2l <&

k=n

We still have to prove that = € LP(Q, F, u; E). Let € > 0. For n € N large enough
[zllp < llz = znllp + [[2nlp < [lznllp +& < oo
Hence z € LP(Q, F, 1; E). O

Theorem B.16. LP(Q, F,u; E) is complete. In addition, every Cauchy sequence
has a subsequence which converges pointwise almost everywhere.
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Proof. Let {z,}22, be a Cauchy sequence in LP(Q, F,u; E). We choose such a
subsequence {2y, }7°; that ||z, ,, —Zn,|lp < 27%. Then the subsequence satisfies the
assumptions of Lemma B.15. By the lemma the subsequence converges pointwise
almost everywhere and in LP(Q,F,u; E) to x € LP(Q,F,u; E). Since a limit is
unique, the theorem is proved. ]

By Theorem B.12 we know that the set of simple functions is dense in L!(Q, F, u; E).
The next theorem states that simple functions are also dense in LP(Q, F, u; E) for
p > 1 if the measure p is finite.

Theorem B.17. Assume that u(?) < oo. If x € LP(Q, F,u; E) for p > 1, there
exists a sequence {xn}2 of simple functions such that x, converges pointwise al-
most everywhere and in LP(Q2, F, u; E) to x and satisfies ||z (w)||g < 2||z(w)| g for
alln € N and almost all w € €.

Proof. Simple functions belong to LP(2, F, u; E) for p > 1 since they are strongly
measurable and

n
lzllh = > llarlpu(Ar) < oo
k=1
for a simple function z. Let x € LP(Q, F, u; E). By Holder’s inequality,
1—1
Izl @imy < L1 2 o 12llLe @iy = () Pllzlo(i) < oo

So z is Bochner integrable. By Theorem B.12 there exists a sequence {z,}°,
of simple functions such that x, converges pointwise almost everywhere and in
LY(Q, F,; E) to x and satisfies ||z, (w)||g < 2||z(w)| g for all n € N and almost
all w € Q. Since [|z(w) — zp(W)|/% < 3P|z (w)|%, for all n € N and almost all w € Q,
by Lebesgue’s dominated convergence theorem,

2 — za|E = /Q lo(w) — 2n(@)|% dit — 0

as n — 00. O

Bochner integrable functions can be approximated by simple functions in L!-norm.
The following theorem states that the approximating functions can be chosen in such
a way that the values of approximating functions are values of the original function
if we allow the approximating functions to have countably many values.

Theorem B.18. Let x be Bochner integrable and ¢ > 0. Then there exists a subdi-
vision of ) into disjoint sets {Ap}3>, C F such that for an arbitrary wy, € Ay the

function
o0

Te = Z z(wk)X Ay

k=1

1s countable valued, Bochner integrable and satisfies the relation

[ ) =)l e < =
Q

Furthermore, this remains valid for all refinements of the above subdivision.
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Proof. Since (2, F,u) is o-finite, there exist 2, T € such that u(€,) < oco. We
denote S, := Q, \ Uk<n€%. Then S, € F are disjoint and U,S, = Q. We may
redefine a subdivision {S,,} of Q such that S,, are disjoint and 0 < pu(S,) < oo for
all n € N by adding all Sy such that p(Sk) = 0 to some S; with u(S;) > 0.

Let « be Bochner integrable and € > 0. Since z is strongly measurable, by Corollary
B.6 for every n € N there exists a countable valued function z. , such that

[2en(w) —2(w)lle <

for all w € Q2. For every n € N let {a}'};°, be the set of all values of the function
Tepn on Sy,. We denote A} 1= xs_,ll(al") NSy, for all [,n € N. Then A} are disjoint for
all [,n € Nand U2, A7 = S, for all n € N.

Let w® € A} be arbitrary for all [,n € N. We define the function

o0

ze(w) = Y w(w])xap()

I,n=1

for all w € Q. Then z. is countable valued and hence strongly measurable. Let
w € A} for some [,n € N. Then z. ,(w) = 2 n(w]') = af'. Hence
27 e

1(Sh)

[ze(w) — z(W)le < (W) = zen(W)E + [2en(w) — 2(W)|E <

for all W € A;L. Thus

/qu(w) — ze(w)|E dp < l,;l/ﬂ [e(wi’) = z(W)l xap (w) dp
<>

l,n=1

o0

27 "¢
w(A7) = 27"e =e.
)" ,;

Furthermore,

/Q le(w) 1 dpt < /Q (@) — ze(w) 1z dy+ /Q (@)1 dp
</QH$(W)”E dp + e < 0.

Hence x. is Bochner integrable. The construction of the function z. allows all
refinements. [

Bounded operators commute with the Bochner integral by Theorem B.13. The
boundedness is not a necessary condition.

