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Abstract: We consider the process tomography problem of the following kind:
based on electromagnetic measurements on the surface of a pipe, describe the con-
centration distribution of a given substance in a fluid moving in the pipeline. We
view the problem as a state estimation problem. The concentration distribution is
treated as a stochastic process satisfying a stochastic differential equation. This is
referred to as the state evolution equation. The measurements are described in terms
of an observation equation containing the measurement noise. The time evolution is
modelled by a stochastic convection-diffusion equation. The measurement situation
is represented by the most realistic model for electrical impedance tomography, the
complete electrode model. In this thesis, we give the mathematical formulation of
the state evolution and observation equations and then we derive the discrete infinite
dimensional state estimation system. Since our motive is to monitor the flow in the
pipeline in real time, we are dealing with a filtering problem in which the estimator
is based on the current history of the measurement process. For computational reas-
ons we present a discretized state estimation system where the discretization error
is taken into account. The discretized filtering problem is solved by the Bayesian
filtering method.
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Chapter 1

Introduction

In practical measurements of physical quantities we have directly observable quantit-
ies and others that cannot be observed. If some of the unobservable quantities are of
our primary interest, we are dealing with an inverse problem. In that case, we need
to discover how to compute the values of the quantities of primary interest from the
observed values of the observable quantities, the measured data. The interdepend-
ence of the quantities in the measurement setting is described through mathematical
models. For solving the inverse problem we have to be able to analyse mathemat-
ically the model of the measurement process. If we have some prior information
about the quantities of primary interest, it is beneficial to use statistical approach
to inverse problems. In statistical inversion theory it is assumed that all quantit-
ies included in the model are represented by random variables. The randomness
describes our degree of knowledge concerning their realizations. Our information
about their values is coded into their distributions. Therefore the randomness is
due to the lack of information, not to the intrinsic randomness of the quantities
in the measurement setting. The statistical inversion theory is based on the Bayes
formula. The prior information of the quantities of primary interest is presented
in the form of a prior distribution. The likelihood function is given by the model
for the measurement process. The solution to the inverse problem is the posterior
distribution of the random variables of interest after performing the measurements.
By the Bayes formula the posterior distribution is proportional to the product of
the prior distribution and likelihood function.

In several applications one encounters a situation in which measurements that con-
stitute the data of an inverse problem are done in a nonstationary environment.
More precisely, it may happen that the physical quantities that are in the focus of
our primary interest are time dependent and the measured data depends on these
quantities at different time instants. Inverse problems of this type are called non-
stationary inverse problems. They are often viewed as a state estimation problem.
Then the quantities in the measurement setting are treated as stochastic processes.
Usually, the time evolution of the quantities of primary interest, the state of the
system, is described by a stochastic differential equation referred to as the state
evolution equation. The measurements are modeled by an observation equation con-
taining the measurement noise. The solution to the state estimation problem is
the conditional expectation of the quantities of primary interest with respect to the
measured data. If our motive is, for instance, to have a real-time monitoring of the
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2 Introduction

quantities of primary interest, we are dealing with a filtering problem in which the
estimator is based on the current history of the measurement process.

Often in state estimation approach the time variable is assumed to be discrete and
the space variable to be finite dimensional. This is convenient from the practical
point of view. Observations are usually done at discrete time instants and the compu-
tation requires space discretization. Hence discrete state evolution and observation
equations are needed. They may be derived from the continuous ones, especially
if the state evolution and observation equations are linear. In many applications,
it is assumed that the discretized version of the discrete infinite dimensional state
estimation problem represents the reality. Nevertheless, discretization causes al-
ways an error, which should be included into the state estimation system. If we
analyse the continuous infinite dimensional state evolution and observation equa-
tions, we may be able to present the distribution of the discretization error. The
discretized filtering problem can be solved by the Bayesian filtering method. The
discretized state evolution equation is used to find the prior distribution and the
likelihood function is given by the discretized observation equation. The solution to
the filtering problem is the posterior distribution given by the Bayes formula. As
an example of nonstationary inverse problem we examine the electrical impedance
process tomography problem.

1.1 Electrical Impedance Process Tomography

In this thesis we consider the process tomography problem of imaging the concen-
tration distribution of a given substance in a fluid moving in a pipeline based on
electromagnetic measurements on the surface of the pipe. In electrical impedance
tomography (EIT) electric currents are applied to electrodes on the surface of an
object and the resulting voltages are measured using the same electrodes (Figure
1.1). The conductivity distribution inside the object is reconstructed based on the
voltage measurements. The relation between the conductivity and concentration
depends on the process and is usually non-linear. At least for strong electrolytes
and multiphase mixtures such relations are studied and discussed in the literature
[7, 12]. In traditional EIT it is assumed that the object remains stationary during
the measurement process. A complete set of measurements, also called a frame,
consists of all possible linearly independent injected current patterns and the corres-
ponding set of voltage measurements. In process tomography we cannot in general
assume that the target remains unaltered during a full set of measurements. Thus
conventional reconstruction methods [4, 5, 6, 46, 47, 49] cannot be used. The time
evolution needs to be modeled properly. We view the problem as a state estimation
problem. The concentration distribution is treated as a stochastic process that sat-
isfies a stochastic differential equation referred to as the state evolution equation.
The measurements are described in terms of an observation equation containing the
measurement noise. Our goal is to have a real-time monitoring for the flow in a
pipeline. For that reason the computational time has to be minimized. Therefore,
we use a simple model, the convection–diffusion equation, for the flow. It allows nu-
merical implementation using FEM techniques. Since we cannot be sure that other
features such as turbulence of the flow do not appear, we use stochastic modelling.
The measurement situation is represented by the most realistic model for EIT, the
complete electrode model. The measurements are done in a part of the boundary
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Figure 1.1: EIT in process tomography

of the pipe. We get enough information for an accurate computation only from a
segment of the pipe. It would be natural to choose the domain of the model to be
the segment of the pipe. If the domain is restricted to be a segment of the pipe, we
have to use some boundary conditions in the input and output end of the segment.
The choice of boundary conditions has an effect on the solution. The most com-
monly used boundary conditions do not represent the actual circumstances in the
pipe. Therefore, we do not truncate the domain but instead assume that the pipe
is infinitely long. With the assumption we derive the discrete infinite dimensional
state estimation system.

This problem has been considered in the articles [43, 45, 41] and in the proceedings
papers [40, 44, 42, 38]. Those articles and proceeding papers concentrate on the
numerical implementation of the problem. An experimental evaluation is presented
in the proceeding paper [39]. In those articles and proceeding papers the discretized
state estimation system is assumed to model the real measurement process. The
discretization error is omitted. In this thesis the main interest is in the mathem-
atical formulation of the state evolution and observation equations and presenting
a discretized state estimation system in which the discretization error is taken into
account. Preliminary results have been published in proceedings papers [33, 34]
written by the author.

1.2 Overview of this Thesis

The main purpose of this thesis is to present the state estimation system correspond-
ing to electrical impedance process tomography and to perform discretization in such
a manner that the discretization error is taken into account. We combine the theory
of partial differential equations and stochastic analysis in infinite dimensions to solve
the stochastic convection–diffusion equation. Since only few researchers interested
in inverse problems are familiar with both branches of mathematics, we present
well-known results concerning both fields. This thesis is rather self-contained even
though it is assumed that the reader has a firm background in mathematics. The
Lebesgue integration theory of scalar valued functions and stochastic analysis in Rn

are supposed to be known. The reader should also be acquainted with the principles
of functional analysis and theory of partial differential equations. Chapters 2–4 in-
troduce the theory needed to solve the stochastic convection–diffusion equation. In
Chapter 2 we discuss the concept of analytic semigroups and sectorial operators.
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We use analytic semigroups generated by sectorial operators to solve initial value
problems. Elliptic partial differential operators are studied in terms of sectoriality
in Chapter 3. Chapter 4 considers stochastic analysis in infinite dimensional spaces.
As a consequence we are able to solve linear stochastic differential equations. The
existence and uniqueness of the solution to the complete electrode model in un-
bounded domains are proved in Chapter 5. Finally, in Chapter 6 we return to the
electrical impedance process tomography problem. We present the continuous in-
finite dimensional state estimation system concerning the problem. A discretized
state estimation system and the evolution and observation updating formulas of the
Bayesian filtering are also introduced.

In this thesis there are four appendixes which contain theory needed in Chapters
2–4. In Appendix A basic properties of the resolvent set and operator used in
Chapter 2 are introduced. The Bochner integration theory for Banach space valued
functions is handled in Appendix B. The analytic semigroup generated by a sectorial
operator is defined as an integral of an operator valued function along a curve in the
complex plane. In Appendix C we apply the Bochner integration theory and show
that the Cauchy integral theorem and formula are valid for holomorphic operator
valued functions. The covariance operator of a Gaussian measure in a Hilbert space
is a nuclear operator. Proper integrands of the stochastic integral with respect to a
Hilbert space valued Wiener process are processes with values in the space of Hilbert-
Schmidt operators. In Appendix D we present basic properties of Hilbert-Schmidt
and nuclear operators.

In the beginning of each chapter we comment on the references used in that chapter
and related literature. We do not refer to the literature concerning single results
since the proofs of almost all theorems, propositions, lemmas etc. are included in
the thesis. Often the proofs contain more details than those which can be found from
the literature. In Chapter 4 there are few lemmas which we could not find from the
literature in the required form. However, the proofs have only slight differences
between those introduced in the literature. New results are presented in Chapters
5 and 6. All details in the proofs of the results concerning the complete electrode
model in unbounded domains in Chapter 5 are made by the author. The main results
of this thesis are presented in Section 6.3, which is entirely based on the author’s
individual work.



Chapter 2

Analytic Semigroups

In this chapter we introduce some properties of analytic semigroups generated by
unbounded operators. We shall use analytic semigroups to find solutions to initial
value problems. The theory of semigroups can be found among others in the books
of Davies [8], Goldstein [15], Hille and Phillips [16], Lunardi [28], Pazy [31] and
Tanabe [50, 51].

Let (E, ‖ · ‖E) be a Banach space. We denote by B(E) the space of bounded linear
operators from E to E equipped with the operator norm

‖A‖B(E) := sup{‖Ax‖E : x ∈ E, ‖x‖E ≤ 1}

for all A ∈ B(E). An operator family {T (t)}t≥0 ⊂ B(E) is called a semigroup if

(i) T (t)T (s) = T (s + t) for all s, t ≥ 0 and

(ii) T (0) = I.

The linear operator A : D(A) → E defined by

D(A) :=

{
x ∈ E : ∃ lim

t→0+

T (t)x − x

t

}
,

Ax := lim
t→0+

T (t)x − x

t
if x ∈ D(A),

is called the infinitesimal generator of the semigroup {T (t)}t≥0. A semigroup
{T (t)}t≥0 is said to be strongly continuous if for all x ∈ E the function t 7→ T (t)x is
continuous in the interval [0,∞). It is said to be analytic if the function t 7→ T (t)
can be extended to be an analytic function from a sector

{z ∈ C : z 6= 0, | arg z| ≤ β} (2.1)

with some β ∈ (0, π) to the space B(E), i.e., for every disc B(a, r) in Sector (2.1)
there exists a series ∞∑

n=0

An(z − a)n

where An ∈ B(E) which converges in B(E) to T (z) for all z ∈ B(a, r).

5



6 Analytic Semigroups

2.1 Sectorial Operators

This section is based on the beginning of Chapter 2 in the book of Lunardi [28].
Basic properties of the resolvent set ρ(A) and resolvent operator R(λ, A) which will
be used in this section are presented in Appendix A.

Let (E, ‖ · ‖E) be a Banach space and A : D(A) ⊆ E → E a linear operator with
not necessarily dense domain D(A). If A is a bounded operator and D(A) = E, we
can define the operator etA by the series

etA :=
∞∑

k=0

tkAk

k!
(2.2)

for all t > 0. In addition, we denote e0A := I. Then the operator family {etA}t≥0

has properties

(i) etA ∈ B(E) for all t ≥ 0,

(ii) etAesA = e(s+t)A for all s, t ≥ 0,

(iii) e0A = I,

(iv) the function z 7→ ezA is holomorphic in the whole complex plane and

(v) limt→0+
etAx−x

t = Ax for all x ∈ E.

Hence a bounded linear operator A defined in the whole E generates a strongly
continuous analytic semigroup {etA}t≥0.

If A is unbounded, Series (2.2) does not make sense. Under some specific assumptions
an unbounded linear operator generates an analytic semigroup.

Definition 2.1. A linear operator A is sectorial if there exist constants ω ∈ R,
θ ∈ (π/2, π) and M > 0 such that

(i) Sω,θ := {λ ∈ C : λ 6= ω, | arg(λ − ω)| < θ} ⊂ ρ(A) and

(ii) ‖R(λ, A)‖B(E) ≤ M
|λ−ω| for all λ ∈ Sω,θ.

Let A be a sectorial operator with the constants ω, θ and M . Since the resolvent set
of A is not empty, A is closed. According to the conditions (i) and (ii) in Definition
2.1 we can define a bounded linear operator U(t) in the space E as a uniform Bochner
integral

U(t) :=
1

2πi

∫

ω+γr,η

etλR(λ, A) dλ (2.3)

for all t > 0 where r > 0, η ∈ (π/2, θ) and γr,η is the curve

{λ ∈ C : | arg λ| = η, |λ| ≥ r} ∪ {λ ∈ C : | arg λ| ≤ η, |λ| = r}

oriented counterclockwise. In addition, we define

U(0)x := x (2.4)
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for all x ∈ E. By Proposition A.2 the function λ 7→ etλR(λ, A) is holomorphic in
the domain Sω,θ. Since ω + γr,η ⊂ Sω,θ for all r and η, the operator U(t) does not
depend on the choice of r and η. Details concerning the definition of the integral
can be found from Appendix C.

θ
ω

Sω,θ

(a)

η

γ
r,η

r

(b)

Figure 2.1: (a) The set Sω,θ and (b) the integration path γr,η

In the following proposition we state the main properties of the operator family
{U(t)}t≥0 defined by Formulas (2.3) and (2.4).

Proposition 2.2. Let A be a sectorial operator with the constants ω, θ and M
and the operator family {U(t)}t≥0 defined by Formulas (2.3) and (2.4). Then the
following statements are valid.

(i) U(t)x ∈ D(Ak) for all k ∈ N, t > 0 and x ∈ E. If x ∈ D(Ak) for k ∈ N, then
AkU(t)x = U(t)Akx for all t ≥ 0.

(ii) U(t)U(s) = U(s + t) for all s, t ≥ 0.

(iii) There exist constants M0, M1, M2, . . . such that

‖U(t)‖B(E) ≤ M0e
ωt and ‖tk(A − ωI)kU(t)‖B(E) ≤ Mke

ωt

for all k ∈ N and t > 0. In particular, for all k ∈ N there exists a constant
Ck > 0 such that

‖tkAkU(t)‖B(E) ≤ Cke
(ω+1)t

for all t > 0.

(iv) The function t 7→ U(t) belongs to the space C∞((0,∞); B(E)) and

dk

dtk
U(t) = AkU(t)

for all t > 0. In addition, the function t 7→ U(t) has an analytic extension in
the sector

S :=
{

z ∈ C : z 6= 0, | arg z| < θ − π

2

}
.
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Proof. (i) Let λ ∈ ρ(A). By the definition of the resolvent operator

AR(λ, A) = λR(λ, A) − I

on E. Since A is sectorial and R(λ, A)x ∈ D(A) for all λ ∈ ρ(A) and x ∈ E,

AU(t)x =
1

2πi

∫

ω+γr,η

etλAR(λ, A)x dλ

=
1

2πi

∫

ω+γr,η

λetλR(λ, A)x dλ − 1

2πi

∫

ω+γr,η

etλx dλ

=
1

2πi

∫

ω+γr,η

λetλR(λ, A)x dλ

for all t > 0 because the function λ 7→ etλ is holomorphic, η > π/2 and therefore
∫

ω+γr,η

etλ dλ = 0.

Using induction we are able to prove that

AkU(t)x =
1

2πi

∫

ω+γr,η

λketλR(λ, A)x dλ

for all k ∈ N, t > 0 and x ∈ E. Since A is sectorial, the integral is well defined for all
k ∈ N. The calculation above proves the beginning of the induction. Let us assume
that

AkU(t)x =
1

2πi

∫

ω+γr,η

λketλR(λ, A)x dλ

for all k ≤ n, t > 0 and x ∈ E. Since A is sectorial and R(λ, A)x ∈ D(A) for all
λ ∈ ρ(A) and x ∈ E,

An+1U(t)x = AAnU(t)x =
1

2πi

∫

ω+γr,η

λnetλAR(λ, A)x dλ

=
1

2πi

∫

ω+γr,η

λn+1etλR(λ, A)x dλ − 1

2πi

∫

ω+γr,η

λnetλx dλ

=
1

2πi

∫

ω+γr,η

λn+1etλR(λ, A)x dλ

for all t > 0 because the function λ 7→ λnetλ is holomorphic, η > π/2 and thus
∫

ω+γr,η

λnetλ dλ = 0.

Hence U(t)x ∈ D(Ak) and

AkU(t)x =
1

2πi

∫

ω+γr,η

λketλR(λ, A)x dλ

for all k ∈ N, t > 0 and x ∈ E.

We show that AkU(t)x = U(t)Akx for all k ∈ N, t > 0 and x ∈ D(Ak) by using the
induction. Let t > 0 and x ∈ D(A). Since A is sectorial and AR(λ, A) = R(λ, A)A
on D(A) for all λ ∈ ρ(A),

AU(t)x =
1

2πi

∫

ω+γr,η

etλAR(λ, A)x dλ =
1

2πi

∫

ω+γr,η

etλR(λ, A)Ax dλ = U(t)Ax.
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We assume that AkU(t)x = U(t)Akx for all k ≤ n, t > 0 and x ∈ D(Ak). Then for
all t > 0 and x ∈ D(An+1)

An+1U(t)x = AAnU(t)x = AU(t)Anx = U(t)An+1x.

Since U(0) = I, the statement is valid also for t = 0.

(ii) We introduce the operator

B : D(A) → E

x 7→ Bx := Ax − ωx.

Then the resolvent set of B contains the sector S0,θ and R(λ, B) = R(λ + ω, A) for
all λ ∈ S0,θ. Thus for all λ ∈ S0,θ

‖R(λ, B)‖B(E) = ‖R(λ + ω, A)‖B(E) ≤
M

|λ| .

Hence B is sectorial. By changing the variables κ = λ + ω

UB(t) =
1

2πi

∫

γr,η

etλR(λ, B) dλ =
1

2πi

∫

γr,η

etλR(λ + ω, A) dλ

=
1

2πi

∫

ω+γr,η

et(κ−ω)R(κ, A) dκ = e−ωtUA(t)

for all t > 0. Thus UB(t) = e−ωtUA(t) for all t ≥ 0.

Let s, t > 0 and π/2 < η′ < η < θ. Then

UB(t)UB(s) =

(
1

2πi

)2 ∫

γr,η

etλR(λ, B) dλ

∫

γ2r,η′
esµR(µ, B) dµ

=

(
1

2πi

)2 ∫

γr,η×γ2r,η′
etλ+sµR(λ, B)R(µ, B) dλdµ

=

(
1

2πi

)2 ∫

γr,η×γ2r,η′
etλ+sµ R(λ, B) − R(µ, B)

µ − λ
dλdµ

by the resolvent identity. Since
∫

γ2r,η′

esµ

µ − λ
dµ = 2πiesλ

when λ ∈ γr,η, and ∫

γr,η

etλ

µ − λ
dλ = 0

when µ ∈ γ2r,η′ , the operator family {UB(t)}t>0 has the semigroup property for all
s, t > 0, i.e.,

UB(t)UB(s) =

(
1

2πi

)2 ∫

γr,η

etλR(λ, B)

∫

γ2r,η′

esµ

µ − λ
dµ dλ+

−
(

1

2πi

)2 ∫

γ2r,η′
esµR(µ, B)

∫

γr,η

etλ

µ − λ
dλ dµ

=
1

2πi

∫

γr,η

e(s+t)λR(λ, B) dλ = UB(s + t).
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Hence

UA(t)UA(s) = eω(s+t)UB(t)UB(s) = eω(s+t)UB(s + t) = UA(s + t)

for all s, t > 0. Since UA(0) = I, the operator family {UA(t)}t≥0 has the semigroup
property, i.e., UA(t)UA(s) = UA(s + t) for all s, t ≥ 0.

(iii) Let t > 0. By changing the variables ξ = tλ

UB(t) =
1

2πit

∫

γtr,η

eξR

(
ξ

t
, B

)
dξ =

1

2πit

∫

γr,η

eξR

(
ξ

t
, B

)
dξ

since the integral does not depend on the choice of r and η. Thus for all t > 0

‖UB(t)‖B(E)

≤ 1

2πt

[ ∫ ∞

r
eρ cos η

(∥∥∥∥R

(
ρe−iη

t
, B

)∥∥∥∥
B(E)

+

∥∥∥∥R

(
ρeiη

t
, B

)∥∥∥∥
B(E)

)
dρ+

+

∫ η

−η
rer cos ϕ

∥∥∥∥R

(
reiϕ

t
, B

)∥∥∥∥
B(E)

dϕ

]

≤ M

2π

[
2

∫ ∞

r
ρ−1eρ cos η dρ +

∫ η

−η
er cos ϕ dϕ

]
≤ M0

since π/2 < η < θ < π. Hence ‖UA(t)‖B(E) ≤ M0e
ωt for all t > 0.

Due to the statement (i) UB(t)x belongs to D(B) = D(A) for all t > 0 and x ∈ E
and

BUB(t) =
1

2πi

∫

γr,η

λetλR(λ, B) dλ.

Let t > 0. By changing the variables ξ = tλ

BUB(t) =
1

2πit2

∫

γtr,η

ξeξR

(
ξ

t
, B

)
dξ =

1

2πit2

∫

γr,η

ξeξR

(
ξ

t
, B

)
dξ.

Thus for all t > 0

‖BUB(t)‖B(E)

≤ 1

2πt2

[ ∫ ∞

r
ρeρ cos η

(∥∥∥∥R

(
ρe−iη

t
, B

)∥∥∥∥
B(E)

+

∥∥∥∥R

(
ρeiη

t
, B

)∥∥∥∥
B(E)

)
dρ+

+

∫ η

−η
r2er cos ϕ

∥∥∥∥R

(
reiϕ

t
, B

)∥∥∥∥
B(E)

dϕ

]

≤ M

2πt

[
2

∫ ∞

r
eρ cos η dρ +

∫ η

−η
rer cos ϕ dϕ

]
≤ M1

t

since π/2 < η < θ < π. Hence ‖t(A − ωI)UA(t)‖B(E) ≤ M1e
ωt for all t > 0.

From the equality BUB(t) = UB(t)B on D(B) it follows that

BkUB(t) = Bk

(
UB

(
t

k

))k

=

(
BUB

(
t

k

))k
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for all k ∈ N and t > 0. So for all t > 0

‖BkUB(t)‖B(E) ≤
∥∥∥∥BUB

(
t

k

)∥∥∥∥
k

B(E)

≤
(

M1k

t

)k

≤ (M1e)
kk!t−k.

Hence ‖tk(A − ωI)kUA(t)‖B(E) ≤ Mke
ωt for all t > 0 where Mk = (M1e)

kk!.

By using the induction we are able to prove that for all k ∈ N and t > 0

‖tkAkUA(t)‖B(E) ≤ C̃k(1 + t + · · · + tk)eωt ≤ Cke
(ω+1)t.

Let t > 0. The beginning of the induction is shown by

‖tAUA(t)‖B(E) ≤ ‖t(A − ωI)UA(t)‖B(E) + |ω|t‖UA(t)‖B(E)

≤ M1e
ωt + |ω|tM0e

ωt

≤ C̃1(1 + t)eωt ≤ C1e
(ω+1)t.

Let us assume that

‖tkAkUA(t)‖B(E) ≤ C̃k(1 + t + · · · + tk)eωt ≤ Cke
(ω+1)t

for all k < n and t > 0. Then for all t > 0

‖tnAnUA(t)‖B(E) ≤ ‖tn(A − ωI)nUA(t)‖B(E) +

n−1∑

l=0

(
n
l

)
|ω|n−ltn−l‖tlAlUA(t)‖B(E)

≤ Mneωt +
n−1∑

l=0

(
n
l

)
|ω|n−lC̃l(t

n−l + · · · + tn)eωt

≤ C̃n(1 + t + · · · + tn)eωt ≤ Cne(ω+1)t.

Hence ‖tkAkUA(t)‖B(E) ≤ Cke
(ω+1)t for all k ∈ N and t > 0.

(iv) For all t > 0

d

dt
U(t) =

1

2πi

∫

ω+γr,η

λetλR(λ, A) dλ = AU(t).

Hence
dk

dtk
U(t) = AkU(t)

for all k ∈ N and t > 0. By the statement (iii) the function t 7→ U(t) belongs to the
space C∞((0,∞); B(E)).

Let 0 < ε < θ − π/2 and choose η = θ − ε. Since A is sectorial, the operator valued
function

z 7→ U(z) =
1

2πi

∫

ω+γr,η

ezλR(λ, A) dλ

is well defined and holomorphic in the sector

Sε =
{

z ∈ C : z 6= 0, | arg z| < θ − π

2
− ε

}
.

The union of the sectors Sε for all 0 < ε < θ − π/2 is S.
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Corollary 2.3. The operator family {U(t)}t≥0 defined by Formulas (2.3) and (2.4)
is an analytic semigroup.

In the following proposition we study, how the analytic semigroup {U(t)}t≥0 behaves
at the origin.

Proposition 2.4. Let A be a sectorial operator with the constants ω, θ and M and
the analytic semigroup {U(t)}t≥0 defined by Formulas (2.3) and (2.4). Then the
following statements are valid.

(i) If x ∈ D(A),
lim

t→0+
U(t)x = x.

Conversely, if there exists
y = lim

t→0+
U(t)x,

x ∈ D(A) and y = x.

(ii) For all x ∈ E and t ≥ 0 the integral
∫ t
0 U(s)x ds belongs to the set D(A) and

A

∫ t

0
U(s)x ds = U(t)x − x.

If, in addition, the function s 7→ AU(s)x belongs to the space L1(0, t; E),

U(t)x − x =

∫ t

0
AU(s)x ds.

(iii) If x ∈ D(A) and Ax ∈ D(A),

lim
t→0+

U(t)x − x

t
= Ax.

Conversely, if there exists

z = lim
t→0+

U(t)x − x

t
,

x ∈ D(A) and z = Ax ∈ D(A).

Proof. (i) Let ξ > ω and 0 < r < ξ−ω. For every x ∈ D(A) we denote y := ξx−Ax.
Then by the resolvent identity,

U(t)x = U(t)R(ξ, A)y

=
1

2πi

∫

ω+γr,η

etλR(λ, A)R(ξ, A)y dλ

=
1

2πi

∫

ω+γr,η

etλ R(λ, A) − R(ξ, A)

ξ − λ
y dλ

=
1

2πi

∫

ω+γr,η

etλ R(λ, A)

ξ − λ
y dλ − 1

2πi

∫

ω+γr,η

etλ

ξ − λ
R(ξ, A)x dλ

=
1

2πi

∫

ω+γr,η

etλ R(λ, A)

ξ − λ
y dλ
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since ∫

ω+γr,η

etλ

ξ − λ
dλ = 0

when ξ > ω. Hence by Theorems B.20 and C.2,

lim
t→0+

U(t)x = lim
t→0+

1

2πi

∫

ω+γr,η

etλ R(λ, A)

ξ − λ
y dλ

=
1

2πi

∫

ω+γr,η

R(λ, A)

ξ − λ
y dλ

= R(ξ, A)y = x

for each x ∈ D(A). Since D(A) is dense in D(A) and U(t) is continuous in (0,∞),
limt→0+ U(t)x = x for all x ∈ D(A).

Conversely, if y = limt→0+ U(t)x, then y ∈ D(A) because U(t)x ∈ D(A) for all t > 0
and x ∈ E. Moreover for ξ ∈ ρ(A)

R(ξ, A)y = lim
t→0+

R(ξ, A)U(t)x = lim
t→0+

U(t)R(ξ, A)x = R(ξ, A)x

since R(ξ, A)R(λ, A) = R(λ, A)R(ξ, A) for all λ, ξ ∈ ρ(A) and R(ξ, A)x ∈ D(A) for
all x ∈ E. Therefore y = x.

(ii) Let t > 0, x ∈ E and ξ ∈ ρ(A). Then for every ε ∈ (0, t)

∫ t

ε
U(s)x ds =

∫ t

ε
(ξ − A)R(ξ, A)U(s)x ds

= ξ

∫ t

ε
R(ξ, A)U(s)x ds −

∫ t

ε
R(ξ, A)AU(s)x ds

= ξ

∫ t

ε
R(ξ, A)U(s)x ds −

∫ t

ε

d

ds
(R(ξ, A)U(s)x) ds

= ξ

∫ t

ε
R(ξ, A)U(s)x ds − R(ξ, A)U(t)x + R(ξ, A)U(ε)x

= ξ

∫ t

ε
R(ξ, A)U(s)x ds − R(ξ, A)U(t)x + U(ε)R(ξ, A)x.

The integral is well defined since U(t) is continuous in (0,∞) and ‖U(t)‖B(E) ≤
max

(
1, M0, M0e

ωt
)

for all t ≥ 0. Since R(ξ, A)x ∈ D(A), by Theorem B.20 and the
statement (i),

∫ t

0
U(s)x ds = ξR(ξ, A)

∫ t

0
U(s)x ds − R(ξ, A)(U(t)x − x).

Hence
∫ t
0 U(s)x ds belongs to D(A) and

A

∫ t

0
U(s)x ds = U(t)x − x

for all t ≥ 0 and x ∈ E.

(iii) Let t > 0, x ∈ D(A) and Ax ∈ D(A). Then

U(t)x − x

t
=

1

t
A

∫ t

0
U(s)x ds =

1

t

∫ t

0
AU(s)x ds =

1

t

∫ t

0
U(s)Ax ds
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since A is sectorial and the function s 7→ U(s)Ax is continuous in [0, t] by the
statement (i). Thus

lim
t→0+

U(t)x − x

t
= lim

t→0+

1

t

∫ t

0
U(s)Ax ds = U(0)Ax = Ax

by the continuity.

Conversely, if there exists

z = lim
t→0+

U(t)x − x

t
,

limt→0+ U(t)x = x. Thus x ∈ D(A) and therefore z ∈ D(A). For every ξ ∈ ρ(A)

R(ξ, A)z = lim
t→0+

R(ξ, A)
U(t)x − x

t
.

By the statement (ii),

R(ξ, A)z = lim
t→0+

1

t
R(ξ, A)A

∫ t

0
U(s)x ds = lim

t→0+
(ξR(ξ, A) − I)

1

t

∫ t

0
U(s)x ds.

Since x ∈ D(A), the function s 7→ U(s)x is continuous near s = 0. Hence R(ξ, A)z =
ξR(ξ, A)x − x. Therefore x ∈ D(A) and z = Ax.

Corollary 2.3 and Proposition 2.4 motivate the following definition.

Definition 2.5. Let A : D(A) ⊂ E → E be a sectorial operator. The operator family
{U(t)}t≥0 defined by Formulas (2.3) and (2.4) is said to be the analytic semigroup
generated by the operator A.

Often in literature the analytic semigroup {U(t)}t≥0 generated by a sectorial op-
erator A is denoted by {etA}t≥0. It can be seen as an extension of the exponent
function to unbounded sectorial operators. We prefer the notation {U(t)}t≥0.

If the operator A is sectorial with the constants ω, θ and M , the analytic semigroup
{U(t)}t>0 defined by Formulas (2.3) and (2.4) is analytic in the sector

{
z ∈ C : z 6= 0, | arg z| < θ − π

2

}
.

Hence it is strongly continuous if and only if limt→0+ U(t)x = x for all x ∈ E.
According the statement (i) of Proposition 2.4 limt→0+ U(t)x = x if and only if
x ∈ D(A). Thus the analytic semigroup {U(t)}t≥0 is strongly continuous if and only
if the domain D(A) is dense in E.

In Chapter 3 we shall need the following proposition. It gives sufficient conditions
for a linear operator to be sectorial.

Proposition 2.6. Let A : D(A) ⊂ E → E be a linear operator such that the
resolvent set ρ(A) contains a half plane {λ ∈ C : Reλ ≥ ω} and the resolvent
R(λ, A) satisfies

‖λR(λ, A)‖B(E) ≤ M (2.5)

if Reλ ≥ ω with ω ≥ 0 and M > 0. Then A is sectorial.
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Proof. According to Proposition A.2 for every r > 0 the resolvent set ρ(A) contains
the open ball centered at ω± ir with radius |ω± ir|/M . The union of such balls and
the half plane {λ ∈ C : Reλ ≥ ω} contains the sector

{λ ∈ C : | arg (λ − ω)| < π − arctan M} (2.6)

since λ belongs to the open ball centered at ω + iImλ with radius |ω + iImλ|/M by

|ω + iImλ − λ| =
|Imλ|

tan (π − | arg (λ − ω)|) =
|Imλ|

− tan | arg (λ − ω)|

<
|Imλ|

− tan (π − arctan M)
=

|Imλ|
M

≤ |ω + iImλ|
M

if λ belongs to Sector (2.6) and Reλ < ω. Hence the resolvent set contains a sector.

We need to prove that the norm of the resolvent operator has an upper bound of
the form required in Definition 2.1 in some sector. Let λ belong to the sector

{λ ∈ C : | arg (λ − ω)| < π − arctan 2M} (2.7)

and Reλ < ω. Then λ = ω ± ir − θr/M with r > 0 and 0 < θ < 1/2. By Formula
(A.1),

‖R(λ, A)‖B(E) =

∥∥∥∥∥
∞∑

n=0

(−1)n(λ − (ω ± ir))nRn+1(ω ± ir, A)

∥∥∥∥∥
B(E)

≤
∞∑

n=0

|λ − (ω ± ir)|n‖R(ω ± ir, A)‖n+1
B(E)

≤
∞∑

n=0

(
θr

M

)n (
M

|ω ± ir|

)n+1

=
∞∑

n=0

θnrnM

(ω2 + r2)
n+1

2

≤ M

r

∞∑

n=0

θn =
M

r

1

1 − θ
<

2M

r
.

Since λ = ω ± ir − θr/M where r > 0 and 0 < θ < 1/2,

|λ − ω| =

∣∣∣∣−
θr

M
± ir

∣∣∣∣ = r

√
1 +

θ2

M2
< r

√
1 +

1

4M2
.

Hence

r >

(
1 +

1

4M2

)− 1
2

|λ − ω|.

Thus

‖R(λ, A)‖B(E) <
2M

|λ − ω|

(
1 +

1

4M2

) 1
2

for all λ such that λ belongs to Sector (2.7) and Reλ < ω. Furthermore, for all λ
with Reλ ≥ ω

‖R(λ, A)‖B(E) ≤
M

|λ| ≤
M

|λ − ω| .

Hence A is sectorial.
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2.2 Homogeneous Initial Value Problems

Let (E, ‖ · ‖E) be a Banach space. Let A : D(A) ⊆ E → E be a linear operator
with not necessarily dense domain D(A). We are dealing with a solution to the
homogeneous initial value problem

{
u′(t) = Au(t),

u(0) = u0

(2.8)

in the space E with t > 0 and an arbitrary u0 ∈ E.

Definition 2.7. A function u : [0,∞) → E is a (classical) solution to the initial
value problem (2.8) on [0,∞), if u is continuous on [0,∞), continuously differen-
tiable on (0,∞), u(t) ∈ D(A) for 0 < t < ∞ and Equations (2.8) are satisfied on
[0,∞).

If the operator A is sectorial and the initial value u0 belongs to D(A), by the state-
ment (iv) of Proposition 2.2 and the statement (i) of Proposition 2.4 a solution to
the initial value problem (2.8) is given by the formula u(t) = U(t)u0 for all t > 0
where {U(t)}t≥0 is the analytic semigroup generated by the operator A. Let u(t) be
a solution to the initial value problem (2.8). Then u(t) ∈ D(A) for all t > 0 and the
E-valued function g(s) = U(t − s)u(s) is differentiable for 0 < s < t. Hence

dg

ds
= −AU(t − s)u(s) + U(t − s)u′(s) = 0

for all 0 < s < t. By integrating from 0 to t we get

u(t) = U(t)u0

for all t > 0.

Theorem 2.8. If U(t) is the analytic semigroup generated by a sectorial operator A
and u0 ∈ D(A), the unique solution to the initial value problem (2.8) is u(t) = U(t)u0

for all t > 0.

2.3 Nonhomogeneous Initial Value Problems

This section is based on Section 4.2 and 4.3 in the book of Pazy [31].

Let (E, ‖ · ‖E) be a Banach space. Let A : D(A) ⊆ E → E be a linear operator with
dense domain D(A). We are considering the solution to the nonhomogeneous initial
value problem {

u′(t) = Au(t) + f(t)

u(0) = u0

(2.9)

in the space E with 0 < t < T , a known function f : [0, T ) → E and an arbitrary
u0 ∈ E.

Definition 2.9. A function u : [0, T ) → E is a (classical) solution to the initial value
problem (2.9) on [0, T ), if u is continuous on [0, T ), continuously differentiable on
(0, T ), u(t) ∈ D(A) for 0 < t < T and Equations (2.9) are satisfied on [0, T ).
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We assume that A is sectorial with the constants ω, θ and M . Then the corres-
ponding homogeneous problem has the unique solution for every u0 ∈ E, namely
u(t) = U(t)u0 for all t > 0 where U(t) is the analytic semigroup generated by A.
Let u(t) be a solution to the initial value problem (2.9). Then the E-valued function
g(s) = U(t − s)u(s) is differentiable for 0 < s < t and

dg

ds
= −AU(t − s)u(s) + U(t − s)u′(s) = U(t − s)f(s).

If f ∈ L1(0, T ; E), then U(t − s)f(s) is Bochner integrable and by integrating from
0 to t we get

u(t) = U(t)u0 +

∫ t

0
U(t − s)f(s) ds (2.10)

for 0 ≤ t ≤ T .

Theorem 2.10. If f ∈ L1(0, T ; E), for every u0 ∈ E the initial value problem (2.9)
has at most one solution. If it has a solution, the solution is given by Formula
(2.10).

For every f ∈ L1(0, T ; E) the right-hand side of (2.10) is a continuous function on
[0, T ] since U(t) is strongly continuous semigroup and there exists M0 > 0 such
that ‖U(t)‖B(E) ≤ max

{
1, M0, M0e

ωT
}

for all 0 ≤ t ≤ T . It is natural to consider
Function (2.10) as a generalized solution to the initial value problem (2.9) even if it
is not differentiable and does not satisfy the equation in the sense of Definition 2.9.