Theorem B.19. Let F' be a Banach space and T : D(T) C E — F a closed
linear operator. If x € LY(Q,F,u; E), x(w) € D(T) for almost all w € Q and

Tz e L'Q,F, 1 F),
T/x(w) d,u:/Tx(w) djs.
Q Q
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Proof. Let T be a closed linear operator from D(T') C E to F and x a Bochner in-
tegrable function such that z(w) € D(T') for all w € 2 and Tz is Bochner integrable.
Let € > 0. By Theorem B.18 there exists two subdivisions of §2, one corresponding
to an e-approximation of x and the other an e-approximation of Txz. Let {A,}72,
be a common refinement of these two subdivisions and w,, € A4,, for all n € N. We
define

[e.o]

ze(w) == Z z(wn)xa, (W)

n=1

for all w € Q. Then z. and T'x. are Bochner integrable and

/ |z(w) — ze(w)|| g du < e and / |Tz(w) — Tx(w)||F du < €.
Q Q

Thus N
[ #e(w) du= Y a(nntAn) = Jim 3 a(wnu(4)
n=1 n=1
and

o N
/QTxa(w) dp = ZTm(wn)u(An) = lim T (Z x(wn)u(An)> .
n=1

Since T is a closed linear operator,

/ng(w) dp e D(T) and T/ng(w) dp = /QTa:a(w) dp.

Let {e,}22, be a sequence of positive numbers converging to zero. Since x., con-
verges to x in LY(Q, F,u; E) and Tz, to Tz in L'(Q, F, u; F),

n—oo

lim [ z.,(w)du= / x(w) dp
Q Q

and
lim T/ Ze, (W) dp = lim [ Tz, (w)dp = / Tx(w) dpu.

Since T is a closed linear operator,

/Q 2(w)dp € D(T) and T /Q 2(w) dp = /Q T(w) dp.

If z(w) € D(T) only for almost all w € Q, the definitions of . and T'z. have to be
changed in a set of measure zero. Hence the statement is proved. O

Since there is not an order relation in an arbitrary Banach space, there do not exist
versions of Lebesgue’s monotone convergence theorem and Fatou’s lemma. But a
modification of Lebesgue’s dominated convergence theorem holds also in this setting.

Theorem B.20. Let {x,}5°, be a sequence of strongly measurable functions. If
x 18 strongly measurable and xz,, converges pointwise almost everywhere to x with
lzn(W)||g < g(w) for all n € N and almost all w € Q where g € LY(Q), then x is
Bochner integrable and

/ z(w)dpy= lim [ x,(w) du.
Q

n—oo (¢}
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Proof. Since ||z, (w)||g < g(w) for all n € N and almost all w € Q and g € LY(Q),
the functions x,, are Bochner integrable. Since |z, (w) — zm(w)||E < 2¢(w) for all
m,n € N and almost all w € 2, by Lebesgue’s dominated convergence theorem,

i [ flea@) = (o) du=0.
So {r,}22; is a Cauchy sequence in L'(Q, F,u; E). According to Theorem B.16
there exists a subsequence {z,, }3°, and y € L'(Q, F, u; E) such that z,,, converges
pointwise almost everywhere and in L1(Q, F, u; E) to y. But limy_ 0 2p, (w) = 2(w)
for almost all w € Q. So x = y almost everywhere. Hence x is Bochner integrable
and z,, converges in L'(Q, F, u; E) to . Thus

| [ ) du— [ mute) an

as n — 0o. Therefore

Es[g%mw—xwwEw—ﬁo

z(w)dp= lim [ x,(w)du

Q n—oo Jq

and the theorem is proved. O

B.5 The Bochner Integral of Operator Valued Functions

We must distinguish between the uniform Bochner integral and strong Bochner
integral of operator valued functions. If U : Q — B(FE, F') is uniformly measurable
and

(LWMM@mw<w

U e LYQ,F,u; B(E,F)) and the theory of Section B.4 applies directly. In that
case,

/ U(w) dp € B(E, F)
Q

and is the limit in the uniform operator topology of the approximating integrals.
The operator [, U(w) dp is called the uniform Bochner integral of U. On the other
hand if U is strongly measurable and

léWWMMW<m

for all z € E, i.e., U(-)x € LY (Q, F, u; F) for each x € E, the theory of Section B.4
merely asserts that

/ U(w)x du=V(x)

Q

is an element of F'. It requires additional argument to show that V' € B(E, F).
Theorem B.21. IfU(-)z € LY(Q, F,u; F) for each x € E,

Vo = /Q Uw)z du

defines a bounded linear operator from E to F.
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Proof. Let U(-)x € LY(Q,F,u; F) for all x € E. Then V is well defined and linear
on FE. In order to show that V is bounded we consider a transformation W from
E to LY(Q, F, u; F) defined by (Wx)(w) := U(w)x for all w € Q. One sees directly
that W is linear. If z, — z in £ and Wx,, — y in LY(Q, F, u; F) as n — oo, then
(Wzxp)(w) — (Wz)(w) as n — oo for all w € Q and there exists a subsequence
{Zn, }32 such that (Wzy, )(w) — y(w) as k — oo for almost all w € Q. Since the
limit is unique, y(w) = (Wx)(w) for almost all w € Q, i.e., y = Wa in L1(Q, F, u; F).
Thus W is closed. By the closed graph theorem W is bounded. Therefore for all
el

Vel < /Q [U()zllr dp = Wzl Lroir) < IWllpee,cr oz umm) l12lle-

Hence V is bounded. O

The operator V is called the strong Bochner integral of U and denoted by

Ve /Q U(w) dy.

Since uniformly measurable operator valued functions are strongly measurable, we
have two different integrals for functions in L'(Q, F,u; B(E, F)). The following
theorem shows that the integrals coincide.

Theorem B.22. If U € LY(Q,F,u; B(E,F)), the uniform and strong Bochner
integral are equal.

Proof. Let U be a simple operator valued function. Then

(/Q Uw) dﬂ) v ;UWN(AQ = /Q U(w)z du

forallz € E.

Let U € LY(Q, F, u; B(E, F)). Then U is uniformly measurable and hence strongly
measurable. Furthermore,

léwwm@HW<m
and thus for each z € F
LLWMMWW?LWMM@DWWM<N

Therefore both the uniform and strong Bochner integrals are defined. Since U €
LY(Q,F,u; B(E, F)), there exists a sequence {U,}2%; of simple operator valued
functions converging pointwise almost everywhere to U in the uniform operator
topology and satisfying

t@mw—wwmwwweo
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as m,n — oo. Thus for each € E the sequence {Upy(-)x}°; of simple F-valued
functions converges pointwise almost everywhere to U(:)x and satisfies

/ |Un(w)z = U ()| p dpp — 0
Q

as m,n — o0o. Hence for all x €

([v@ an)e=tim ([ @) an)o= tim [ v = [ U6 an

and therefore the uniform and strong Bochner integrals have the same value. O






Appendix C

Integration Along a Curve

In this appendix the Bochner integration theory introduced in Appendix B is used
to define the integral of a vector valued function along a curve in the complex plane.
This sort of integrals are needed in the definition of the analytic semigroup generated
by a sectorial operator in Chapter 2.

Let (E,| - ||g) be a Banach space and ~ a curve in C, i.e., there exists such a
parametrization

y={AeC: A =7(p) :==1(p) +ira(p), ¢ € [a,b] CR}

where a < b that ~;, ¢ = 1,2, are piecewise continuously differentiable functions from
[a,b] to R. We say that v is a curve inaset D C Cif vy C D. Let z : C — E be
a vector valued function. We define the integral of x along the curve v to be the
Bochner integral

b
/ £(N) dA = / (V@)Y () dip
5 a

if 2(y(+)) is strongly measurable from [a,b] to F and

b
[ IeoDlsh ()] do < oc.

If (F,||-||r) is a Banach space and U : C — B(E, F') is an operator valued function,
the integral of U along the curve + can be defined as a uniform Bochner integral

b
[ ani= [ vae)e) a
ot a
if U(~(+)) is uniformly measurable from [a,b] to B(E, F') and

b
[ 106D sk @) dp < o

Then the integral

/ U\ dA

is a bounded linear operator from E to F.
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C.1 Analytic Functions

We want to show that some of the results of the complex analysis are valid for
operator valued functions.

Definition C.1. Let (E,| - ||g) be a Banach space and D C C open. The function
x: D — E is said to be holomorphic (or analytic) in D if for every disc B(a,r) C D

there exists a series
oo

Z cn(A —a)”

n=0
where ¢, € E which converges in E to x(\) for all A € B(a,r).

If U:C— B(E,F) is analytic in an open set D C C, the function (U(M\)z, f) is an
analytic scalar function in D for all z € E and f € F’. Let  be a curve in D. Since
the function ¢ — 7(¢) is continuous, the function ¢ — (U(v(p))z, f) is measurable
as a composite function of a continuous and analytic function for all z € E and
f € F'. Hence U(7(+)) is weakly measurable from [a,b] to B(E, F). Since [a,b] is
separable and U(v(-)) is continuous, U(~([a,b])) is separable. Therefore U(~(:)) is
uniformly measurable by Theorem B.9. If the length |v| := f 17 ()| do of v is
finite,

/ 1T (vl Bee,r)y (©)] de < Iv\wnel% IU(v(e)ll B(E,F) < o0

Hence the integral

/UQMM

is defined for analytic functions U if the length of + is finite. If there exists inform-
ation about the behaviour of the norm of an analytic operator valued function, the
integral along a curve with infinite length may be defined.

Let v be a closed curve, i.e., v(a) = vy(b). By the Cauchy integral theorem,

b
0= 74 (UMW, ) dr = / U @)z, F) () dyp

=(['v6eneerass) = feas)

for all z € E and f € F’. Thus
%UQMM:O
v

Therefore the Cauchy integral theorem is valid for holomorphic operator valued
functions.

On the other hand, let v be a closed curve and & ¢ ~. By the Cauchy integral
formula,

(€, /) Indy(€) = 5 2y dh= o

(e [ o)~ (5 2N )

RIS SN RO
e e
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for all x € E and f € F’ where
1 dA
Ind,(€) = — ¢ 22
nd,(¢) %ﬁﬁf—k
Thus

1 U(N)
I =— ¢ —=d\
Uy (€) = 5 f g5
Therefore the Cauchy integral formula is valid for holomorphic operator valued func-
tions.