Definition 2.11. Let U(t) be the analytic semigroup generated by a densely defined
sectorial operator A. Let u0 ∈ E and f ∈ L1(0, T ; E). The function u ∈ C([0, T ]; E)
given by Formula (2.10) for 0 ≤ t ≤ T is the weak solution to the initial value
problem (2.9) on [0, T ].





Chapter 3

Sectorial Elliptic Operators

In this chapter we present a family of sectorial elliptic second order differential oper-
ators. The theory introduced in Chapter 2 can be applied to them to solve parabolic
partial differential equations. This chapter is based on Section 3.1 and especially
on Subsection 3.1.1 in the book of Lunardi [28]. Elliptic differential operator of the
order 2m, m ≥ 1, has been handled among others in the books of Pazy [31] and
Tanabe [50].

Let n ≥ 1 and D be either Rn or an open subset of Rn with uniformly C2-smooth
boundary ∂D. We examine a second order differential operator

A(x, ∂) =
n∑

i,j=1

aij(x)∂i∂j +
n∑

i=1

bi(x)∂i + c(x) (3.1)

with real uniformly continuous and bounded coefficient functions aij , bi and c for all
i, j = 1, . . . , n. We assume that the matrix [aij(x)]ni,j=1 is symmetric for all x ∈ D̄
and

A0(x, ξ) :=
n∑

i,j=1

aij(x)ξiξj ≥ µ|ξ|2 (3.2)

for all x ∈ D̄ and ξ ∈ Rn with some µ > 0. Hence the differential operator A(x, ∂)
is elliptic, i.e., A0(x, ξ) 6= 0 for all x ∈ D̄ and ξ ∈ Rn \ {0}. In addition, if D 6= Rn,
we consider a first order differential operator

B(x, ∂) =
n∑

i=1

βi(x)∂i + γ(x) (3.3)

acting on the boundary ∂D. We assume that the coefficient functions βi and γ
are real uniformly continuously differentiable and bounded, i.e., belong to the space
UC1(D̄) for all i = 1, . . . , n and that the uniform nontangentiality condition

inf
x∈∂D

∣∣∣∣∣
n∑

i=1

βi(x)νi(x)

∣∣∣∣∣ > 0 (3.4)

where ν(x) = (ν1(x), . . . , νn(x)) is the exterior unit normal vector to ∂D at a point
x ∈ ∂D is valid. We are interested in realizations of the operator A(x, ∂) (with
homogeneous boundary condition B(x, ∂)u = 0 on ∂D if D 6= Rn) in the space
Lp(D) with 1 < p < ∞. As domains of the realizations we have the Sobolev space
W 2,p(D) or its subspace.
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3.1 The Agmon-Douglis-Nirenberg Estimates

Our main purpose is to prove that the realizations of the operator A(x, ∂) (with
homogeneous boundary condition if D 6= Rn) are sectorial. The fundamental tools
are the Agmon-Douglis-Nirenberg a priori estimates for elliptic problems in the
whole Rn and regular domains of Rn when n ≥ 2. The estimates are valid for
differential operators of the type (3.1) with complex coefficient functions and under
ellipticity assumptions

(i)
∣∣∣
∑n

i,j=1 aij(x)ξiξj

∣∣∣ ≥ µ|ξ|2 for all x ∈ D̄, ξ ∈ Rn with some µ > 0 and

(ii) if ξ, η ∈ Rn are linearly independent, for all x ∈ D̄ the polynomial τ 7→ P (τ) =∑n
i,j=1 aij(x)(ξi + τηi)(ξj + τηj) has a unique root such that its imaginary part

is positive,

i.e., for differential operators which are uniformly and properly elliptic, respectively.
If n ≥ 3, then the root condition (ii) is not needed since all uniformly elliptic oper-
ators are properly elliptic [26, Proposition 1.2, p. 110]. Since we are also interested
in the two dimensional case, both conditions have to be assumed. The following
theorem formulates the Agmon-Douglis-Nirenberg a priori estimates.

Theorem 3.1 (The Agmon-Douglis-Nirenberg a Priori Estimates).

(i) Let aij , bi, c : Rn → C be uniformly continuous and bounded functions for all
i, j = 1, . . . , n. Let A(x, ∂) be defined by Formula (3.1) and be uniformly and
properly elliptic. Then for all 1 < p < ∞ there exists such a constant cp > 0
that for each u ∈ W 2,p(Rn)

‖u‖W 2,p(Rn) ≤ cp

(
‖u‖Lp(Rn) + ‖A(·, ∂)u‖Lp(Rn)

)
. (3.5)

(ii) Let D be an open set in Rn with uniformly C2-smooth boundary and aij , bi, c :
D̄ → C uniformly continuous and bounded functions for all i, j = 1, . . . , n.
Let A(x, ∂) be defined by Formula (3.1) and be uniformly and properly elliptic.
Assume that βi, γ : D̄ → C belong to the space UC1(D̄) for all i = 1, . . . , n. Let
B(x, ∂) be defined by Formula (3.3) and satisfy the uniform nontangentiality
condition (3.4). Then for all 1 < p < ∞ there exists such a constant cp > 0
that for each u ∈ W 2,p(D)

‖u‖W 2,p(D) ≤ cp

(
‖u‖Lp(D) + ‖A(·, ∂)u‖Lp(D) + ‖g1‖W 1,p(D)

)
(3.6)

where g1 is any W 1,p-extension of g = B(·, ∂)u|∂D to the whole D.

Proof. If the domain D is bounded, see [1, Theorem 15.2 pp. 704–706]. If the
domain D is unbounded, see [2, Theorem 12.1 p. 653].

The reason why we have to consider complex valued coefficient functions is that in
Section 3.2 we shall use Estimates (3.5) and (3.6) of the Agmon-Douglis-Nirenberg
theorem 3.1 for the operator Aθ(x, t, ∂) := A(x, ∂) + eiθ∂2

t where t ∈ R, θ ∈
[−π/2, π/2] and x ∈ D̄. In the following lemma we show that the operator Aθ(x, t, ∂)
satisfies the Agmon-Douglis-Nirenberg assumptions if θ ∈ [−π/2, π/2].
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Lemma 3.2. The operator Aθ(x, t, ∂) satisfies the Agmon-Douglis-Nirenberg as-
sumptions if t ∈ R, θ ∈ [−π/2, π/2] and x ∈ D̄ and the operator A(x, ∂) has real
uniformly continuous and bounded coefficient functions and it satisfies the ellipticity
condition (3.2).

Proof. The domain of the operator Aθ(x, t, ∂) is D × R ⊂ Rn+1. The terms of the
second degree are

∑n
i,j=1 aij∂i∂j + eiθ∂2

t . Let x ∈ D̄ and ξ ∈ Rn+1. We denote
ξ := (ξ′, ξn+1). Then

∣∣∣∣∣∣

n∑

i,j=1

aij(x)ξiξj + eiθξ2
n+1

∣∣∣∣∣∣

2

=




n∑

i,j=1

aij(x)ξiξj




2

+ 2ξ2
n+1 cos θ

n∑

i,j=1

aij(x)ξiξj + ξ4
n+1.

Since θ ∈ [−π/2, π/2], the values of the cosine function are non-negative. According
to the ellipticity condition (3.2) the sum

∑n
i,j=1 aij(x)ξiξj is positive. Thus

∣∣∣∣∣∣

n∑

i,j=1

aij(x)ξiξj + eiθξ2
n+1

∣∣∣∣∣∣

2

≥ µ2|ξ′|4 + ξ4
n+1

≥ min (µ, 1)2(|ξ′|4 + ξ4
n+1)

≥ min (µ, 1)2

2
|ξ|4.

Hence the operator Aθ(x, t, ∂) is uniformly elliptic with the constant min (µ, 1)/
√

2.

If n ≥ 2, then n + 1 ≥ 3. Thus the uniform ellipticity implies the proper ellipticity.
We still have to prove that the root condition is valid also if n = 1. Then the
operator Aθ(x, t, ∂) is of the form

Aθ(x, t, ∂) = a(x)∂2
x + eiθ∂2

t + b(x)∂x + c(x).

Since A(x, ∂) satisfies the ellipticity condition (3.2), we know that a(x) ≥ µ > 0 for
all x ∈ D̄. Let ξ, η ∈ R2 be linearly independent and x ∈ D̄. The polynomial P (τ)
is

P (τ) =
(
a(x)η2

1 + eiθη2
2

)
τ2 + 2

(
a(x)ξ1η1 + eiθξ2η2

)
τ + a(x)ξ2

1 + eiθξ2
2 .

The discriminant of the second order equation P (τ) = 0 is

−4eiθa(x)(η1ξ2 − η2ξ1)
2 = −4eiθa(x)(det [η, ξ])2.

Thus the roots of the polynomial P (τ) are

τ =

(
a(x)η2

1 + e−iθη2
2

) [
−

(
a(x)ξ1η1 + eiθξ2η2

)
+ i| det [η, ξ]|

√
eiθa(x)

]

a(x)2η4
1 + 2a(x)(cos θ)η2

1η
2
2 + η4

2

.

The denominator is always positive. Let us study separately the imaginary parts of
the terms of the numerator. For the first term we get

Im
[
−

(
a(x)η2

1 + e−iθη2
2

) (
a(x)ξ1η1 + eiθξ2η2

)]
= −a(x)(sin θ)η1η2 det [η, ξ].
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The imaginary part of the second term is

Im

[
i
(
a(x)η2

1 + e−iθη2
2

)
| det [η, ξ]|

√
eiθa(x)

]

=
√

a(x)| det [η, ξ]|
[
a(x) cos

(
θ

2
+ nπ

)
η2
1 + cos

(
θ

2
− nπ

)
η2
2

]

where n = 0, 1. Thus the imaginary parts of the roots are

Imτ1 =

√
a(x) cos

(
θ
2

)
| det [η, ξ]|

a(x)2η4
1 + 2a(x)(cos θ)η2

1η
2
2 + η4

2

×

×
{[√

a(x)η1 − sgn(det [η, ξ])

(
sin

θ

2

)
η2

]2

+

(
cos

θ

2

)2

η2
2

}

and

Imτ2 = −
√

a(x) cos
(

θ
2

)
| det [η, ξ]|

a(x)2η4
1 + 2a(x)(cos θ)η2

1η
2
2 + η4

2

×

×
{[√

a(x)η1 + sgn(det [η, ξ])

(
sin

θ

2

)
η2

]2

+

(
cos

θ

2

)2

η2
2

}
.

Since θ ∈ [−π/2, π/2] and the vectors ξ and η are linearly independent, cos (θ/2) ∈
[1/

√
2, 1] and det [η, ξ] 6= 0. Hence Imτ1 > 0 and Imτ2 < 0. Thus the root condition

is valid for the operator Aθ(x, t, ∂) if n = 1.

3.2 Sectoriality

Let D = Rn. We define the operator A0 : D(A0) → Lp(Rn) by

D(A0) := W 2,p(Rn),

A0u := A(·, ∂)u if u ∈ D(A0)

where the operator A(x, ∂) is defined by Formula (3.1). The operator A0 is said to
be a realization of the operator A(x, ∂) in Lp(Rn). The domain D(A0) is dense in
Lp(Rn).

Let D be an open subset of Rn with uniformly C2-smooth boundary. We define the
operator A1 : D(A1) → Lp(D) by

D(A1) := {u ∈ W 2,p(D) : B(·, ∂)u = 0 on ∂D},
A1u := A(·, ∂)u if u ∈ D(A1)

where the operator B(x, ∂) is defined by Formula (3.3). The operator A1 is called
a realization of the operator A(x, ∂) in Lp(D) with homogeneous Robin boundary
condition. We note that the domain D(A1) is dense in Lp(D).

In the following theorem it is shown that the resolvent sets of the realizations A0

and A1 contain complex half planes. The assumptions for the operators A(x, ∂) and
B(x, ∂) are those stated in the beginning of this chapter.
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Theorem 3.3. Let 1 < p < ∞.

(i) There exists ω0 ∈ R such that ρ(A0) ⊃ {λ ∈ C : Reλ ≥ ω0}.

(ii) Let D ⊂ Rn be an open set with uniformly C2-smooth boundary. Then there
exists ω1 ∈ R such that ρ(A1) ⊃ {λ ∈ C : Reλ ≥ ω1}. If D is bounded, the
constant ω1 does not depend on p.

Proof. See [13, Theorem 4.1. p. 160]. According to Lemma 3.2 the condition (AN;
θ) is valid when θ ∈ [−π/2, π/2]. Hence the resolvent set contains a half plane.

We want to prove that A0 and A1 are sectorial. According to Proposition 2.6 we
need bounds of the type (2.5) for the norms of the resolvents of the operators A0

and A1. In the following theorem we present the needed estimates.

Theorem 3.4. Let 1 < p < ∞.

(i) There exist ωp ≥ ω0 and Mp > 0 such that for all u ∈ D(A0)

|λ|‖u‖Lp(Rn) ≤ Mp‖(λ − A0)u‖Lp(Rn)

if Reλ ≥ ωp.

(ii) Let D ⊂ Rn be an open set with uniformly C2-smooth boundary. Then there
exist ωp ≥ ω1 and Mp > 0 such that for all u ∈ D(A1)

|λ|‖u‖Lp(D) ≤ Mp‖(λ − A1)u‖Lp(D)

if Reλ ≥ ωp.

Proof. Let D be either Rn or an open subset of Rn with uniformly C2-smooth
boundary and θ ∈ [−π/2, π/2]. We study the operator of n + 1 variables

Aθ(x, t, ∂) := A(x, ∂) + eiθ∂2
t

where t ∈ R and x ∈ D̄. According to Lemma 3.2 the operator Aθ(x, t, ∂) satisfies
the Agmon-Douglis-Nirenberg assumptions. Let ζ ∈ C∞

0 (R) be such that supp ζ ⊂
[−1, 1] and ζ ≡ 1 on the interval [−1/2, 1/2]. For every u ∈ W 2,p(D) and r > 0 we
set vr(x, t) := ζ(t)eirtu(x) for all t ∈ R and x ∈ D. Then for all t ∈ R and x ∈ D

Aθ(x, t, ∂)vr(x, t)

= ζ(t)eirt
(
A(x, ∂) − r2eiθ

)
u(x) + ei(θ+rt)

(
ζ ′′(t) + 2irζ ′(t)

)
u(x).

Let us assume that D = Rn and u ∈ D(A0). We use Estimate (3.5) for the function
vr. Then

‖vr‖W 2,p(Rn+1) ≤ cp

(
‖vr‖Lp(Rn+1) + ‖Aθ(·, ·, ∂)vr‖Lp(Rn+1)

)

≤ cp

( ∥∥ζeirtu
∥∥

Lp(Rn+1)
+

∥∥∥ζeirt
(
A0 − r2eiθ

)
u
∥∥∥

Lp(Rn+1)
+

+
∥∥∥ei(θ+rt)(ζ ′′ + 2irζ ′)u

∥∥∥
Lp(Rn+1)

)
.
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The variables x and t can be separated. Thus

‖vr‖W 2,p(Rn+1) ≤ cp

[ (
‖ζ‖Lp(R) + 2r‖ζ ′‖Lp(R) + ‖ζ ′′‖Lp(R)

)
‖u‖Lp(Rn)+

+ ‖ζ‖Lp(R)

∥∥∥
(
A0 − r2eiθ

)
u
∥∥∥

Lp(Rn)

]
.

We denote
c′p := 2cp max

{
‖ζ‖Lp(R), ‖ζ ′‖Lp(R), ‖ζ ′′‖Lp(R)

}
.

Then

‖vr‖W 2,p(Rn+1) ≤ c′p

[
(1 + r)‖u‖Lp(Rn) +

∥∥∥
(
A0 − r2eiθ

)
u
∥∥∥

Lp(Rn)

]
.

On the other hand, since ζ ≡ 1 on the interval [−1/2, 1/2],

‖vr‖p

W 2,p(Rn×(− 1
2
, 1
2))

=

∫

Rn×(− 1
2
, 1
2)

∑

|α|≤2

|∂α(u(x)eirt)|p dxdt

=

∫

Rn


(1 + rp + r2p)|u(x)|p + (1 + 2rp)

n∑

j=1

|∂ju(x)|p +
n∑

j,k=1

|∂j∂ku(x)|p

 dx

≥ r2p‖u‖p
Lp(Rn).

Hence

r2‖u‖Lp(Rn) ≤ c′p

[
(1 + r)‖u‖Lp(Rn) +

∥∥∥
(
A0 − r2eiθ

)
u
∥∥∥

Lp(Rn)

]
.

We choose r so large that

c′p(1 + r) ≤ r2

2

and denote λ := r2eiθ. Then

|λ|‖u‖Lp(Rn) ≤ 2c′p‖(λ − A0)u‖Lp(Rn).

By choosing

ωp := max
{

2c′p
(
c′p + 1 +

√
c′2p + 2c′p

)
, ω0

}

and Mp := 2c′p the statement (i) is proved.

The statement (ii) is shown in the same way. Instead of Estimate (3.5) we use
Estimate (3.6). We assume that u ∈ D(A1). Hence the proper extension of the
boundary value B(·, ∂)vr|∂D×R to D × R is the zero function. The only changes in
the proof are that Rn is replaced by D, A0 by A1 and ω0 by ω1.

Corollary 3.5. The operators A0 and A1 are sectorial.

Proof. We should show that the operators A0 and A1 satisfy the assumptions of
Proposition 2.6. According to their definitions the operators A0 and A1 are linear.
By Theorem 3.3 the resolvent sets of the operators A0 and A1 contain a half plane
{λ ∈ C : Reλ ≥ ωp} where ωp ≥ 0. Let D be either Rn or an open subset of Rn
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with uniformly C2-smooth boundary. According to Theorem 3.4 for all u ∈ D(Ai),
i = 0, 1,

|λ|‖u‖Lp(D) ≤ Mp‖(λ − Ai)u‖Lp(D)

if Reλ ≥ ωp. By setting u = R(λ, Ai)v we get

‖λR(λ, Ai)v‖Lp(D) ≤ Mp‖v‖Lp(D)

if Reλ ≥ ωp. Hence
‖λR(λ, Ai)‖B(Lp(D)) ≤ Mp

if Reλ ≥ ωp, i.e., a bound of the type (2.5) is valid for the operator Ai, i = 0, 1.
Hence the operators A0 and A1 satisfy the assumptions of Proposition 2.6 with the
constants ωp and Mp and therefore they are sectorial.





Chapter 4

Stochastic Analysis in Infinite

Dimensions

In this chapter we introduce the stochastic integral of operator valued stochastic
processes with respect to the Hilbert space valued Wiener process. We present the
concepts of the stochastic analysis in Banach and Hilbert spaces. The conditional
expectation, Gaussian measures, martingales and the Wiener process are defined in
this setting. The stochastic integral and its properties, especially the Ito formula,
are the main purpose of this chapter. As an application we are able to solve linear
stochastic initial value problems. This chapter is based on Chapters 1–5 in the
book of Da Prato and Zabczyk [35]. We have included more detailed proofs for
some theorems than those presented in [35]. In addition, we have corrected several
misprints. Theorems 4.9 (partly) and 4.39, Propositions 4.25 and 4.40 and Lemmas
4.26, 4.33, 4.42 and 4.45 are used but not stated in [35]. Lemmas 4.13, 4.34 and
4.35 are Hilbert space versions of known results in Rn. We could not find them from
the literature. However, the proofs have only slight differences between those in Rn.
The definition of the weak solution to a linear stochastic initial value problem is
different than the one in [35]. We have imitated the definition of the weak solution
to deterministic nonhomogeneous initial value problems in Section 2.3. We assume
that the reader is familiar with the Lebesgue integration theory of scalar valued
functions and stochastic analysis in Rn. The Bochner integration theory for vector
valued functions is presented in Appendix B and the theory concerning nuclear and
Hilbert-Schmidt operators in Appendix D.

4.1 Probability space

Let Ω be a set. A collection F of subsets of Ω is said to be a σ-algebra in Ω if F has
the following properties

(i) Ω ∈ F ,

(ii) if A ∈ F , then Ac ∈ F ,

(iii) if A = ∪∞
n=1An and An ∈ F for all n ∈ N, then A ∈ F .

27
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If F is a σ-algebra in Ω, then (Ω,F) is called a measurable space and the members
of F are called the measurable sets in Ω. Let K be a collection of subsets of Ω.
The smallest σ-algebra on Ω which contains K is denoted by σ(K) and is called the
σ-algebra generated by K. Let E be a topological space. Then the Borel σ-algebra of
E is the smallest σ-algebra containing all open subsets of E. It is denoted by B(E)
and the elements of B(E) are called the Borel sets of E.

A collection K of subsets of Ω is said to be a π-system if ∅ ∈ K and A ∩ B ∈ K for
all A, B ∈ K. The following proposition is often used for proving that a given set is
measurable.

Proposition 4.1. Let K be a π-system and G the smallest family of subsets of Ω
such that

(i) K ⊂ G,

(ii) if A ∈ G, then Ac ∈ G,

(iii) if An ∈ G for all n ∈ N and Am ∩ An = ∅ for all m 6= n, then ∪∞
n=1An ∈ G.

Then G = σ(K).

Proof. Let A ∈ G. We define GA := {B ∈ G : A ∩ B ∈ G}. Since

A ∩ Bc = A ∩ (A ∩ B)c = [Ac ∪ (A ∩ B)]c

and Ac ∩ (A ∩ B) = ∅, then A ∩ Bc ∈ G if B ∈ GA. Hence Bc ∈ GA if B ∈ GA. If
Bn ∈ GA for all n ∈ N and Bm ∩ Bn = ∅ for all m 6= n,

A ∩
∞⋃

n=1

Bn =
∞⋃

n=1

A ∩ Bn ∈ G

since (A ∩ Bm) ∩ (A ∩ Bn) = ∅ for all m 6= n. Thus GA satisfies the conditions (ii)
and (iii). Since K is a π-system, K ⊂ GA for all A ∈ K. Since G is the smallest
family satisfying the conditions (i), (ii) and (iii), GA = G for all A ∈ K. Hence if
B ∈ K, then A ∩ B ∈ G for all A ∈ G. Thus K ⊂ GA for all A ∈ G and consequently
GA = G for all A ∈ G. Therefore G is a π-system.

Let An ∈ G for all n ∈ N. We define

B1 := A1,

B2 := A2 \ B1 = A2 ∩ Bc
1,

B3 := A3 \ ∪2
i=1Bi = A3 ∩ Bc

1 ∩ Bc
2,

...

Bn := An \ ∪n−1
i=1 Bi = An ∩ Bc

1 ∩ . . . ∩ Bc
n−1.

Since G is a π-system and satisfies the condition (ii), Bn ∈ G for all n ∈ N. Further-
more, Bm ∩ Bn = ∅ for all m 6= n. Thus by the condition (iii),

∞⋃

n=1

An =

∞⋃

n=1

Bn ∈ G.

Hence G is a σ-algebra. Therefore σ(K) ⊂ G because K ⊂ G. Since σ(K) satisfies
the conditions (i), (ii) and (iii), G ⊂ σ(K). Thus G = σ(K).
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Let (Ω,F) be a measurable space. A function µ : F → [0,∞] is a positive measure
if µ(A) < ∞ at least for one A ∈ F and µ is σ-additive, i.e., if {Ai}∞i=1 is a disjoint
collection of measurable sets,

µ

( ∞⋃

i=1

Ai

)
=

∞∑

i=1

µ(Ai).

The triplet (Ω,F , µ) is called a measure space. If (Ω,F , µ) is a measure space, we
define the completion of F by

F̄ := {A ⊆ Ω : there exist B, C ∈ F such that B ⊆ A ⊆ C and µ(B) = µ(C)}.

Then F̄ is a σ-algebra. If F = F̄ , the measure space (Ω,F , µ) is said to be complete.
A function P : F → [0, 1] is a probability measure if P is a positive measure and
P(Ω) = 1. The triplet (Ω,F , P) is called a probability space.

4.2 Random Variables

Let (Ω,F , P) be a probability space and (E,G) a measurable space.

Definition 4.2. A function X : Ω → E such that the set {ω ∈ Ω : X(ω) ∈ A}
belongs to F for each A ∈ G is called a measurable function or a random variable
from (Ω,F) to (E,G).

If E is a topological vector space, an E-valued random variable is a function X :
Ω → E which is measurable from (Ω,F) to (E,B(E)). A random variable is called
simple if it is of the form

X(ω) =
n∑

k=1

xkχAk
(ω)

for all ω ∈ Ω where n ∈ N, xk ∈ E and Ak ∈ F are disjoint for all k = 1, . . . , n and

χAk
(ω) :=

{
1 if ω ∈ Ak,

0 if ω 6∈ Ak.

Hence a simple random variable takes only a finite number of values.

Lemma 4.3. Let (E, ρ) be a separable metric space and X an E-valued random
variable. Then there exists a sequence {Xn}∞n=1 of simple E-valued random vari-
ables such that for all ω ∈ Ω the sequence {ρ(X(ω), Xn(ω))}∞n=1 is monotonically
decreasing to zero.

Proof. Let {ej}∞j=1 be a countable dense subset of E. For ω ∈ Ω and n ∈ N we
define

ρn(ω) := min{ρ(X(ω), ej), j = 1, . . . , n},
kn(ω) := min{j ≤ n : ρn(ω) = ρ(X(ω), ej)},
Xn(ω) := ekn(ω).
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Then Xn is a simple random variable since Xn(Ω) ⊂ {e1, . . . , en}, for all i = 1, . . . , n

{ω ∈ Ω : Xn(ω) = ei}

=
i−1⋂

j=1

{ω ∈ Ω : ρn(ω) 6= ρ(X(ω), ej)} ∩ {ω ∈ Ω : ρn(ω) = ρ(X(ω), ei)}

and ρn is a random variable from (Ω,F) to (R,B(R)). Moreover, by the density of
{ej}∞j=1 the sequence {ρn(ω)}∞n=1 is monotonically decreasing to zero for each ω ∈ Ω.
Since ρn(ω) = ρ(X(ω), Xn(ω)), the conclusion follows.

If X is a random variable from (Ω,F , P) to (E,G), we denote the image of the
probability measure P under the function X by L(X), i.e.,

L(X)(A) := P(ω ∈ Ω : X(ω) ∈ A)

for all A ∈ G. The probability measure L(X) is called the distribution or the law of
the random variable X.

Let {Xi}i∈I be a family of functions from Ω to E. Then the smallest σ-algebra
σ(Xi : i ∈ I) on Ω such that all functions Xi are measurable from (Ω, σ(Xi : i ∈ I))
to (E,G) is called the σ-algebra generated by {Xi}i∈I . Let K be a collection of
subsets of E. If {ω ∈ Ω : X(ω) ∈ A} ∈ F for each A ∈ K, then X is a measurable
function from (Ω,F) to (E, σ(K)) since the family of all sets A ∈ σ(K) for which
{ω ∈ Ω : X(ω) ∈ A} ∈ F is a σ-algebra.

Lemma 4.4. Let (H, (·, ·)H) be a separable Hilbert space and F a linearly dense
subset of H. If X is a function from Ω to H such that for each f ∈ F the function

(X(·), f)H : Ω → C

is measurable, X is a random variable from (Ω,F) to (H,B(H)).

Proof. Since span(F ) is dense in H, for every h ∈ H there exists {fn}∞n=1 ⊂ span(F )
such that fn → h in H as n → ∞. Since (X(·), f)H : Ω → C is measurable
for every f ∈ F , it is also measurable for every f ∈ span(F ). Let h ∈ H and
{fn}∞n=1 ⊂ span(F ) be an approximating sequence of h. Then for all ω ∈ Ω

|(X(ω), fn)H − (X(ω), h)H | ≤ ‖X(ω)‖H‖fn − h‖H −→ 0

as n → ∞. Thus (X(·), h)H : Ω → C is measurable for every h ∈ H. Since by
Corollary B.7 in a separable Banach space the weak measurability is equivalent to
the measurability, X is measurable.

Let (E, ‖ · ‖E) be a separable Banach space. An E-valued random variable X is said
to be Bochner integrable or simply integrable if

∫

Ω
‖X(ω)‖E P(dω) < ∞.

Then the integral of X is defined by

E(X) :=

∫

Ω
X(ω) P(dω) := lim

n→∞

∫

Ω
Xn(ω) P(dω) := lim

n→∞

mn∑

k=1

xn
kP(An

k)
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where {Xn}∞n=1 is a sequence of simple random variables Xn =
∑mn

k=1 xk
nχAk

n
conver-

ging pointwise to X and satisfying
∫

Ω
‖Xm − Xn‖E dP −→ 0

as m, n → ∞. We denote by L1(Ω,F , P; E) the set of all equivalence classes of E-
valued integrable random variables with respect to the equivalence relation X(ω) =
Y (ω) for almost all ω ∈ Ω, i.e., almost surely. The space L1(Ω,F , P; E) equipped
with the norm ‖X‖1 := E‖X‖E is a Banach space. In a similar way one can define
Lp(Ω,F , P; E) for each p > 1 with the norm ‖X‖p = (E‖X‖p

E)1/p. The theory
concerning Banach space valued functions and the Bochner integral is presented in
Appendix B.

4.2.1 Operator Valued Random Variables

Let (U, (·, ·)U ) and (H, (·, ·)H) be separable Hilbert spaces. We denote by B(U, H)
the collection of all bounded linear operator from U to H. If U = H, we use the
notation B(H) := B(H, H). The set B(U, H) is a vector space and equipped with
the operator norm

‖T‖B(U,H) := sup{‖Tx‖H : x ∈ U, ‖x‖U ≤ 1}

for all T ∈ B(U, H) it is a Banach space. However, if U and H are both infin-
ite dimensional, B(U, H) is not separable. The non-separability of B(U, H) has
several consequences. First of all the corresponding Borel σ-algebra B(B(U, H)) is
very rich to the extent that very simple B(U, H)-valued functions turn out to be
non-measurable. The lack of separability of B(U, H) implies also that Bochner’s
definition of the integrability cannot be directly applied to the B(U, H)-valued func-
tions.

Definition 4.5. A function Φ : Ω → B(U, H) is said to be strongly measurable if for
each u ∈ U the function Φ(·)u is measurable as a function from (Ω,F) to (H,B(H)).

Let B(U, H) be the smallest σ-algebra on B(U, H) containing all sets of the form
{Ψ ∈ B(U, H) : Ψu ∈ A} for each u ∈ U and A ∈ B(H). Then a strongly
measurable function Φ : Ω → B(U, H) is a measurable function from (Ω,F) to
(B(U, H),B(U, H)). The elements of B(U, H) are called strongly measurable sets.

Definition 4.6. A strongly measurable function Φ : Ω → B(U, H) is said to be
strongly Bochner integrable if for each u ∈ U the function Φ(·)u is Bochner integ-
rable. Then there exists an operator Ψ ∈ B(U, H) such that

∫

Ω
Φ(ω)u P(dω) = Ψu

for each u ∈ U .

The operator Ψ is then denoted by

Ψ :=

∫

Ω
Φ(ω) P(dω)
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and called the strong Bochner integral of Φ. More about the Bochner integration
theory of operator valued functions can be found in Appendix B.

For all a, b ∈ H the bounded linear operator a⊗ b is defined by (a⊗ b)h := a(h, b)H

for each h ∈ H. If X ∈ L2(Ω,F , P; H), then (X(ω) − EX) ⊗ (X(ω) − EX) is a
bounded linear operator in H for almost all ω ∈ Ω. Since X is measurable,

((X(ω) − EX) ⊗ (X(ω) − EX))h = (X(ω) − EX)(h, X(ω) − EX)H

is measurable as a function from (Ω,F) to (H,B(H)) for all h ∈ H. Since X ∈
L2(Ω,F , P; H),

∫

Ω
‖((X(ω) − EX) ⊗ (X(ω) − EX))h‖H P(dω)

=

∫

Ω
‖X(ω) − EX‖H |(h, X(ω) − EX)H | P(dω)

≤ ‖h‖H‖X − EX‖2
2 = ‖h‖H

(
‖X‖2

2 − ‖EX‖2
H

)

for all h ∈ H. Hence (X − EX)⊗ (X − EX) is strongly Bochner integrable and the
bounded linear operator

Cov(X) := E[(X − EX) ⊗ (X − EX)]

from H to itself is well defined. The operator Cov(X) is called the covariance
operator of X. The operator Cov(X) is a non-negative self-adjoint operator, because

(Cov(X)h, h)H = E
[
|(h, X − EX)H |2

]
≥ 0

and

(Cov(X)h, g)H = (E [(X − EX)(h, X − EX)H ] , g)H

= E [(h, X − EX)H(X − EX, g)H ]

= E [(g, X − EX)H(X − EX, h)H ]

= (Cov(X)g, h)H = (h, Cov(X)g)H

for all g, h ∈ H. Let {ek}∞k=1 be an orthonormal basis in H. Then

Tr Cov(X) =
∞∑

k=1

(Cov(X)ek, ek)H =
∞∑

k=1

E
[
|(X(ω) − EX, ek)H |2

]

= E‖X − EX‖2
H = ‖X‖2

2 − ‖EX‖2
H .

Thus by Proposition D.14 the covariance operator Cov(X) is nuclear.

If X, Y ∈ L2(Ω,F , P; H), we may define the correlation operator

Cor(X, Y ) := E[(X − EX) ⊗ (Y − EY )]

of X and Y as a strong Bochner integral similarly. Then Cor(X, Y ) is a bounded
linear operator from H to itself.
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4.2.2 Conditional Expectation and Independence

The conditional expectation of scalar valued random variables is assumed to be
known. The books of Neveu [30] or Williams [53] can be used as a reference.

Theorem 4.7. Let (E, ‖ · ‖E) be a separable Banach space. A random variable
X : (Ω,F , P) → (E,B(E)) is assumed to be Bochner integrable and G to be a σ-
algebra contained in F . Then there exists an integrable E-valued random variable Z
which is measurable with respect to G such that

∫

A
X dP =

∫

A
Z dP

for all A ∈ G. Furthermore, Z is unique up to a set of probability zero.

The random variable Z is denoted by E(X|G) and called the conditional expectation
of X given G.

Proof. First we show the existence of a conditional expectation. Let X be a simple
random variable. We define Z :=

∑n
k=1 xkE(χAk

|G) where E(χAk
|G) represents the

classical notion of the conditional expectation of the characteristic function χAk

given G. Since χAk
is non-negative, E(χAk

|G) ≥ 0 almost surely [53, Theorem 9.7].
Thus

E‖Z‖E ≤ E

(
n∑

k=1

‖xk‖EE(χAk
|G)

)
=

n∑

k=1

‖xk‖EE(E(χAk
|G))

=
n∑

k=1

‖xk‖EE(χAk
) =

n∑

k=1

‖xk‖EP(Ak) = E‖X‖E .

Hence Z is integrable E-valued G-measurable function. Furthermore,

∫

A
X dP =

n∑

k=1

xk

∫

A
χAk

dP =
n∑

k=1

xk

∫

A
E(χAk

|G) dP =

∫

A
Z dP

for all A ∈ G. Thus there exists a conditional expectation for a simple random
variable.

Let X ∈ L1(Ω,F , P; E). By Theorem B.12 there exists a sequence {Xn}∞n=1 of simple
random variables such that Xn converges pointwise to X and E‖Xm − Xn‖E → 0
as m, n → ∞. Furthermore, E‖X − Xn‖E → 0 as n → ∞. Let Zn = E(Xn|G) for
all n ∈ N. Then

E‖Zm − Zn‖E ≤ E‖Xm − Xn‖E −→ 0

as m, n → ∞. Hence {Zn}∞n=1 is a Cauchy sequence in L1(Ω,G, P; E). Therefore
there exists Z ∈ L1(Ω,G, P; E) such that E‖Z − Zn‖E → 0 as n → ∞. Hence for
each A ∈ G

∫

A
X dP = lim

n→∞

∫

A
Xn dP = lim

n→∞

∫

A
Zn dP =

∫

A
Z dP

since Xn → X in L1(Ω,F , P; E) and Zn → Z in L1(Ω,G, P; E) as n → ∞ and
Zn = E(Xn|G) for all n ∈ N. Thus there exists a conditional expectation.
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We still have to prove the uniqueness of the conditional expectation. We need
the following lemma. In the proof of the lemma the uniqueness of the conditional
expectation is not expected.

Lemma 4.8. Let (E, ‖ · ‖E) be a separable Banach space. A random variable X :
(Ω,F , P) → (E,B(E)) is assumed to be Bochner integrable and G to be a σ-algebra
contained in F . If ϕ a continuous linear functional on E,

〈E(X|G), ϕ〉 = E(〈X, ϕ〉|G)

almost surely.

Proof. Let X ∈ L1(Ω,F , P; E) and Z = E(X|G). Then for all A ∈ G
∫

A
〈X, ϕ〉 dP =

〈∫

A
X dP, ϕ

〉
=

〈∫

A
Z dP, ϕ

〉
=

∫

A
〈Z, ϕ〉 dP.

Hence 〈Z, ϕ〉 = E(〈X, ϕ〉|G) almost surely since the conditional expectation of scalar
valued random variable is unique up to a set of probability zero.

We assume that there exist two random variables Z and Z̃ such that they have the
properties of the conditional expectation and P(Z − Z̃ 6= 0) > 0. The separability
of E implies that for some a ∈ E

P
(
‖Z − Z̃ − a‖E <

1

3
‖a‖E

)
> 0.

By the Hahn-Banach theorem there exists a continuous linear functional ϕ on E
such that 〈a, ϕ〉 = ‖a‖E and ‖ϕ‖E′ = 1. Hence

P
(∣∣∣〈Z − Z̃, ϕ〉 − ‖a‖E

∣∣∣ <
1

3
‖a‖E

)
> 0

since ∣∣∣〈Z − Z̃, ϕ〉 − ‖a‖E

∣∣∣ = |〈Z − Z̃ − a, ϕ〉| ≤ ‖Z − Z̃ − a‖E .

Thus

P
(
〈Z − Z̃, ϕ〉 ≥ 2

3
‖a‖E

)
> 0.

But 〈Z, ϕ〉 = E(〈X, ϕ〉|G) = 〈Z̃, ϕ〉 almost surely by Lemma 4.8. The obtained
contradiction implies the uniqueness up to a set of probability zero.

Let {Fi}i∈I be a family of sub-σ-algebras of F . These σ-algebras are said to be
independent if for every finite subset J ⊂ I and every family {Ai}i∈J such that
Ai ∈ Fi for each i ∈ J

P

(⋂

i∈J

Ai

)
=

∏

i∈J

P(Ai).

Random variables {Xi}i∈I are independent if the σ-algebras {σ(Xi)}i∈I are inde-
pendent.

In the following theorem we have gathered properties of the conditional expectation.
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Theorem 4.9. Let (E, ‖ · ‖E) and (F, ‖ · ‖F ) be separable Banach spaces. Random
variables X, Y : (Ω,F , P) → (E,B(E)) are assumed to be Bochner integrable and G
to be a σ-algebra contained in F . Then

(i) E(E(X|G)) = E(X),

(ii) if X is G-measurable, E(X|G) = X almost surely,

(iii) E(αX + βY |G) = αE(X|G) + βE(Y |G) almost surely for all α, β ∈ C,

(iv) if H is a sub-σ-algebra of G, then E(E(X|G)|H) = E(X|H) almost surely,

(v) ‖E(X|G)‖E ≤ E(‖X‖E |G) almost surely,

(vi) if Φ ∈ B(E, F ), then E(ΦX|G) = ΦE(X|G) almost surely,

(vii) if Z is a bounded scalar valued G-measurable function, E(ZX|G) = ZE(X|G)
almost surely,

(viii) if X is independent of G, then E(X|G) = E(X) almost surely.

Proof. The statements (i)-(iv) are obvious consequences of the definition of the con-
ditional expectation.

(v) Let X be a simple random variable. Then

‖E(X|G)‖E ≤
n∑

k=1

‖xk‖EE(χAk
|G) = E(‖X‖E |G).

Let X ∈ L1(Ω,F , P; E) and {Xn}∞n=1 be a sequence defined in Theorem B.12. Then
Xn → X in L1(Ω,F , P; E) as n → ∞. Therefore ‖Xn‖E → ‖X‖E in L1(Ω,F , P; R)
as n → ∞. Similarly as in the proof of Theorem 4.7 we get E(Xn|G) → E(X|G) in
L1(Ω,G, P; E) and E(‖Xn‖E |G) → E(‖X‖E |G) in L1(Ω,G, P; R) as n → ∞. Since by
Theorem B.16 every convergent sequence in L1 has a subsequence which converges
pointwise almost surely,

‖E(X|G)‖E = lim
k→∞

‖E(Xnk
|G)‖E ≤ lim

k→∞
E(‖Xnk

‖E |G) = E(‖X‖E |G)

almost surely.

(vi) Let Φ ∈ B(E, F ) and X ∈ L1(Ω,F , P; E). Then for all A ∈ G
∫

A
ΦX dP = Φ

∫

A
X dP = Φ

∫

A
E(X|G) dP =

∫

A
ΦE(X|G) dP.

Hence E(ΦX|G) = ΦE(X|G) almost surely.

(vii) Let X ∈ L1(Ω,F , P; E) and Z be a bounded scalar valued G-measurable func-
tion. Let ϕ be a continuous linear functional on E. Then by the statement (v),

〈E(ZX|G), ϕ〉 = E(Z〈X, ϕ〉|G) = ZE(〈X, ϕ〉|G) = 〈ZE(X|G), ϕ〉

almost surely [53, Theorem 9.7]. Thus E(ZX|G) = ZE(X|G) almost surely.
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(viii) Let X ∈ L1(Ω,F , P; E) be independent of G and ϕ a continuous linear func-
tional on E. Then 〈X, ϕ〉 is independent of G [11, Theorem 4.1.1]. Hence by the
statement (v),

〈E(X|G), ϕ〉 = E(〈X, ϕ〉|G) = E(〈X, ϕ〉) = 〈E(X), ϕ〉

almost surely [53, Theorem 9.7]. Thus E(X|G) = E(X) almost surely.

The following proposition is a useful tool in the construction of the stochastic integral
in Section 4.5.

Proposition 4.10. Let (E1, E1) and (E2, E2) be measurable spaces and ψ : E1×E2 →
R a bounded measurable function. Let X1 and X2 be random variables on (Ω,F , P)
with values in (E1, E1) and (E2, E2), respectively, and G a sub-σ-algebra of F . If X1

is G-measurable and X2 is independent of G,

E(ψ(X1, X2)|G) = ψ̂(X1)

almost surely where ψ̂(x1) = E(ψ(x1, X2)) for x1 ∈ E1.

Proof. We assume first that ψ(x1, x2) = ψ1(x1)ψ2(x2) for all (x1, x2) ∈ E1 × E2

where ψ1 : E1 → R and ψ2 : E2 → R are bounded measurable functions. Then
ψ1(X1) is G-measurable and ψ2(X2) is independent of G [11, Theorem 4.1.1]. Hence

E(ψ(X1, X2)|G) = E(ψ1(X1)ψ2(X2)|G) = ψ1(X1)E(ψ2(X2)|G) = ψ1(X1)E(ψ2(X2))

almost surely [53, Theorem 9.7]. So the claim is true in this case.

The set K := {A1 × A2 : A1 ∈ E1, A2 ∈ E2} is a π-system and σ(K) = E1 × E2.
Furthermore, E(χA1×A2(X1, X2)|G) = χ̂A1×A2(X1) almost surely for all A1×A2 ∈ K
where

χ̂A1×A2(x1) = χA1(x1)E(χA2(X2)) = E(χA1×A2(x1, X2))

for all x1 ∈ E1. Let

H := {A ∈ E1 × E2 : E(χA(X1, X2)|G) = χ̂A(X1) almost surely}.

Then K ⊂ H. Since χAc = 1 − χA and χ∪∞
n=1An =

∑∞
n=1 χAn for all disjoint

An ∈ E1 × E2, the set H satisfies the assumptions of Proposition 4.1 [53, Theorem
9.7]. Thus H = E1 × E2. Therefore the claim is true for all simple functions ψ.

In the general case according to Lemma 4.3 there exists a sequence {ψn}∞n=1 of
simple functions such that |ψn(x1, x2) − ψ(x1, x2)| ↓ 0 as n → ∞ for all (x1, x2) ∈
E1 × E2. Hence |ψn(X1(ω), X2(ω)) − ψ(X1(ω), X2(ω))| ↓ 0 and |ψn(x1, X2(ω)) −
ψ(x1, X2(ω))| ↓ 0 as n → ∞ for all ω ∈ Ω and x1 ∈ E1. By Lebesgue’s mono-
tone convergence theorem ψn(X1, X2) → ψ(X1, X2) and ψn(x1, X2) → ψ(x1, X2)
in L1(Ω,F , P; R) as n → ∞ for all x1 ∈ E1. Therefore, similarly as in the proof
of Theorem 4.7 we get E(ψn(X1, X2)|G) → E(ψ(X1, X2)|G) in L1(Ω,G, P; R) and
ψ̂n(x1) → ψ̂(x1) as n → ∞ for all x1 ∈ E1. Since E(ψn(X1, X2)|G) = ψ̂n(X1)
almost surely and by Theorem B.16 every convergent sequence in L1 has a sub-
sequence which converges pointwise almost surely, E(ψ(X1, X2)|G) = ψ̂(X1) almost
surely.



4.3. Probability Measures 37

The following lemma is used in the proof of the Ito formula in Subsection 4.5.2.

Lemma 4.11. If {ηj}k
j=1 is a sequence of real valued random variables with finite

second moments and {Gj}k
j=1 is an increasing sequence of σ-algebras such that ηj is

measurable with respect to Gi for all 1 ≤ j < i ≤ k,

E




k∑

j=1

ηj −
k∑

j=1

E(ηj |Gj)




2

=
k∑

j=1

(
Eη2

j − E(E(ηj |Gj))
2
)
.

Proof. Since ηj ∈ L2(Ω,F , P; R) for all j = 1, . . . , k,

E(ηjE(ηj |Gj)) = E(E(ηjE(ηj |Gj)|Gj)) = E(E(ηj |Gj))
2,

E(ηiE(ηj |Gj)) = E(E(ηiηj |Gj)) = E(ηiηj),

E(ηjE(ηi|Gi)) = E(E(ηjE(ηi|Gi)|Gj)) = E(E(ηi|Gi)E(ηj |Gj))

if i < j [53, Theorem 9.7]. Thus

E




k∑

j=1

ηj −
k∑

j=1

E(ηj |Gj)




2

= E
k∑

j=1

(ηj − E(ηj |Gj))
2 + 2E

k∑

j=1

∑

i<j

(ηi − E(ηi|Gi))(ηj − E(ηj |Gj))

= E
k∑

j=1

(η2
j − 2ηjE(ηj |Gj) + E(ηj |Gj)

2)+

+ 2E
k∑

j=1

∑

i<j

(ηiηj − ηiE(ηj |Gj) − ηjE(ηi|Gi) + E(ηi|Gi)E(ηj |Gj))

=

k∑

j=1

(
Eη2

j − E(E(ηj |Gj))
2
)
.

Hence the statement is proved.

4.3 Probability Measures

Let (E, ‖ · ‖E) be a real Banach space. A subset of E of the form

{x ∈ E : (〈x, y′1〉, 〈x, y′2〉, . . . , 〈x, y′n〉) ∈ A}

where n ∈ N, y′i ∈ E′ for i = 1, . . . , n and A ∈ B(Rn) is called cylindrical. Cyl-
indrical sets form a π-system. If two probability measures are identical on cylindrical
sets, they are equal on B(E) by Proposition 4.1. If µ is a probability measure on
(E,B(E)), the function ϕµ on E′

ϕµ(y′) :=

∫

E
ei〈x,y′〉 µ(dx)
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for all y′ ∈ E′ is called the characteristic function of µ. Instead of ϕµ we also denote
it by µ̂. If (H, (·, ·)H) is a real Hilbert space, ϕµ is regarded as a function on H and

ϕµ(h) :=

∫

E
ei(x,h)H µ(dx)

for all h ∈ H. Probability measures on a real Banach space are uniquely determined
by their characteristic functions.

Lemma 4.12. If µ and ν are probability measures on (E,B(E)) such that

ϕµ(y′) = ϕν(y
′)

for all y′ ∈ E′, then µ = ν.

Proof. The claim is true if E = Rn [3, pp. 333–334]. In the general case we fix
n ∈ N, y′1, . . . , y

′
n ∈ E′ and λ1, . . . , λn ∈ R. By the hypothesis

∫

E
eiλ1〈x,y′

1〉+...+iλn〈x,y′
n〉 µ(dx) =

∫

E
eiλ1〈x,y′

1〉+...+iλn〈x,y′
n〉 ν(dx). (4.1)

Identity (4.1) implies that the Rn-valued mapping x 7→ (〈x, y′1〉, . . . , 〈x, y′n〉) maps the
measures µ and ν onto measures µ̃ and ν̃ on (Rn,B(Rn)) with identical characteristic
functions where µ̃(A) = µ(x ∈ E : (〈x, y′

1〉, . . . , 〈x, y′n〉) ∈ A) for all A ∈ B(Rn).
Hence the measures µ̃ and ν̃ are identical. But this implies that the measures µ and
ν are equal on all cylindrical sets. Therefore µ = ν on B(E).

Next we present some lemmas concerning probability measures that will be used
later in this chapter. By the uniqueness of the characteristic function we are able
to prove the following lemma. The version in Rn can be found from the book of
Karatzas and Shreve [20, Lemma 2.6.13].

Lemma 4.13. Let (H, (·, ·)H) be a real separable Hilbert space and X an H-valued
random variable on a probability space (Ω,F , P). Suppose that G is a sub-σ-algebra
of F and that for each ω ∈ Ω there exists a function ϕ(·; ω) : H → C such that

ϕ(h; ω) = E
[
ei(X,h)H

∣∣G
]
(ω)

for all h ∈ H and almost all ω ∈ Ω. If ϕ(·; ω) is the characteristic function of some
probability measure µω on (H,B(H)) for each ω ∈ Ω, i.e.,

ϕ(h; ω) =

∫

H
ei(x,h)H µω(dx)

for all h ∈ H,
P[X ∈ B|G](ω) = µω(B)

for each B ∈ B(H) and almost all ω ∈ Ω.

Proof. Since for all A ∈ G and B ∈ B(H)

E[P(X ∈ B|G)χA] = E[E(χ{X∈B}|G)χA] = E(χ{X∈B}χA)

= P({X ∈ B} ∩ A) = L(X)(B ∩ X(A))
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and P[X ∈ · |G](ω) is a probability measure on (H,B(H)) for all almost ω ∈ Ω [53,
Theorem 9.7],

∫

A

∫

B
P[X ∈ dx|G](ω) P(dω) =

∫

B∩X(A)
L(X)(dx)

for all A ∈ G and B ∈ B(H). Thus

∫

A

∫

H
ei(x,h)H P[X ∈ dx|G](ω) P(dω) =

∫

X(A)
ei(x,h)H L(X)(dx)

=

∫

A
ei(X,h)H dP

for all A ∈ G and h ∈ H. Hence

E
[
ei(X,h)H

∣∣G
]
(ω) =

∫

H
ei(x,h)H P[X ∈ dx|G](ω) (4.2)

for all h ∈ H and almost all ω ∈ Ω. The set of ω for which Equality (4.2) fails may
depend on h. We can choose a countable dense subset D of H and an event Ω̃ ∈ F
with P(Ω̃) = 1 such that Equality (4.2) holds for every ω ∈ Ω̃ and h ∈ D. The
continuity in h of both side of Equality (4.2) allows us to conclude its validity for
every ω ∈ Ω̃ and h ∈ H [53, Theorem 9.7]. Since a probability measure on (H,B(H))
is uniquely determined by its characteristic function, µω = P[X ∈ · |G](ω) for almost
all ω ∈ Ω. Thus the result follows.

In Subsection 4.5.1 we shall need the previous lemma to show properties of the
stochastic integral. The following corollary of Lemma 4.13 is used to prove some
properties of the Hilbert space valued Wiener process in Subsection 4.4.3.

Corollary 4.14. Let (H, (·, ·)H) be a real separable Hilbert space and X an H-
valued random variable on a probability space (Ω,F , P). Suppose that Gi, i = 1, 2,
are sub-σ-algebras of F and

E
(
ei(X,h)H

∣∣G1

)
= E

(
ei(X,h)H

∣∣G2

)

almost surely for all h ∈ H. If for each ω ∈ Ω there exists a function ϕ(·; ω) : H → C
such that

ϕ(h; ω) = E
[
ei(X,h)H

∣∣G1

]
(ω)

for all h ∈ H and almost all ω ∈ Ω and ϕ(·; ω) is the characteristic function of some
probability measure µω on (H,B(H)) for each ω ∈ Ω, i.e.,

ϕ(h; ω) =

∫

H
ei(x,h)H µω(dx)

for all h ∈ H,

E(f(X)|G1) = E(f(X)|G2)

almost surely for all measurable function f from H to C such that f is integrable
with respect to the measure L(X).
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Proof. By the proof of Lemma 4.13,

E
[
f(X)

∣∣Gi

]
(ω) =

∫

H
f(x) P[X ∈ dx|Gi](ω)

for all f ∈ L1(H,B(H),L(X); C), almost all ω ∈ Ω and i = 1, 2. Since according to
Lemma 4.13,

P[X ∈ B|G1](ω) = µω(B) = P[X ∈ B|G2](ω)

for each B ∈ B(H) and almost all ω ∈ Ω,

E
(
f(X)

∣∣G1

)
= E

(
f(X)

∣∣G2

)

almost surely for all f ∈ L1(H,B(H),L(X); C).

In Subsection 4.3.1 we use the following lemma to define the characteristic function
of a Gaussian measure on a real Hilbert space.

Lemma 4.15. Let (H, (·, ·)H) be a real Hilbert space and ν a probability measure on
(H,B(H)). If for some k ∈ N

∫

H
|(x, h)H |k ν(dx) < ∞

for all h ∈ H, the transformation from Hk to R

(h1, . . . , hk) 7→
∫

H
(x, h1)H · · · (x, hk)H ν(dx)

is a bounded symmetric k-linear form.

Proof. The transformation is obviously symmetric and k-linear. We define for each
n ∈ N the set Un by

Un :=

{
h ∈ H :

∫

H
|(x, h)H |k ν(dx) ≤ n

}
.

By the hypothesis H = ∪∞
n=1Un. Since H is a Hilbert space, by Baire’s category

theorem there exist n0 ∈ N, h0 ∈ Un0 and r0 > 0 such that B(h0, r0) ⊂ Un0 . Hence

∫

H
|(x, h0 + y)H |k ν(dx) ≤ n0

for all y ∈ B(0, r0). But for each y ∈ B(0, r0)

∫

H
|(x, y)H |k ν(dx) ≤ 2k−1

∫

H
|(x, h0 + y)H |k ν(dx) + 2k−1

∫

H
|(x, h0)H |k ν(dx)

≤ 2kn0.

For all h ∈ H different for zero y = r0h
2‖h‖H

∈ B(0, r0). Hence

∫

H
|(x, h)H |k ν(dx) ≤ 22kn0‖h‖k

Hr−k
0
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for all h ∈ H. By the generalized Hölder inequality the transformation is bounded
since

∣∣∣∣
∫

H
(x, h1)H · · · (x, hk)H ν(dx)

∣∣∣∣

≤
(∫

H
|(x, h1)H |k ν(dx)

) 1
k

· · ·
(∫

H
|(x, hk)H |k ν(dx)

) 1
k

≤ 22kn0r
−k
0 ‖h1‖H · · · ‖hk‖H

for all (h1, . . . , hk) ∈ Hk.

4.3.1 Gaussian Measures

Let Q be a positive definite symmetric n × n matrix and m a vector in Rn. The
function

πm,Q(x) :=
1

(2π det Q)n/2
e−

1
2
(x−m)T Q−1(x−m)

for all x ∈ Rn is the density of a probability measure on Rn called the non-degenerate
Gaussian distribution and denoted by N (m, Q). Its characteristic function is of the
form

N̂ (m, Q)(λ) = eimT λe−
1
2
λT Qλ (4.3)

for each λ ∈ Rn. The general Gaussian distribution on Rn is an image of a non-
degenerate Gaussian distribution under a linear mapping. Its characteristic function
is of the form (4.3) and is determined by m ∈ Rn and a non-negative symmetric mat-
rix Q. If X : (Ω,F , P) → (Rn,B(Rn)) is a random variable and L(X) = N (m, Q),
then X is said to be a Gaussian random variable and EX = m and Cov(X) = Q. If
m = 0, the measure N (0, Q) is symmetric in the sense that it associates the same
value on the sets which are symmetric with respect to the origin.

Let (E, ‖ · ‖E) be a real Banach space. A probability measure µ on (E,B(E)) is said
to be a Gaussian measure if and only if the law of an arbitrary continuous linear
functional considered as a random variable on (E,B(E), µ) is a Gaussian measure on
(R,B(R)). If the law of each ϕ ∈ E ′ is in addition symmetric (zero mean) Gaussian
distribution on R, then µ is called a symmetric Gaussian measure. A random variable
X : (Ω,F , P) → (E,B(E)) is Gaussian if its law L(X) is a Gaussian measure on
(E,B(E)). Hence X is a Gaussian random variable if and only if 〈X, ϕ〉 is a real
valued Gaussian random variable for all ϕ ∈ E ′ since

L(〈·, ϕ〉)(A) = L(X)(x ∈ E : 〈x, ϕ〉 ∈ A)

= P(ω ∈ Ω : X(ω) ∈ {x ∈ E : 〈x, ϕ〉 ∈ A})
= P(ω ∈ Ω : 〈X(ω), ϕ〉 ∈ A)

for all A ∈ B(R).

Let (H, (·, ·)H) be a real Hilbert space. A probability measure µ on (H,B(H)) is
Gaussian if for each h ∈ H there exist mh ∈ R and qh ≥ 0 such that

L((·, h)H)(A) = µ(x ∈ H : (x, h)H ∈ A) = N (mh, qh)(A)



42 Stochastic Analysis in Infinite Dimensions

for all A ∈ B(R). If µ is a Gaussian measure, the functionals

H → R, h 7→
∫

H
(x, h)H µ(dx),

H × H → R, (h1, h2) 7→
∫

H
(x, h1)H(x, h2)H µ(dx)

are well defined since ∫

H
(x, h)H µ(dx) = mh

and

∣∣∣∣
∫

H
(x, h1)H(x, h2)H µ(dx)

∣∣∣∣ ≤
(∫

H
(x, h1)

2
H µ(dx)

) 1
2
(∫

H
(x, h2)

2
H µ(dx)

) 1
2

=
(
qh1 + m2

h1

) 1
2
(
qh2 + m2

h2

) 1
2 .

The first functional is linear and the second one is bilinear. According to Lemma
4.15 they are also bounded and symmetric. By the Riesz representation theorem
and the Lax-Milgram lemma there exist an element m ∈ H and a bounded linear
operator Q such that ∫

H
(x, h)H µ(dx) = (h, m)H

for all h ∈ H and
∫

H
(x, h1)H(x, h2)H µ(dx) − (h1, m)H(h2, m)H = (Qh1, h2)H

for all h1, h2 ∈ H. The operator Q is non-negative and self-adjoint since

(Qh, h)H =

∫

H
(x, h)2H µ(dx) −

(∫

H
(x, h)H µ(dx)

)2

≥
∫

H
(x, h)2H µ(dx) −

∫

H
(x, h)2H µ(dx) = 0

for all h ∈ H by Jensen’s inequality and

(Qh1, h2)H = (Qh2, h1)H = (h1, Qh2)H

for all h1, h2 ∈ H. The element m is called the mean and the operator Q the
covariance operator of µ. A Gaussian measure µ on H with mean m and covariance
Q has the characteristic function

µ̂(h) =

∫

H
ei(x,h)H µ(dx) =

∫

R
eitL((·, h)H)(dt) = ei(h,m)H− 1

2
(Qh,h)H

for all h ∈ H. Therefore µ is uniquely determined by m and Q. It is also denoted
by N (m, Q).

If (H, (·, ·)H) is a real separable Hilbert space, the covariance operator of a Gaussian
measure is nuclear.

Proposition 4.16. Let (H, (·, ·)H) be a real separable Hilbert space and µ a Gaussian
measure with mean 0 and covariance Q. Then Q is a trace class operator.
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Proof. We consider the characteristic function of the measure µ

µ̂(h) =

∫

H
ei(x,h)H µ(dx) = e−

1
2
(Qh,h)H

for all h ∈ H. Since µ̂(h) ∈ R, for all h ∈ H and each c > 0

1 − µ̂(h) =

∫

H
(1 − cos (x, h)H) µ(dx)

≤ 1

2

∫

‖x‖H≤c
(x, h)2H µ(dx) + 2µ(x ∈ H : ‖x‖H > c)

=
1

2
(Qch, h)H + 2µ(x ∈ H : ‖x‖H > c)

where Qc is the bounded linear operator defined by

(Qch1, h2)H =

∫

‖x‖H≤c
(x, h1)H(x, h2)H µ(dx)

for all h1, h2 ∈ H. Let h ∈ H be such that (Qch, h)H ≤ 1. Then

e−
1
2
(Qh,h)H ≥ 1 − 1

2
(Qch, h)H − 2µ(x ∈ H : ‖x‖H > c)

≥ 1

2
− 2µ(x ∈ H : ‖x‖H > c).

We choose c such that

µ(x ∈ H : ‖x‖H > c) <
1

4
.

Then

(Qh, h)H ≤ −2 log

(
1

2
− 2µ(x ∈ H : ‖x‖H > c)

)
:= β.

Let h ∈ H. We denote αh := (Qch, h)H . Then αh ≥ 0. Hence for all h ∈ H such
that αh 6= 0 (

Qc
h√
αh

,
h√
αh

)

H

= 1.

Thus (
Q

h√
αh

,
h√
αh

)

H

≤ β

for all h ∈ H such that αh 6= 0. If (Qch, h)H = 0 for some h ∈ H, then (Qh, h)H = 0.
Therefore (Qh, h)H ≤ β(Qch, h)H for all h ∈ H. The operator Qc is a trace class
operator by Proposition D.14 since Qc is non-negative and self-adjoint and

Tr Qc =
∞∑

n=1

(Qcen, en)H =

∫

‖x‖H≤c

∞∑

n=1

(x, en)2H µ(dx) =

∫

‖x‖H≤c
‖x‖2

H µ(dx) ≤ c2

where {en}∞n=1 is an orthonormal basis in H. Thus Q is a trace class operator
because

Tr Q =
∞∑

n=1

(Qen, en)H ≤
∞∑

n=1

β(Qcen, en)H = β Tr Qc

and Q is non-negative and self-adjoint.
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The following proposition shows that there exist Gaussian measures in a real separ-
able Hilbert space.

Proposition 4.17. Let (H, (·, ·)H) be a real separable Hilbert space, m ∈ H and Q
be a positive self-adjoint trace class operator in H with KerQ = {0}. Then there
exists a Gaussian measure with mean m and covariance Q.

Proof. Since Q is nuclear, by Proposition D.9 it is compact. Since Q is a compact
self-adjoint operator with KerQ = {0}, the normalized eigenvectors {ek}∞k=1 form
an orthonormal basis in H [14, Theorem 5.1, Observation 6.1.b, pp. 113–116].
We denote by {λk}∞k=1 the corresponding set of eigenvalues of Q. Then Tr Q =∑∞

k=1 λk < ∞ by Proposition D.14. Let {ξk}∞k=1 be a sequence of independent real
N (0, 1)-random variables on a probability space (Ω,F , P) [3, Theorem 20.4]. We set

X := m +
∞∑

k=1

√
λkξkek. (4.4)

Let i, j ∈ N and j ≥ i. Then

E

∥∥∥∥∥

j∑

k=1

√
λkξkek −

i∑

k=1

√
λkξkek

∥∥∥∥∥

2

H

= E

(
j∑

k=i+1

√
λkξkek,

j∑

k=i+1

√
λkξkek

)

H

= E
j∑

k=i+1

λkξ
2
k =

j∑

k=i+1

λk ≤
∞∑

k=i+1

λk −→ 0

as i → ∞. Hence the series on the right hand side of Definition (4.4) converges in
L2(Ω,F , P; H). Therefore X ∈ L2(Ω,F , P; H).

We prove that the law L(X) of the random variable X is Gaussian, i.e., for h ∈ H

L((·, h)H)(A) = L(X)(x ∈ H : (x, h)H ∈ A) = N (ch, qh)(A)

for all A ∈ B(R) with some ch ∈ R and qh > 0. Let h ∈ H be fixed. We show that
(·, h)H is a Gaussian random variable from (H,B(H),L(X)) to (R,B(R)). We use
the characteristic function. Let τ ∈ R. Then

ϕL((·,h)H)(τ) =

∫

R
eiτt L((·, h)H)(dt) =

∫

H
eiτ(x,h)H L(X)(dx) =

∫

Ω
eiτ(X,h)H dP.

By Lebesgue’s dominated convergence theorem,

ϕL((·,h)H)(τ) = eiτ(m,h)H E

[
exp

( ∞∑

k=1

iτ
√

λkξk(ek, h)H

)]

= eiτ(m,h)H E
∞∏

k=1

exp
(
iτ

√
λkξk(ek, h)H

)

= eiτ(m,h)H lim
n→∞

E
n∏

k=1

exp
(
iτ

√
λkξk(ek, h)H

)
.
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Since ξk are independent and ξk ∼ N (0, 1),

ϕL((·,h)H)(τ) = eiτ(m,h)H lim
n→∞

n∏

k=1

E
[
exp

(
iτ

√
λk(ek, h)Hξk

)]

= eiτ(m,h)H

∞∏

k=1

exp

(
−1

2
λk(ek, h)2Hτ2

)

= exp

(
iτ(m, h)H − 1

2

∞∑

k=1

λk(ek, h)2Hτ2

)

= eiτ(m,h)H− 1
2
τ2(Qh,h)H .

Thus L((·, h)H) = N ((m, h)H , (Qh, h)H). Hence (·, h)H is a Gaussian random vari-
able for all h ∈ H. Therefore L(X) is a Gaussian measure in H. Furthermore, for
all h ∈ H

∫

H
(x, h)H L(X)(dx) =

∫

Ω
(X, h)H dP =

(∫

Ω
X dP, h

)

H

= (E(X), h)H .

Since EX = m, the mean of L(X) is m. Since for all h1, h2 ∈ H

∫

H
(x, h1)H(x, h2)H L(X)(dx) − (h1, m)H(h2, m)H

=

∫

Ω
(X, h1)H(X, h2)H dP − (h1, E(X))H(h2, E(X))H

=

∫

Ω
(h1, X − E(X))H(h2, X − E(X))H dP

= (Cov(X)h1, h2)H

and by Lebesgue’s dominated convergence theorem,

(Cov(X)h1, h2)H = E

( ∞∑

k=1

√
λkξk(h1, ek)H

∞∑

k=1

√
λkξk(h2, ek)H

)

=
∞∑

k=1

∞∑

l=1

√
λk

√
λl(h1, ek)H(h2, el)HE(ξkξl)

=
∞∑

k=1

λk(h1, ek)H(h2, ek)H

= (Qh1, h2)H ,

the covariance of L(X) is Q.

Remark 4.18 If L(X) is a Gaussian measure with mean m and covariance Q, then
EX = m and Cov X = Q.

4.4 Stochastic Processes

Let (E, ‖ · ‖E) be a separable Banach space, (Ω,F , P) a probability space and I an
interval in R. A family X = {X(t)}t∈I of E-valued random variables defined on Ω
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is called a stochastic process. The definition of stochastic processes does not assume
anything about the behaviour of processes with respect to the index t. However, it
is appropriate to be interested in X as a function of t, as well. We set X(t, ω) :=
X(t)(ω) for all t ∈ I and ω ∈ Ω. The function X(·, ω) for a fixed ω ∈ Ω is called a
trajectory of X. In the following definition it has been gathered some measurability
and continuity properties of stochastic processes with respect to the index t.

Definition 4.19. Let X be an E-valued stochastic process. Then

(i) X is measurable if the mapping X : I × Ω → E is B(I) ×F-measurable,

(ii) X is stochastically continuous at t0 ∈ I if for all ε > 0 and δ > 0 there exists
ρ > 0 such that

P(‖X(t) − X(t0)‖E ≥ ε) ≤ δ

for all t ∈ [t0 − ρ, t0 + ρ] ∩ I,

(iii) X is stochastically continuous on I if it is stochastically continuous at every
point in I,

(iv) X is uniformly stochastically continuous on I if for all ε > 0 and δ > 0 there
exists ρ > 0 such that

P(‖X(t) − X(s)‖E ≥ ε) ≤ δ

for all s, t ∈ I such that |t − s| ≤ ρ,

(v) X is mean square continuous at t0 ∈ I if

lim
t→t0

E‖X(t) − X(t0)‖2
E = 0,

(vi) X is mean square continuous on I if it is mean square continuous at every
point in I,

(vii) X is continuous (with probability 1) if its trajectories X(·, ω) are continuous
for almost all ω ∈ Ω.

In the following lemma we show the relation between stochastically and mean square
continuous processes.

Lemma 4.20. A mean square continuous process is stochastically continuous.

Proof. Let X be mean square continuous on I and t0 ∈ I. Let ε > 0 and δ > 0. Then
there exists ρ > 0 such that E‖X(t) − X(t0)‖2

E < ε2δ for all t ∈ [t0 − ρ, t0 + ρ] ∩ I.
By Tšebyšev’s inequality,

P(‖X(t) − X(t0)‖E ≥ ε) ≤ E‖X(t) − X(t0)‖2
E

ε2
< δ

for all t ∈ [t0 − ρ, t0 + ρ] ∩ I. Thus X is stochastically continuous on I.

The stochastical continuity is uniform if the interval is compact.
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Lemma 4.21. If I is a compact interval, a stochastically continuous process on I
is uniformly stochastically continuous.

Proof. Let X be a stochastically continuous process on I. Let ε > 0 and δ > 0.
Then for all r ∈ I there exists a closed interval [r− ρr, r + ρr] with ρr > 0 such that

P
(
‖X(s) − X(r)‖E ≥ ε

2

)
≤ δ

2

for all s ∈ [r − ρr, r + ρr] ∩ I. Consequently, for all s, t ∈ [r − ρr, r + ρr] ∩ I

P(‖X(s) − X(t)‖E ≥ ε) ≤ P
(
‖X(s) − X(r)‖E ≥ ε

2
or ‖X(t) − X(r)‖E ≥ ε

2

)

≤ δ

2
+

δ

2
= δ.

Since the interval I is compact, there exists a finite family of intervals [ri−ρri/2, ri+
ρri/2] which covers I. The common ρ is then mini (ρri/2).

A stochastic process Y is called a modification or a version of X if

P(ω ∈ Ω : X(t, ω) 6= Y (t, ω)) = 0

for all t ∈ I. If X is a stochastic process on I, then X needs not to be measurable in
the product space I ×Ω. If X is stochastically continuous on a compact interval, X
has a measurable modification. We use the notation ΩT := [0, T ] × Ω for all T > 0.
We mark with PT the product measure of the Lebesgue measures on [0, T ] with the
probability measure P for all T > 0.

Proposition 4.22. Let X(t), t ∈ [0, T ], be a stochastically continuous process. Then
X has a measurable modification.

Proof. A stochastically continuous process X on [0, T ] is uniformly stochastically
continuous by Lemma 4.21. Thus for each positive integer m there exists a partition
0 = tm,0 < tm,1 < . . . < tm,n(m) = T such that for all t ∈ (tm,k, tm,k+1]

P(‖X(tm,k, ω) − X(t, ω)‖E ≥ 2−m) ≤ 2−m

if k = 0, 1, . . . , n(m) − 1. We define

Xm(t, ω) :=

{
X(0, ω) if t = 0,

X(tm,k, ω) if t ∈ (tm,k, tm,k+1] and k ≤ n(m) − 1,

for all t ∈ [0, T ] and ω ∈ Ω. Since for all B ∈ B(E)

{(t, ω) ∈ ΩT : Xm(t, ω) ∈ B} = {0} × C0 ∪
n(m)−1⋃

k=1

(tm,k, tm,k+1] × Ck

where Ck ∈ F for all k = 0, 1, . . . , n(m) − 1, the process Xm is measurable with
respect to the σ-algebra B([0, T ])×F . We denote by A the set of all those (t, ω) ∈ ΩT

for which the sequence {Xm(t, ω)}∞m=1 is convergent. Then A ∈ B([0, T ]) ×F since

A =
∞⋂

k=1

∞⋃

N=1

∞⋂

m=N

∞⋂

n=N

{
(t, ω) ∈ ΩT : ‖Xm(t, ω) − Xn(t, ω)‖E ≤ 1

k

}
.
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Hence the process Y defined by

Y (t, ω) := lim
m→∞

χA(t, ω)Xm(t, ω)

is B([0, T ]) × F-measurable since by Corollary B.7 in a separable Banach space
the weak measurability is equivalent to the measurability and therefore the limit of
random variables is a random variable in a separable Banach space.

For a fixed t ∈ [0, T ] we denote

Bm := {ω ∈ Ω : ‖Xm(t, ω) − X(t, ω)‖E ≥ 2−m}.

Then P(Bm) ≤ 2−m. Since

∞∑

m=1

P(Bm) ≤
∞∑

m=1

2−m = 1,

according to the Borel–Cantelli lemma P(lim sup Bm) = 0. Hence for almost all
ω ∈ Ω there exists m(ω) > 0 such that ‖Xn(t, ω)−X(t, ω)‖E < 2−n for all n ≥ m(ω).
Therefore PT (A) = 1 and Xn(t, ω) converges pointwise to X(t, ω) for all t ∈ [0, T ]
and almost all ω ∈ Ω. Hence X(t) = Y (t) almost surely for all t ∈ [0, T ] and the
process Y is the required modification.

4.4.1 Processes with Filtration

Let I be an interval. A family {Ft}t∈I of σ-algebras Ft ⊆ F is called a filtration if
Fs ⊆ Ft for all s, t ∈ I such that s < t. We denote by Ft+ the intersection of all Fs

where s > t, i.e.,

Ft+ :=
⋂

s>t

Fs.

Then Ft+ is a σ-algebra for all t ∈ I. The family {Ft}t∈I is said to be right-
continuous if Ft = Ft+ for all t ∈ I. The filtration {Ft}t∈I is called normal if it is
right-continuous and F0 contains all A ∈ F such that P(A) = 0.

If the random variable X(t) is Ft-measurable for all t ∈ I, the process X is said to
be adapted (to the filtration {Ft}t∈I). If X(t), t ∈ I, is a stochastic process, the
filtration {FX

t }t∈I generated by the process X is defined by FX
t := σ(X(s), s ≤ t)

for all t ∈ I. Every process is adapted to the filtration generated by its own history.

We denote the collection of P-null sets by

N P := {A ⊆ Ω : there exists B ∈ F such that A ⊆ B and P(B) = 0}.

The augmentation {FP
t }t∈I of the filtration {Ft}t∈I is defined by FP

t := σ(Ft ∪N P)
for all t ∈ I. The augmentation is a filtration in (Ω,F , P) if and only if the probability
space (Ω,F , P) is complete. In that case {FP

t }t∈I is called the augmented filtration.

Let T > 0 and {Ft}t∈[0,T ] be a filtration. We denote by PT the σ-algebra on ΩT

generated by sets of the form
{

(s, t] × F where 0 ≤ s < t ≤ T and F ∈ Fs,

{0} × F where F ∈ F0.
(4.5)
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Then PT ⊂ B([0, T ]) × F . Hence (ΩT ,PT , PT ) is a measure space. The σ-algebra
PT is said to be the predictable σ-algebra and its element are called the predictable
sets.

Lemma 4.23. Let T > 0 and A be a predictable subset of ΩT . Then for all ε > 0
there exists a finite union Γ of disjoint sets of the form (4.5) such that

PT ((A \ Γ) ∪ (Γ \ A)) < ε.

Proof. Let K denote the family of all finite unions of disjoint sets of the form (4.5).
Then K is closed under finite unions and intersections and the complement since

((s1, t1] × F1) ∩ ((s2, t2] × F2)

=

{
(s1 ∨ s2, t1 ∧ t2] × (F1 ∩ F2) if s1 ∨ s2 ≤ t1 ∧ t2,

∅ if s1 ∨ s2 > t1 ∧ t2,

for s1 < s2

((s1, t1] × F1) ∪ ((s2, t2] × F2)

=





((s1, t1] × F1) ∪ ((s2, t2] × F2) if t1 ≤ s2,

((s1, s2] × F1) ∪ ((s2, t1] × F1 ∪ F2) ∪ ((t1, t2] × F2) if s2 < t1 ≤ t2,

((s1, s2] × F1) ∪ ((s2, t2] × F1 ∪ F2) ∪ ((t2, t1] × F1) if s2 < t2 < t1

and

((s, t] × F )c = ({0} × Ω) ∪ ((0, s] × Ω) ∪ ((s, t] × (Ω \ F )) ∪ ((t, T ] × Ω).

Thus K is a π-system. Let G be the family of such A ∈ PT that for all ε > 0
there exists Γ ∈ K such that PT ((A \ Γ) ∪ (Γ \ A)) < ε. Then K ⊂ G. Let A ∈ G
and ε > 0. Then there exists Γ ∈ K such that PT ((A \ Γ) ∪ (Γ \ A)) < ε. Thus
PT ((Ac \ Γc) ∪ (Γc \ Ac)) < ε since

(A \ Γ) ∪ (Γ \ A) = (A ∩ Γc) ∪ (Γ ∩ Ac) = (Γc \ Ac) ∪ (Ac \ Γc).

Hence Ac ∈ G because Γc ∈ K. Let Ai ∈ G for all i ∈ N be such that Ai ∩Aj = ∅ for
all i 6= j and ε > 0 . Then there exist Γi ∈ K for all i ∈ N such that

PT ((Ai \ Γi) ∪ (Γi \ Ai)) <
ε

2i+1
.