The following theorem is the summary of this section.

Theorem C.2. Let U : C — B(E, F) be analytic in an open set D C C and v a
closed curve in D. Then

7{ U(N) d\ = 0.

If &,

U(€) Tnd, (€) = QLM f{ gUE—A; d






Appendix D

Special Operators

In this chapter we present some special bounded linear operators in Banach and
Hilbert spaces. We consider the spaces of nuclear and Hilbert-Schmidt operators.
References of this chapter are the books of Da Prato and Zabczyk [35], Kuo [23],
Pietsch [32] and Treves [52]. Nuclear operators are also treaded among others in
the book of Kothe [22] and Hilbert-Schmidt operators in the books of Dunford and
Schwartz [10] and Ko6the [22].

D.1 Hilbert-Schmidt Operators

Let (U, (-,+)y) and (H,(-,-) ) be separable Hilbert spaces.

Lemma D.1. Let {e;}32, and {dy}3, be two orthonormal bases in U. Then

o o
Z I Texl7r = Z I Tdi|| %
k=1 k=1

for a linear operator T from U to H.

Proof. Let {fr}?2, be an orthonormal basis in H. Then for a linear operator T

ZHT%HH = ZZI (Te, i)y ZZ\ (en, T fi)yl* = ZHT*fJHU

k= 1] 1 Jj=1k=1
Z (T £, di)y ZZ\ fi: Tdi) g * = ZHTdkH%
j=1 k=1 k=1 j=1 k=1

Thus if the series Y oo, || Tex||%; converges for some {e;}%2 ,, it converges for any
other {dj}?2, and if the series > oo | ||Tex||%; is divergent for some {ex}3°, it is for
any other {d}72. O

Definition D.2. A linear operator T : U — H is said to be a Hilbert-Schmidt
operator if

o0
> I Terlif < oo

k=1
for an orthonormal basis {ex}3>, in U.
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By Lemma D.1 the definition of Hilbert-Schmidt operators is independent of the
choice of the basis {e;}72,. We denote by B(U, H) the Banach space of all bounded
linear operators from U into H endowed with the operator norm

1T pw.m) = sup{l|Te||m - x €U, |zllv <1}

for all T € B(U, H) and by Bs(U, H) the collection of Hilbert-Schmidt operators
from U to H. We define the Hilbert-Schmidt norm by

1
o0 2
1Tl B v,y == (Z ||T€/<:H12q>
k=1
for all T € By(U,H). If U = H, we use the notation B(H) := B(H,H) and
BQ(H) = BQ(H, H)
Theorem D.3. Let( U,(-,)y), (H,(-,-)g) and (E, (-, ) ) be separable Hilbert spaces
and Q € B(E,U), R € B(H,E) and S,T € Bo(U, H). Then
(1) |aT | Byw.my = [T\ By, 1) for all o € C,
(i) ||S + T o,y < ISl By, iy + 1T\ By, 1)
(i) [T\ y,0y = 1Tl By(v,mry»
() |T| pw,mry < T | Bo(u, i)
(v) RT is a Hilbert-Schmidt operator from U to E and
|1RT || Byw,e) < 1Bl B, ) 1T Bo (U, 1)
(vi) TQ is a Hilbert-Schmidt operator from E to H and

1T o,y < QN BE,HIT || By(U, H) -

Proof. The statement (i) is obvious.

(i) Let S,T € By(U, H) and {e;}72, be an orthonormal basis in U. Then by the
Minkowski inequality,

(ZII (S+T) ek‘HH> (ZHSeklg> (iIITGkII%)%

k=1

Thus [|S + T Byw,m) < ISl Bo,my + 1T Bo0, 1) -
The statement (iii) is a consequence of the proof of Lemma D.1.

(iv) Let T' be a Hilbert-Schmidt operator from U to H and « € U. Let {f;}72, be
an orthonormal basis in H. Then

IT|| = Z\ (T, fi)? Z\ z, T" fi)

k=1
o0
< Nl DN fulley = 12NN W .0
k=1

= 17N, w1
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Thus |T|pw,z)y < 1T By, m)-

(v) Let Re B(H,E) and T € Bo(U, H). Let {e}}72, be an orthonormal basis in U.
Then

IRT 15,08 = D IRTerls < RN Bz O 1 TerllE = 1 RI B2 1715, w.a)-
k=1 k=1

Hence RT is a Hilbert-Schmidt operator from U to F and the claimed inequality is
valid.

(vi) Let @ € B(E,U) and T' € B2(U, H). Then by the statements (iii) and (v),

1TQ y(5,my = 1Q° T By rr,E) < NQ | B IT™ | B2 1,0y = QI BB T || By, )
and hence T'Q is a Hilbert-Schmidt operator from E to H. O

Corollary D.4. The Hilbert-Schmidt norm is a norm in Bo(U, H).