Let m ∈ N be such that
∞∑

i=m+1

PT (Ai) <
ε

2
.

Then ∪m
i=1Γi ∈ K,

( ∞⋃

i=1

Ai

)
\

(
m⋃

i=1

Γi

) ⋃ (
m⋃

i=1

Γi

)
\

( ∞⋃

i=1

Ai

)

⊂
[(

m⋃

i=1

Ai

)
\

(
m⋃

i=1

Γi

) ⋃ (
m⋃

i=1

Γi

)
\

(
m⋃

i=1

Ai

)] ⋃ ( ∞⋃

i=m+1

Ai

)
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and
(

m⋃

i=1

Ai

)
\

(
m⋃

i=1

Γi

)
=

m⋃

i=1

(
Ai ∩

(
m⋂

i=1

Γc
i

))
⊂

m⋃

i=1

Ai ∩ Γc
i =

m⋃

i=1

Ai \ Γi.

Thus

PT

((
m⋃

i=1

Ai

)
\

(
m⋃

i=1

Γi

) ⋃ (
m⋃

i=1

Γi

)
\

(
m⋃

i=1

Ai

))

≤ PT

(
m⋃

i=1

(Ai \ Γi) ∪ (Γi \ Ai)

)

≤
m∑

i=1

PT ((Ai \ Γi) ∪ (Γi \ Ai))

<
m∑

i=1

ε

2i+1
<

ε

2
.

Hence

PT

(( ∞⋃

i=1

Ai

)
\

(
m⋃

i=1

Γi

) ⋃ (
m⋃

i=1

Γi

)
\

( ∞⋃

i=1

Ai

))
< ε.

Therefore ∪∞
i=1Ai ∈ G. Thus G = σ(K) = PT by Proposition 4.1.

A measurable function from (ΩT ,PT , PT ) to (E,B(E)) is called a predictable process.
A predictable process is necessarily an adapted one.

Proposition 4.24. Let X be an adapted stochastically continuous process on the
interval [0, T ]. Then the process X has a predictable version on [0, T ].

Proof. The proof is exactly the same as the one of Proposition 4.22. Since X is
adapted, Xm is predictable. Hence the set A is a predictable set and the process Y
is predictable.

A E-valued stochastic process X(t), t ∈ [0, T ], taking only a finite number of values
is said to be elementary if there exist a sequence 0 = t0 < t1 < . . . < tk = T and
a sequence {Xm}k−1

m=0 of E-valued simple random variables such that Xm is Ftm-
measurable and X(t) = Xm if t ∈ (tm, tm+1] for all m = 0, 1, . . . , k − 1. Elementary
processes are a simple example of predictable processes. Actually, predictable pro-
cesses can be approximated by elementary processes if they are integrable.

Proposition 4.25. Let X(t), t ∈ [0, T ], be an E-valued predictable process. If

E
∫ T

0
‖X(t)‖E dt < ∞, (4.6)

there exists a sequence {Xn}∞n=1 of elementary processes such that

E
∫ T

0
‖X(t) − Xn(t)‖E dt −→ 0

as n → ∞.
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Proof. Let X be an E-valued predictable process satisfying Condition (4.6). Then
by the Fubini theorem X ∈ L1(ΩT ,PT , PT ; E). According to Theorem B.12 there
exists a sequence {Xn}∞n=1 of simple E-valued predictable processes such that

∫

ΩT

‖X(t, ω) − Xn(t, ω)‖E PT (dt, dω) = E
∫ T

0
‖X(t) − Xn(t)‖E dt −→ 0

as n → ∞. Since Xn is a simple E-valued PT -measurable function, it is of the form

Xn(t, ω) =

mn∑

l=1

X l
nχAl

n
(t, ω)

for all (t, ω) ∈ ΩT where mn ∈ N and X l
n ∈ E and Al

n ∈ PT for all l = 1, . . . , mn

and Ai
n ∩ Aj

n = ∅ if i 6= j. We denote C :=
∑mn

l=1 ‖X l
n‖E . According to Lemma 4.23

for all l = 1, . . . , mn there exists a finite union Γl
n of disjoint sets of the form (4.5)

such that

PT ((Al
n \ Γl

n) ∪ (Γl
n \ Al

n)) <
1

nCmn
.

Then

Yn(t, ω) :=

mn∑

l=1

X l
nχΓl

n
(t, ω)

for all (t, ω) ∈ ΩT is an elementary process and

E
∫ T

0
‖Xn(t, ω) − Yn(t, ω)‖E dt ≤ CPT

(
mn⋃

l=1

(Al
n \ Γl

n) ∪ (Γl
n \ Al

n)

)

≤ C

mn∑

l=1

PT ((Al
n \ Γl

n) ∪ (Γl
n \ Al

n)) <
1

n
.

Thus {Yn}∞n=1 is a sequence of elementary processes such that for every ε > 0

‖X − Yn‖L1(ΩT ,PT ,PT ;E) ≤ ‖X − Xn‖L1(ΩT ,PT ,PT ;E) + ‖Xn − Yn‖L1(ΩT ,PT ,PT ;E) < ε

if n ∈ N is so large that ‖X − Xn‖L1(ΩT ,PT ,PT ;E) < ε/2 and n ≥ 2/ε.

The integral of an integrable predictable process has a predictable version.

Lemma 4.26. If X ∈ L1(ΩT ,PT , PT ; E), the process

Y (t) :=

{∫ t
0 X(s) ds if

∫ t
0 ‖X(s)‖E ds < ∞,

0 if
∫ t
0 ‖X(s)‖E ds = ∞

on [0, T ] is continuous and has a predictable version.

Proof. Since X ∈ L1(ΩT ,PT , PT ; E), the trajectories of X are Bochner integrable
almost surely. Hence Y (t) =

∫ t
0 X(s) ds almost surely and Y (t) is Ft-measurable for

all t ∈ [0, T ]. Since for all 0 ≤ s < t ≤ T

‖Y (t) − Y (s)‖E =

∥∥∥∥
∫ t

0
X(r) dr −

∫ s

0
X(r) dr

∥∥∥∥
E

≤
∫ T

0
χ[s,t](r)‖X(r)‖E dr
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almost surely and X ∈ L1(ΩT ,PT , PT ; E), the process Y is continuous by Lebesgue’s
dominated convergence theorem. Furthermore, by Lebesgue’s dominated conver-
gence theorem for all 0 ≤ s < t ≤ T

E‖Y (t) − Y (s)‖E ≤ E
∫ T

0
χ[s,t](r)‖X(r)‖E dr −→ 0

as |t − s| → 0. Thus for all ε > 0 and δ > 0 there exists ρ > 0 such that E‖Y (t) −
Y (s)‖E ≤ εδ if |t − s| ≤ ρ. Hence

P(‖Y (t) − Y (s)‖E ≥ ε) ≤ E‖Y (t) − Y (s)‖E

ε
≤ δ

if |t − s| ≤ ρ. Therefore Y is stochastically continuous. By Proposition 4.24 the
process Y (t) has a predictable version.

In future if X ∈ L1(ΩT ,PT , PT ; E), we denote the integral process by
∫ t
0 X(s) ds,

0 ≤ t ≤ T , even though in a set of probability zero its value is zero.

4.4.2 Martingales

If E‖X(t)‖E < ∞ for all t ∈ I, the process X(t) is called integrable. Let {Ft}t∈I

be a filtration. An integrable adapted E-valued process X(t), t ∈ I, is said to be a
martingale if

E(X(t)|Fs) = X(s) (4.7)

almost surely for all s, t ∈ I such that s ≤ t. A real valued integrable adapted
process X(t), t ∈ I, is said to be a submartingale if

E(X(t)|Fs) ≥ X(s)

almost surely for all s, t ∈ I such that s ≤ t.

Proposition 4.27. Let I = [0, T ] for some T > 0.

(i) If M(t), t ∈ I, is a martingale, ‖M(t)‖E, t ∈ I, is a submartingale.

(ii) If M(t), t ∈ I, is a martingale, g is an increasing convex function from [0,∞)
to [0,∞) and E[g(‖M(t)‖E)] < ∞ for all t ∈ I, then g(‖M(t)‖E), t ∈ I, is a
submartingale.

Proof. (i) Let M be a martingale and s, t ∈ I such that s < t. Then according to
Theorem 4.9,

‖M(s)‖E = ‖E(M(t)|Fs)‖E ≤ E(‖M(t)‖E |Fs)

almost surely. Hence ‖M(t)‖E , t ∈ I, is a submartingale.

(ii) Since M is a martingale, ‖M(t)‖E , t ∈ I, is a submartingale by the statement
(i). Since g is increasing,

g(‖M(s)‖E) ≤ g(E[‖M(t)‖E |Fs])
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almost surely for all s < t. Since g is convex and E[g(‖M(t)‖E)] < ∞ for all t ∈ I,

g(‖M(s)‖E) ≤ E[g(‖M(t)‖E)|Fs]

almost surely for all s < t [53, Theorem 9.7]. Hence g(‖M(t)‖E), t ∈ I, is a
submartingale.

We need the maximal inequality for real valued submartingales.

Theorem 4.28. [20, Theorem 1.3.8] Let X(t), t ∈ I, be a real valued continuous
submartingale. If X(t) is non-negative for all t ∈ I and p > 1,

E
(

sup
t∈I

(X(t))p

)
≤

(
p

p − 1

)p

sup
t∈I

E(X(t))p.

As an immediate consequence of Proposition 4.27 and Theorem 4.28 we have the
following corollary.

Corollary 4.29. Let M(t), t ∈ I, be an E-valued continuous martingale. If p > 1,

E
(

sup
t∈I

‖M(t)‖p
E

)
≤

(
p

p − 1

)p

sup
t∈I

E‖M(t)‖p
E .

If M(t), t ∈ [0, T ], is an E-valued continuous martingale and E‖M(t)‖p
E < ∞ for all

t ∈ [0, T ],

sup
t∈[0,T ]

E‖M(t)‖p
E = E‖M(T )‖p

E

for all p > 1 by Theorem 4.9 and Proposition 4.27.

Theorem 4.30. Let us denote by M2
T (E) the vector space of E-valued continuous

square integrable martingales on [0, T ]. Then M2
T (E) equipped with the norm

‖M‖M2
T (E) :=

(
E sup

t∈[0,T ]
‖M(t)‖2

E

) 1
2

for all M ∈ M2
T (E) is a Banach space.

Proof. If M ∈ M2
T (E),

‖M‖2
M2

T (E) = E sup
t∈[0,T ]

‖M(t)‖2
E ≤ 4 sup

t∈[0,T ]
E‖M(t)‖2

E = 4E‖M(T )‖2
E < ∞

by Theorem 4.9, Proposition 4.27 and Corollary 4.29. Since for all M ∈ M2
T (E)

‖M‖M2
T (E) =


E

(
sup

t∈[0,T ]
‖M(t)‖E

)2



1
2

= ‖‖M‖L∞(0,T ;E)‖L2(Ω,F ,P;R),

‖ · ‖M2
T (E) is a norm. Hence M2

T (E) is a norm space.
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To prove the completeness we assume that {Mn}∞n=1 is a Cauchy sequence in M2
T (E),

i.e.,

E

(
sup

t∈[0,T ]
‖Mn(t) − Mm(t)‖2

E

)
−→ 0

as m, n → ∞. Since

c2P

(
sup

t∈[0,T ]
‖Mn(t) − Mm(t)‖E ≥ c

)
≤ E

(
sup

t∈[0,T ]
‖Mn(t) − Mm(t)‖2

E

)
,

one can find a subsequence {Mnk
}∞k=1 such that

P

(
sup

t∈[0,T ]
‖Mnk+1

(t) − Mnk
(t)‖E ≥ 2−k

)
≤ 2−k.

We denote

Ak :=

{
ω ∈ Ω : sup

t∈[0,T ]
‖Mnk+1

(t) − Mnk
(t)‖E ≥ 2−k

}
.

Then P(Ak) ≤ 2−k. Since

∞∑

k=1

P(Ak) ≤
∞∑

k=1

2−k = 1,

according to the Borel–Cantelli lemma P(lim sup Ak) = 0. Thus for almost all ω ∈ Ω
there exists l(ω) ∈ N such that ω 6∈ Ak, i.e.,

sup
t∈[0,T ]

‖Mnk+1
(t) − Mnk

(t)‖E < 2−k

for all k ≥ l(ω). Hence

sup
t∈[0,T ]

‖Mnj (t) − Mnk
(t)‖E ≤

j−1∑

i=k

sup
t∈[0,T ]

‖Mni+1(t) − Mni(t)‖E

<

j−1∑

i=k

2−i ≤
∞∑

i=k

2−i = 2−k+1

for all j ≥ k ≥ l(ω) for almost all ω ∈ Ω. Thus {Mnk
(·, ω)}∞k=1 is a Cauchy

sequence in L∞(0, T ; E) for almost all ω ∈ Ω. Therefore for almost all ω ∈ Ω
there exists M(·, ω) ∈ L∞(0, T ; E) such that Mnk

(·, ω) → M(·, ω) in L∞(0, T ; E) as
k → ∞. Since Mnk

is continuous for all k ∈ N and the convergence is uniform, M is
continuous.

Let t ∈ [0, T ] be fixed. Then

E‖Mnk
(t) − Mnl

(t)‖2
E ≤ E

(
sup

t∈[0,T ]
‖Mnk

(t) − Mnl
(t)‖2

E

)
−→ 0

as k, l → ∞. Thus {Mnk
(t)}∞k=1 is a Cauchy sequence in L2(Ω,F , P; E) for all

t ∈ [0, T ]. Therefore for all t ∈ [0, T ] there exists N(t) ∈ L2(Ω,F , P; E) such that
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Mnk
(t) → N(t) in L2(Ω,F , P; E) as k → ∞. By Theorem B.16 for all t ∈ [0, T ]

there exists a subsequence {Mnkl
(t, ω)}∞l=1 which converges pointwise to N(t, ω) for

almost all ω ∈ Ω. Since Mnk
(·, ω) → M(·, ω) in L∞(0, T ; E) as k → ∞ for almost

all ω ∈ Ω and Mnk
and M are continuous, Mnk

(t, ω) converges pointwise to M(t, ω)
for all t ∈ [0, T ] and almost all ω ∈ Ω. Hence N(t, ω) = M(t, ω) for all t ∈ [0, T ] and
almost all ω ∈ Ω. Thus M is square integrable.

If 0 ≤ s ≤ t ≤ T , then E(Mnk
(t)|Fs) = Mnk

(s) almost surely for all k ∈ N. By
Theorem 4.9 for all 0 ≤ s ≤ t ≤ T

‖E(Mnk
(t) − M(t)|Fs)‖E ≤ E(‖Mnk

(t) − M(t)‖E |Fs)

almost surely. Thus for all t ∈ [0, T ] and s ≤ t

∫

Ω
‖E(Mnk

(t) − M(t)|Fs)‖E dP ≤
∫

Ω
E(‖Mnk

(t) − M(t)‖E |Fs) dP

=

∫

Ω
‖Mnk

(t) − M(t)‖E dP

≤
(
E‖Mnk

(t) − M(t)‖2
E

) 1
2 −→ 0

as k → ∞. Hence E(Mnk
(t)|Fs) → E(M(t)|Fs) in L1(Ω,F , P; E) as k → ∞ for all

0 ≤ s ≤ t ≤ T . Thus by Theorem B.16 for all 0 ≤ s ≤ t ≤ T there exists a sub-
sequence {Mnkl

(t)}∞l=1 such that E(Mnkl
(t)|Fs) converges pointwise to E(M(t)|Fs)

almost surely. Then

E(M(t)|Fs) = lim
l→∞

E(Mnkl
(t)|Fs) = lim

l→∞
Mnkl

(s) = M(s)

almost surely for all 0 ≤ s ≤ t ≤ T . Hence M is a martingale. Therefore M ∈
M2

T (E).

Since Mnk
converges pointwise to M for all 0 ≤ t ≤ T almost surely, by Fatou’s

lemma,

‖Mnk
− M‖2

M2
T (E) = E

(
sup

t∈[0,T ]
‖Mnk

(t) − M(t)‖2
E

)

= E

(
lim
l→∞

sup
t∈[0,T ]

‖Mnk
(t) − Mnl

(t)‖2
E

)

≤ lim inf
l→∞

‖Mnk
− Mnl

‖2
M2

T (E) < ε

for k ∈ N large enough. Thus Mnk
→ M in M2

T (E) as k → ∞ and hence M2
T (E) is

complete.

4.4.3 Hilbert Space Valued Wiener Processes

Let (H, (·, ·)H) be a real separable Hilbert space and Q ∈ B(H) a positive self-
adjoint trace class operator with KerQ = {0}. Then there exist an orthonormal
basis {ek}∞k=1 in H and a bounded sequence {λk}∞k=1 of positive numbers such that
Qek = λkek for all k ∈ N since Q is compact by Proposition D.9 [14, Theorem 5.1,
Observation 6.1.b, pp. 113–116].
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Definition 4.31. An H-valued stochastic process W (t), t ≥ 0, is called a Q-Wiener
process if

(i) W (0) = 0,

(ii) W is continuous,

(iii) W has independent increments, i.e., W (u) − W (t) and W (s) − W (r) are in-
dependent for all 0 ≤ r < s ≤ t < u < ∞ and

(iv) L(W (t) − W (s)) = N (0, (t − s)Q) for all 0 ≤ s < t < ∞.

If a process W (t), t ∈ [0, T ], satisfies (i)-(ii) and (iii)-(iv) for r, s, t, u ∈ [0, T ], then
W is a Q-Wiener process on [0, T ].

Let (E, ‖·‖E) be a real Banach space. An E-valued stochastic process X on I is said
to be Gaussian if for any n ∈ N and for all t1, t2, . . . , tn ∈ I the En-valued random
variable (X(t1), X(t2), . . . , X(tn)) is Gaussian.

Proposition 4.32. Let W be a Q-Wiener process. Then W is a Gaussian process
on H such that EW (t) = 0 and Cov(W (t)) = tQ for all t ≥ 0. Furthermore, W has
the expansion

W (t) =

∞∑

k=1

√
λkβk(t)ek (4.8)

for each t ≥ 0 where

βk(t) :=
1√
λk

(W (t), ek)H

for all k ∈ N and t ≥ 0 are mutually independent real valued Wiener processes on
(Ω,F , P) and the series on the right hand side of (4.8) converges in L2(Ω,F , P; H).

Proof. Let W be a Q-Wiener process. We want to show that for all t1, . . . , tn ∈ [0,∞)
the Hn-valued random variable (W (t1), . . . , W (tn)) is Gaussian. Thus we need to
prove that

Z := ((W (t1), . . . , W (tn)), (h1, . . . , hn))Hn :=
n∑

i=1

(W (ti), hi)H

is a real valued Gaussian random variable for all h1, . . . , hn ∈ H. We may assume
that 0 < t1 < . . . < tn < ∞. Then

Z =

(
W (t1),

n∑

i=1

hi

)

H

+
n∑

i=2


W (ti) − W (ti−1),

n∑

j=i

hj




H

.

Since W has independent increments, W (t1) and W (ti) − W (ti−1) for i = 2, . . . , n
are mutually independent Gaussian random variables. Hence (W (t1),

∑n
i=1 hi)H

and
(
W (ti) − W (ti−1),

∑n
j=i hj

)
H

for i = 2, . . . , n are mutually independent real

Gaussian random variables. Thus Z is Gaussian and therefore W is a Gaussian
process. Additionally, EW (t) = 0 and Cov(W (t)) = tQ for all t ≥ 0 by Remark 4.18
and the conditions (i) and (iv) in Definition 4.31.
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By the definition βk(t), t ≥ 0, is a real valued Gaussian process for every k ∈ N [21,
Theorem A.5]. In addition, βk(t), t ≥ 0, satisfies the conditions (i)-(iii) in Definition
4.31. Let 0 < s < t. Since the Wiener process has independent increments,

E(βk(t)βl(s))

=
1√
λkλl

E(W (t), ek)H(W (s), el)H

=
1√
λkλl

[E(W (t) − W (s), ek)H(W (s), el)H + E(W (s), ek)H(W (s), el)H ]

=
1√
λkλl

[E(W (t) − W (s), ek)HE(W (s), el)H + E(W (s), ek)H(W (s), el)H ]

=
s√
λkλl

(Qek, el)H = s

√
λk

λl
δkl = sδkl

for all k, l ∈ N. Since βk(t), t ≥ 0, is Gaussian for all k ∈ N, the calculation
above implies that they are mutually independent. Furthermore, the covariance of
βk(t)−βk(s) is t− s for all k ∈ N and 0 ≤ s < t. Hence βk(t), t ≥ 0, is a real valued
Wiener process. For m, n ∈ N such that m > n

E

∥∥∥∥∥
m∑

k=n+1

√
λkβk(t)ek

∥∥∥∥∥

2

H

= E

(
m∑

k=n+1

λkβ
2
k(t)

)
=

m∑

k=n+1

λkE(β2
k(t))

= t
m∑

k=n+1

λk −→ 0

as m, n → ∞ since Tr Q =
∑∞

k=1 λk < ∞ by Proposition D.14. Therefore the series
on the right hand side of (4.8) converges in L2(Ω,F , P; H). The set {ek}∞k=1 is an
orthonormal basis in H. Thus

W (t) =
∞∑

j=1

√
λjβj(t)ej

for all t ≥ 0.

Some basic properties of Q-Wiener processes has been gathered in the following
lemma.

Lemma 4.33. Let W be a Q-Wiener process. Then

(i) E‖W (t) − W (s)‖2
H = (t − s) Tr Q,

(ii) E‖W (t) − W (s)‖4
H ≤ 3(Tr Q)2(t − s)2

for all 0 ≤ s < t < ∞.

Proof. (i) Since Cov(W (t)−W (s)) = (t− s)Q for all 0 ≤ s < t < ∞, by Lebesgue’s
monotone convergence theorem,

E‖W (t) − W (s)‖2
H = E

∞∑

k=1

(W (t) − W (s), ek)
2
H =

∞∑

k=1

E(W (t) − W (s), ek)
2
H

=
∞∑

k=1

((t − s)Qek, ek)H = (t − s) Tr Q
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for all 0 ≤ s < t < ∞.

(ii) By Proposition 4.32 for all k ∈ N

βk(t) :=
1√
λk

(W (t), ek)H

are mutually independent real valued Wiener processes on [0,∞). Then for all
0 ≤ s < t < ∞

E‖W (t) − W (s)‖4
H

= E

( ∞∑

k=1

(W (t) − W (s), ek)
2
H

)2

= E

( ∞∑

k=1

λk(βk(t) − βk(s))
2

)2

= E
∞∑

k=1

λ2
k(βk(t) − βk(s))

4 + 2E
∞∑

k=1

∑

l<k

λkλl(βk(t) − βk(s))
2(βl(t) − βl(s))

2.

Since βk(t)−βk(s) ∼ N (0, t−s) and βk(t)−βk(s) and βl(t)−βl(s) are independent,
E(βk(t) − βk(s))

4 = 3(t − s)2 and

E(βk(t) − βk(s))
2(βl(t) − βl(s))

2 = E(βk(t) − βk(s))
2E(βl(t) − βl(s))

2 = (t − s)2

for all k 6= l and 0 ≤ s < t < ∞. Thus by Lebesgue’s monotone convergence
theorem,

E‖W (t) − W (s)‖4
H = 3(t − s)2

∞∑

k=1

λ2
k + 2(t − s)2

∞∑

k=1

∑

l<k

λkλl

= 2(t − s)2
∞∑

k=1

λ2
k + (t − s)2

( ∞∑

k=1

λk

)2

≤ 3(t − s)2

( ∞∑

k=1

λk

)2

= 3(t − s)2(Tr Q)2

for all 0 ≤ s < t < ∞.

Let {Ft}t≥0 be a filtration and W a Q-Wiener process. We say that W is a Q-
Wiener process with respect to the filtration {Ft}t≥0 if W (t) is Ft-measurable and
W (t + h) − W (t) is independent of Ft for all t ≥ 0 and h > 0. In that case W is a
martingale because by Theorem 4.9,

E(W (t)|Fs) = E(W (t) − W (s)|Fs) + E(W (s)|Fs)

= E(W (t) − W (s)) + W (s) = W (s)

almost surely for all 0 ≤ s < t < ∞. Let {FW
t }t≥0 be the filtration generated by the

Wiener process W , i.e., FW
t = σ(W (s), s ≤ t) for all t ≥ 0. Since W is a Q-Wiener

process with respect to the filtration {FW
t }t≥0, then W is a martingale with respect

to its own history.

Let I be an interval. We denote all functions from I to H by F (I, H). Let F(I, H)
be the σ-algebra generated by set of the form

{f ∈ F (I, H) : f(t1) ∈ A1, . . . , f(tn) ∈ An} (4.9)
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where n ∈ N and ti ∈ I and Ai ∈ B(H) for i = 1, . . . , n. If {X(t)}t∈I is an H-valued
stochastic process, X(·, ω) belongs to F (I, H) for all ω ∈ Ω and X : (Ω,F , P) →
(F (I, H),F(I, H)) is measurable. We want to prove that the augmentation of the
filtration generated by a Wiener process is right-continuous. We need the following
lemma.

Lemma 4.34. Let t > 0 and {Y (s)}s∈[0,t] be an H-valued stochastic process. A
random variable X : Ω → R is σ(Y (s), s ≤ t)-measurable if and only if X = g(Y )
where g is F([0, t], H)-measurable function from F ([0, t], H) to R.

Proof. “⇐” The statement is obvious.

“⇒” It is enough to prove that if X : Ω → R is a bounded σ(Y (s), s ≤ t)-measurable
function, there exists a bounded F([0, t], H)-measurable function g from F ([0, t], H)
to R such that X = g(Y ). We define H to be the set of all bounded random
variables X : Ω → R such that X = g(Y ) for some bounded F([0, t], H)-measurable
function. Then H is a vector space and the constant function 1 belongs to H.
Let {Xn}∞n=1 be a sequence of non-negative random variables in H such that Xn

increases monotonically pointwise to X and X is bounded, i.e., 0 ≤ X ≤ M for
some M > 0. Then for all n ∈ N there exists a bounded F([0, t], H)-measurable
function gn such that Xn = gn(Y ). We denote g := χA lim supn→∞ gn where A :=
{lim supn→∞ gn ∈ [0, M ]}. Then g is a bounded F([0, t], H)-measurable function
and X = g(Y ). Hence X belongs to H. We define I to be the set of all sets of form
{ω : Y (t1) ∈ A1, . . . , Y (tn) ∈ An} where n ∈ N and 0 ≤ ti ≤ t and Ai ∈ B(H) for all
i = 1, . . . , n. Then I is a π-system and σ(I) = σ(Y (s), s ≤ t). Furthermore,

χ{ω∈Ω:Y (t1)∈A1,...,Y (tn)∈An} = χ{f∈F ([0,t],H):f(t1)∈A1,...,f(tn)∈An}(Y )

for all n ∈ N and 0 ≤ ti ≤ t and Ai ∈ B(H) for i = 1, . . . , n. Therefore χB ∈ H for all
B ∈ I. By the monotone class theorem H contains every bounded σ(Y (s), s ≤ t)-
measurable random variable.

Proposition 4.35. If W is a Q-Wiener process, the augmentation {FW,P
t }t≥0 of

the filtration {FW
t }t≥0 is right-continuous. If, in addition, (Ω,F , P) is a complete

probability space, the augmented filtration {FW,P
t }t≥0 is normal.

Proof. Since W is a Wiener process with respect to its own history {FW
t }t≥0, it is

a Wiener process with respect to the augmented filtration {FW,P
t }t≥0. Let s < t.

Then for all h ∈ H

E
(
ei(W (t),h)H |FW,P

s

)
= ei(W (s),h)H E

(
ei(W (t)−W (s),h)H |FW,P

s

)

= ei(W (s),h)H E
(
ei(W (t)−W (s),h)H

)

= ei(W (s),h)H− 1
2
(t−s)(Qh,h)H

almost surely. Let ε be such that 0 < ε < t − s. Then

E
(
ei(W (t),h)H |FW,P

s+

)
= E

(
E

(
ei(W (t),h)H |FW,P

s+ε

)
|FW,P

s+

)

= E
(
ei(W (s+ε),h)H− 1

2
(t−s−ε)(Qh,h)H |FW,P

s+

)
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for all h ∈ H almost surely. By passing to the limit ε → 0

E
(
ei(W (t),h)H |FW,P

s+

)
= ei(W (s),h)H− 1

2
(t−s)(Qh,h)H

for all h ∈ H almost surely since W is continuous and Q is positive [53, Theorem
9.7]. Furthermore,

E
(
ei(W (t),h)H |W (s)

)
= ei(W (s),h)H E

(
ei(W (t)−W (s),h)H |W (s)

)

= ei(W (s),h)H E
(
ei(W (t)−W (s),h)H

)

= ei(W (s),h)H− 1
2
(t−s)(Qh,h)H

for all h ∈ H almost surely. Thus

E
(
ei(W (t),h)H |W (s)

)
= E

(
ei(W (t),h)H |FW,P

s

)
= E

(
ei(W (t),h)H |FW,P

s+

)

for all h ∈ H almost surely. Therefore according to Corollary 4.14,

E(f(W (t))|W (s)) = E
(
f(W (t))|FW,P

s

)
= E

(
f(W (t))|FW,P

s+

)

for all bounded measurable functions f from H to R almost surely since

ei(W (s),h)H− 1
2
(t−s)(Qh,h)H =

∫

H
ei(x,h)H N (W (s), (t − s)Q)(dx)

for all h ∈ H. Let s < t1 < t2 and f1, f2 : H → R be bounded measurable functions.
Then

E
(
f1(W (t1))f2(W (t2))|FW,P

s

)
= E

(
f1(W (t1))E

[
f2(W (t2))|FW,P

t1

] ∣∣∣FW,P
s

)

= E
(
f1(W (t1))E[f2(W (t2))|W (t1)]|FW,P

s

)

= E
(
f1(W (t1))E[f2(W (t2))|W (t1)]|FW,P

s+

)

= E
(
f1(W (t1))E

[
f2(W (t2))|FW,P

t1

] ∣∣∣FW,P
s+

)

= E
(
f1(W (t1))f2(W (t2))|FW,P

s+

)

almost surely because there exists a bounded measurable function f from H to R
such that E[f2(W (t2))|W (t1)] = f(W (t1)) [53, Lemma A3.2]. By induction,

E

(
n∏

i=1

fi(W (ti))
∣∣∣FW,P

s

)
= E

(
n∏

i=1

fi(W (ti))
∣∣∣FW,P

s+

)
(4.10)

almost surely where n ∈ N and 0 ≤ ti < ∞ and fi are bounded measurable functions
from H to R for i = 1, . . . , n.

We define H to be the set of all bounded functions g from F ([0,∞), H) to R such
that

E
(
g(W )|FW,P

s

)
= E

(
g(W )|FW,P

s+

)

almost surely. Then H is a vector space and the constant function 1 is an element
of H. Furthermore if {gn}∞n=1 is a sequence of non-negative functions in H such that
gn increases monotonically pointwise to g and g is bounded, g belongs to H [53,
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Theorem 9.7]. Let I be the set of all sets of the form (4.9) where I = [0,∞). Then
I is a π-system. Since

χ{f∈F ([0,∞),H):f(t1)∈A1,...,f(tn)∈An}(W ) =
n∏

i=1

χAi(W (ti))

when n ∈ N and 0 ≤ ti < ∞ and Ai ∈ B(H) for i = 1, . . . , n, by Formula (4.10)
the characteristic functions of all sets in I belong to H. According to the monotone
class theorem H contains every bounded F([0,∞), H)-measurable functions from
F ([0,∞), H) to R. Hence

E
(
g(W )|FW,P

s

)
= E

(
g(W )|FW,P

s+

)

almost surely for all bounded F([0,∞), H)-measurable functions g from F ([0,∞), H)
to R.

Let s < t. According to Lemma 4.34,

E
(
X|FW,P

s

)
= E

(
X|FW,P

s+

)

almost surely for every bounded FW,P
t -measurable function X : Ω → R and hence

for every FW,P
t -measurable function X : Ω → R [53, Theorem 9.7]. Let X : Ω → R

be an FW,P
s+ -measurable function. Then E(X|FW,P

s ) = X almost surely. Since FW,P
s

is a complete σ-algebra, X is FW,P
s -measurable. Consequently, FW,P

s+ ⊆ FW,P
s . The

reverse inclusion FW,P
s ⊆ FW,P

s+ is obvious. Hence FW,P
s = FW,P

s+ for all s ≥ 0.

If (Ω,F , P) is complete, {FW,P
t }t≥0 is a filtration. Since FW,P

0 contains all A ∈ F
such that P(A) = 0, the right-continuity assures the normality.

The version in R of the previous proposition can be found from the book of Liptser
and Shiryayev [27].

4.5 The Stochastic Integral

Let (H, (·, ·)H) and (U, (·, ·)U ) be real separable Hilbert spaces and Q ∈ B(U) a
positive self-adjoint trace class operator with Ker Q = {0}. Then there exist a com-
plete orthonormal system {ek}∞k=1 in U and a bounded sequence {λk}∞k=1 of positive
numbers such that Qek = λkek for all k ∈ N since Q is compact by Proposition
D.9 [14, Theorem 5.1, Observation 6.1.b, pp. 113–116]. We introduce the subspace
U0 := Q1/2(U) of U , which endowed with the inner product

(u, v)U0
:=

∞∑

k=1

1

λk
(u, ek)U (v, ek)U = (Q−1/2u, Q−1/2v)U

is a Hilbert space. Then {gk}∞k=1 where gk :=
√

λkek for all k ∈ N is an orthonormal
basis in U0. In the construction of the stochastic integral an important rôle is played
by the space B2(U0, H) of Hilbert-Schmidt operators from U0 to H. Let {fk}∞k=1
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be an orthonormal basis in H. The space B2(U0, H) is a separable Hilbert space
equipped with the norm

‖Ψ‖2
B2(U0,H) =

∞∑

k=1

‖Ψgk‖2
H =

∞∑

k=1

‖ΨQ1/2ek‖2
H = ‖ΨQ1/2‖2

B2(U,H)

= ‖Q1/2Ψ∗‖2
B2(H,U) =

∞∑

k=1

‖Q1/2Ψ∗fk‖2
U

=
∞∑

k=1

(ΨQΨ∗fk, fk)H = Tr[ΨQΨ∗]

for all Ψ ∈ B2(U0, H). Clearly, B(U, H) ⊂ B2(U0, H) but not all operators in
B2(U0, H) can be regarded as restrictions of operators in B(U, H). The space
B2(U0, H) contains genuinely unbounded operators on U .

Let W (t), t ∈ [0, T ], be a Q-Wiener process in a probability space (Ω,F , P) with
values in U with respect to a normal filtration {Ft}t∈[0,T ] for a fixed T > 0. Let
Φ(t), t ∈ [0, T ], be a B(U, H)-valued elementary process, i.e., there exist a sequence
0 = t0 < t1 < . . . < tk = T and a sequence {Φm}k−1

m=0 of B(U, H)-valued simple
random variables such that Φm is Ftm-measurable and Φ(t) = Φm if t ∈ (tm, tm+1]
for all m = 0, 1, . . . , k−1. We define the stochastic integral for elementary processes
Φ by the formula

∫ t

0
Φ(s) dW (s) :=

k−1∑

m=0

Φm(W (tm+1 ∧ t) − W (tm ∧ t))

and denote the stochastic integral by Φ · W (t), t ∈ [0, T ]. Let Φ(t), t ∈ [0, T ], be a
B2(U0, H)-valued stochastic process. We define the norms

|||Φ|||t :=

(
E

∫ t

0
‖Φ(s)‖2

B2(U0,H) ds

) 1
2

=

(
E

∫ t

0
Tr (Φ(s)QΦ∗(s)) ds

) 1
2

for all t ∈ [0, T ]. If Φ is an elementary process, |||Φ|||t < ∞ for all t ∈ [0, T ].

Proposition 4.36. If Φ is an elementary process, the stochastic process Φ ·W is a
continuous square integrable H-valued martingale on [0, T ] and

E‖Φ · W (t)‖2 = |||Φ|||2t (4.11)

for all 0 ≤ t ≤ T . Furthermore, E(Φ · W (t)) = 0 for all 0 ≤ t ≤ T .

Proof. Since W (t) is a continuous square integrable U -valued martingale and Φ is a
B(U, H)-valued elementary process,

Φ · W (t) =
k−1∑

m=0

Φm(W (tm+1 ∧ t) − W (tm ∧ t))

is a continuous H-valued adapted process on [0, T ]. Since Φm is a simple Ftm-
measurable random variable, also Φ∗

m is for all m = 0, . . . , k − 1. Hence Φ∗
mh is a

simple Ftm-measurable random variable for all h ∈ H and m = 0, . . . , k − 1. Since
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W (t)−W (tm) is independent of Ftm for all t ≥ tm, by Theorem 4.9 and Proposition
4.10,

(E (Φm(W (t) − W (tm))|Ftm) , h)H = E ((Φm(W (t) − W (tm)), h)H |Ftm)

= E ((W (t) − W (tm), Φ∗
mh)H |Ftm) = 0

almost surely for all h ∈ H and m = 0, . . . , k − 1. Hence

E [Φm(W (t) − W (tm))] = E [E (Φm(W (t) − W (tm))|Fm)] = 0

for all t ≥ tm and m = 0, . . . , k − 1 and therefore E(Φ · W (t)) = 0 for all 0 ≤ t ≤ T .

Let s ≤ tm < t. Then

E (Φm(W (t) − W (tm))|Fs) = E (E (Φm(W (t) − W (tm))|Ftm) |Fs) = 0

almost surely. If tm < t ≤ s, according to the measurability

E (Φm(W (t) − W (tm))|Fs) = Φm(W (t) − W (tm))

almost surely. If tm < s < t,

E (Φm(W (t) − W (tm))|Fs)

= E (Φm(W (t) − W (s))|Fs) + E (Φm(W (s) − W (tm))|Fs)

= Φm(W (s) − W (tm))

almost surely. Hence E(Φ ·W (t)|Fs) = Φ ·W (s) almost surely for all 0 ≤ s < t ≤ T ,
i.e., Φ · W (t) is a martingale on [0, T ].

We still have to prove that Φ · W (t) is square integrable. Let tm < t ≤ tm+1. We
denote {

ζj := W (tj+1) − W (tj), j = 0, . . . , m − 1,

ζm := W (t) − W (tm).

Then

E‖Φ · W (t)‖2
H = E

∥∥∥∥∥∥

m∑

j=1

Φjζj

∥∥∥∥∥∥

2

H

= E
m∑

j=1

‖Φjζj‖2
H + 2E

m∑

i<j=1

(Φiζi, Φjζj)H .

Since ζj is independent of Ftj and Φ∗
jh is Ftj -measurable for all h ∈ H and j =

0, . . . , m, by Lebesgue’s monotone convergence theorem, Theorem 4.9 and Proposi-
tion 4.10,

E‖Φjζj‖2
H = E

∞∑

l=1

(Φjζj , fl)
2
H =

∞∑

l=1

E(ζj , Φ
∗
jfl)

2
U

=
∞∑

l=1

E
(
E

[(
ζj , Φ

∗
jfl

)2

U
|Ftj

])

= (tj+1 ∧ t − tj)
∞∑

l=1

E(QΦ∗
jfl, Φ

∗
jfl)U

= (tj+1 ∧ t − tj)E
∞∑

l=1

(ΦjQΦ∗
jfl, fl)U

= (tj+1 ∧ t − tj)E Tr(ΦjQΦ∗
j )
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for all j = 0, . . . , m. Thus

E
m∑

j=1

‖Φjζj‖2
H = E

m∑

j=1

(tj+1 ∧ t − tj)‖Φj‖2
B2(U0,H).

Let i < j. Then by Lebesgue’s dominated convergence theorem,

E(Φiζi, Φjζj)H =
∞∑

k=1

E
[
(Φiζi, fk)H(Φjζj , fk)H

]
.

Since Φi is Fti-measurable and ζi is Fti+1-measurable, (Φiζi, fk)H is Fti+1-measur-
able. Since ζj is independent of Ftj and Φj is simple, (Φjζj , fk)H is independent of
Ftj . Hence (Φiζi, fk)H and (Φjζj , fk)H are independent random variables. Thus

E(Φiζi, Φjζj)H =
∞∑

k=1

E(Φiζi, fk)HE(Φjζj , fk)H .

Since E(Φiζi, fk)H = (EΦiζi, fk)H = 0 for all k ∈ N, then E(Φiζi, Φjζj)H = 0. Thus

E‖Φ · W (t)‖2
H = E

m∑

j=1

(tj+1 ∧ t − tj)‖Φj‖2
B2(U0,H)

= E
∫ t

0
‖Φ(s)‖2

B2(U0,H) ds = |||Φ|||2t .

Hence Φ · W (t) is square integrable and Equality (4.11) holds.

By Corollary 4.29 for all M ∈ M2
T (H)

E‖M(T )‖2
H ≤ ‖M‖2

M2
T (H) ≤ 4E‖M(T )‖2

H .

Hence by Equality (4.11),

|||Φ|||T ≤ ‖Φ · W‖M2
T (H) ≤ 2|||Φ|||T

for all elementary processes Φ. Therefore the stochastic integral is a bounded linear
operator from the space of elementary processes with the norm ||| · |||T to the space
M2

T (H) of H-valued continuous square integrable martingales.

The definition of the stochastic integral can be extended to more general processes.
The proper class of integrands is predictable processes with values in B2(U0, H),
more precisely, measurable mappings from (ΩT ,PT ) to (B2(U0, H),B(B2(U0, H))).

Proposition 4.37. (i) If Φ is a B(U, H)-valued predictable process, Φ is also a
B2(U0, H)-valued predictable process. In particular, elementary processes are
B2(U0, H)-valued predictable processes.

(ii) If Φ is a B2(U0, H)-valued predictable process such that |||Φ|||T < ∞, there
exists a sequence {Φn}∞n=1 of elementary processes such that

|||Φ − Φn|||T −→ 0

as n → ∞.
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Proof. (i) Operators (fk ⊗ gj)u := fk(u, gj)U0
for all j, k ∈ N and u ∈ U0 are linearly

dense in B2(U0, H) by the proof of Proposition D.6. For all T ∈ B2(U0, H)

(fk ⊗ gj , T )B2(U0,H) =
∞∑

l=1

((fk ⊗ gj)gl, T gl)H = (fk, T gj)H =
√

λj(Tej , fk)H .

Let Φ : (ΩT ,PT ) → (B(U, H),B(U, H)) be a random variable. Then

√
λj(Φej , fk)H : (ΩT ,PT ) −→ (R,B(R))

is measurable for all j, k ∈ N. Thus

(fk ⊗ gj , Φ)B2(U0,H) : ΩT −→ R

is PT -measurable for all j, k ∈ N. Hence Φ is a random variable from (ΩT ,PT ) to
(B2(U0, H),B(B2(U0, H))) according to Lemma 4.4.

Elementary processes are B(U, H)-valued predictable processes by definition. Hence
they are B2(U0, H)-valued predictable processes.

(ii) The proof is similar to the one of Proposition 4.25. Let Φ be a B2(U0, H)-valued
predictable process. Since (B2(U0, H), ‖ · ‖B2(U0,H)) is a separable Hilbert space, by
Lemma 4.3 there exists a sequence {Φn}∞n=1 of simple B2(U0, H)-valued predictable
processes such that ‖Φn(t, ω) − Φ(t, ω)‖B2(U0,H) ↓ 0 as n → ∞ for all (t, ω) ∈ ΩT .

Since operators fk ⊗ gj =
√

λjfk ⊗ ej are linearly dense in B2(U0, H) and belong to
B(U, H), the space B(U, H) is densely embedded to B2(U0, H). Hence, because Φn

is simple, there exists a B(U, H)-valued simple predictable process Ψn such that

‖Ψn(t, ω) − Φn(t, ω)‖B2(U0,H) <
1

n

for all n ∈ N. Thus {Ψn}∞n=1 is a sequence of simple B(U, H)-valued predictable
processes such that

‖Φ(t, ω) − Ψn(t, ω)‖B2(U0,H)

≤ ‖Φ(t, ω) − Φn(t, ω)‖B2(U0,H) + ‖Φn(t, ω) − Ψn(t, ω)‖B2(U0,H) ↓ 0

as n → ∞ for all (t, ω) ∈ ΩT . According to Lebesgue’s monotone convergence
theorem, ∫

ΩT

‖Φ(t, ω) − Ψn(t, ω)‖2
B2(U0,H) PT (dt, dω) −→ 0

as n → ∞. Hence by the Fubini theorem,

E
∫ T

0
‖Φ(t, ω) − Ψn(t, ω)‖2

B2(U0,H) dt = |||Φ − Ψn|||2T −→ 0

as n → ∞.

Since Ψn is a simple B(U, H)-valued PT -measurable random variable, it is of the
form

Ψn(t, ω) =

mn∑

l=1

Ψl
nχAl

n
(t, ω)

for all (t, ω) ∈ ΩT where mn ∈ N and Ψl
n ∈ B(U, H) and Al

n ∈ PT for all l =
1, . . . , mn and Ai

n ∩Aj
n = ∅ if i 6= j. We denote C :=

∑mn
l=1 ‖Ψl

n‖2
B2(U0,H). According
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to Lemma 4.23 for all l = 1, . . . , mn there exists a finite union Γl
n of disjoint sets of

the form (4.5) such that

PT ((Al
n \ Γl

n) ∪ (Γl
n \ Al

n)) <
1

n2Cmn
.

Then

Ψ̂n(t, ω) :=

mn∑

l=1

Ψl
nχΓl

n
(t, ω)

for all (t, ω) ∈ ΩT is an elementary process and

|||Ψn − Ψ̂n|||2T = E
∫ T

0
‖Ψn(t, ω) − Ψ̂n(t, ω)‖2

B2(U0,H) dt

≤ CPT

(
mn⋃

l=1

(Al
n \ Γl

n) ∪ (Γl
n \ Al

n)

)

≤ C

mn∑

l=1

PT ((Al
n \ Γl

n) ∪ (Γl
n \ Al

n)) <
1

n2
.

Thus {Ψ̂n}∞n=1 is a sequence of elementary processes such that for every ε > 0

|||Φ − Ψ̂n|||T ≤ |||Φ − Ψn|||T + |||Ψn − Ψ̂n|||T < ε

if n ∈ N is so large that |||Φ − Ψn|||T < ε/2 and n ≥ 2/ε.

We are able to extend the stochastic integral for B2(U0, H)-valued predictable pro-
cesses Φ such that |||Φ|||T < ∞. They form the space N 2

W (0, T ). Since N 2
W (0, T ) =

L2(ΩT ,PT , PT ; B2(U0, H)), it is a Hilbert space. By Proposition 4.37 elementary
processes form a dense set in N 2

W (0, T ). Let Φ ∈ N 2
W (0, T ). Then there exists a

sequence {Φn}∞n=1 ⊂ N 2
W (0, T ) of elementary processes such that |||Φ−Φn|||T → 0 as

n → ∞. Then the sequence {Φn · W}∞n=1 is a Cauchy sequence in M2
T (H) because

the stochastic integral is a bounded linear operator for elementary processes. Since
M2

T (H) is complete, there exists M ∈ M2
T (H) such that ‖Φn · W − M‖M2

T (H) → 0

as n → ∞. We define Φ ·W (t) := M(t) for all t ∈ [0, T ]. Thus Φ ·W is an H-valued
continuous square integrable martingale for every Φ ∈ N 2

W (0, T ). There are two
equivalent norms in M2

T (H). Hence

E‖Φ · W (t)‖2
H = lim

n→∞
E‖Φn · W (t)‖2

H = lim
n→∞

|||Φn|||2t = |||Φ|||2t

for all t ∈ [0, T ]. Thus Equality (4.11) is valid for all Φ ∈ N 2
W (0, T ). The following

theorem summarizes the main results of this section.

Theorem 4.38. Let Φ ∈ N 2
W (0, T ). Then the stochastic integral Φ · W is an H-

valued continuous square integrable martingale and

E‖Φ · W (t)‖2
H = |||Φ|||2t

for all t ∈ [0, T ].
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4.5.1 Properties of the Stochastic Integral

In this subsection we introduce some further properties of the stochastic integral. In
the following theorem we show that the stochastic integral is similar to the determ-
inistic integral.

Theorem 4.39. The stochastic integral is a bounded linear operator from N 2
W (0, T )

to M2
T (H). Furthermore if Φ ∈ N 2

W (0, T ),

(i) for all t ∈ [0, T ]

∫ T

0
Φ(s) dW (s) =

∫ t

0
Φ(s) dW (s) +

∫ T

t
Φ(s) dW (s),

(ii) if (E, (·, ·)E) is a real separable Hilbert space and A ∈ B(H, E),

A

∫ t

0
Φ(s) dW (s) =

∫ t

0
AΦ(s) dW (s)

for all t ∈ [0, T ].

Proof. Since Φ · W ∈ M2
T (H) and E‖Φ · W (t)‖2

H = |||Φ|||2t for all Φ ∈ N 2
W (0, T ) and

t ∈ [0, T ], the stochastic integral is bounded by Corollary 4.29. Since the stochastic
integral is linear on elementary processes and elementary processes are dense in
N 2

W (0, T ), it is linear also on N 2
W (0, T ). The statements (i) and (ii) are valid for

elementary processes. By the density they are valid also in N 2
W (0, T ).

The stochastic integral has a predictable version.

Proposition 4.40. Let Φ ∈ N 2
W (0, T ). Then the stochastic integral Φ · W has a

predictable modification and E(Φ · W (t)) = 0 for all t ∈ [0, T ].

Proof. Let Φ ∈ N 2
W (0, T ) and s < t. Then the stochastic integral Φ · W is mean

square continuous since

E‖Φ · W (t) − Φ · W (s)‖2
H = E‖((1 − χ[0,s])Φ) · W (t)‖2

H = |||χ[s,t]Φ|||2t

= E
∫ T

0
χ[s,t](r)‖Φ(r)‖2

B2(U0,H) dr

and by Lebesgue’s dominated convergence theorem E‖Φ ·W (t)−Φ ·W (s)‖2
H → 0 as

|t−s| → 0. By Lemma 4.20 the stochastic integral Φ·W is stochastically continuous.
Since Φ · W is adapted, it has a predictable version by Proposition 4.24.

We still need to prove that E(Φ ·W (t)) = 0 for all t ∈ [0, T ]. Let Φ ∈ N 2
W (0, T ) and

{Φn}∞n=1 be a sequence of elementary processes defined by Proposition 4.37. Then
for each t ∈ [0, T ]

‖E(Φ · W (t)) − E(Φn · W (t))‖H = ‖E[(Φ − Φn) · W (t)]‖H ≤ E‖(Φ − Φn) · W (t)‖H

≤
(
E‖(Φ − Φn) · W (t)‖2

H

) 1
2 = |||Φ − Φn|||t −→ 0

as n → ∞. Since E(Φn · W (t)) = 0 for all n ∈ N, then E(Φ · W (t)) = 0 for all
t ∈ [0, T ].
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The correlation operator of two stochastic integrals is presented in the following
proposition.

Proposition 4.41. Let Φ1, Φ2 ∈ N 2
W (0, T ). Then the correlation operator of the

stochastic integrals Φ1 · W (t) and Φ2 · W (s) is given by the formula

Cor(Φ1 · W (t), Φ2 · W (s)) = E
∫ s∧t

0
(Φ1(r)Q

1/2)(Φ2(r)Q
1/2)∗ dr (4.12)

for all s, t ∈ [0, T ].

Proof. Let Φ1, Φ2 ∈ N 2
W (0, T ). Then Φi(t)Q

1/2, t ∈ [0, T ], is a B2(U, H)-valued
predictable process for both i = 1, 2. Therefore (Φ1(t)Q

1/2)(Φ2(t)Q
1/2)∗, t ∈ [0, T ],

is a B1(H)-valued strongly measurable function on (ΩT ,PT , PT ) and

∥∥∥(Φ1(t)Q
1/2)(Φ2(t)Q

1/2)∗
∥∥∥

B1(H)
≤

∥∥∥Φ1(t)Q
1/2

∥∥∥
B2(U,H)

∥∥∥Φ2(t)Q
1/2

∥∥∥
B2(U,H)

for all t ∈ [0, T ] by Proposition D.12. Consequently, for all h ∈ H

E
∫ T

0

∥∥∥(Φ1(t)Q
1/2)(Φ2(t)Q

1/2)∗h
∥∥∥

H
dt

≤ ‖h‖HE
∫ T

0

∥∥∥(Φ1(t)Q
1/2)(Φ2(t)Q

1/2)∗
∥∥∥

B(H)
dt

≤ ‖h‖HE
∫ T

0

∥∥∥(Φ1(t)Q
1/2)(Φ2(t)Q

1/2)∗
∥∥∥

B1(H)
dt

≤ ‖h‖HE
∫ T

0
‖Φ1(t)‖B2(U0,H) ‖Φ2(t)‖B2(U0,H) dt

≤ ‖h‖H |||Φ1|||T |||Φ2|||T .

(4.13)

Therefore the right hand side of (4.12) exists for all s, t ∈ [0, T ] as a strong Bochner
integral.

The correlation operator Cor(Φ1 · W (t), Φ2 · W (s)) is defined by

(Cor(Φ1 · W (t), Φ2 · W (s))a, b)H = E[(Φ1 · W (t), b)H(Φ2 · W (s), a)H ]

for all a, b ∈ H and s, t ∈ [0, T ]. If Φ1 and Φ2 are elementary processes, there exists
a partition 0 = t0 < t1 < . . . < tk = T such that Φ1(t) = Φ1

m and Φ2(t) = Φ2
m if

t ∈ (tm, tm+1] and Φ1
m and Φ2

m are simple B(U, H)-valued Ftm-measurable random
variables for all m = 0, 1, . . . , k − 1. Let s, t ∈ [0, T ]. Then there exist l and m such
that tl < s ≤ tl+1 and tm < t ≤ tm+1. We denote

{
ηj := W (tj+1) − W (tj), j = 0, . . . , l − 1,

ηl := W (s) − W (tl)

and {
ζj := W (tj+1) − W (tj), j = 0, . . . , m − 1,

ζm := W (t) − W (tm).
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Then ηj = ζj for all j < l ∧ m and

E [(Φ1 · W (t), b)H(Φ2 · W (s), a)H ] = E




(
m∑

i=0

(
Φ1

i ζi, b
)
H

) 


l∑

j=0

(
Φ2

jηj , a
)
H







=
m∑

i=0

l∑

j=0

E
[(

Φ1
i ζi, b

)
H

(
Φ2

jηj , a
)
H

]

for all a, b ∈ H. We notice that Φ1
i ζi is Fti+1-measurable and independent of Fti

for all i = 0, . . . , m and Φ2
jηj is Ftj+1-measurable and independent of Ftj for all

j = 0, . . . , l because Φi
j is a simple random variable for all i = 1, 2 and j = 0, . . . , k−1.

Hence (Φ1
i ζi, b)H and (Φ2

jηj , a)
H

are independent for all a, b ∈ H if i 6= j. Thus if
i 6= j,

E
[(

Φ1
i ζi, b

)
H

(
Φ2

jηj , a
)
H

]
= E

(
Φ1

i ζi, b
)
H

E
(
Φ2

jηj , a
)
H

.

On the other hand since Φi
j is a simple B(U, H)-valued Ftj -measurable random

variable, also (Φi
j)

∗ is for all i = 1, 2 and j = 0, . . . , k− 1. Thus by Proposition 4.10,

E
(
Φ1

i ζi, b
)
H

= E
(
ζi, (Φ

1
i )

∗b
)
H

= E
(
E

[(
ζi, (Φ

1
i )

∗b
)
H
|Fti

])
= 0

for all i = 0, . . . , m and b ∈ H. Similarly E(Φ2
jηj , a)

H
= 0 for all j = 0, . . . , l and

a ∈ H. Hence

E [(Φ1 · W (t), b)H(Φ2 · W (s), a)H ] =
l∧m∑

j=0

E
[(

Φ1
jζj , b

)
H

(
Φ2

jηj , a
)
H

]

for all a, b ∈ H. Let j < l ∧ m. Then for all a, b ∈ H

E
[(

Φ1
jζj , b

)
H

(
Φ2

jηj , a
)
H

]
= E

[(
ζj , (Φ

1
j )

∗b
)
H

(
ζj , (Φ

2
j )

∗a
)
H

]

= E
[
E

((
ζj , (Φ

1
j )

∗b
)
H

(
ζj , (Φ

2
j )

∗a
)
H

∣∣Ftj

)]

= E
[(

(tj+1 − tj)Q(Φ2
j )

∗a, (Φ1
j )

∗b
)
H

]

= (tj+1 − tj)E
(
Φ1

jQ(Φ2
j )

∗a, b
)
H

by Proposition 4.10. If l ∧ m = m and j = m, for all a, b ∈ H

E
[(

Φ1
mζm, b

)
H

(
Φ2

mηm, a
)
H

]

= E
[(

W (t) − W (tm), (Φ1
m)∗b

)
H

(
W (tm+1 ∧ s) − W (tm), (Φ2

m)∗a
)
H

]

= E
[(

W (t) − W (s ∧ t), (Φ1
m)∗b

)
H

(
W (tm+1 ∧ s) − W (s ∧ t), (Φ2

m)∗a
)
H

]
+

+ E
[(

W (t) − W (s ∧ t), (Φ1
m)∗b

)
H

(
W (s ∧ t) − W (tm), (Φ2

m)∗a
)
H

]
+

+ E
[(

W (s ∧ t) − W (tm), (Φ1
m)∗b

)
H

(
W (tm+1 ∧ s) − W (s ∧ t), (Φ2

m)∗a
)
H

]
+

+ E
[(

W (s ∧ t) − W (tm), (Φ1
m)∗b

)
H

(
W (s ∧ t) − W (tm), (Φ2

m)∗a
)
H

]

= E
[(

W (s ∧ t) − W (tm), (Φ1
m)∗b

)
H

(
W (s ∧ t) − W (tm), (Φ2

m)∗a
)
H

]

= (s ∧ t − tm)E
(
Φ1

mQ(Φ2
m)∗a, b

)
H

.

Similarly if l ∧ m = l and j = l,

E
[(

Φ1
l ζl, b

)
H

(
Φ2

l ηl, a
)
H

]
= (s ∧ t − tl)E

(
Φ1

l Q(Φ2
l )

∗a, b
)
H
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for all a, b ∈ H. Hence

E [(Φ1 · W (t), b)H(Φ2 · W (s), a)H ]

=
l∧m∑

j=0

(tj+1 ∧ s ∧ t − tj)E
(
Φ1

jQ(Φ2
j )

∗a, b
)
H

= E
k−1∑

j=0

(tj+1 ∧ s ∧ t − tj ∧ s ∧ t)
(
Φ1

jQ(Φ2
j )

∗a, b
)
H

= E
∫ s∧t

0
(Φ1(r)QΦ∗

2(r)a, b)H dr

=

(
E

∫ s∧t

0
Φ1(r)QΦ∗

2(r)a dr, b

)

H

for all a, b ∈ H. Thus

Cor(Φ1 · W (t), Φ2 · W (s)) = E
∫ s∧t

0
Φ1(r)QΦ∗

2(r) dr

for elementary processes Φ1 and Φ2.

Let Φ1, Φ2 ∈ N 2
W (0, T ) and s, t ∈ [0, T ]. By Proposition 4.37 for both i = 1, 2 there

exists a sequence {Φn
i }∞n=1 of elementary processes such that |||Φi − Φn

i |||T → 0 as
n → ∞. Then for all a, b ∈ H

|E [(Φ1 · W (t), b)H(Φ2 · W (s), a)H ] − E [(Φn
1 · W (t), b)H(Φm

2 · W (s), a)H ]|
≤ |E [((Φ1 − Φn

1 ) · W (t), b)H(Φ2 · W (s), a)H ]|+
+ |E [(Φn

1 · W (t), b)H((Φ2 − Φm
2 ) · W (s), a)H ]|

≤ ‖a‖H‖b‖HE‖(Φ1 − Φn
1 ) · W (t)‖H‖Φ2 · W (s)‖H+

+ ‖a‖H‖b‖HE‖Φn
1 · W (t)‖H‖(Φ2 − Φm

2 ) · W (s)‖H

≤ ‖a‖H‖b‖H

(
E‖(Φ1 − Φn

1 ) · W (t)‖2
H

) 1
2
(
E‖Φ2 · W (s)‖2

H

) 1
2 +

+ ‖a‖H‖b‖H

(
E‖Φn

1 · W (t)‖2
H

) 1
2
(
E‖(Φ2 − Φm

2 ) · W (s)‖2
H

) 1
2

= ‖a‖H‖b‖H [|||Φ1 − Φn
1 |||t|||Φ2|||s + |||Φn

1 |||t|||Φ2 − Φm
2 |||s] .

Since {Φn
1}∞n=1 is convergent in N 2

W (0, T ), it is bounded, i.e., there exists M > 0
such that |||Φn

1 |||T ≤ M for all n ∈ N. Thus

‖Cor(Φ1 · W (t), Φ2 · W (s)) − Cor(Φn
1 · W (t), Φm

2 · W (s))‖B(H) −→ 0

as m, n → ∞. On the other hand, for all h ∈ H
∥∥∥∥E

∫ s∧t

0
(Φ1(r)Q

1/2)(Φ2(r)Q
1/2)∗h dr − E

∫ s∧t

0
(Φn

1 (r)Q1/2)(Φm
2 (r)Q1/2)∗h dr

∥∥∥∥
H

≤ ‖h‖HE
∫ s∧t

0

∥∥∥(Φ1(r)Q
1/2)(Φ2(r)Q

1/2)∗ − (Φn
1 (r)Q1/2)(Φm

2 (r)Q1/2)∗
∥∥∥

B(H)
dr

≤ ‖h‖HE
∫ s∧t

0

∥∥∥(Φ1(r)Q
1/2)(Φ2(r)Q

1/2)∗ − (Φn
1 (r)Q1/2)(Φm

2 (r)Q1/2)∗
∥∥∥

B1(H)
dr

≤ ‖h‖HE
∫ s∧t

0

∥∥∥
[
(Φ1(r) − Φn

1 (r))Q1/2
]
(Φ2(r)Q

1/2)∗
∥∥∥

B1(H)
dr+

+ ‖h‖HE
∫ s∧t

0

∥∥∥(Φn
1 (r)Q1/2)

[
(Φ2(r) − Φm

2 (r))Q1/2
]∗∥∥∥

B1(H)
dr

≤ ‖h‖H [|||Φ1 − Φn
1 |||T |||Φ2|||T + |||Φn

1 |||T |||Φ2 − Φm
2 |||T ] −→ 0
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as m, n → ∞ by Inequality (4.13). Thus

Cor(Φ1 · W (t), Φ2 · W (s)) = E
∫ s∧t

0
(Φ1(r)Q

1/2)(Φ2(r)Q
1/2)∗ dr

for all Φ1, Φ2 ∈ N 2
W (0, T ) and s, t ∈ [0, T ].

The Gaussianity of the Wiener process is inherited to the stochastic integral if the
integrand is deterministic.

Lemma 4.42. If Φ ∈ L2(0, T ; B2(U0, H)), then Φ · W is a Gaussian process in H.
The covariance operator of Φ · W (t) is

Cov(Φ · W (t)) =

∫ t

0
(Φ(s)Q1/2)(Φ(s)Q1/2)∗ ds

for all t ∈ [0, T ]. Furthermore, Φ · W (t) is independent of F0 for all t ∈ [0, T ].

Proof. If Φ ∈ L2(0, T ; B2(U0, H)), then Φ is a deterministic B2(U0, H)-valued pre-
dictable process such that |||Φ|||T = ‖Φ‖L2(0,T ;B2(U0,H)). By Proposition 4.41 the
covariance of Φ · W (t) is

Cov(Φ · W (t)) = E
∫ t

0
(Φ(s)Q1/2)(Φ(s)Q1/2)∗ ds =

∫ t

0
(Φ(s)Q1/2)(Φ(s)Q1/2)∗ ds

for all t ∈ [0, T ].

Let Φ be a deterministic elementary process, i.e., there exist a sequence 0 = t0 <
t1 < . . . < tk = T and a sequence {Φm}k−1

m=0 of bounded linear operators such that
Φ(t) = Φm if t ∈ (tm, tm+1] for all m = 0, . . . , k − 1. Then for all t ∈ [0, T ]

Φ · W (t) =
k−1∑

m=0

Φm(W (tm+1 ∧ t) − W (tm ∧ t)).

Since W (t)−W (s) is independent of Fs for all 0 ≤ s < t ≤ T , the stochastic integral
Φ · W (t) is independent of F0 for all t ∈ [0, T ]. We want to show that for all l ∈ N
and s1, . . . , sl ∈ [0, T ] the H l-valued random variable (Φ · W (s1), . . . , Φ · W (sl)) is
Gaussian. Let h1, . . . , hl ∈ H. We need to prove that

((Φ · W (s1), . . . , Φ · W (sl)), (h1, . . . , hl))Hl :=
l∑

i=1

(Φ · W (si), hi)H

is a real valued Gaussian random variable. We may assume that 0 ≤ s1 < . . . <
sl ≤ T . We combine {tm}k

m=0 and {si}l
i=1 to be a partition {rj}k+l+1

j=1 of the interval
[0, T ]. Thus

l∑

i=1

(Φ · W (si), hi)H =
l∑

i=1




k+l+1∑

j=1

Φ̃j(W (rj+1 ∧ si) − W (rj ∧ si)), hi




H

=
l∑

i=1

∑

j:si−1≤rj<si

(
Φ̃j(W (rj+1) − W (rj)),

l∑

n=i

hn

)

H
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where Φ̃j = Φm if rj = tm or rj = si and tm < si < tm+1 for all j = 1, . . . , k +
l + 1. Since Φ̃j(W (rj+1) − W (rj)) is a Frj+1-measurable Gaussian random variable
independent of Frj for all j = 1, . . . , k + l + 1 and the sum of mutually independent
real valued Gaussian random variables is Gaussian, Φ · W is a Gaussian process.

Let Φ ∈ L2(0, T ; B2(U0, H)). Then there exists a sequence {Φn}∞n=1 of elementary
processes such that |||Φ−Φn|||T → 0 as n → ∞ by Proposition 4.37. The sequence can
be chosen such a way that Φn are deterministic since Φ is deterministic. Thus Φn ·W
is a Gaussian process. We want to show that for all k ∈ N and t1, . . . , tk ∈ [0, T ] the
Hk-valued random variable (Φ·W (t1), . . . , Φ·W (tk)) is Gaussian. Let h1, . . . , hl ∈ H.
Since


E

∣∣∣∣∣
k∑

i=1

(Φ · W (ti), hi)H −
k∑

i=1

(Φn · W (ti), hi)H

∣∣∣∣∣

2



1
2

≤
k∑

i=1

(
E((Φ − Φn) · W (ti), hi)

2
H

) 1
2 ≤

k∑

i=1

‖hi‖H

(
E‖(Φ − Φn) · W (ti)‖2

H

) 1
2

=
k∑

i=1

‖hi‖H |||Φ − Φn|||ti ≤ |||Φ − Φn|||T
k∑

i=1

‖hi‖H −→ 0

as n → ∞ and the limit of real valued Gaussian random variables in L2(Ω,F , P; R)
is Gaussian [21, Theorem A.7],

k∑

i=1

(Φ · W (ti), hi)H = ((Φ · W (t1), . . . , Φ · W (tk)), (h1, . . . , hk))Hk

is a real valued Gaussian random variable. Hence Φ · W is a Gaussian process.

Since Φn · W (t) is independent of F0, for all A ∈ F0, h ∈ H, n ∈ N and t ∈ [0, T ]

E
[
ei(Φn·W (t),h)H χA

]
= P(A)E

[
ei(Φn·W (t),h)H

]
.

Since Φn · W → Φ · W in M2
T (H) as n → ∞, then Φn · W (t) → Φ · W (t) in

L2(Ω,F , P; H) as n → ∞ for all t ∈ [0, T ]. Thus for all t ∈ [0, T ] there exists a
subsequence {Φnk

}∞k=0 such that Φnk
· W (t) converges pointwise to Φ · W (t) almost

surely. Hence by Lebesgue’s dominated convergence theorem,
∣∣∣E

[
ei(Φnk

·W (t),h)
H χA

]
− E

[
ei(Φ·W (t),h)H χA

]∣∣∣

≤ E
[∣∣∣ei(Φnk

·W (t),h)
H − ei(Φ·W (t),h)H

∣∣∣ χA

]
−→ 0

as k → ∞ for all A ∈ F0 and h ∈ H. Therefore

E
[
ei(Φ·W (t),h)H χA

]
= P(A)E

[
ei(Φ·W (t),h)H

]

for all A ∈ F0, h ∈ H and t ∈ [0, T ]. Thus

E
[
ei(Φ·W (t),h)H

∣∣F0

]
= E

[
ei(Φ·W (t),h)H

]

almost surely for all h ∈ H and t ∈ [0, T ]. Since

E
[
ei(Φ·W (t),h)H

]
=

∫

Ω
ei(Φ·W (t),h)H dP =

∫

H
ei(x,h)H L(Φ · W (t))(dx)
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for all h ∈ H, by Lemma 4.13 for all B ∈ B(H) and t ∈ [0, T ]

P(Φ · W (t) ∈ B|F0) = L(Φ · W (t))(B) = P(Φ · W (t) ∈ B).

If A ∈ F0 and B ∈ B(H), for all t ∈ [0, T ]

P(A ∩ {Φ · W (t) ∈ B}) = E(χAχ{Φ·W (t)∈B}) =

∫

A
χ{Φ·W (t)∈B} dP

=

∫

A
P(Φ · W (t) ∈ B|F0) dP = P(A)P(Φ · W (t) ∈ B).

Thus Φ · W (t) is independent of F0 for all t ∈ [0, T ].

4.5.2 The Ito Formula

Let ϕ ∈ L1(ΩT ,PT , PT ; H), Φ ∈ N 2
W (0, T ) and X0 be an F0-measurable H-valued

random variable. Then the process

X(t) = X0 +

∫ t

0
ϕ(s) ds +

∫ t

0
Φ(s) dW (s)

for all t ∈ [0, T ] is well defined since the trajectories of ϕ are Bochner integrable
almost surely. The process X is continuous and has a predictable version by Lemma
4.26, Theorem 4.38 and Proposition 4.40. Let us assume that the function F :
[0, T ]×H → R is continuously differentiable with respect to t and twice continuously
differentiable with respect to h. Moreover, we assume that Fh and Fhh are bounded,
Ft and Fhh are uniformly continuous on bounded subsets of [0, T ] × H and Ft is
Lipschitz continuous with respect to h with integrable Lipschitz constant, i.e., for
all t ∈ [0, T ] there exists L(t) > 0 such that

|Ft(t, h) − Ft(t, f)| ≤ L(t)‖h − f‖H

for all f, h ∈ H and L ∈ L1(0, T ).

Theorem 4.43. Under the above conditions for all t ∈ [0, T ] the Ito formula

F (t, X(t)) = F (0, X0) +

∫ t

0
(Fh(s, X(s)), Φ(s)dW (s))H +

∫ t

0
Ft(s, X(s)) ds+

+

∫ t

0
(Fh(s, X(s)), ϕ(s))H ds +

1

2

∫ t

0
Tr(Fhh(s, X(s))Φ(s)QΦ∗(s)) ds

is valid almost surely.

Proof. Let us assume that there exist ϕ0 ∈ H and Φ0 ∈ B(U, H) such that ϕ(t) = ϕ0

and Φ(t) = Φ0 for all t ∈ [0, T ]. Then X(t) = X0 + tϕ0 + Φ0W (t) for all t ∈ [0, T ].
Since the Wiener process is continuous and W (t), t ∈ [0, T ], is Ft-measurable, X is
continuous and adapted. Let s, t ∈ [0, T ] such that s ≤ t. Then

(E‖X(t) − X(s)‖2
H)

1
2 = (E‖(t − s)ϕ0 + Φ0(W (t) − W (s))‖2

H)
1
2

≤ (E‖(t − s)ϕ0‖2
H)

1
2 + (E‖Φ0(W (t) − W (s))‖2

H)
1
2

≤ (t − s)‖ϕ0‖H + ‖Φ0‖B(U,H)(E‖W (t) − W (s))‖2
U )

1
2

≤ (t − s)‖ϕ0‖H + ‖Φ0‖B(U,H)

√
(t − s) Tr Q
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by Lemma 4.33. Hence X is mean square continuous. Therefore X has a predictable
version by Lemma 4.20 and Proposition 4.24.

Let the points 0 = t0 < t1 < . . . < tk = t define a partition π of a fixed interval
[0, t] ⊆ [0, T ]. We denote |π| := max0≤j≤k−1(tj+1 − tj). Then

F (t, X(t)) − F (0, X0)

=
k−1∑

j=0

[F (tj+1, X(tj+1)) − F (tj , X(tj+1))] +
k−1∑

j=0

[F (tj , X(tj+1)) − F (tj , X(tj))].

Since F is continuously differentiable with respect to t and twice continuously dif-
ferentiable with respect to h and X is continuous, by applying Taylor’s formula for
almost all ω ∈ Ω there exist θ0, θ1, . . . , θk−1, ϑ0, ϑ1, . . . , ϑk−1 ∈ [0, 1] such that

F (t, X(t)) − F (0, X0)

=
k−1∑

j=0

Ft(tj+1, X(tj+1))∆tj +
k−1∑

j=0

[Ft(t̃j , X(tj+1)) − Ft(tj+1, X(tj+1))]∆tj+

+

k−1∑

j=0

(Fh(tj , X(tj)), ∆Xj)H +
1

2

k−1∑

j=0

(Fhh(tj , X(tj))∆Xj , ∆Xj)H+

+
1

2

k−1∑

j=0

(
[Fhh(tj , X̃j) − Fhh(tj , X(tj))]∆Xj , ∆Xj

)
H

where ∆tj := tj+1 − tj , t̃j := tj + θj(tj+1 − tj), ∆Xj := X(tj+1) − X(tj) and
X̃j := X(tj) + ϑj(X(tj+1) − X(tj)) for all j = 0, . . . , k − 1. We examine the terms
of the Taylor expansion one by one.

Since Ft is continuous from [0, T ] × H to R and X is continuous,

k−1∑

j=0

Ft(tj+1, X(tj+1))∆tj

is an approximation of the Riemann integral
∫ t
0 Ft(s, X(s)) ds almost surely. Thus

k−1∑

j=0

Ft(tj+1, X(tj+1))∆tj −→
∫ t

0
Ft(s, X(s)) ds

as |π| → 0 almost surely.

Since X is continuous, for almost all ω ∈ Ω the set

Aω := {h ∈ H : X(s, ω) = h for some s ∈ [0, T ]}
is bounded in H. Since Ft is uniformly continuous on bounded subsets of [0, T ]×H,
for all ε > 0 there exists δ(ω) > 0 such that |Ft(s, h)−Ft(r, h)| < ε for all s, r ∈ [0, t],
h ∈ Aω and |s − r| < δ(ω). Let |π| < δ(ω). Then

∣∣∣∣∣∣

k−1∑

j=0

[Ft(t̃j , X(tj+1)) − Ft(tj+1, X(tj+1))]∆tj

∣∣∣∣∣∣

≤
k−1∑

j=0

|Ft(t̃j , X(tj+1)) − Ft(tj+1, X(tj+1))|∆tj <
k−1∑

j=0

ε∆tj = εt
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since |t̃j − tj+1| = (1 − θj)(tj+1 − tj) < δ(ω) for all j = 0, . . . , k − 1. Hence

k−1∑

j=0

[Ft(t̃j , X(tj+1)) − Ft(tj+1, X(tj+1))]∆tj −→ 0

as |π| → 0 almost surely.

The third term has to be divided in two parts

k−1∑

j=0

(Fh(tj , X(tj)), ∆Xj)H

=

k−1∑

j=0

(Fh(tj , X(tj)), ϕ0)H∆tj +

k−1∑

j=0

(Fh(tj , X(tj)), Φ0∆Wj)H

where ∆Wj := W (tj+1)−W (tj) for all j = 0, . . . , k−1. Since Fh is continuous from
[0, T ] × H to H and X is continuous, (Fh(s, X(s)), ϕ0)H , s ∈ [0, T ], is continuous.
Hence

k−1∑

j=0

(Fh(tj , X(tj)), ϕ0)H∆tj −→
∫ t

0
(Fh(s, X(s)), ϕ(s))H ds

as |π| → 0 almost surely. Since Fh is bounded, there exists C > 0 such that
‖Fh(s, h)‖H ≤ C for all s ∈ [0, T ] and h ∈ H. Since (Fh(s, h), Φ0·)H : U → R is a
bounded linear operator, (Fh(s, h), Φ0·)H ∈ B2(U0, R) for all s ∈ [0, T ] and h ∈ H.
Furthermore,

‖(Fh(s, h), Φ0·)H‖B2(U0,R) ≤ ‖Fh(s, h)‖H‖Φ‖B2(U0,H) ≤ C‖Φ‖B(U,H)

√
Tr Q.