By Theorem D.3 Hilbert-Schmidt operators are bounded, i.e., Bo(U, H) C B(U, H).
If U is finite dimensional, Bo(U, H) = B(U, H). But if U is infinite dimensional,
By(U,H) C B(U,H), e.g. the identity operator is bounded but not a Hilbert-
Schmidt operator.

Proposition D.5. A Hilbert-Schmidt operator from U to H is compact.

Proof. Let T' be a Hilbert-Schmidt operator from U to H and {e;}7°; an orthonor-
mal basis in U. Then > 7o, [|[Texl|% < oo. Let {f}32, be an orthonormal basis in
H. Then Tx =3 o, (Tx, fr) g fr for all z € U. Thus

n

Tx-—jz:(]ﬁ:fﬁ4ka

Z\T:cfk Z\QET*kaF

k=1 H  k=n+1 k=n+1
[e o]
<l > 1T fullz — 0
k=n-+1

asn — oo for all z € U since ) 32, [ T* f;|IZ; = Y52, [ Texl| by the proof of Lemma
D.1. Hence T is the limit of finite rank operators in the operator norm. Therefore
T is compact. O

We equip the norm space Bo(U, H) with the Hilbert-Schmidt inner product

(S, T) pywy = Y, (Sex, Ter) (D.1)
k=1

for all S,T € By(U, H) where {e}}72, is an orthonormal basis in U. Then By (U, H)
is a Hilbert space.

Proposition D.6. The space of Hilbert-Schmidt operators from U into H is a sep-
arable Hilbert space.
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Proof. Let {ex}72, and {fy}72, be orthonormal bases in U and H, respectively. The
series on the right hand side of (D.1) converges absolutely since 2|(Sey, Teg) ;| <
|Serll?; + | Tex||?; for all S,T € By(U, H). The Hilbert-Schmidt inner product is
independent of the basis {ej}7°, because >, (Ser, Tex)y = > oy (T* [, S* fi) iy
for all S,T € By(U,H). Since (T, T)p, ;) = HTH2B2(U,H) and (-,-)y is an inner
product in H, the Hilbert-Schmidt inner product is an inner product in Ba(U, H).
Hence Bs(U, H) is an inner product space.

To prove the completeness of Ba(U, H) let us assume that {T,,}7°, is a Cauchy
sequence in By(U, H). By Theorem D.3 the sequence {7,}°°, is also a Cauchy
sequence in B(U, H). Since B(U, H) is a Banach space, there exists T' € B(U, H)
such that ||7'— T, ||gw,z)y — 0 as n — oo. We need to prove that T' € By(U, H) and
IT — Tollgyw,mry — 0 as n — oo. Since {T,,};2; is a Cauchy sequence in By(U, H),
it is bounded, i.e., there exists C' > 0 such that || 15| g, i) < C for all n € N. Let
{ex}72 | be an orthonormal basis in U. Then for each N € N

N N
S ITerl = tim 3 [Toely < lim [T, 000 < C*
— k:

Hence ||T'||g,(,qy < C and T' € By(U, H). Let € > 0. Then there exists M > 0 such
that || Ty, — Thllgyw,my < € for all m,n > M. Then for m > M and each N € N

=z

N

YT = Tw)erly; = lim ZH T = Tr)erllfr < lim Ty = Tl B, 0,1y
k=1 =1

< hmsup T — Tl Byrary < €°

n—oo

Hence ||T' — T y,my < € for all m > M. Therefore Ba(U, H) is complete.

Let T' € By(U, H) and { f}72; be an orthonormal basis in H. Then for all x € U

[e.e]

Z (T, fi)pfe = > (@) (Ter, fi)
k=1

k=1
Z T [k ®e B2(UH)(fk®6l)( )
k=1

where (fy ® e1)(z) = (z, 1) fi for all x € U. The set {f ® e;}75_, is orthonormal
in By(U, H). Furthermore,

2

3

T — Z Tey, fu) g (fx ®e)

k=1 1=1 BQ(U’H)
o0 oo o0 2
=S Y S @, f)p(fr@e)(es)
7=1 llk=n+11l=m+1 H
o0 o0 2
= > 11D Tej fiph
j*m—i—l k*n—i-l "

Z Z (Tej, fr)yl* — 0

j=m~+1 k=n-+1
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as m,n — oo since > 75 [(Te;, fi)gl? = P |Te;||3; < oo. Hence {fi ® et =1
is an orthonormal basis in By (U, H). O

As an example of a Hilbert-Schmidt operator we present the Hilbert-Schmidt integral
operator in L?(R).

Example D.7 (The Hilbert-Schmidt integral operator). Let k € L*(R?). We
define the operator K : L2(R) — L?(R) by

Kf(t) = / Tkt $) f(s) ds

—00

for allt € R. Then K is a Hilbert-Schmidt operator and ||K||g,r2(r)) = Ikl £2(r2)-

Proof. Let f € L*(R). Then

o] o] 2
1K flI7 2y = ‘/ k(t,s)f(s) ds dtg/oo (/Oo\k(t,s)f(sﬂds) dt
/ / k(t, )| ds/_ [f(s)? ds dt = |[E] 72 e) | 172 wy-

Thus K is a bounded linear operator from L*(R) to itself and ||K||p2r)) <
15| 2 (R2)-

To show that K is actually a Hilbert-Schmidt operator we use the Fubini theorem.

Since
/Rz

by the Fubini theorem,

2
k(t, s)‘ dsdt = / Ik(t, s)|? dsdt < oo,
RQ

/OO ‘l{:(t,s)‘2 ds < oo

— 00

for almost all t € R, i.e., k(t,-) € L*(R) for almost all t € R. Let {e,}°%, be an
orthonormal basis in LQ( ). Then for almost all ¢ € R

‘ (m7en(.>>L2(R) :i

n=1
Hence by Lebesgue’s monotone convergence theorem,

2 2

[

| RS ds

—0o0

2

Hka (R2) = HkHL2(R2 k(t,s)en(s) ds| dt

:;/_OO ‘/_w Kt $)en(s) ds|

dt.

Therefore

[e%¢) 00 o] 00 2
D IKenlZom = Z/ '/ k(t,s)en(s) ds
n=1 n=17 7" 1/7

Hence K is a Hilbert-Schmidt operator and || K|| g, (r2(r)) = |kl L2(r2)- O

dt = k)3 a2
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D.2 Nuclear Operators

Let (E,| - ||g) and (F,| - ||r) be Banach spaces.

Definition D.8. A bounded linear operator T is said to be nuclear if there exist
sequences {a;}32, C I and {p;}32, C E' such that T' has the representation

o
Tx = Z a;j(z,¢;)
j=1

forallx € E and

(o]
> lajlleliesll e < oo
j=1

Proposition D.9. A nuclear operator from E to I is compact.

Proof. Let T be a nuclear operator from E to F. Then there exist sequences
{a;}32, C F and {p;}32, C E' such that T" has for all # € E the representation

Tx =252 aj{w, @5) with 372, [laj|[rll@jller < co. Then

n 0o 0o
Te = ajlm o)) < D lallelz el < lells Y llajlellelle — 0
J=1 g J=ntl j=n+1

asn — oo for all x € E. Hence T is the limit of finite rank operators in the operator

norm. Therefore T is compact. ]

Let Bi(E, F) be the collection of nuclear operators from E into F. We use the
notation By (F) := B1(F, F). We endow By (F, F') with the norm

(o] (o]
|75y (e, ==1nf 4> Nlaslipligslle : Tz = ajix,¢;) forall z € E
j=1 j=1

for all T € Bi(E, F).
Theorem D.10. Let (E,| - ||g), (F,| - ||r) and (G,|| - ||c) be Banach spaces and
Q € B(G,E), Re B(F,G) and S,T € B,(E, F). Then
(i) 1T\, (e,r) = ||| B, (&,F) for all a € C,
(i) 1S+ T g, (e,r) < IS5 (&Fr) + 1T B(E,F):;
(iii) | T\ pe,r < 1T B (2,F)
() T g, (r &) < 1T B, (E,F)

(v) RT is a nuclear operator from E to G and

|1RT (|5, (ec) < |1RIBEa) T B, (£,F)
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(vi) TQ is a nuclear operator from G to F and

1TQl B, c,r) < 1QllBa,p) Tl B, (E,F)-

Proof. The statement (i) is obvious.

(ii) Let S,T € Bi(E, F) and € > 0. Then there exist sequences {a;}32,, {b;}32;
Fand {9152, {¢;}32; C E' such that S and T have the representations S
>y ai(r,@;) and Tx = 3772, bj(x, ¢;) for all x € B with 3322, [lajl|lr ;e
15118, (&,py+e/2 and 3272, [|bjl pl|éj 1|2 < (|| By (5,F)+€/2. We define the sequences
{c]} °, C F and {2/)]}00_1 C E' by coj41 := a] and cg; := bj and 19511 := ¢; and
2j 1= or all j € en +1)r = _ or all x € I an
;= ¢, for all j € N. Then (S + T . 2.0 for all o € E and

AN

o
1S+ Tllgy(m.py < D llesllelsller < ISlye,m) + 1Tl 5r) +e.
j=1

Since ¢ > 0 is arbitrary, ||S + T g,(z,r) < IS5, (z,r) + |T|B,(E,F)-

(iii) If T is a nuclear operator from FE to F,

oo 0
1Tz)r < laslleliz )] < llzlle Y llalelle;) e
j=1 j=1

for all representations Tz = 372 a;(z, ;) and x € E. By taking the infimum over
all representations we get || T p(gz,r) < Tl B, (,F)-

(iv) Let T" be a nuclear operator from E to F and € > 0. Then there exist
sequences {a;}32; C F and {p;}32; C E’ such that T has the representation
Twx =37, aj(z,¢;) forall w € B and 372, |la;l rllejl e < T B, (z,F) + €. Hence
for all ¢ € F’

(Tz,¢) = <Zaa > = (@), ¢) = <wvz<ajv¢>80j> = (z,T'¢).