Since X has a predictable version and Fh is continuous, (Fh(s, X(s)), Φ0·) has a
predictable version with values in B2(U0, R). Since

|||(Fh(·, X(·)), Φ0·)H |||2t = E
∫ t

0
‖(Fh(s, X(s)), Φ0·)H‖2

B2(U0,R) ds

≤ tC2‖Φ‖2
B(U,H) Tr Q,

(Fh(·, X(·)), Φ0·)H ∈ N 2
W (0, t; B2(U0, R)). Hence

∫ s
0 (Fh(r, X(r)), Φ(r)dW (r))H ∈

M2
t (R). On the other hand,

Gπ(s) :=
k−1∑

j=0

(Fh(tj , X(tj)), Φ0·)Hχ(tj ,tj+i](s)

is a B(U, H)-valued predictable process for all s ∈ [0, t] since X(tj) is Ftj -measurable
for all j = 0, . . . , k − 1, and

|||Gπ|||2t = E
k−1∑

j=0

‖(Fh(tj , X(tj)), Φ0·)H‖2
B2(U0,R)∆tj ≤ tC2‖Φ‖2

B(U,H) Tr Q.
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Hence Gπ ∈ N 2
W (0, t; B2(U0, R)). Then

E

∣∣∣∣∣∣

∫ t

0
(Fh(s, X(s)), Φ(s)dW (s))H −

k−1∑

j=0

(Fh(tj , X(tj)), Φ0∆Wj)H

∣∣∣∣∣∣

2

= E
∫ t

0
‖(Fh(s, X(s)), Φ0·)H − Gπ(s)‖2

B2(U0,R) ds

= E
∫ t

0

k−1∑

j=0

‖(Fh(s, X(s)), Φ0·)H − (Fh(tj , X(tj)), Φ0·)H‖2
B2(U0,R)χ(tj ,tj+i](s) ds

≤ ‖Φ‖2
B(U,H) Tr Q E

∫ t

0

k−1∑

j=0

‖Fh(s, X(s)) − Fh(tj , X(tj))‖2
Hχ(tj ,tj+i](s) ds.

Since Fh is continuous and X is continuous, Fh(s, X(s)), s ∈ [0, T ], is continuous.
Thus

k−1∑

j=0

‖Fh(s, X(s)) − Fh(tj , X(tj))‖2
Hχ(tj ,tj+i](s) −→ 0

as |π| → 0 almost surely. Since

k−1∑

j=0

‖Fh(s, X(s)) − Fh(tj , X(tj))‖2
Hχ(tj ,tj+i](s) ≤ 4C2

for all s ∈ [0, T ], by Lebesgue’s dominated convergence theorem,

E

∣∣∣∣∣∣

∫ t

0
(Fh(s, X(s)), Φ(s)dW (s))H −

k−1∑

j=0

(Fh(tj , X(tj)), Φ0∆Wj)H

∣∣∣∣∣∣

2

−→ 0

as |π| → 0. Hence there exists a subsequence such that

k−1∑

j=0

(Fh(tj , X(tj)), Φ0∆Wj)H −→
∫ t

0
(Fh(s, X(s)), Φ(s)dW (s))H

as |π| → 0 almost surely.

The fourth term has to be divided in three parts

k−1∑

j=0

(Fhh(tj , X(tj))∆Xj , ∆Xj)H

=
k−1∑

j=0

(Fhh(tj , X(tj))ϕ0, ϕ0)H(∆tj)
2 +

k−1∑

j=0

(Fhh(tj , X(tj))Φ0∆Wj , Φ0∆Wj)H+

+
k−1∑

j=0

[(Fhh(tj , X(tj))ϕ0, Φ0∆Wj)H + (Fhh(tj , X(tj))Φ0∆Wj , ϕ0)H ]∆tj .

Since Fhh is a bounded function from [0, T ] × H to B(H), i.e., there exists D > 0
such that ‖Fhh(t, h)‖B(H) ≤ D for all (t, h) ∈ [0, T ] × H,

∣∣∣∣∣∣

k−1∑

j=0

(Fhh(tj , X(tj))ϕ0, ϕ0)H(∆tj)
2

∣∣∣∣∣∣
≤ D‖ϕ0‖2

H

k−1∑

j=0

(∆tj)
2 −→ 0
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as |π| → 0. Thus
k−1∑

j=0

(Fhh(tj , X(tj))ϕ0, ϕ0)H(∆tj)
2 −→ 0

as |π| → 0 for all ω ∈ Ω. Since W is continuous, for almost all ω ∈ Ω and all
ε > 0 there exists δ(ω) > 0 such that ‖W (t) − W (s)‖U < ε for all s, t ∈ [0, T ] and
|t − s| < δ(ω). Let |π| < δ(ω). Then

∣∣∣∣∣∣

k−1∑

j=0

[(Fhh(tj , X(tj))ϕ0, Φ0∆Wj)H + (Fhh(tj , X(tj))Φ0∆Wj , ϕ0)H ]∆tj

∣∣∣∣∣∣

≤ 2D‖ϕ0‖H‖Φ0‖B(U,H)

k−1∑

j=0

‖W (tj+1) − W (tj)‖U∆tj < 2tD‖ϕ0‖H‖Φ0‖B(U,H)ε.

Hence

k−1∑

j=0

[(Fhh(tj , X(tj))ϕ0, Φ0∆Wj)H + (Fhh(tj , X(tj))Φ0∆Wj , ϕ0)H ]∆tj −→ 0

as |π| → 0 almost surely. Let {fl}∞l=1 be an orthonormal basis in H. Then by the
Lebesgue’s dominated convergence theorem,

E[χA(Fhh(tj , X(tj))Φ0∆Wj , Φ0∆Wj)H ]

= E

[
χA

∞∑

l=1

(Fhh(tj , X(tj))Φ0∆Wj , fl)H(Φ0∆Wj , fl)H

]

=
∞∑

l=1

E[χA(Fhh(tj , X(tj))Φ0∆Wj , fl)H(Φ0∆Wj , fl)H ]

for all A ∈ Ftj and j = 0, . . . , k − 1 because for all n ∈ N

n∑

l=1

|(Fhh(tj , X(tj))Φ0∆Wj , fl)H(Φ0∆Wj , fl)H |

≤ ‖Fhh(tj , X(tj))Φ0∆Wj‖H‖Φ0∆Wj‖H ≤ D‖Φ0‖2
B(U,H)‖∆Wj‖2

U

and E‖∆Wj‖2
U = ∆tj Tr Q for all j = 0, . . . , k − 1. Since ∆Wj is independent of Ftj

and Φ∗
0F

∗
hh(tj , X(tj))fl is Ftj -measurable, according to Proposition 4.10,

E[χA(Fhh(tj , X(tj))Φ0∆Wj , fl)H(Φ0∆Wj , fl)H ]

= E[χA(∆Wj , Φ
∗
0F

∗
hh(tj , X(tj))fl)H(∆Wj , Φ

∗
0fl)H ]

= E[χAE((∆Wj , Φ
∗
0F

∗
hh(tj , X(tj))fl)H(∆Wj , Φ

∗
0fl)H |Ftj )]

= E[χA(∆tjQΦ∗
0fl, Φ

∗
0F

∗
hh(tj , X(tj))fl)H ]

= ∆tjE[χA(Fhh(tj , X(tj))Φ0QΦ∗
0fl, fl)H ]

for all A ∈ Ftj and j = 0, . . . , k − 1 and l ∈ N. Thus

E[χA(Fhh(tj , X(tj))Φ0∆Wj , Φ0∆Wj)H ]

=
∞∑

l=1

∆tjE[χA(Fhh(tj , X(tj))Φ0QΦ∗
0fl, fl)H ]



78 Stochastic Analysis in Infinite Dimensions

for all A ∈ Ftj and j = 0, . . . , k − 1. Since

n∑

l=1

|(Fhh(tj , X(tj))Φ0QΦ∗
0fl, fl)H | ≤ ‖Fhh(tj , X(tj))Φ0QΦ∗

0‖B1(H)

≤ D‖Φ0‖2
B(U,H) Tr Q

for all n ∈ N, by Lebesgue’s dominated convergence theorem,

E[χA(Fhh(tj , X(tj))Φ0∆Wj , Φ0∆Wj)H ]

= ∆tjE[χA

∞∑

l=1

(Fhh(tj , X(tj))Φ0QΦ∗
0fl, fl)H ]

= ∆tjE[χA Tr(Fhh(tj , X(tj))Φ0QΦ∗
0)]

for all A ∈ Ftj and j = 0, . . . , k − 1. Hence

E[(Fhh(tj , X(tj))Φ0∆Wj , Φ0∆Wj)H |Ftj ] = ∆tj Tr(Fhh(tj , X(tj))Φ0QΦ∗
0)

almost surely for all j = 0, . . . , k − 1. Since (Fhh(tj , X(tj))Φ0∆Wj , Φ0∆Wj)H is
Fti-measurable for all 0 ≤ j < i ≤ k − 1 and by Lemma 4.33,

E(Fhh(tj , X(tj))Φ0∆Wj , Φ0∆Wj)
2
H ≤ D2‖Φ0‖4

B(U,H)E‖∆Wj‖4
U

≤ 3D2‖Φ0‖4
B(U,H)(Tr Q)2(∆tj)

2,

we can use Lemma 4.11. Thus

E




k−1∑

j=0

(Fhh(tj , X(tj))Φ0∆Wj , Φ0∆Wj)H −
k−1∑

j=0

Tr(Fhh(tj , X(tj))Φ0QΦ∗
0)∆tj




2

=

k−1∑

j=0

[
E(Fhh(tj , X(tj))Φ0∆Wj , Φ0∆Wj)

2
H − E(Tr(Fhh(tj , X(tj))Φ0QΦ∗

0)∆tj)
2
]

≤
k−1∑

j=0

E(Fhh(tj , X(tj))Φ0∆Wj , Φ0∆Wj)
2
H

≤ 3D2‖Φ0‖4
B(U,H)(Tr Q)2

k−1∑

j=0

(∆tj)
2 −→ 0

as |π| → 0. Hence there exists a subsequence such that

k−1∑

j=0

(Fhh(tj , X(tj))Φ0∆Wj , Φ0∆Wj)H −
k−1∑

j=0

Tr(Fhh(tj , X(tj))Φ0QΦ∗
0)∆tj −→ 0

as |π| → 0 almost surely. Since Fhh is continuous, X is continuous and Tr A−Tr B =
Tr(A − B) for all A, B ∈ B1(H), the process Tr(Fhh(s, X(s))Φ0QΦ∗

0) is continuous
on [0, T ]. Therefore

k−1∑

j=0

Tr(Fhh(tj , X(tj))Φ0QΦ∗
0)∆tj −→

∫ t

0
Tr(Fhh(s, X(s))Φ0QΦ∗

0) ds



4.5. The Stochastic Integral 79

as |π| → 0 almost surely. Thus

k−1∑

j=0

(Fhh(tj , X(tj))Φ0∆Wj , Φ0∆Wj)H −→
∫ t

0
Tr(Fhh(s, X(s))Φ0QΦ∗

0) ds

as |π| → 0 almost surely.

Since Fhh is uniformly continuous on bounded subsets of [0, T ] × H, for all ε > 0
and almost all ω ∈ Ω there exists δ(ω) > 0 such that ‖Fhh(s, h)−Fhh(s, f)‖B(H) < ε
for all s ∈ [0, t], f, h ∈ Aω and ‖h − f‖H < δ(ω). Since X is continuous, for almost
all ω ∈ Ω there exists ρ(ω) > 0 such that ‖X(s) − X(r)‖H < δ(ω) for all r, s ∈ [0, t]
and |s − r| < ρ(ω). Let |π| < ρ(ω). Then

∣∣∣∣∣∣

k−1∑

j=0

(
[Fhh(tj , X̃j) − Fhh(tj , X(tj))]∆Xj , ∆Xj

)
H

∣∣∣∣∣∣
< ε

k−1∑

j=0

(∆Xj , ∆Xj)H

since ‖X̃j − X(tj)‖H = ϑj‖X(tj+1) − X(tj)‖H < δ(ω) for all j = 0, . . . , k − 1. The
examination of the fourth term showed that there exists a subsequence such that

k−1∑

j=0

(∆Xj , ∆Xj)H −→
∫ t

0
Tr(Φ0QΦ∗

0) ds = t Tr(Φ0QΦ∗
0)

as |π| → 0 almost surely. Thus there exists a subsequence such that {∑k−1
j=0 ‖∆Xj‖2

H}
is a bounded sequence almost surely. By using the subsequence

k−1∑

j=0

(
[Fhh(tj , X̃j) − Fhh(tj , X(tj))]∆Xj , ∆Xj

)
H

−→ 0

as |π| → 0 almost surely.

Therefore, if X(t) = X0 + tϕ0 + Φ0W (t), for all t ∈ [0, T ]

F (t, X(t)) − F (0, X0)

=

∫ t

0
Ft(s, X(s)) ds +

∫ t

0
(Fh(s, X(s)), ϕ0)H ds+

+

∫ t

0
(Fh(s, X(s)), Φ0dW (s))H +

1

2

∫ t

0
Tr(Fhh(s, X(s))Φ0QΦ∗

0) ds

almost surely.

If ϕ and Φ are elementary processes, there exist a sequence 0 = t0 < t1 < . . . < tk =
T and a number nm ∈ N and sets {Al

m}nm
l=1 ⊂ Ftm for all m = 0, . . . , k − 1 such that

ϕ(t, ω) =
k−1∑

m=0

nm∑

l=1

ϕl
mχAl

m
(ω)χ(tm,tm+1](t),

Φ(t, ω) =
k−1∑

m=0

nm∑

l=1

Φl
mχAl

m
(ω)χ(tm,tm+1](t)
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for all (t, ω) ∈ ΩT where ϕl
m ∈ H and Φl

m ∈ B(U, H) for all m = 0, . . . , k − 1 and
l = 1, . . . , nm. Thus

X(t) = X0 +
k−1∑

m=0

nm∑

l=1

ϕl
mχAl

m
(tm+1 ∧ t − tm ∧ t)+

+
k−1∑

m=0

nm∑

l=1

Φl
mχAl

m
(W (tm+1 ∧ t) − W (tm ∧ t))

for all t ∈ [0, T ]. Hence

X(t) = X(tm) + ϕl
m(t − tm) + Φl

m(W (t) − W (tm))

= X(tm) − ϕl
mtm − Φl

mW (tm) + ϕl
mt + Φl

mW (t)

if t ∈ [tm, tm+1] and ω ∈ Al
m for some m = 0, . . . , k − 1 and l = 1, . . . , nm. Since

X(tm)−ϕl
mtm−Φl

mW (tm) is Ftm-measurable and the Ito formula is valid pointwise
almost surely for processes of the form X(t) = X0 + tϕ0 + Φ0W (t), the Ito formula
is valid also almost surely for elementary processes ϕ and Φ.

If ϕ ∈ L1(ΩT ,PT , PT ; H) and Φ ∈ N 2
W (0, T ), by Propositions 4.25 and 4.37 there

exist a sequence {ϕn}∞n=1 of H-valued elementary processes and a sequence {Φm}∞m=1

of B(U, H)-valued elementary processes such that |||Φm − Φ|||T → 0 and ‖ϕn −
ϕ‖L1(ΩT ,PT ,PT ;H) → 0 as m, n → ∞. We define the processes X and Xn,m by

X(t) := X0 +

∫ t

0
ϕ(s) ds +

∫ t

0
Φ(s) dW (s)

Xn,m(t) := X0 +

∫ t

0
ϕn(s) ds +

∫ t

0
Φm(s) dW (s)

for all t ∈ [0, T ] and m, n ∈ N. Then X and Xn,m for all m, n ∈ N have a predictable
version. Furthermore, by the Fubini theorem,

∫

ΩT

‖X(t, ω) − Xn,m(t, ω)‖H PT (dt, dω)

=

∫ T

0
E‖X(t) − Xn,m(t)‖H dt

≤
∫ T

0

[
E

∫ t

0
‖ϕ(s) − ϕn(s)‖H ds + E‖(Φ − Φm) · W (s)‖H

]
dt

≤
∫ T

0

[
‖ϕn − ϕ‖L1(ΩT ,PT ,PT ;H) +

(
E‖(Φ − Φm) · W (s)‖2

H

) 1
2

]
dt

=

∫ T

0

[
‖ϕn − ϕ‖L1(ΩT ,PT ,PT ;H) + |||Φm − Φ|||t

]
dt

≤ T
[
‖ϕn − ϕ‖L1(ΩT ,PT ,PT ;H) + |||Φm − Φ|||T

]
−→ 0

as m, n → ∞. Hence Xn,m → X in L1(ΩT ,PT , PT ; H) as m, n → ∞. Therefore
there exists a subsequence such that Xn,m(t, ω) converges pointwise to X(t, ω) for
almost all (t, ω) ∈ ΩT . Thus F (t, Xn,m(t)) → F (t, X(t)) as m, n → ∞ almost surely
for almost all t ∈ [0, T ] because F is continuous.

Since Ft is Lipschitz continuous with respect to h with integrable Lipschitz constant,
i.e., for all t ∈ [0, T ] there exists L(t) > 0 such that |Ft(t, h)−Ft(t, f)| ≤ L(t)‖h−f‖H
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for all f, h ∈ H and L ∈ L1(0, T ), for all t ∈ [0, T ]

E
∣∣∣∣
∫ t

0
Ft(s, Xn,m(s)) ds −

∫ t

0
Ft(s, X(s)) ds

∣∣∣∣

≤ E
∫ t

0
L(s)‖Xn,m(s) − X(s)‖H ds

=

∫ t

0
L(s)E‖Xn,m(s) − X(s)‖H ds

≤ ‖L‖L1(0,T )

[
‖ϕn − ϕ‖L1(ΩT ,PT ,PT ;H) + |||Φm − Φ|||T

]
−→ 0

as m, n → ∞. Hence for all t ∈ [0, T ] there exists a subsequence such that

∫ t

0
Ft(s, Xn,m(s)) ds −→

∫ t

0
Ft(s, X(s)) ds

as m, n → ∞ almost surely.

Since Fh is bounded, for all t ∈ [0, T ]

E
∣∣∣∣
∫ t

0
(Fh(s, Xn,m(s)), ϕn(s))H ds −

∫ t

0
(Fh(s, X(s)), ϕ(s))H ds

∣∣∣∣

≤ E
∫ t

0
|(Fh(s, Xn,m(s)), ϕn(s) − ϕ(s))H | ds+

+ E
∫ t

0
|(Fh(s, Xn,m(s)) − Fh(s, X(s)), ϕ(s))H | ds

≤ E
∫ t

0
‖Fh(s, Xn,m(s))‖H‖ϕn(s) − ϕ(s)‖H ds+

+ E
∫ t

0
‖Fh(s, Xn,m(s)) − Fh(s, X(s))‖H‖ϕ(s)‖H ds

≤ C‖ϕn − ϕ‖L1(ΩT ,PT ,PT ;H) + E
∫ t

0
‖Fh(s, Xn,m(s)) − Fh(s, X(s))‖H‖ϕ(s)‖H ds.

Since Fh is continuous and ϕ ∈ L1(ΩT ,PT , PT ; H), by Lebesgue’s dominated con-
vergence theorem for all t ∈ [0, T ]

E
∣∣∣∣
∫ t

0
(Fh(s, Xn,m(s)), ϕn(s))H ds −

∫ t

0
(Fh(s, X(s)), ϕ(s))H ds

∣∣∣∣ −→ 0

as m, n → ∞. Hence for all t ∈ [0, T ] there exists a subsequence such that

∫ t

0
(Fh(s, Xn,m(s)), ϕn(s))H ds −→

∫ t

0
(Fh(s, X(s)), ϕ(s))H ds

as m, n → ∞ almost surely.
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Since Fh is bounded, for all t ∈ [0, T ]

(
E

∣∣∣∣
∫ t

0
(Fh(s, Xn,m(s)), Φm(s)dW (s))H −

∫ t

0
(Fh(s, X(s)), Φ(s)dW (s))H

∣∣∣∣
2
) 1

2

=

(∣∣∣∣E
∫ t

0
(Φ∗

m(s)Fh(s, Xn,m(s)) − Φ∗(s)Fh(s, X(s)), dW (s))U

∣∣∣∣
2
) 1

2

=

(
E

∫ t

0
‖(Φ∗

m(s)Fh(s, Xn,m(s)) − Φ∗(s)Fh(s, X(s)), ·)U‖2
B2(U0,R) ds

) 1
2

≤
(

E
∫ t

0
‖(Fh(s, Xn,m(s)), (Φm(s) − Φ(s))·)U‖2

B2(U0,R) ds

) 1
2

+

+

(
E

∫ t

0
‖([Fh(s, Xn,m(s)) − Fh(s, X(s))], Φ(s)·)U‖2

B2(U0,R) ds

) 1
2

≤
(

E
∫ t

0
‖Fh(s, Xn,m(s))‖2

H‖Φm(s) − Φ(s)‖2
B2(U0,H) ds

) 1
2

+

+

(
E

∫ t

0
‖Fh(s, Xn,m(s)) − Fh(s, X(s))‖2

H‖Φ(s)‖2
B2(U0,H) ds

) 1
2

≤ C|||Φm − Φ|||T +

(
E

∫ t

0
‖Fh(s, Xn,m(s)) − Fh(s, X(s))‖2

H‖Φ(s)‖2
B2(U0,H) ds

) 1
2

.

Since Fh is continuous and Φ ∈ N 2
W (0, T ), by Lebesgue’s dominated convergence

theorem for all t ∈ [0, T ]

E
∣∣∣∣
∫ t

0
(Fh(s, Xn,m(s)), Φm(s)dW (s))H −

∫ t

0
(Fh(s, X(s)), Φ(s)dW (s))H

∣∣∣∣
2

−→ 0

as m, n → ∞. Hence for all t ∈ [0, T ] there exists a subsequence such that

∫ t

0
(Fh(s, Xn,m(s)), Φm(s)dW (s))H −→

∫ t

0
(Fh(s, X(s)), Φ(s)dW (s))H

as m, n → ∞ almost surely.

Since Fhh(s, Xn,m(s))Φm(s)QΦ∗
m(s) and Fhh(s, X(s))Φ(s)QΦ∗(s) are nuclear oper-

ators for all s ∈ [0, T ],

|Tr[Fhh(s, Xn,m(s))Φm(s)QΦ∗
m(s)] − Tr[Fhh(s, X(s))Φ(s)QΦ∗(s)]|

= |Tr[Fhh(s, Xn,m(s))Φm(s)QΦ∗
m(s) − Fhh(s, X(s))Φ(s)QΦ∗(s)]|

≤ ‖Fhh(s, Xn,m(s))Φm(s)QΦ∗
m(s) − Fhh(s, X(s))Φ(s)QΦ∗(s)‖B1(H).
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Since Fhh is bounded, for all t ∈ [0, T ]

E
∣∣∣∣
∫ t

0
Tr(Fhh(s, Xn,m(s))Φm(s)QΦ∗

m(s)) ds −
∫ t

0
Tr(Fhh(s, X(s))Φ(s)QΦ∗(s)) ds

∣∣∣∣

≤ E
∫ t

0
‖Fhh(s, Xn,m(s))Φm(s)QΦ∗

m(s) − Fhh(s, X(s))Φ(s)QΦ∗(s)‖B1(H) ds

≤ E
∫ t

0
‖[Fhh(s, Xn,m(s)) − Fhh(s, X(s))]Φ(s)QΦ∗(s)‖B1(H) ds+

+ E
∫ t

0
‖Fhh(s, Xn,m(s))Φ(s)Q(Φ∗

m(s) − Φ∗(s))‖B1(H) ds+

+ E
∫ t

0
‖Fhh(s, Xn,m(s))(Φm(s) − Φ(s))QΦ∗

m(s)‖B1(H) ds

≤ E
∫ t

0
‖Fhh(s, Xn,m(s)) − Fhh(s, X(s))‖B(H)‖Φ(s)‖2

B2(U0,H) ds+

+ E
∫ t

0
‖Fhh(s, Xn,m(s))‖B(H)‖Φ(s)‖B2(U0,H)‖Φm(s) − Φ(s)‖B2(U0,H) ds+

+ E
∫ t

0
‖Fhh(s, Xn,m(s))‖B(H)‖Φm(s) − Φ(s)‖B2(U0,H)‖Φm(s)‖B2(U0,H) ds

≤ E
∫ t

0
‖Fhh(s, Xn,m(s)) − Fhh(s, X(s))‖B(H)‖Φ(s)‖2

B2(U0,H) ds+

+ D(|||Φ|||T + |||Φm|||T )|||Φm − Φ|||T .

Since {Φm}∞m=1 is a convergent sequence in N 2
W (0, T ), it is also bounded. Therefore

by Lebesgue’s dominated convergence theorem for all t ∈ [0, T ]

E
∣∣∣∣
∫ t

0
[Tr(Fhh(s, Xn,m(s))Φm(s)QΦ∗

m(s)) − Tr(Fhh(s, X(s))Φ(s)QΦ∗(s))] ds

∣∣∣∣ −→ 0

as m, n → ∞ since Fhh is continuous and Φ ∈ N 2
W (0, T ). Hence for all t ∈ [0, T ]

there exists a subsequence such that
∫ t

0
Tr(Fhh(s, Xn,m(s))Φm(s)QΦ∗

m(s)) ds −→
∫ t

0
Tr(Fhh(s, X(s))Φ(s)QΦ∗(s)) ds

as m, n → ∞ almost surely.

Therefore

F (t, X(t)) − F (0, X0)

=

∫ t

0
Ft(s, X(s)) ds +

∫ t

0
(Fh(s, X(s)), ϕ(s))H ds+

+

∫ t

0
(Fh(s, X(s)), Φ(s)dW (s))H +

1

2

∫ t

0
Tr(Fhh(s, X(s))Φ(s)QΦ∗(s)) ds

for almost all (t, ω) ∈ ΩT . Since both sides are continuous with respect to t, the Ito
formula is valid almost surely for all t ∈ [0, T ].

4.6 Linear Equation with Additive Noise

Let (Ω,F , P) be a probability space and {Ft}t≥0 a normal filtration. Let (H, (·, ·)H)
and (U, (·, ·)U ) be real separable Hilbert spaces and Q ∈ B(U) a positive self-adjoint
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trace class operator with KerQ = {0}. Let W (t), t ≥ 0, be a Q-Wiener process in
(Ω,F , P) with values in U with respect to the filtration {Ft}t≥0. We consider the
linear equation {

dX(t) = [AX(t) + f(t)]dt + BdW (t),

X(0) = X0

(4.14)

where A : D(A) ⊂ H → H and B : U → H are linear operators and f is an H-
valued stochastic process. We assume that A is sectorial and hence generates an
analytic semigroup {U(t)}t≥0 in H. In addition, D(A) is dense in H. Therefore the
semigroup U(t) is strongly continuous. The operator B is assumed to be bounded.
It is natural to require that f ∈ L1(ΩT ,PT , PT ; H) for some T > 0, i.e., f is an
integrable H-valued predictable process and X0 is F0-measurable.

Definition 4.44. An H-valued predictable process X(t), t ∈ [0, T ], is said to be a
(strong) solution to the stochastic initial value problem (4.14) if X(t, ω) ∈ D(A) for
almost all (t, ω) ∈ ΩT , AX ∈ L1(ΩT ,PT , PT ; H) and for all t ∈ [0, T ]

X(t) = X0 +

∫ t

0
[AX(s) + f(s)] ds + BW (t)

almost surely.

A strong solution has a continuous modification by Lemma 4.26 and Theorem 4.38.

We denote

fA(t) :=

∫ t

0
U(t − s)f(s) ds and WA(t) :=

∫ t

0
U(t − s)B dW (s)

for all t ∈ [0, T ]. The processes fA and WA have a great importance in our study of
linear equations. The following lemma and proposition present the basic properties
of fA and WA.

Lemma 4.45. The process fA has a predictable version.

Proof. Since U(t) is strongly continuous, it is measurable from [0, T ] to B(H). By
Proposition 2.2 there exist θ ∈ R and M > 0 such that ‖U(t)‖B(H) ≤ Meθt for all
t > 0. Thus U(t − ·)f is a predictable process on Ωt for all t ∈ [0, T ] and

E
∫ t

0
‖U(t − s)f(s)‖H ds ≤ E

∫ t

0
‖U(t − s)‖B(H)‖f(s)‖H ds

≤ max{1, M, MeθT }E
∫ t

0
‖f(s)‖H ds

= max{1, M, MeθT }‖f‖L1(ΩT ,PT ,PT ;H).

Hence the process fA is well-defined because the trajectories of U(t−·)f are Bochner
integrable almost surely. Furthermore, fA is adapted. Let 0 ≤ s < t ≤ T . Then

E‖fA(t) − fA(s)‖H

= E
∥∥∥∥
∫ s

0
(U(t − r) − U(s − r))f(r) dr +

∫ t

s
U(t − r)f(r) dr

∥∥∥∥
H

≤ E
∫ T

0
χ[0,s](r)‖U(t − r) − U(s − r)‖B(H)‖f(r)‖H dr+

+ E
∫ T

0
χ[s,t](r)‖U(t − r)‖B(H)‖f(r)‖H dr.
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Since U is strongly continuous and ‖U(t)‖B(H) ≤ max (1, M, MeθT ) for all t ∈
[0, T ] and f ∈ L1(ΩT ,PT , PT ; H), by Lebesgue’s dominated convergence theorem
E‖fA(t) − fA(s)‖H → 0 as |t − s| → 0. Therefore fA is stochastically continuous
since for all ε > 0 and δ > 0 there exists ρ > 0 such that E‖fA(t) − fA(s)‖H < εδ if
|t − s| < ρ, and hence

P(‖fA(t) − fA(s)‖H ≥ ε) ≤ E‖fA(t) − fA(s)‖H

ε
< δ

if |t − s| < ρ. Therefore fA has a predictable version by Proposition 4.24.

The process WA is called a stochastic convolution.

Proposition 4.46. The process WA is Gaussian, continuous in mean square and
has a predictable version. In addition,

Cov WA(t) =

∫ t

0
U(t − s)BQB∗U∗(t − s) ds

for all t ∈ [0, T ].

Proof. Since U(t) is strongly continuous, it is measurable from [0, T ] to B(H). Fur-
thermore, for all t ∈ [0, T ]

∫ t

0
‖U(t − s)B‖2

B2(U0,H) ds ≤
∫ t

0
‖U(t − s)‖2

B(H)‖B‖2
B(U,H) Tr Q ds

≤ ‖B‖2
B(U,H) Tr Q

∫ t

0
M2e2θ(t−s) ds

≤ −M2

2θ
(1 − e2θt)‖B‖2

B(U,H) Tr Q.

Hence U(t − ·)B ∈ L2(0, t; B2(U0, H) for all t ∈ [0, T ]. Thus the process WA is well
defined and adapted. Let 0 ≤ s < t ≤ T . Then

WA(t) − WA(s)

=

∫ s

0
(U(t − r) − U(s − r))B dW (r) +

∫ t

s
U(t − r)B dW (r)

=

∫ T

0
χ[0,s](r)(U(t − r) − U(s − r))B dW (r) +

∫ T

0
χ[s,t](r)U(t − r)B dW (r).
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Thus

(
E‖WA(t) − WA(s)‖2

H

) 1
2

≤
(

E
∥∥∥∥
∫ T

0
χ[0,s](r)(U(t − r) − U(s − r))B dW (r)

∥∥∥∥
2

H

) 1
2

+

+

(
E

∥∥∥∥
∫ T

0
χ[s,t](r)U(t − r)B dW (r)

∥∥∥∥
2

H

) 1
2

=

(
E

∫ T

0
‖χ[0,s](r)(U(t − r) − U(s − r))B‖2

B2(U0,H) ds

) 1
2

+

+

(
E

∫ T

0
‖χ[s,t](r)U(t − r)B‖2

B2(U0,H) ds

) 1
2

≤ ‖B‖B(U,H)

√
Tr Q

(∫ T

0
χ[0,s](r)‖U(t − r) − U(s − r)‖2

B(H) ds

) 1
2

+

+ ‖B‖B(U,H)

√
Tr Q

(∫ T

0
χ[s,t](r)‖U(t − r)‖2

B(H) ds

) 1
2

.

Since ‖U(t)‖B(H) ≤ max (1, M, MeθT ) for all t ∈ [0, T ] and U is strongly continuous,
by Lebesgue’s dominated convergence theorem E‖WA(t)−WA(s)‖2

H → 0 as |t−s| →
0. Therefore WA is mean square continuous. Hence WA has a predictable version
by Lemma 4.20 and Proposition 4.24.

We want to show that for all n ∈ N and t1, . . . , tn ∈ [0, T ] the Hn-valued random
variable (WA(t1), . . . , WA(tn)) is Gaussian. Let h1, . . . , hn ∈ H. We need to prove
that

((WA(t1), . . . , WA(tn)), (h1, . . . , hn))Hn :=
n∑

i=1

(WA(ti), hi)H

is a real valued Gaussian random variable. We may assume that 0 ≤ t1 < . . . < tn ≤
T . Then

n∑

i=1

(WA(ti), hi)H =
n∑

i=1

(∫ ti

0
U(ti − s)B dW (s), hi

)

H

=
n∑

i=1




i∑

j=1

∫ tj

tj−1

U(ti − s)B dW (s), hi




H

=

n∑

j=1




∫ tj

tj−1

U(tj − s)B dW (s),

n∑

i=j

U∗(ti − tj)hi




H

.

Since U(t − ·)B ∈ L2(0, t; B2(U0, H) for all t ∈ [0, T ],

∫ t

s
U(t − r)B dW (r)

is a Gaussian Ft-measurable random variable independent of Fs for all 0 ≤ s <
t ≤ T by Lemma 4.42. The sum of mutually independent real valued Gaussian
random variables is Gaussian. Hence WA is a Gaussian process. By Lemma 4.42
the covariance of WA(t) is as claimed.
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Let X(t), t ∈ [0, T ], be a strong solution to the stochastic initial value problem (4.14)
and t ∈ [0, T ]. Then there exists a sequence {tn}∞n=1 such that tn < t for all n ∈ N and
tn → t as n → ∞. Let h ∈ H and n ∈ N. We define the function F : [0, tn]×H → R
by F (s, x) = (U(t − s)x, h)H . Then F is continuously differentiable with respect to
s and twice continuously differentiable with respect to x and





Fs(s, x) = (−AU(t − s)x, h)H ,

Fx(s, x) = U∗(t − s)h,

Fxx(s, x) = 0

since U(t) is strongly continuous, AU(t) is continuous on (0,∞) and for all t > 0
{
‖U(t)‖B(H) ≤ Meθt,

‖AU(t)‖B(H) ≤ Ct−1e(θ+1)t

for some θ ∈ R, M > 0 and C > 0 according to Proposition 2.2. Furthermore, Fs

is uniformly continuous on bounded subsets of [0, tn] × H and Lipschitz continuous
with respect to x with Lipschitz constant

L(s) = C‖h‖He(θ+1)(t−s)(t − s)−1,

which is integrable on [0, tn], and Fx is bounded. Then by the Ito formula,

F (tn, X(tn)) = F (0, X0) +

∫ tn

0
(Fx(s, X(s)), BdW (s))H+

+

∫ tn

0
Fs(s, X(s)) ds +

∫ tn

0
(Fx(s, X(s)), AX(s) + f(s))H ds

= (U(t)X0, h)H +

∫ tn

0
(U∗(t − s)h, AX(s) + f(s))H ds+

+

∫ tn

0
(−AU(t − s)X(s), h)H ds +

∫ tn

0
(U∗(t − s)h, BdW (s))H

= (U(t)X0, h)H +

∫ tn

0
(U(t − s)AX(s) − AU(t − s)X(s), h)H ds+

+

∫ tn

0
(U(t − s)f(s), h)H ds +

∫ tn

0
(U(t − s)BdW (s), h)H

almost surely. Since AU(t)x = U(t)Ax for all x ∈ D(A) and X(t, ω) ∈ D(A) for
almost all (t, ω) ∈ ΩT ,

(U(t − tn)X(tn), h)H

=

(
U(t)X0 +

∫ tn

0
U(t − s)f(s) ds +

∫ tn

0
U(t − s)BdW (s), h

)

H

almost surely. Thus

U(t − tn)X(tn) = U(t)X0 +

∫ tn

0
U(t − s)f(s) ds +

∫ tn

0
U(t − s)BdW (s)

almost surely. Since the strong solution has a continuous modification, the ana-
lytic semigroup is strongly continuous and the integrals are continuous processes by
Lemma 4.26 and Theorem 4.38,

X(t) = U(t)X0 +

∫ t

0
U(t − s)f(s) ds +

∫ t

0
U(t − s)BdW (s)

for all t ∈ [0, T ] almost surely.
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Theorem 4.47. Under the above assumptions if the stochastic initial value problem
(4.14) has a strong solution, it is given by the formula

X(t) = U(t)X0 +

∫ t

0
U(t − s)f(s) ds +

∫ t

0
U(t − s)BdW (s) (4.15)

for all t ∈ [0, T ] almost surely.

By Lemma 4.45 and Proposition 4.46 the right hand side of (4.15) has a predictable
modification. It is natural to consider Process (4.15) as a generalized solution to
the stochastic initial value problem (4.14) even if it is not the strong solution in the
sense of Definition 4.44.

Definition 4.48. The predictable process given by the formula

X(t) = U(t)X0 +

∫ t

0
U(t − s)f(s) ds +

∫ t

0
U(t − s)BdW (s)

for all t ∈ [0, T ] almost surely is called the weak solution to the stochastic initial
value problem (4.14).



Chapter 5

Complete Electrode Model

In electrical impedance tomography (EIT) electric currents are applied to electrodes
on the surface of an object and the resulting voltages are measured using the same
electrodes. If the conductivity distribution inside the object is known, the forward
problem of EIT is to calculate the electrode potentials corresponding to given elec-
trode currents. In this chapter we introduce the most realistic model for the EIT, the
complete electrode model (CEM). It takes into account the electrodes on the surface
of the object as well as contact impedances between the object and electrodes. The
existence and uniqueness of the weak solution to the complete electrode model in
bounded domains has been shown in the article [48]. Usually in applications the
requirement of the boundedness of the object is fulfilled. Since we are interested in
electrical impedance process tomography and assume that the pipeline is infinitely
long, we need the analogous result in unbounded domains. Because of the state
estimation approach to the electrical impedance process tomography problem we
examine the Fréchet differentiability of the electrode potentials with respect to the
conductivity distribution. The results concerning unbounded domains are made by
the author.

5.1 Complete Electrode Model in Bounded Domains

Let D be a bounded domain in Rn, n ≥ 2, with a smooth boundary ∂D and σ a
conductivity distribution in D. We assume that σ ∈ L∞(D̄), i.e., σ is essentially
bounded in the domain D up to the boundary. To the surface of the body D we
attach L electrodes. We identify the electrode with the part of the surface it contacts.
These subsets of ∂D we denote by el for all 1 ≤ l ≤ L. The electrodes el are assumed
to be open connected subsets of ∂D for all 1 ≤ l ≤ L whose closures are disjoint.
In the case n ≥ 3 we assume that the boundaries of electrodes are smooth curves
on ∂D. Through these electrodes we inject current into the body and on the same
electrodes we measure the resulting voltages. The current applied to the electrode el

is marked with Il for all 1 ≤ l ≤ L. We call a vector I := (I1, . . . , IL)T of L currents
a current pattern if it satisfies the conservation of charge condition

∑L
l=1 Il = 0.