Jj=1 Jj=1

Thus the Banach adjoint 7" € B(F", E') has the representation 7"¢ = 22 | (a;, ¢)¢;
for all ¢ € F'. Since F' C F" and ||aj||p = |la;||r and hence 3772, [|a; | Fn||l¢jl & <
T B, (&,F) + ¢, the Banach adjoint T" is nuclear and ||T"|| g, (7 gy < ||| B, (£,7) +¢-
Since ¢ > 0 is arbitrary, [|T"||g, (7 gy < T B, (E,F)-

(v) Let R € B(F,G) and T' € Bi(E,F). Then RTz = > 72, Raj(z,p;) for all
representation Tz = > 322, a;j(z, ;) and z € E. Thus

o0 o
IRT| 5, (2.c) < D IRajllcllejller < IRIsre) Y lajlleleslle < oo
j=1 j=1

Hence RT € B;(FE,G). By taking the infimum over all representations of 7' we get
the claimed inequality.
(vi) Let Q € B(G, E) and T € By(E, F). Then

o

TQy = a;(Qu, ;) Za] (y, Q'¢j)

j=1



164 Special Operators

o0

for each representation Tz = %, a;(z,¢;) and y € G. Thus

[ee] o
TRl ) <D laillpllQeiller < 1Q B .cry Y llasllelleslle < oo.
=1 =1

Hence T'Q € B1(G, F'). By taking the infimum over all representations of 7" we get
the claimed inequality since [|Q’'| p(z.cry = Rl B(G,E)- O

As a corollary of Theorem D.10 By (E, F) is a norm space with the norm |- || 5, (g, r)-
Actually, B1(E, F) is complete.

Theorem D.11. The space of nuclear operator from E to F' is a Banach space.

Proof. To prove the completeness let us assume that {T;,}7° ; is a Cauchy sequence
in Bi(E, F). By Theorem D.10 the sequence {T},}32, is also a Cauchy sequence
in B(E,F). Since B(E, F) is a Banach space, there exists T' € B(F, F') such that
|T — Tollp(e,ry — 0 as n — oco. We need to prove that 7' € By(E, F') and ||T —
Toll,(g,ry — 0 as n — oo. We determine a monotonically increasing sequence
{ni}72, of indices such that || T} — Tl g, (p,r) < 1/2"2 for all [,m > ny. Then for
all k& € N there exist sequences {a? 521 C Fland {goé“ 21 C E’ such that the nuclear
operator Tp, ,, — Tp, has the representation (Tp,,, — Ty, )z = > 72, a?(x, (pf) for all
z € Fand > 2, ||af||p||g0§||E/ < 1/2F2, Let k € N. Consequently, for all p € N

k+p—1 k+p—1 oo
(Tnk+p B Tnk)x = Z (Tnl+1 - Tnl)$ = Z Zaé <$) 30§>
=k =k j=1

for all z € E. By taking the limit p — oo we obtain the identity (T' — T, )z =
Dok e aé-(x, cpé> for all z € E because the series on the right hand side converges
absolutely. Since

oo [e.e]
1
l !
[ Tnk||B1(E,F) < ZZ ||aj||F||90jHE’ < DS
I=k j=1

the operator T' — T, is nuclear and hence is also T". Finally,

1
IT = TullBy(e,r) ST = Toill By (E,F) + 1 Thy, — TullBy(B,F) < o*

for all n > ny, and hence [|T — Ty g, (g,r) — 0 as n — oo. O

In separable Hilbert spaces the product of two Hilbert-Schmidt operators is nuclear.

Proposition D.12. Let (U, (-,")y), (H,(-,-)y) and (E,(-,-)g) be separable Hilbert
spaces. If T € By(U,H) and S € Ba(H, E), then ST € B1(U,E) and

15T |5, w,e) < IS Boa,2) 1Tl By (U, H) -

Proof. Let T € Bo(U, H), S € By(H, E) and {f;}52; be an orthonormal basis in H.
Then

o0 [e.o]

STz = Z (T, f;)ySfi = Z (z, T f;) S 1

j=1 j=1
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for all x € U. Thus

[

o0 o0 2 o0
IST 5, w,m) < D ISHIENT fillo < [ DOUSFHIE ) | DoITfllE
j=1 j=1

j=1

= IS o, ) 1T Bo 1,0y = 1SN By, ) | T M| Bo (U, 1) -

Therefore ST € B (U, E) and the claimed inequality is valid. O

D.2.1 Trace Class Operators

Let (H,(-,-)) be a separable Hilbert space and {ej}7°; an orthonormal basis in H.
ItT e Bl(H), we define the trace of T by

o
TrT = Z (Tej,ej) -
j=1

Proposition D.13. If T € By(H), then Tr T is a well defined number independent
of the orthonormal basis {ex}7° ;.

Proof. Let T be a nuclear operator in H. Then there exist sequences {a; }j’il CH
and {;}72; C H’ such that T' has the representation Th = >3, a;(h, ;) for
all h € H and 772, [lajllull@sllmr < oo. By the Riesz representation theorem for
all j € N there exists b; € H such that (h,p;) = (h,bj), for all h € H and

16|lz = [ljllz7. Thus

[o¢] o0 (o] [o¢] o0
S [ Terer)yl =D 1D (enb)) (s en)y > " l(enbj) gy, )l
k=1 k=1 | j=1 Ji et

= i (f] aj, er) gl > (i e, b )2 (D.2)

o e.9] o o0
D (Terser)y =3 > (enbi)ylaj ey =) (@5,b;
k=1 j=1k=1 j=1
Thus the definition of Tr T is independent of {e;}2° ;. O
According to Estimate (D.2),
| Te T < ||| g, (m) (D.3)

for all T € Bi(H).
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Proposition D.14. A non-negative self-adjoint operator T' € B(H) is nuclear if
and only if for an orthonormal basis {e;}32, in H

o0
Z(Tej,ej)H < 00
j=1

In addition, ||T| g, gy = TrT.

Proof. “=" 1If T is nuclear, then Tr T' < oo by Estimate (D.3).

“«<" Let T be a non-negative self-adjoint operator such that > 22, (Tej, ;) < 00

for an orthonormal basis {e;}32; in H. First we show that 7" is compact. Let T 1/2
denote the non- negatlve self—adjomt square root of T' [36, Theorem 13.31]. Then
T2h = P L (T2, ej) y€; for all h € H and

2

T'2h — i <T1/2h, ej)Hej

j:l H
= 1/2 2 = 1/2 2
- Z ’(T h’ej)H‘ - Z ’(h’T ej>H)
j=n+1 Jj=n+1
oo 2 [ee)
<l Yo 7%, = 0% Y (Tejen); — 0
j=n+1 j=n+1

as n — oo for all h € H. Hence the operator T/2 is the limit of finite rank operators
in the operator norm. Therefore TY? is compact and T = TY2TY? ig a compact
operator as well.

Let {fr}32, be the sequence of all normalized eigenvectors of T and {A\,}}2; the
corresponding sequence of eigenvalues. Then Th = Y7 Mg (h, fi) g fr for all h € H
since T is a compact self-adjoint operator [14, Theorem 5.1, pp. 113-115]. Thus

Z T6]76j H—ZZ)\k| ejafk? H‘Z Z)‘knkaH_Z)‘k
j=1

=1 k=1

Hence

Z M\ frellall frllg = Z)‘k < 00
k=1 k=1

and therefore T' is nuclear. Furthermore, TrT = 77 Ax. Since ||T|p, () <
Zzozl )\k and ’TI'T| S ”THB1(H)7 we have HTHBl(H) =TrT.

Let T' € B(H). Then T*T is a positive self-adjoint operator in H. Thus there exists
positive self-adjoint R € B(H) such that R? = T*T and ||Rz| g = ||Tx|| g for all
x € H [36, Theorem 12.34]. We define the operator U : R(R) — R(T) by Uz :=Ty
where © = Ry. Then URxz = Tz for all z € H since Ker(R) = Ker(T'). Thus

|URz||r = [[T2| g = || R||m

for all x € H. Hence U is an isometry from R(R) to R(T). Therefore U has a
continuous extension to a linear isometry from the closure of R(R) to the closure
of R(T). Additionally, we define Uz = 0 for all z € R(R)*. Hence U € B(H) and
Ul ey = 1. The operators R and U are called the polar decomposition of T
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Theorem D.15. A bounded linear operator T : H — H is nuclear if and only if

oo
Z)\k < 00
k=1

where {\;}32., are the eigenvalues of (T*T)'/2.

Proof. We denote R := (T*T)'/2.

“<” Let us assume that Y p°; A\ < oo where {\;}72, are the eigenvalues of R.
Since R is a non-negative self-adjoint operator in H and TrR = Y 72, A\ < o0,
by Proposition D.14 the operator R is nuclear and ||R|[ g, gy = Tr R. There exists
U € B(H) such that URz = Tx for all x € H and ||U| g(z) = 1. Thus by Theorem
D.10 the operator T is nuclear and

1N g,y < MU |1 Rl gy = TER =) A
k=1

“="Let T'e€ B1(H). Since T'=UR and U is an isometry from the closure of R(R)
to the closure of R(T), there exists the bounded linear inverse of U from the closure
of R(T) to the closure of R(R). We define Vo = U~z for all z € R(T). Then V
is an isometry from the closure of R(T) to the closure of R(R). Additionally, we
define Va = 0 for all z € R(T)*. Then V € B(H) and ||V|| sy = 1. Furthermore,
VTx = Rx for all x € H since Ker(T') = Ker(R). Thus by Theorem D.10 the
operator R is nuclear and

IRl B,y < VB 1T B,y = 1T B, (1)
Hence Tr R = ;7 A\, < co by Proposition D.14. O

Corollary D.16. Let T' € Bi(H). Then
T\ g, a1y = Te(T*T)M? = Z Ak
k=1
where {\; 132, are the eigenvalues of (T*T)'/2.

By Theorem D.15 and Corollary D.16 it is justified that the nuclear operators in H
are also called trace class operators.
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