The corresponding voltage pattern we denote by U := (U1, . . . , UL)T . We choose the
ground or reference potential so that U1 = 0. If the voltage pattern U instead of the
current pattern I were given, the electric potential u in the interior of the domain

89
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D would satisfy the boundary value problem

∇ · σ∇u = 0 in D, (5.1)

u + zlσ
∂u

∂ν
= Ul on el, 1 ≤ l ≤ L, (5.2)

σ
∂u

∂ν
= 0 on ∂D \ ∪L

l=1el (5.3)

where zl ∈ R+ is the contact impedance on the electrode el for all 1 ≤ l ≤ L and ν
is the exterior unit normal on ∂D. We denote z := (z1, . . . , zL)T . The weak solution
to the boundary value problem (5.1)–(5.3) is defined to be the solution u ∈ H1(D)
to the variational problem

∫

D
σ(x)∇u(x) · ∇v(x) dx +

L∑

l=1

1

zl

∫

el

u(x)v(x) dS(x) =
L∑

l=1

1

zl
Ul

∫

el

v(x) dS(x)

for all v ∈ H1(D) with appropriate assumptions on the conductivity σ and contact
impedances z. The corresponding current pattern would be given by

Il =

∫

el

σ
∂u

∂ν
dS

for all 1 ≤ l ≤ L. Since we want to inject current and measure voltage, the boundary
value problem we are interested in is

∇ · σ∇u = 0 in D, (5.4)

σ
∂u

∂ν
= 0 on ∂D \ ∪L

l=1el, (5.5)
∫

el

σ
∂u

∂ν
dS = Il, 1 ≤ l ≤ L (5.6)

when the current pattern I is known. Since the boundary value problem (5.4)–(5.6)
does not have a unique solution, we add an extra boundary condition, namely

u + zlσ
∂u

∂ν
= Ul on el, 1 ≤ l ≤ L. (5.7)

The boundary value problem (5.4)–(5.7) is called the complete electrode model. We
assume that the conductivity distribution and contact impedances are known. For
a given current pattern I the solution to the complete electrode model contains the
electric potential u in the interior of the body as well as L surface potentials U . We
are looking for the solution from the space H := H1(D) ⊕ RL. In the article [48] it
has been shown that the complete electrode model has the variational formulation

B((u, U), (v, V )) =
L∑

l=1

IlVl (5.8)

for all (v, V ) ∈ H where B : H × H → R is the bilinear form

B((u, U), (v, V )) :=

∫

D
σ(x)∇u(x) ·∇v(x) dx+

L∑

l=1

1

zl

∫

el

(u(x)−Ul)(v(x)−Vl) dS(x)

for all (u, U), (v, V ) ∈ H. We notice that if B((u, U), (u, U)) = 0, then u = U1 =
. . . = UL = constant. Hence the variational problem (5.8) for all (v, V ) ∈ H cannot
have a unique solution in H. We can always add a constant to the solution. Thus
we need to choose the ground potential.
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Theorem 5.1. [48, Theorem 3.3 and Corollary 3.4] Let us assume that there are
strictly positive constants σ0, σ1 and Z such that σ0 ≤ σ(x) ≤ σ1 for almost all
x ∈ D̄ and zl > Z for all 1 ≤ l ≤ L. Then for a given current pattern (Il)

L
l=1 ∈ RL

there exists a unique (u, U) ∈ H satisfying

B((u, U), (v, V )) =
L∑

l=1

IlVl

for all (v, V ) ∈ H if the ground potential is chosen such a way that U1 = 0.

In the article [48] it is assumed that σ is continuously differentiable in the domain
D up to the boundary, i.e., σ ∈ C1(D̄) and the ground potential is chosen such a
way that

∑L
l=1 Ul = 0. Nevertheless, in the proof of Theorem 5.1 the assumption of

continuous differentiability is not required and any appropriate choice of the ground
potential ensures the uniqueness. Hence by Theorem 5.1 for all current patterns the
complete electrode model has a unique weak solution in H if it is assumed that the
ground potential is chosen such a way that U1 = 0.

5.2 Complete Electrode Model in Unbounded Domains

Let D be an unbounded domain in Rn, n ≥ 2. We use the same notation as above.
All assumptions made in Section 5.1 are expected to be valid also in this section.
In addition, we suppose that the electrode el is a bounded subset of ∂D for all
1 ≤ l ≤ L. We are interested in such a weak solution to the complete electrode
model that the electric potential u is locally square integrable function and its weak
derivatives are square integrable, i.e., u ∈ L2

loc(D) and ∇u ∈ L2(D; Rn). The local
integrability is needed in unbounded domains since we allow the electric potential to
be constant and the only square integrable constant function in unbounded domains
is the zero function. Our aim is to prove that the complete electrode model has
a unique weak solution. We need to modify the definition of the solution space
H. Let K be a bounded connected open subset of D such that ∂K is smooth and
∪L

l=1el ⊂ ∂K. We define the norm ‖ · ‖H1
K(D) by

‖ϕ‖H1
K(D) :=

(∫

D
‖∇ϕ(x)‖2

Rn dx +

∫

K
|ϕ(x)|2 dx

) 1
2

for all ϕ ∈ C∞
0 (Rn) and the space H1

K(D) to be the closure of the set {ϕ|D : ϕ ∈
C∞

0 (Rn)} in the norm ‖ · ‖H1
K(D). Then u ∈ L2(K) and ∇u ∈ L2(D; Rn) for all

u ∈ H1
K(D). We denote H := H1

K(D) ⊕ RL and

‖(u, U)‖H :=
(
‖u‖2

H1
K(D) + ‖U‖2

RL

) 1
2

for all (u, U) ∈ H. We define another norm in H by

‖(u, U)‖◦ :=

(
‖∇u‖2

L2(D;Rn) +
L∑

l=1

∫

el

|u(x) − Ul|2 dS(x) + |U1|2
) 1

2

for all (u, U) ∈ H. The norms ‖ · ‖H and ‖ · ‖◦ are equivalent.
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Lemma 5.2. There exist constants 0 < λ ≤ Λ < ∞ such that

λ‖(u, U)‖◦ ≤ ‖(u, U)‖H ≤ Λ‖(u, U)‖◦
for all (u, U) ∈ H.

Proof. Let (u, U) ∈ H. By examining the norm ‖ · ‖◦ we obtain that

‖(u, U)‖2
◦ = ‖∇u‖2

L2(D;Rn) +
L∑

l=1

∫

el

|u(x) − Ul|2 dS(x) + |U1|2

≤ ‖∇u‖2
L2(D;Rn) + 2

L∑

l=1

∫

el

|u(x)|2 dS(x) + 2
L∑

l=1

m(el)|Ul|2 + |U1|2

≤ ‖∇u‖2
L2(D;Rn) + 2‖u‖2

L2(∂K) +

(
2 max

1≤l≤L
(m(el)) + 1

)
‖U‖2

RL

where m(el) is the area of the lth electrode for all 1 ≤ l ≤ L. By the continuous

imbedding H
1
2 (∂K) ⊂ L2(∂K) and the trace theorem,

‖u‖L2(∂K) ≤ ‖u‖
H

1
2 (∂K)

≤ C‖u‖H1(K) ≤ C‖u‖H1
K(D)

for all u ∈ H1
K(D). Hence

‖(u, U)‖2
◦ ≤ C

(
‖u‖2

H1
K(D) + ‖U‖2

RL

)
= C‖(u, U)‖2

H.

Thus the first part of the claim is proved.

Let us assume that there does not exist a constant Λ > 0 such that ‖(u, U)‖H ≤
Λ‖(u, U)‖◦ for all (u, U) ∈ H. We pick a sequence {(un, Un)}∞n=1 ⊂ H such that
‖(un, Un)‖H = 1 and ‖(un, Un)‖◦ < 1

n for all n ∈ N. Then {un}∞n=1 is a bounded
sequence in H1(K) since

‖un‖H1(K) ≤ ‖un‖H1
K(D) ≤ ‖(un, Un)‖H = 1

for all n ∈ N. By the compact imbedding theorem of Sobolev spaces over bounded
domains there exists a subsequence {unk}∞k=1 such that unk → u in L2(K) as k → ∞
for some u ∈ L2(K). However, because for all n ∈ N

‖∇un‖L2(K;Rn) ≤ ‖∇un‖L2(D;Rn) ≤ ‖(un, Un)‖◦ <
1

n
,

{unk}∞k=1 is a Cauchy sequence in H1(K). Hence unk → u in H1(K) as k → ∞.
Since ∇un → 0 in L2(D; Rn) as n → ∞, the limit u satisfies ∇u = 0 in K, i.e.,
u = constant = c in K. If we define u to be the constant c in D, then unk → u in
H1

K(D) as k → ∞. In addition,
∫

el

|un(x) − Un
l |2 dS(x) =

∫

el

|un(x) − c − (Un
l − c)|2 dS(x)

=

∫

el

|un(x) − c|2 dS(x) + |Un
l − c|2m(el)+

− 2 (Un
l − c)

∫

el

(un(x) − c) dS(x)

≥ −2|Un
l − c|

∫

el

|un(x) − c| dS(x) + |Un
l − c|2m(el)
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for all 1 ≤ l ≤ L and n ∈ N. Since ‖(un, Un)‖◦ < 1
n ,

m(el)|Un
l − c|2 <

1

n2
+ 2|Un

l − c|
∫

el

|un(x) − c| dS(x)

for all 1 ≤ l ≤ L and n ∈ N. Since

|Un
l − c|

∫

el

|un(x) − c| dS(x) ≤ (|Un
l | + |c|)

√
m(el)

(∫

el

|un(x) − c|2 dS(x)

) 1
2

≤ (1 + |c|)
√

m(el)‖un − c‖L2(∂K)

≤ C (1 + |c|)
√

m(el)‖un − c‖H1(K),

we get

m(el)|Un
l − c|2 <

1

n2
+ 2C (1 + |c|)

√
m(el)‖un − c‖H1(K)

for all 1 ≤ l ≤ L and n ∈ N. Thus Unk
l converges to c as k → ∞ for all 1 ≤ l ≤ L.

Since |Un
1 | ≤ ‖(un, Un)‖◦ < 1

n for all n ∈ N, we have Un
1 → 0 as n → ∞. Thus

c = 0. This is a contradiction because

1 = ‖(unk , Unk)‖2
H = ‖unk‖2

H1
K(D) + ‖Unk‖2

RL −→ 0

as k → ∞. Hence the second part of the claim is valid.

Since the norms ‖ · ‖H and ‖ · ‖◦ are equivalent and the norm ‖ · ‖◦ does not depend
on the set K, the Banach space H is independent of K, despite of the definition. If
(u, U) ∈ H, then u is square integrable in all bounded connected open subsets K of
D such that ∂K is smooth and ∪L

l=1el ⊂ ∂K. Therefore u is locally square integrable
in D. Thus we may expect to find a weak solution to the complete electrode model
from the space H. Since we want to choose the ground potential such a way that
U1 = 0, we are looking for the weak solution to the complete electrode model from
a subspace of H, namely H0 := {(u, U) ∈ H : U1 = 0}.
Theorem 5.3. Let us assume that there are strictly positive constants σ0, σ1 and Z
such that σ0 ≤ σ(x) ≤ σ1 for almost all x ∈ D̄ and zl > Z for all 1 ≤ l ≤ L. Then
for a given current pattern (Il)

L
l=1 ∈ RL there exists a unique (u, U) ∈ H0 satisfying

B((u, U), (v, V )) =
L∑

l=1

IlVl

for all (v, V ) ∈ H0.

Proof. The norm ‖·‖◦ defines an inner product (·, ·)◦ in H in a natural way. Hence H
is a Hilbert space. Since the subspace H0 is closed, it is a Hilbert space. Furthermore,

‖(u, U)‖2
◦ = ‖∇u‖2

L2(D;Rn) +
L∑

l=1

∫

el

|u(x) − Ul|2 dS(x)

for all (u, U) ∈ H0. We want to use the Lax-Milgram lemma [54, Theorem III.7] in
H0. The form B is coercive in H0 since

|B((u, U), (u, U))| =

∫

D
σ(x)‖∇u(x)‖2

Rn dx +
L∑

l=1

1

zl

∫

el

|u(x) − Ul|2 dS(x)

≥ min

(
σ0,

1

z1
, . . . ,

1

zL

)
‖(u, U)‖2

◦
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for all (u, U) ∈ H0. By Hölder’s inequality,

|B((u, U), (v, V ))|

≤
∫

D
σ(x)|∇u(x) · ∇v(x)| dx +

L∑

l=1

1

zl

∫

el

|u(x) − Ul||v(x) − Vl| dS(x)

≤ σ1

(∫

D
‖∇u(x)‖2

Rn dx

) 1
2
(∫

D
‖∇v(x)‖2

Rn dx

) 1
2

+

+
1

Z

L∑

l=1

(∫

el

|u(x) − Ul|2 dS(x)

) 1
2
(∫

el

|v(x) − Vl|2 dS(x)

) 1
2

≤ σ1‖∇u‖L2(D;Rn)‖∇v‖L2(D;Rn)+

+
1

Z

(
L∑

l=1

∫

el

|u(x) − Ul|2 dS(x)

) 1
2
(

L∑

l=1

∫

el

|v(x) − Vl|2 dS(x)

) 1
2

≤
(

σ1 +
1

Z

)
‖(u, U)‖◦‖(v, V )‖◦

(5.9)

for all (u, U), (v, V ) ∈ H0. Hence the bilinear form B is bounded in H0. Therefore
the form B fulfills the assumptions of the Lax-Milgram lemma. We need to show
that the right hand side of the variational formulation (5.8) is a linear continuous
mapping for all current patterns. The linear mapping

f : H0 → R, (v, V ) 7→
L∑

l=1

IlVl

is well defined for all current patterns (Il)
L
l=1 ∈ RL. Let (v, V ) ∈ H0. Then

|f(v, V )| ≤ ‖I‖RL‖V ‖RL ≤ ‖I‖RL‖(v, V )‖H ≤ Λ‖I‖RL‖(v, V )‖◦.

Hence the mapping f is continuous. Thus by the Lax-Milgram lemma there exists a
unique element in H0 satisfying the variational formula (5.8) for all (v, V ) ∈ H0.

The form B is independent of K. Hence for all current patterns (Il)
L
l=1 ∈ RL the

unique (u, U) ∈ H0 satisfying the variational formulation (5.8) for all (v, V ) ∈ H0

does not depend on the choice of K.

Corollary 5.4. Let us assume that the hypotheses of Theorem 5.3 are satisfied.
Then there exists a unique (u, U) ∈ H0 satisfying the variational formulation (5.8)
for all (v, V ) ∈ H.

Proof. Let (u, U) be the unique element in H0 satisfying the variational formulation
(5.8) for all (v, V ) ∈ H0 given by Theorem 5.3. For an arbitrary (v, V ) ∈ H we
define (w, W ) := (v − V1, V − V1). Then (w, W ) ∈ H0. Hence B((u, U), (w, W )) =∑L

l=1 IlWl. Since
∑L

l=1 Il = 0 and B((u, U), (c, (c, . . . , c)T )) = 0 for all c ∈ R and

(u, U) ∈ H, we obtain B((u, U), (v, V )) =
∑L

l=1 IlVl for all (v, V ) ∈ H. Since
B(u, U), (v, V )) = 0 for all (v, V ) ∈ H if and only if u = U1 = . . . = UL = constant,
(u, U) is the unique element in H0 satisfying the variational formulation (5.8) for all
(v, V ) ∈ H.
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We still need to prove that the solution to the variational problem (5.8) for all
(v, V ) ∈ H satisfies the complete electrode model.

Lemma 5.5. If (u, U) ∈ H satisfies the variational formulation (5.8) for all (v, V ) ∈
H, then (u, U) also satisfies the complete electrode model (5.4)–(5.7).

Proof. If (u, U) ∈ H satisfies the variational formulation (5.8) for all (v, V ) ∈ H,
Equations (5.4)–(5.7) are obtained by considering particular choices of (v, V ) ∈ H.
Let v ∈ C∞

0 (D) and V = 0. Then the variational formulation (5.8) is
∫

D
σ(x)∇u(x) · ∇v(x) dx = 0.

Hence in the weak sense u satisfies ∇ · σ∇u = 0 in D. Let v ∈ C∞
0 (Rn) and R > 0

be such a constant that supp v ⊂ B(0, R). Then by Green’s formula,

0 =

∫

D
v(x)∇ · σ(x)∇u(x) dx =

∫

D∩B(0,R)
v(x)∇ · σ(x)∇u(x) dx

=

∫

∂(D∩B(0,R))
σ(x)

∂u(x)

∂ν
v(x) dS(x) −

∫

D∩B(0,R)
σ(x)∇u(x) · ∇v(x) dx

=

∫

∂D
σ(x)

∂u(x)

∂ν
v(x) dS(x) −

∫

D
σ(x)∇u(x) · ∇v(x) dx.

Therefore ∫

D
σ(x)∇u(x) · ∇v(x) dx =

∫

∂D
σ(x)

∂u(x)

∂ν
v(x) dS(x)

for all v ∈ C∞
0 (Rn). If v ∈ C∞

0 (Rn) and V = 0,

0 =

∫

D
σ(x)∇u(x) · ∇v(x) dx +

L∑

l=1

1

zl

∫

el

(u(x) − Ul)v(x) dS(x)

=

∫

∂D

(
σ(x)

∂u(x)

∂ν
+

L∑

l=1

1

zl
χel

(x)(u(x) − Ul)

)
v(x) dS(x).

Since C∞
0 (∂D) is dense in L2(∂D),

σ
∂u

∂ν
+

L∑

l=1

1

zl
χel

(u − Ul) = 0 (5.10)

on ∂D. Hence (u, U) satisfies the boundary conditions (5.5) and (5.7). Let v ∈
C∞

0 (Rn) and V ∈ RL. Then

L∑

l=1

IlVl =

∫

∂D
σ(x)

∂u(x)

∂ν
v(x) dS(x) +

L∑

l=1

1

zl

∫

el

(u(x) − Ul)(v(x) − Vl) dS(x)

=

∫

∂D

(
σ(x)

∂u(x)

∂ν
+

L∑

l=1

1

zl
χel

(x)(u(x) − Ul)

)
v(x) dS(x)+

−
L∑

l=1

1

zl
Vl

∫

el

(u(x) − Ul) dS(x)

=
L∑

l=1

1

zl

(
m(el)Ul −

∫

el

u(x) dS(x)

)
Vl.
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Since V ∈ RL is arbitrary,

1

zl

(
m(el)Ul −

∫

el

u(x) dS(x)

)
= Il

for all 1 ≤ l ≤ L. Then by the boundary condition (5.10),
∫

el

σ
∂u

∂ν
dS(x) =

1

zl

∫

el

(Ul − u(x)) dS(x) = Il

for all 1 ≤ l ≤ L. Hence (u, U) satisfies the complete electrode model.

Definition 5.6. For all current patterns the weak solution to the complete electrode
model (5.4)–(5.7) in unbounded domains is the solution to the variational problem
(5.8) for all for all (v, V ) ∈ H given by Corollary 5.4.

In the article [48] the proof of the existence and uniqueness of the weak solution to
the complete electrode model in bounded domains is done by using the quotient space
H/R. The same procedure would also work in unbounded domains by replacing H
with H. Since the choice of the ground potential is essential for the uniqueness, we
wanted to restrict ourselves to the subspace H0 and hence avoid the quotient space
H/R. It seems to be the natural way to solve the problem.

5.3 The Fréchet Differentiability of U

In the forward problem of EIT we are interested in the surface potentials U . The
electric potential u in the interior of the domain D is needed in the mathemat-
ical formulation of the problem. By Corollary 5.4 there exists a function which
maps the conductivity distribution, contact impedances and current pattern to the
corresponding voltage pattern, i.e., (σ, z, I) 7→ U if the ground potential is chosen
such a way that U1 = 0. We want to show that this mapping is Fréchet differenti-
able with respect to the conductivity distribution σ. In Theorem 5.3 it is assumed
that σ ∈ L∞(D̄) and there are strictly positive constants σ0, σ1 and Z such that
σ0 ≤ σ(x) ≤ σ1 for almost all x ∈ D̄ and zl > Z for all 1 ≤ l ≤ L. We define the
subset Σ(D) of L∞(D̄) by

Σ(D) := {σ ∈ L∞(D̄) : there are strictly positive constants σ0 and σ1

such that σ0 ≤ σ(x) ≤ σ1 for almost all x ∈ D̄}.

Then (σ, 1/z) ∈ Σ(D)⊕RL
+ if and only if σ and z satisfy the assumptions of Theorem

5.3. If (σ, z) ∈ Σ(D) ⊕ RL
+, we denote

Bσ,z((u, U), (v, V ))

:=

∫

D
σ(x)∇u(x) · ∇v(x) dx +

L∑

l=1

zl

∫

el

(u(x) − Ul)(v(x) − Vl) dS(x)

for all (u, U), (v, V ) ∈ H.

Theorem 5.7. Let (Il)
L
l=1 ∈ RL be a current pattern. The mapping

M : Σ(D) ⊕ RL
+ → H0, (σ, z) 7→ (u, U)
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where (u, U) is the solution the variational problem

Bσ,z((u, U), (v, V )) =
L∑

l=1

IlVl

for all (v, V ) ∈ H is Fréchet differentiable. The derivative M′(σ, z) satisfies the
following equation: Let (s, ζ) ∈ L∞(D̄) ⊕ RL. Then M′(σ, z)(s, ζ) =: (w, W ) ∈ H0

is the solution to the variational problem

Bσ,z((w, W ), (v, V ))

= −
∫

D
s(x)∇u0(x) · ∇v(x) dx −

L∑

l=1

ζl

∫

el

(u0(x) − U0
l )(v(x) − Vl) dS(x)

(5.11)

for all (v, V ) ∈ H where (u0, U0) := M(σ, z).

The Fréchet differentiability of a mapping (σ, z) 7→ [u, U ] where [u, U ] ∈ H/R is the
solution the variational problem

Bσ,z([u, U ], [v, V ]) =
L∑

l=1

IlVl

for all [v, V ] ∈ H/R is shown in the article [18] with the assumption that the domain
D is bounded and the conductivity distribution is piecewise continuous.

Proof of Theorem 5.7. If (σ, z) ∈ Σ(D)⊕RL
+, by Corollary 5.4 the variational prob-

lem

Bσ,z((u, U), (v, V )) =
L∑

l=1

IlVl

for all (v, V ) ∈ H has a unique solution (u, U) ∈ H0. Hence the mapping M is well
defined.

Let (σ, z) ∈ Σ(D) ⊕ RL
+ and (s, ζ) ∈ L∞(D̄) ⊕ RL. We denote (u0, U0) := M(σ, z).

We notice that

∫

D
s(x)∇u0(x) · ∇v(x) dx +

L∑

l=1

ζl

∫

el

(u0(x) − U0
l )(v(x) − Vl) dS(x)

= Bs,ζ((u
0, U0), (v, V ))

for all (v, V ) ∈ H. Since (s, ζ) ∈ L∞(D̄) ⊕ RL, by Inequality (5.9),

|Bs,ζ((u
0, U0), (v, V ))| ≤

(
‖s‖L∞(D̄) + ‖ζ‖l∞

) ∥∥(u0, U0)
∥∥
◦ ‖(v, V )‖◦

for all (v, V ) ∈ H0. Thus the right hand side of (5.11) is a continuous linear mapping
from H0 to R. By the Lax-Milgram lemma there exists a unique (w, W ) ∈ H0 such
that (w, W ) satisfies the variational formulation (5.11) for all (v, V ) ∈ H0. Similarly
to the proof of Corollary 5.4 we can show that (w, W ) satisfies the variational for-
mulation (5.11) for all (v, V ) ∈ H. Thus the mapping Tσ,z : (s, ζ) 7→ (w, W ) is well
defined. Obviously, Tσ,z is linear. We define the norm in L∞(D̄) ⊕ RL to be

‖(s, ζ)‖L∞(D̄)⊕RL := ‖s‖L∞(D̄) + ‖ζ‖l∞
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for all (s, ζ) ∈ L∞(D̄) ⊕ RL. Hence the operator Tσ,z is also bounded since by the
coercivity of the form Bσ,z in H0,

‖(w, W )‖2
◦ ≤ C(σ, z)|Bσ,z((w, W ), (w, W ))|

≤ C(σ, z)

[ ∫

D
|s(x)||∇u0(x) · ∇w(x)| dx+

+
L∑

l=1

|ζl|
∫

el

|u0(x) − U0
l ||w(x) − Wl| dS(x)

]

≤ C(σ, z)
(
‖s‖L∞(D̄) + ‖ζ‖l∞

) ∥∥(u0, U0)
∥∥
◦ ‖(w, W )‖◦.

We want to show that Tσ,z is the Fréchet derivative of the mapping M in the point
(σ, z) ∈ Σ(D) ⊕ RL

+. The set Σ(D) ⊕ RL
+ is an open subset of L∞(D̄) ⊕ RL in the

norm ‖ · ‖L∞(D̄) + ‖ · ‖l∞ . Let

‖(s, ζ)‖L∞(D̄)⊕RL <
1

2
min

(∥∥∥∥
1

σ

∥∥∥∥
−1

L∞(D̄)

, z1, . . . , zL

)
.

Then (σ +s, z + ζ) ∈ Σ(D)⊕RL
+. Let us denote (u, U) := M(σ +s, z + ζ). We know

that for all (v, V ) ∈ H

Bσ,z((u
0, U0), (v, V )) =

L∑

l=1

IlVl = Bσ+s,z+ζ((u, U), (v, V )).

Thus for all (v, V ) ∈ H
Bσ,z((u − u0, u − U0), (v, V ))

= −
∫

D
s(x)∇u(x) · ∇v(x) dx −

L∑

l=1

ζl

∫

el

(u(x) − Ul)(v(x) − Vl) dS(x).

Hence

Bσ,z((u − u0 − w, U − U0 − W ), (v, V ))

= −
∫

D
s(x)∇(u − u0)(x) · ∇v(x) dx+

−
L∑

l=1

ζl

∫

el

((u − u0)(x) − (Ul − U0
l ))(v(x) − Vl) dS(x)

for all (v, V ) ∈ H. Therefore by the coercivity of the form Bσ,z in H0,
∥∥(u − u0 − w, U − U0 − W )

∥∥2

◦
≤ C(σ, z)|Bσ,z((u − u0 − w, U − U0 − W ), (u − u0 − w, U − U0 − W ))|

≤ C(σ, z)

[ ∫

D
|s(x)||∇(u − u0)(x) · ∇(u − u0 − w)(x)| dx+

+
L∑

l=1

|ζl|
∫

el

|(u − u0)(x) − (Ul − U0
l )|×

× |(u − u0 − w)(x) − (Ul − U0
l − Wl)| dS(x)

]

≤ C(σ, z)
(
‖s‖L∞(D̄) + ‖ζ‖l∞

) ∥∥(u, U) − (u0, U0)
∥∥
◦
∥∥(u, U) − (u0, U0) − (w, W )

∥∥
◦ .
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Furthermore,
∥∥(u − u0, U − U0)

∥∥2

◦
≤ C(σ, z)|Bσ,z((u − u0, U − U0), (u − u0, U − U0))|

≤ C(σ, z)

[ ∫

D
|s(x)||∇u(x) · ∇(u − u0)(x)| dx+

+
L∑

l=1

|ζl|
∫

el

|u(x) − Ul||(u − u0)(x) − (Ul − U0
l )| dS(x)

]

≤ C(σ, z)
(
‖s‖L∞(D̄) + ‖ζ‖l∞

)
‖(u, U)‖◦

∥∥(u, U) − (u0, U0)
∥∥
◦ .

Hence
∥∥(u − u0 − w, U − U0 − W )

∥∥
◦ ≤ C(σ, z)

(
‖s‖L∞(D̄) + ‖ζ‖l∞

)2
‖(u, U)‖◦ .

Since (u, U) depends on (s, ζ), we need to estimate its norm. By the coercivity of
the form Bσ+s,z+ζ in H0,

‖(u, U)‖2
◦ ≤ C(σ, s, z, ζ)|Bσ+s,z+ζ((u, U), (u, U))|

= C(σ, s, z, ζ)|Bσ,z((u
0, U0), (u, U))|

≤ C(σ, s, z, ζ)
∥∥(u0, U0)

∥∥
◦ ‖(u, U)‖◦ .

Therefore
∥∥(u − u0 − w, U − U0 − W )

∥∥
◦ ≤ C(σ, s, z, ζ)

∥∥(u0, U0)
∥∥
◦

(
‖s‖L∞(D̄) + ‖ζ‖l∞

)2

where the constant C(σ, s, z, ζ) is of the form

C(σ, s, z, ζ) = C(σ, z) max

(∥∥∥∥
1

σ + s

∥∥∥∥
L∞(D̄)

,
1

z1 + ζ1
, . . . ,

1

zL + ζL

)
.

Thus

‖M(σ + s, z + ζ) −M(σ, z) − Tσ,z(s, ζ)‖◦
‖s‖L∞(D̄) + ‖ζ‖l∞

≤ C(σ, s, z, ζ)‖M(σ, z)‖◦
(
‖s‖L∞(D̄) + ‖ζ‖l∞

)
−→ 0

as ‖(s, ζ)‖L∞(D̄)⊕RL → 0. Hence Tσ,z is the Fréchet derivative of M at the point

(σ, z) ∈ Σ(D) ⊕ RL
+.

We define the projection π : H → RL by (u, U) 7→ U for all (u, U) ∈ H.

Corollary 5.8. Let (Il)
L
l=1 ∈ RL be a current pattern. The mapping

U : Σ(D) ⊕ RL
+ → RL, (σ, z) 7→ U(σ, z)

where U(σ, z) = πM(σ, z) is Fréchet differentiable and

U ′(σ, z) = πM′(σ, z)

for all (σ, z) ∈ Σ(D) ⊕ RL
+.

Proof. By Theorem 5.7 the mapping M is Fréchet differentiable. Since the projec-
tion π is a bounded linear operator, the mapping U is Fréchet differentiable. The
Fréchet derivative of U is obtained from the definition.





Chapter 6

Statistical Inversion Theory

In realistic measurements we have directly observable quantities and others that can-
not be observed. If some of the unobservable quantities are of our primary interest,
we are dealing with an inverse problem. The interdependence of the quantities in
the measurement setting is described through mathematical models. In the stat-
istical inversion theory it is assumed that all quantities included in the model are
represented by random variables. The randomness describes our degree of knowledge
concerning their realizations. Our information about their values is coded into their
distributions. The solution to the inverse problem is the posterior distribution of the
random variables of interest after performing the measurements. We introduce the
basic concepts of the statistical inversion theory. The Bayes theorem of inverse prob-
lems and Bayesian filtering method are presented. As an example of non-stationary
inverse problems we study the electrical impedance process tomography problem.
We view it as a state estimation problem. A discretized state estimation system is
the goal of this chapter. Sections 6.1 and 6.2 are based on the book of Kaipio and
Somersalo [19]. The results concerning electrical impedance process tomography
(Section 6.3) are made by the author.

6.1 The Bayes Formula

In realistic measurement setting we are able to measure only a finitely many values of
the directly observable quantities. For example, the measurement frame in electrical
impedance tomography consists of all linearly independent injected current patterns
and the corresponding set of voltage measurements. These measured values are
called the data. From the data we want to compute the values of the quantities
of primary interest. Usually this sort of problems are underdetermined. Hence we
are able to compute only partly the quantities of primary interest. Furthermore,
in numerical implementations we need to discretize our model for the measurement
process. Therefore there exist only finitely many variables describing the quantities
of primary interest. Thus in statistical approach to inverse problems we may assume
that random variables in a model have values in Rn with some n ∈ N. In addition,
we suppose that the distributions of the random variables are absolutely continuous
with respect to the Lebesgue measure. This requirement is not necessary but since
we restrict ourselves to Gaussian random variables, it is acceptable. Hence the
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distributions of the random variables are determined by their probability densities.
We denote random variables by capital letters and their realizations by lower case
letters.

The statistical inversion theory is based on the Bayes formula. Let (Ω,F , P) be
a probability space. Let X and Y be random variables with values in Rn and
Rm, respectively. We suppose that the random variable X is unobservable and of
our primary interest and Y is directly observable. We call X the unknown, Y the
measurement and its realization y in the actual measurement process the data. We
assume that before performing the measurement of Y we have some information
about the random variable X. This prior knowledge is coded into the probability
density x 7→ πpr(x) called the prior density. In addition, we suppose that after
analysing the measurement setting as well as all additional information available
about the random variables we have found the joint probability density of X and Y
denoted by π(x, y). On the other hand, if we knew the value of the unknown, the
conditional probability density of Y given this information would be

π(y | x) =
π(x, y)

πpr(x)

if πpr(x) 6= 0. The conditional probability density of Y is called the likelihood
function because it expresses the likehood of different measurement outcomes with
given X = x. We assume finally that the measurement data Y = y is given. The
conditional probability density

π(x | y) =
π(x, y)

π(y)

if π(y) =
∫

Rm π(x, y) dx 6= 0, is called the posterior density of X. This density
expresses what we know about X after the observation Y = y. In the Bayesian
framework the inverse problem can be formulated as follows: Given the data Y = y,
find the conditional probability density π(x | y) of the variable X. We summarize
the notation and results in the following theorem, which can be referred to as the
Bayes theorem of inverse problems.

Theorem 6.1. Let the random variable X with values in Rn have a known prior
probability density πpr(x) and the data consists of the observed value y of the observ-
able random variable Y with values in Rm such that π(y) > 0. Then the posterior
probability density of X given the data y is

πpost(x) = π(x | y) =
πpr(x)π(y | x)

π(y)
. (6.1)

The marginal density

π(y) =

∫

Rm

π(x, y) dx =

∫

Rm

πpr(x)π(y | x) dx

plays the role of a normalising constant and is usually of little importance. By
looking at the Bayes formula (6.1) solving an inverse problem may be broken into
three subtasks: (1) based on all prior information of the unknown X find a prior
probability density πpr, (2) find the likelihood function π(y | x) that describes the
interrelation between the observation and the unknown and (3) develop methods to
explore the posterior probability density.
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6.2 Nonstationary Inverse Problems

In several applications one encounters a situation in which measurements that con-
stitute the data of an inverse problem are done in a nonstationary environment.
More precisely, it may happen that the physical quantities that are in the focus of
our primary interest are time dependent and the measured data depends on these
quantities at different time instants. Inverse problems of this type are called non-
stationary inverse problems. In some applications the time evolution model of the
quantities of primary interest is given by a stochastic differential equation. The
electrical impedance process tomography problem is an example of nonstationary
inverse problems. The concentration distribution in a pipeline is time varying and
the EIT measurement frame depends on the concentration distribution at different
time instants. The time evolution of the concentration distribution is given by the
stochastic convection–diffusion equation.

6.2.1 State Estimation

Often non-stationary inverse problems are viewed as a state estimation problem.
Let D ⊂ Rn be a domain that corresponds to the object of interest. We denote by
X = X(t, x), x ∈ D, a distributed parameter describing the state of the object – the
unknown distribution of a physical target – at time t ≥ 0. We assume that we have a
model for the time evolution of the parameter X. We suppose that instead of being
a deterministic function X is a stochastic process satisfying a stochastic differential
equation. This allows us to incorporate phenomena such as modelling uncertainties
into the model. Let Y = Y (t) denote a quantity that is directly observable at time
t ≥ 0. We assume that the dependence of Y upon the state X is known up to
observation noise and modelling errors. The state estimation system consists of a
pair of equations

dX(t) = F (t, X, R)dt + dW (t), (6.2)

Y (t) = G(t, X, S). (6.3)

Equation (6.2) is called the state evolution equation and is to be interpreted as
a stochastic differential equation in which the function F is the evolution model
function and R = R(t) and W = W (t) are stochastic processes. The processes
R and W may represent modelling errors and uncertainties in the time evolution
model. Equation (6.3) is called the observation equation. The function G is the
observation model function and S = S(t) is a stochastic process. The process S
describes modelling errors and noise in the measurement process. The evolution
and observation model functions are known and allowed to be nonlinear. The state
estimation problem can be formulated as follows: Estimate the state X satisfying an
evolution equation of the type (6.2) based on the observed values of Y . To be able to
estimate the state X we have to solve a stochastic differential equation and represent
the state evolution equation in a more useful form. Estimators of the state X are
calculated by taking conditional expectation with respect to the measurements. The
most commonly used estimator is the filter E(X(t)|Y (s), s ≤ t) which is based on
the current history of the measurement process.

Usually the measurements are done at discrete time instants. Hence a discrete
state evolution and observation equations are needed. They may be derived from
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the continuous ones, especially if the evolution and observation model functions
are linear. Since the computation requires space discretization, we need discretized
versions of the state evolution and observation equations. Then we have two discrete
stochastic processes {Xk}∞k=0 and {Yk}∞k=1 with values in finite dimensional spaces
and the state estimation system

Xk+1 = Fk+1(t0, t1, . . . , tk+1, X0, X1, . . . , Xk, W1, . . . , Wk+1), k ∈ N0,

Yk = Gk(tk, X0, X1, . . . , Xk, S1, . . . , Sk), k ∈ N

where {Wk}∞k=1 and {Sk}∞k=1 are discrete stochastic processes and are called the
state and observation noise processes, respectively.

6.2.2 Bayesian Filtering

Let (Ω,F , P) be a probability space. Let {Xk}∞k=0 and {Yk}∞k=1 be two discrete
stochastic processes. The random variable Xk with values in Rnk for k ∈ N0 repres-
ents the quantities we are primarily interested in and is called the state vector. The
random variable Yk with values in Rmk for k ∈ N represents the measurement. We
refer to it as the observation at the kth time instant. We assume that the distribu-
tions of the random variables are absolutely continuous with respect to the Lebesgue
measure. We postulate the following four properties of these processes:

1. The process {Xk}∞k=0 is a Markov process, i.e.,

π(xk+1 | x0, x1, . . . , xk) = π(xk+1 | xk)

for all k ∈ N0.

2. The process {Yk}∞k=1 is a Markov process with respect to the history of the
process {Xk}∞k=0, i.e.,

π(yk | x0, x1, . . . , xk) = π(yk | xk)

for all k ∈ N.

3. The process {Xk}∞k=0 depends on the past observations only through its own
history, i.e.,

π(xk+1 | x0, x1, . . . , xk, y1, y2, . . . , yk) = π(xk+1 | xk)

for all k ∈ N.

4. The process {Yk}∞k=1 depends on the past observations only through the history
of the process {Xk}∞k=0, i.e.,

π(yk+1 | x0, x1, . . . , xk+1, y1, y2, . . . , yk) = π(yk+1 | xk+1)

for all k ∈ N.

If the stochastic processes {Xk}∞k=0 and {Yk}∞k=1 satisfy the condition 1–4 above, we
call this pair an evolution–observation model. The evolution–observation model is
completely specified if we know the probability density of the initial state X0, Markov
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transition kernels π(xk+1 | xk) for all k ∈ N0 and likelihood functions π(yk | xk) for
all k ∈ N. Both the Markov transition kernels π(xk+1 | xk) and likelihood functions
π(yk | xk) are allowed to vary in time. An example of evolution–observation models
is the state estimation system

Xk+1 = Fk+1(Xk, Wk+1), k ∈ N0,

Yk = Gk(Xk, Sk), k ∈ N

if the state and observation noise processes satisfy the following assumptions. For
all k 6= l the noise vectors Wk and Wl as well as Sk and Sl are mutually independent
and also mutually independent of the initial state X0. In addition, the noise vectors
Wk and Sl are mutually independent for all k ∈ N0 and l ∈ N.

The inverse problem considered is to extract information of the state vectors Xk

based on measurements Yk for all k ∈ N. In the Bayesian approach we try to
get the posterior distribution of the state vector conditioned on the observations.
Let us denote Dk := {y1, y2, . . . , yk} for all k ∈ N. The conditional probability
density of the state vector Xk conditioned on all the measurements y1, . . . , yl is
denoted by π(xk | Dl) := π(xk | y1, . . . , yl) for all k ∈ N0 and l ∈ N. Additionally,
π(xk | D0) := π(xk) for all k ∈ N0.

Definition 6.2. Let the stochastic processes {Xk}∞k=0 and {Yk}∞k=1 form an evolu-
tion–observation model. The problem of determining the conditional probability dens-
ity π(xk+1 | Dk) for k ∈ N0 is called a prediction problem and π(xk | Dk) for k ∈ N
a filtering problem.

Often the prediction problem is just an intermediate step for the filtering problem.
To be able to solve the state estimation problem we need to derive a recursive up-
dating scheme where the evolution and observation updates alternate. In this type
of recursive scheme the state evolution equation is used for solving the prediction
problem from the filtering problem of the previous time level while the new observa-
tion is used to update the predicted probability density. Therefore we need to find
formulas for the following updating steps:

1. Evolution updating: Given π(xk | Dk), find π(xk+1 | Dk) based on the Markov
transition kernel π(xk+1 | xk) for k ∈ N0.

2. Observation updating: Given π(xk+1 | Dk), find π(xk+1 | Dk+1) based on the
new observation yk+1 and likelihood function π(yk+1 | xk+1) for k ∈ N0.

The updating formulas are given in the following theorem.

Theorem 6.3. [19, Theorem 4.2] Let us assume that stochastic processes {Xk}∞k=0

and {Yk}∞k=1 form an evolution–observation model. Then for all k ∈ N0

(i) the evolution updating formula is

π(xk+1 | Dk) =

∫

Rnk

π(xk+1 | xk)π(xk | Dk) dxk, (6.4)
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(ii) the observation updating formula is

π(xk+1 | Dk+1) =
π(yk+1 | xk+1)π(xk+1 | Dk)

π(yk+1 | Dk)
(6.5)

where

π(yk+1 | Dk) =

∫

Rnk+1

π(yk+1 | xk+1)π(xk+1 | Dk) dxk+1.

The integrand on the right hand side of (6.4) is simply the joint probability density of
the variables Xk and Xk+1 conditioned on the observations Dk. Hence Formula (6.4)
is the conditional marginal probability density of Xk+1. We consider the probability
density π(xk+1 | Dk) as the prior density of Xk+1 when the new observation yk+1

arrives. Then Equation (6.5) is nothing other than the Bayes formula. Therefore this
method is called the Bayesian filtering method. If the joint probability densities of
the variables Xk and Xk+1 as well as Xk+1 and Yk+1 conditioned on the observations
Dk are Gaussian, the evolution and observation updating formulas (6.4) and (6.5)
can be derived by the following theorem.

Theorem 6.4. [19, Theorems 3.5 and 3.6] Let X : Ω → Rn and Y : Ω → Rm be two
Gaussian random variables whose joint probability density π : Rn × Rm → R+ is of
the form

π(x, y) ∝ exp

(
−1

2

[
x − x0

y − y0

]T [
Γ11 Γ12

Γ21 Γ22

]−1 [
x − x0

y − y0

])

where x0 ∈ Rn, y0 ∈ Rm, Γ11 ∈ Rn×n, Γ22 ∈ Rm×m and

Γ =

[
Γ11 Γ12

Γ21 Γ22

]

is a positive definite symmetric (n + m) × (n + m) matrix. Then

(i) the marginal density of X is

π(x) =

∫

Rm

π(x, y) dy ∝ exp

(
−1

2
(x − x0)

T Γ−1
11 (x − x0)

)
,

(ii) the density of X conditioned on Y = y is

π(x | y) ∝ exp

(
−1

2
(x − x̄)T Γ̃−1

22 (x − x̄)

)

where x̄ = x0 + Γ12Γ
−1
22 (y − y0) and Γ̃22 = Γ11 − Γ12Γ

−1
22 Γ21.

6.3 Electrical Impedance Process Tomography

We examine a concentration distribution of a given substance in a fluid moving in
a pipeline by doing electromagnetic measurements at the boundary of the pipe. In
electrical impedance tomography (EIT) electric currents are applied to electrodes on
the surface of an object and the resulting voltages are measured using the same elec-
trodes. A complete set of measurements consists of all possible linearly independent
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injected current patterns and the corresponding set of voltage measurements. The
conductivity distribution inside the object is reconstructed based on the voltage
measurements. The relation between the conductivity and concentration depends
on the process and is usually non-linear. In process tomography we cannot in general
assume that the target remains unaltered during a full set of measurements. The
time evolution of the concentration distribution needs to be modeled properly. We
view the problem as a state estimation problem. The concentration distribution is
treated as a stochastic process that satisfies a stochastic differential equation referred
to as the state evolution equation. The measurements are described in terms of an
observation equation containing the measurement noise.

Let D be an infinitely long pipe {x = (x1, x
′) ∈ Rd : |x′| < r} with d ≥ 2 and

r > 0. Let κ = κ(x) be the diffusion coefficient of the substance of our interest and
v = v(x) the velocity of the flow for all x ∈ D̄. The diffusion coefficient and velocity
distribution are assumed to be known and stationary. Let (Ω,F , P) be a probability
space. We assume that the concentration distribution C(t) is a stochastic process
satisfying the stochastic differential equation

dC(t) = [LC(t) + f(t)]dt + dW (t) (6.6)

for every t > 0 with the initial value C(0) = C0. The operator L is the deterministic
convection–diffusion operator

L : D(L) → L2(D)

c 7→ ∇ · (κ∇c) − v · ∇c
(6.7)

with the domain

D(L) =

{
c ∈ H2(D) :

∂c

∂ν


∂D

= 0

}
. (6.8)

The boundary condition at the boundary of the pipe is included in the domain of
the operator L. We assume that there is no diffusion through the pipe walls. We
model with f a possible control of the system. We assume that f(t), t ≥ 0, is
an L2(D)-valued stochastic process. The term dW (t) is a source term representing
possible modelling errors where W (t), t ≥ 0, is an L2(D)-valued Wiener process.

We assume that on the surface of the pipe there are L electrodes. We identify the
electrode with the part of the surface it contacts. We denote these subsets of ∂D
by el for all 1 ≤ l ≤ L. At time t > 0 an electric current Il(t) is applied to the
electrode el and the resulting voltage Ul(t) is measured using the same electrode for
all 1 ≤ l ≤ L. We describe the electric potential u(t, x) inside the pipe and voltage
pattern U(t) := (U1(t), . . . , UL(t))T by the complete electrode model

∇ · σ∇u = 0 in D (6.9)

u + zlσ
∂u

∂ν
= Ul on el, 1 ≤ l ≤ L (6.10)

σ
∂u

∂ν
= 0 on ∂D \ ∪L

l=1el (6.11)
∫

el

σ
∂u

∂ν
dS = Il, 1 ≤ l ≤ L (6.12)

where σ = σ(t, x) is the conductivity distribution inside the pipe and zl is the contact
impedance on the electrode el for all 1 ≤ l ≤ L. We assume that the current pattern
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I(t) := (I1(t), . . . , IL(t))T satisfies the conservation of charge condition
∑L

l=1 Il(t) =
0 and the ground potential is chosen such a way that U1(t) = 0. In Chapter 5
it was shown that under appropriate regularity assumptions on the conductivity
distribution, electrodes and contact impedances the complete electrode model (6.9)–
(6.12) has a unique weak solution (u, U). We suppose that the contact impedances
are known positive numbers. By the uniqueness of the solution to the complete
electrode model the mapping σ(t) 7→ U(σ(t); I(t)) from Σ(D) to RL is well defined for
all current patterns I(t) where Σ(D) is a subset of L∞(D̄) defined by Σ(D) := {σ ∈
L∞(D̄) : 0 < σ0 ≤ σ(x) ≤ σ1 < ∞ for almost all x ∈ D̄}. The interdependence
of the conductivity and concentration distributions is usually non-linear, i.e., there
exists a non-linear function g : L2(D) → Σ(D) such that σ(t) = g(C(t)) for all
t > 0. In addition, we assume that the measurement noise is additive. Then the
observation equation is

V (t) = U(g(C(t)); I(t)) + S(t)

where S(t), t ≥ 0, is an RL-valued stochastic process independent of the process
C(t), t ≥ 0. Hence the voltage pattern depends non-linearly on the concentration
distribution.

We assume that the measurements are done in time instants 0 < t1 < . . . < tn.
We use the notation Ik := I(tk), Ck := C(tk), Sk := S(tk) and V k := V (tk) for
all k = 1, . . . , n. The state estimation system concerning the electrical impedance
process tomography problem is

dC(t) = [LC(t) + f(t)]dt + dW (t), t > 0,

V k = U(g(Ck); I
k) + Sk, k = 1, . . . , n.

We are interested in a real-time monitoring for the flow. Therefore we should be
able to solve the filtering problem E(Ck | V l, l ≤ k) for all k = 1, . . . , n. For that
reason we need to solve the stochastic convection–diffusion equation (6.6) and to
present the discrete evolution equation for the concentration distribution.

6.3.1 Analytic Semigroup

According to Section 4.6 to be able to solve the stochastic convection–diffusion
equation we need to show that under certain assumptions the operator L defined
by (6.7) and (6.8) generates a strongly continuous analytic semigroup. We use the
theory introduced in Chapters 2 and 3. Since the boundary of D is {x = (x1, x

′) ∈
Rd : |x′| = r}, it is C∞-smooth. Hence we want to know the requirements of
the coefficient functions κ and v such that the realization of the operator A =
∇ · κ∇− v · ∇ generates an analytic semigroup if the boundary condition is defined
by the operator B = ν · ∇ where ν is the exterior unit normal on the boundary ∂D.
We modify the operators A and B into the form used in Chapter 3. Then

A(x, ∂) =
n∑

i=1

κ(x)∂2
i +

n∑

i=1

[∂iκ(x) − vi(x)]∂i

and

B(x, ∂) =
n∑

i=1

νi(x)∂i
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where v = (v1, . . . , vn)T and ν = (ν1, . . . , νn)T . In Chapter 3 we assumed that the
coefficient functions of the operator A are real uniformly continuous and bounded
and the coefficient functions of the operator B belong to the space UC1(D̄). Hence
the functions κ and v have to fulfill the conditions

{
κ : D̄ → R, κ ∈ UC1(D̄),

v : D̄ → Rd, v ∈ UC(D̄).

The operator A has to satisfy the ellipticity condition (3.2). The principal part of
A is

∑n
i=1 κ(x)∂2

i . Let ξ ∈ Rd and x ∈ D̄. Then

n∑

i=1

κ(x)ξ2
i = κ(x)|ξ|2 ≥ inf

x∈D̄
κ(x)|ξ|2.

Hence the function κ has to be bounded from below. We assume that there exists
δ > 0 such that κ(x) ≥ δ for all x ∈ D̄. The operator B has to fulfill the uni-
form nontangentiality condition (3.4). The first order terms of B are

∑n
i=1 νi(x)∂i.

Therefore Condition (3.4) is valid since

n∑

i=1

ν2
i (x) = |ν(x)|2 = 1

for all x ∈ ∂D. Under these assumptions the sectoriality of L follows according
to Corollary 3.5. Since the domain of L is dense in L2(D), the analytic semigroup
generated by L is strongly continuous.

Theorem 6.5. The operator L is sectorial if the diffusion coefficient κ is positive
and bounded from below, κ(x) ≥ δ > 0 for all x ∈ D̄, and the diffusion coefficient
and velocity of the flow satisfy the conditions

{
κ : D̄ → R, κ ∈ UC1(D̄),

v : D̄ → Rd, v ∈ UC(D̄).

Hence under these assumptions the operator L generates a strongly continuous ana-
lytic semigroup {U(t)}t≥0.

6.3.2 Stochastic Convection–Diffusion Equation

We assume that the diffusion coefficient and velocity of the flow fulfill the re-
quirements of Theorem 6.5. Let T > 0 and {Ft}t∈[0,T ] be a normal filtration in
(Ω,F , P). Let Q be a positive self-adjoint trace class operator from L2(D) to it-
self with KerQ = {0} and W (t), t ∈ [0, T ], a Q-Wiener process in (Ω,F , P) with
values in L2(D) with respect to the filtration {Ft}t∈[0,T ]. According to Section 4.6
under some assumptions of the initial value C0 and control term f the stochastic
convection–diffusion equation has the weak solution.

Theorem 6.6. If f ∈ L1(ΩT ,PT , PT ; L2(D)) and C0 is F0-measurable, the stoch-
astic convection–diffusion equation has the weak solution C(t), t ∈ [0, T ], which is
the predictable process given by the formula

C(t) = U(t)C0 +

∫ t

0
U(t − s)f(s) ds +

∫ t

0
U(t − s) dW (s)

for all t ∈ [0, T ] almost surely.
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There are some parameters in our model which we can choose rather freely and
still have the weak solution to the stochastic convection–diffusion equation. The
diffusion coefficient and velocity of the flow should only satisfy the requirements of
Theorem 6.5. The covariance operator Q of the Wiener process can be an arbitrary
positive self-adjoint trace class operator from L2(D) to itself with KerQ = {0} by
Proposition 4.17. The natural choice of the filtration is the filtration defined by the
Wiener process, i.e., FW

t = σ(W (s), s ≤ t) for all t ∈ [0, T ]. Since the filtration
should be normal, by Proposition 4.35 the augmented filtration {FW,P

t }t∈[0,T ] is an
appropriate choice assuming that the probability space is complete. We want that
the initial value C0 is a Gaussian L2(D)-valued F0-measurable function with mean
c0 and covariance Γ0. The benefits of this requirement will appear later in this
section. Then the mean c0 can be an arbitrary L2(D)-function and the covariance
operator Γ0 has same requirements as Q by Proposition 4.17. The control term f
should be an L2(D)-valued integrable predictable process.

6.3.3 Discrete Evolution Equation Without Control

We assume that there is no control in our system, i.e., f ≡ 0. Then the weak solution
of the stochastic convection–diffusion equation is the predictable process given by
the formula

C(t) = U(t)C0 +

∫ t

0
U(t − s) dW (s) (6.13)

for all t ∈ [0, T ] almost surely. Since the initial value C0 is a Gaussian random
variable with mean c0 and covariance Γ0, the concentration distribution C has a
Gaussian modification by Lemma 4.42 and Proposition 4.46. Furthermore, the mean
of the Gaussian modification is U(t)c0 and the covariance operator is

U(t)Γ0U∗(t) +

∫ t

0
U(t − s)QU∗(t − s) ds (6.14)

for all t ∈ [0, T ]. We assume that the measurements are done in time instants
0 < t1 < . . . < tn ≤ T . We use the notation t0 := 0 and Ck := C(tk) and
∆k := tk+1 − tk for all k = 0, . . . , n−1. Then the discrete evolution equation for the
concentration distribution is

Ck+1 = U(∆k)Ck + Wk+1

for all k = 0, . . . , n − 1 almost surely where

Wk+1 :=

∫ tk+1

tk

U(tk+1 − s) dW (s)

by Theorem 4.39. The term Wk+1 can be seen as a state noise for all k = 0, . . . , n−1.
The state noise Wk+1 is a Gaussian random variable with mean 0 and covariance
operator

Cov(Wk+1) =

∫ tk+1

tk

U(tk+1 − s)QU∗(tk+1 − s) ds (6.15)

and it is independent of Ftk for all k = 0, . . . , n− 1 by Lemma 4.42 and Proposition
4.46. Thus Ck and Wk+1 are independent for all k = 0, . . . , n− 1. Furthermore, the
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state noises at different time instants are uncorrelated since

Cor(Wk+1, Wl+1)

=

∫ tk+1∧tl+1

0
χ[tk,tk+1](s)χ[tl,tl+1](s)U(tk+1 − s)QU∗(tl+1 − s) ds = 0

for all k 6= l by Proposition 4.41.

The discrete state estimation system for the electrical impedance process tomo-
graphy problem is

Ck+1 = U(∆k)Ck + Wk+1, k = 0, . . . , n − 1, (6.16)

V k = U(g(Ck); I
k) + Sk, k = 1, . . . , n. (6.17)

Since the observation model function U ◦ g is non-linear, the filtering problem is
much more demanding than in the linear case. In the numerical implementations of
this problem in the articles and proceedings papers [43, 44, 45, 40, 41, 42, 38, 39]
the observation model function is linearized. In Theorem 5.8 we have shown that
the mapping σ 7→ U(σ; I) is Fréchet differentiable. If the function g is Fréchet
differentiable, the observation equation may be linearized.

6.3.4 Space Discretization

The realizations of the concentration distribution C are in the space L2(D). The
computation requires space discretization. We need to choose a finite dimensional
subspace of L2(D) and assume that the realizations of the concentration distribution
are in that subspace. This causes a discretization error. Usually the discretization
error is ignored in numerical implementations. The discretized state estimation
system is assumed to represent the reality. In this subsection we want to analyse
the stochastic nature of the discretization error in the case of electrical impedance
process tomography.

Let {Vm}∞m=1 be a sequence of finite dimensional subspaces of L2(D) such that
Vm ⊂ Vm+1 for all m ∈ N and ∪Vm = L2(D). Since L2(D) is a separable Hilbert
space, there exists such a sequence, for example, Vm may be the subspace spanned
by the m first functions in an orthonormal basis of L2(D). Let {ϕm

l }Nm
l=1 be an

orthonormal basis of Vm for all m ∈ N. We denote by (·, ·) the inner product in
L2(D). We define the orthogonal projection Pm : L2(D) → Vm for m ∈ N by

Pmf =

Nm∑

l=1

(f, ϕm
l )ϕm

l

for all f ∈ L2(D). The subspaces Vm are appropriate discretization spaces if Pmf →
f in L2(D) as m → ∞ for all f ∈ L2(D), i.e., the orthogonal projections Pm converge
strongly to the identity operator.

Let X : (Ω,F , P) → L2(D) be a random variable. Then for all ω ∈ Ω

PmX(ω) =

Nm∑

l=1

(X(ω), ϕm
l )ϕm

l =

Nm∑

l=1

(Xm(ω))lϕ
m
l
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where Xm(ω) := ((X(ω), ϕm
1 ), . . . , (X(ω), ϕm

Nm
))T is an RNm-valued random vari-

able. We view Xm as a discretized version of the random variable X at the dis-
cretization level m. If X is a Gaussian random variable with mean x̄ and covari-
ance Γ, then Xm is also Gaussian [21, Theorem A.5]. Furthermore, the mean of
Xm is EXm = ((x̄, ϕm

1 ), . . . , (x̄, ϕm
Nm

))T and the covariance matrix is defined by
(Cov Xm)ij := (Γϕm

i , ϕm
j ) since

E(Xm)i(X
m)j = E(X, ϕm

i )(X, ϕm
j ) = (Γϕm

i , ϕm
j ) + (x̄, ϕm

i )(x̄, ϕm
j )

for all i, j = 1, . . . , Nm.

Evolution Equation

We want to discretize the discrete evolution equation (6.16). We use the discretiza-
tion level m. We form an evolution equation for the discrete RNm-valued stochastic
process {Cm

k }n
k=0 where Cm

k := ((Ck, ϕ
m
1 ), . . . , (Ck, ϕ

m
Nm

))T for all k = 0, . . . , n. By
using the discrete evolution equation (6.16),

(Cm
k+1)i = (Ck+1, ϕ

m
i ) = (U(∆k)Ck + Wk+1, ϕ

m
i )

= (U(∆k)PmCk, ϕ
m
i ) + (U(∆k)(I − Pm)Ck, ϕ

m
i ) + (Wk+1, ϕ

m
i )

=

Nm∑

l=1

(U(∆k)ϕ
m
l , ϕm

i )(Cm
k )l + (Em

k+1)i + (Wm
k+1)i

for all i = 1, . . . , Nm and k = 0, . . . , n−1 almost surely where the discrete stochastic
process

Em
k+1 = ((Ck, (I − Pm)U∗(∆k)ϕ

m
1 ), . . . , (Ck, (I − Pm)U∗(∆k)ϕ

m
Nm

))T

represent the discretization error and W m
k+1 is the state noise vector. Thus the

discretized evolution equation is

Cm
k+1 = Am

k+1C
m
k + Em

k+1 + Wm
k+1 (6.18)

for all k = 0, . . . , n − 1 almost surely where the matrix Am
k+1 is defined by

(Am
k+1)ij := (U(∆k)ϕ

m
j , ϕm

i ) (6.19)

for all i, j = 1, . . . , Nm. The discretized evolution equation (6.18) is used in the
evolution updating step of the Bayesian filtering. Thereby we need to define the
statistical quantities of the discrete stochastic processes {Em

k+1}n−1
k=0 and {Wm

k+1}n−1
k=0 .

The state noise Wk+1 is a Gaussian random variable with mean 0 and covariance
given by Formula (6.15) for all k = 0, . . . , n − 1. Hence the state noise vector W m

k+1

is Gaussian with mean 0 and covariance matrix

(Cov(Wm
k+1))ij =

(∫ tk+1

tk

U(tk+1 − s)QU∗(tk+1 − s) ds ϕm
i , ϕm

j

)

=

∫ tk+1

tk

(
U(tk+1 − s)QU∗(tk+1 − s)ϕm

i , ϕm
j

)
ds

for all i, j = 1, . . . , Nm and k = 0, . . . , n − 1. We define the matrix Qm
k,l(s) by

(Qm
k,l(s))ij := (U(tk − s)QU∗(tl − s)ϕm

i , ϕm
j )
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for all i, j = 1, . . . , Nm, k, l = 0, . . . , n − 1 and s ∈ [0, tk ∧ tl]. Then

Cov(Wm
k+1) =

∫ tk+1

tk

Qm
k+1,k+1(s) ds (6.20)

for all k = 0, . . . , n − 1. Since the state noises Wk and Wl are uncorrelated for all
k 6= l, by the Gaussianity the state noise vectors W m

k and Wm
l are independent if

k 6= l.

We use our knowledge of the stochastic behaviour of the continuous evolution equa-
tion (6.13) for the examination of the discretization error Em

k+1 for all k = 0, . . . , n−1.
The concentration distribution Ck has a Gaussian modification with mean U(tk)c0

and covariance given by Formula (6.14) where t = tk for all k = 0, . . . , n− 1. Hence
the discretization error Em

k+1 has a Gaussian version for all k = 0, . . . , n − 1. The
mean of the Gaussian version is given by

(EEm
k+1)i = E(Ck, (I − Pm)U∗(∆k)ϕ

m
i ) = (ECk, (I − Pm)U∗(∆k)ϕ

m
i )

= (U(tk)c0, (I − Pm)U∗(∆k)ϕ
m
i ) = (c0,U∗(tk)(I − Pm)U∗(∆k)ϕ

m
i )

for all i = 1, . . . , Nm and k = 0, . . . , n − 1. Thus

(EEm
k+1)i = (c0,U∗(tk+1)ϕ

m
i ) −

Nm∑

l=1

(U(∆k)ϕ
m
l , ϕm

i )(c0,U∗(tk)ϕ
m
l )

for all i = 1, . . . , Nm because

U∗(t)(I − Pm)U∗(s)f = U∗(t + s)f −
Nm∑

l=1

(U∗(s)f, ϕm
l )U∗(t)ϕm

l

= U∗(t + s)f −
Nm∑

l=1

(U(s)ϕm
l , f)U∗(t)ϕm

l

for all f ∈ L2(D) and s, t ∈ [0, T ]. Hence

EEm
k+1 =




(U(tk+1)c0, ϕ
m
1 )

...
(U(tk+1)c0, ϕ

m
Nm

)


 + Am

k+1




(U(tk)c0, ϕ
m
1 )

...
(U(tk)c0, ϕ

m
Nm

)


 (6.21)

for all k = 0, . . . , n − 1. The covariance matrix of the Gaussian version is given by

(Cov Em
k+1)ij

= (Cov(Ck)(I − Pm)U∗(∆k)ϕ
m
i , (I − Pm)U∗(∆k)ϕ

m
j )

= (U(tk)Γ0U∗(tk)(I − Pm)U∗(∆k)ϕ
m
i , (I − Pm)U∗(∆k)ϕ

m
j )+

+

(∫ tk

0
U(tk − s)QU∗(tk − s) ds (I − Pm)U∗(∆k)ϕ

m
i , (I − Pm)U∗(∆k)ϕ

m
j

)

= (Γ0U∗(tk)(I − Pm)U∗(∆k)ϕ
m
i ,U∗(tk)(I − Pm)U∗(∆k)ϕ

m
j )+

+

∫ tk

0

(
QU∗(tk − s)(I − Pm)U∗(∆k)ϕ

m
i ,U∗(tk − s)(I − Pm)U∗(∆k)ϕ

m
j

)
ds
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for all i, j = 1, . . . , Nm and k = 0, . . . , n − 1. Since Γ0 and Q are self-adjoint as the
covariance operator of Gaussian random variables,

(Cov Em
k+1)ij

= (Γ0U∗(tk+1)ϕ
m
i ,U∗(tk+1)ϕ

m
j )+

−
Nm∑

l=1

(U(∆k)ϕ
m
l , ϕm

j )(Γ0U∗(tk)ϕ
m
l ,U∗(tk+1)ϕ

m
i )+

−
Nm∑

l=1

(U(∆k)ϕ
m
l , ϕm

i )(Γ0U∗(tk)ϕ
m
l ,U∗(tk+1)ϕ

m
j )+

+

Nm∑

l,p=1

(U(∆k)ϕ
m
l , ϕm

i )(U(∆k)ϕ
m
p , ϕm

j )(Γ0U∗(tk))ϕ
m
l ,U∗(tk)ϕ

m
p )+

+

∫ tk

0

(
QU∗(tk+1 − s)ϕm

i ,U∗(tk+1 − s)ϕm
j

)
ds+

−
Nm∑

l=1

(U(∆k)ϕ
m
l , ϕm

j )

∫ tk

0
(QU∗(tk − s)ϕm

l ,U∗(tk+1 − s)ϕm
i ) ds+

−
Nm∑

l=1

(U(∆k)ϕ
m
l , ϕm

i )

∫ tk

0

(
QU∗(tk − s)ϕm

l ,U∗(tk+1 − s)ϕm
j

)
ds+

+

Nm∑

l,p=1

(U(∆k)ϕ
m
l , ϕm

i )(U(∆k)ϕ
m
p , ϕm

j )

∫ tk

0

(
QU∗(tk − s)ϕm

l ,U∗(tk − s)ϕm
p

)
ds

for all i, j = 1, . . . , Nm and k = 0, . . . , n − 1. We define the matrix Γm,k
0,l by

(Γm,k
0,l )ij := (U(tk)Γ0U∗(tl)ϕ

m
i , ϕm

j )

for all i, j = 1, . . . , Nm and k, l = 0, . . . , n − 1. Then

Cov Em
k+1 = Γm,k+1

0,k+1 − (Am
k+1Γ

m,k+1
0,k )T − Am

k+1Γ
m,k+1
0,k + Am

k+1Γ
m,k
0,k (Am

k+1)
T +

+

∫ tk

0
Qm

k+1,k+1(s) ds −
∫ tk

0
(Am

k+1Q
m
k+1,k(s))

T ds+

−
∫ tk

0
Am

k+1Q
m
k+1,k(s) ds +

∫ tk

0
Am

k+1Q
m
k,k(s)(A

m
k+1)

T ds

(6.22)

for all k = 0, . . . , n − 1 where the integration is done componentwise.

Since Ck and Wk+1 are independent, also Cm
k and Wm

k+1 as well as Em
k+1 and Wm

k+1

are mutually independent for all k = 0, . . . , n− 1. On the other hand, Cm
k and Em

k+1

are correlated for all k = 0, . . . , n−1. The correlation matrix of Cm
k and Em

k+1 can be
calculated by using the continuous evolution equation (6.13) for all k = 0, . . . , n− 1.
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Then

(Cor(Cm
k , Em

k+1))ij = (Cov(Ck)ϕ
m
i , (I − Pm)U∗(∆k)ϕ

m
j )

= (U(tk)Γ0U∗(tk)ϕ
m
i , (I − Pm)U∗(∆k)ϕ

m
j )+

+

(∫ tk

0
U(tk − s)QU∗(tk − s) ds ϕm

i , (I − Pm)U∗(∆k)ϕ
m
j

)

= (Γ0U∗(tk)ϕ
m
i ,U∗(tk)(I − Pm)U∗(∆k)ϕ

m
j )+

+

∫ tk

0

(
QU∗(tk − s)ϕm

i ,U∗(tk − s)(I − Pm)U∗(∆k)ϕ
m
j

)
ds

for all i, j = 1, . . . , Nm and k = 0, . . . , n − 1. Thus

(Cor(Cm
k , Em

k+1))ij = (Γ0U∗(tk)ϕ
m
i ,U∗(tk+1)ϕ

m
j )+

−
Nm∑

l=1

(U(∆k)ϕ
m
l , ϕm

j )(Γ0U∗(tk)ϕ
m
l ,U∗(tk)ϕ

m
i )+

+

∫ tk

0

(
QU∗(tk − s)ϕm

i ,U∗(tk+1 − s)ϕm
j

)
ds+

−
Nm∑

l=1

(U(∆k)ϕ
m
l , ϕm

j )

∫ tk

0
(QU∗(tk − s)ϕm

l ,U∗(tk − s)ϕm
i ) ds

for all i, j = 1, . . . , Nm and hence

Cor(Cm
k , Em

k+1)

= Γm,k+1
0,k − (Am

k+1Γ
m,k
0,k )T +

∫ tk

0

(
Qm

k+1,k(s) − (Am
k+1Q

m
k,k(s))

T
)

ds
(6.23)

for all k = 0, . . . , n − 1.

According to the discretized evolution equation (6.18) the random variable Cm
k+1 has

a Gaussian version. The mean of the Gaussian version is

ECm
k+1 = E

(
Am

k+1C
m
k + Em

k+1 + Wm
k+1

)
= Am

k+1ECm
k + EEm

k+1 (6.24)

and the covariance matrix is

Cov Cm
k+1 = Cov

(
Am

k+1C
m
k + Em

k+1 + Wm
k+1

)

= Cov(Am
k+1C

m
k ) + Cor(Am

k+1C
m
k , Em

k+1)+

+ Cor(Em
k+1, A

m
k+1C

m
k ) + Cov Em

k+1 + Cov Wm
k+1

= Am
k+1 Cov(Cm

k )(Am
k+1)

T + Am
k+1 Cor(Cm

k , Em
k+1)+

+ Cor(Cm
k , Em

k+1)
T (Am

k+1)
T + Cov Em

k+1 + Cov Wm
k+1

(6.25)

for all k = 0, . . . , n − 1.

Observation Equation

Since both the operator U and mapping g are non-linear, the space discretization
of the observation equation (6.17) is far more difficult than the evolution equation
(6.16), especially when we are interested in the discretization error. We assume
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that the function g is Fréchet differentiable. Then we can linearize the observation
equation (6.17). For all k = 1, . . . , n

V k = U(g(Ck); I
k) + Sk

≈ U(g(f); Ik) + U ′(g(f); Ik)g′(f)(Ck − f) + Sk

= U(g(f); Ik) − U ′(g(f); Ik)g′(f)f + U ′(g(f); Ik)g′(f)Ck + Sk

where f ∈ L2(D). The point f in which the linearization is done should be chosen
wisely. It may be, for example, the mean of the initial value. The linearization
induces error. However, in future we ignore the linearization error. We denote bk :=
U(g(f); Ik) − U ′(g(f); Ik)g′(f)f and Bk := U ′(g(f); Ik)g′(f) for all k = 1, . . . , n.
Then bk ∈ RL and Bk : L2(D) → RL is a bounded linear operator for all k = 1, . . . , n.
The linearized observation equation is

V k = BkCk + bk + Sk (6.26)

for all k = 1, . . . , n. Then the discretized observation equation is

V k = BkPmCk + Bk(I − Pm)Ck + bk + Sk = [Bkϕ]Cm
k + Em

k + bk + Sk (6.27)

for all k = 1, . . . , n where [Bkϕ] := [Bkϕ
m
1 . . . Bkϕ

m
Nm

] is the L × Nm matrix whose

lth column is Bkϕ
m
l for all l = 1, . . . , Nm and Em

k := Bk(I − Pm)Ck represents
the discretization error. The discretized observation equation (6.27) is used in the
observation updating step of the Bayesian filtering. We need to define the statistical
quantities of the processes {Em

k }n
k=1 and {V k}n

k=1.

We use our knowledge of the stochastic behaviour of the continuous evolution equa-
tion (6.13). We assume that the process S(t), t ≥ 0, is a Gaussian process inde-
pendent of the process C(t), t ≥ 0. Then Sk is independent of Cm

k and Em
k for all

k = 1, . . . , n. On the other hand, Cm
k and Em

k are correlated for all k = 1, . . . , n.
The concentration distribution Ck has a Gaussian modification with mean U(tk)c0

and covariance given by Formula (6.14) where t = tk for all k = 1, . . . , n. Hence the
discretization error Em

k has a Gaussian version for all k = 1, . . . , n. The mean of the
Gaussian version is

EEm
k = Bk(I − Pm)U(tk)c0

and the covariance matrix is

Cov Em
k = Bk(I − Pm)U(tk)Γ0U∗(tk)(I − Pm)B∗

k+

+

∫ tk

0
Bk(I − Pm)U(tk − s)QU∗(tk − s)(I − Pm)B∗

k ds

for all k = 1, . . . , n. The correlation matrix of Cm
k and Em

k can be calculated by
using the continuous evolution equation (6.13) for all k = 1, . . . , n. First of all,

Cor([Bkϕ]Cm
k , Em

k ) = Cor(BkPmCk, Bk(I − Pm)Ck)

= BkPm Cov(Ck)(I − Pm)B∗
k

= BkPmU(tk)Γ0U∗(tk)(I − Pm)B∗
k+

+

∫ tk

0
BkPmU(tk − s)QU∗(tk − s)(I − Pm)B∗

k ds
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for all k = 1, . . . , n. If the matrix [Bkϕ] is invertable,

Cor(Cm
k , Em

k ) = [Bkϕ]−1 Cor([Bkϕ]Cm
k , Em

k )

for all k = 1, . . . , n.

In the observation updating step of the Bayesian filtering we need the joint prob-
ability distribution of Cm

k and V k for all k = 1, . . . , n. By the continuous evolution
equation (6.13) the random variable Cm

k has a Gaussian version. According to the
discretized observation equation (6.27) the random variable V k has a Gaussian ver-
sion and the joint probability distribution of Cm

k and V k is Gaussian. In addition,
the mean of the Gaussian version of V k is

EV k = E
(
[Bkϕ]Cm

k + Em
k + bk + Sk

)
= [Bkϕ]ECm

k + EEm
k + bk + ESk (6.28)

and the covariance matrix is

Cov V k = Cov
(
[Bkϕ]Cm

k + Em
k + bk + Sk

)

= Cov([Bkϕ]Cm
k ) + Cor([Bkϕ]Cm

k , Em
k )+

+ Cor(Em
k , [Bkϕ]Cm

k ) + Cov(Em
k ) + Cov(Sk)

= [Bkϕ] Cov(Cm
k )[Bkϕ]T + Cor([Bkϕ]Cm

k , Em
k )+

+ Cor([Bkϕ]Cm
k , Em

k )T + Cov(Em
k ) + Cov(Sk)

(6.29)

for all k = 1, . . . , n. The correlation matrix of Cm
k and V k is

Cor(Cm
k , V k) = Cor

(
Cm

k , [Bkϕ]Cm
k + Em

k + bk + Sk
)

= Cor(Cm
k , [Bkϕ]Cm

k ) + Cor(Cm
k , Em

k )

= Cov(Cm
k )[Bkϕ]T + [Bkϕ]−1 Cor([Bkϕ]Cm

k , Em
k )

(6.30)

for all k = 1, . . . , n.

Bayesian Filtering

The discretized state estimation system concerning the electrical impedance process
tomography problem is

Cm
k+1 = Am

k+1C
m
k + Em

k+1 + Wm
k+1, k = 0, . . . , n − 1, (6.31)

V k = [Bkϕ]Cm
k + Em

k + bk + Sk, k = 1, . . . , n. (6.32)

The state noise vectors W m
k and Wm

l are mutually independent and also independent
of Cm

0 for all k 6= l. We assume that the observation noise vectors Sk are chosen
such a way that Sk and Sl are mutually independent and also independent of Cm

0 for
all k 6= l and Sk and Wm

l are mutually independent for all k, l = 1, . . . , n. Then the
stochastic processes {Cm

k }n
k=0 and {V k}n

k=1 form an evolution–observation model.
Therefore we may use the Bayesian filtering method.

In the evolution updating step of the Bayesian filtering it is assumed that we know
the conditional probability density of Cm

k with respect to some measurements Dk :=
{v1, v2, . . . , vk}. We need to calculate the conditional probability density of Cm

k+1
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with respect to the data Dk. We suppose that the conditional expectation E(Cm
k |Dk)

is a Gaussian random variable with mean c̄k and covariance matrix Γk. According to
the discretized evolution equation (6.31) we are able to present the joint distribution
of Cm

k and Cm
k+1 conditioned on the measurements Dk and know that it is Gaussian.

By Theorems 6.3 and 6.4 and Formulas (6.24) and (6.25) the Gaussianity of the
joint probability density implies that the conditional marginal probability density of
Cm

k+1 is Gaussian with mean

c̄k+1 := Am
k+1c̄k + EEm

k+1 (6.33)

and covariance matrix

Γk+1 := Am
k+1Γk(A

m
k+1)

T + Am
k+1 Cor(Cm

k , Em
k+1)+

+ Cor(Cm
k , Em

k+1)
T (Am

k+1)
T + Cov Em

k+1 + Cov Wm
k+1.

(6.34)

Thus the evolution updating step is defined if we are able to calculate the vector
EEm

k+1 and matrices Am
k+1, Cov Em

k+1, Cov Wm
k+1 and Cor(Cm

k , Em
k+1) given by For-

mulas (6.19)–(6.23) for all k = 0, . . . , n − 1.

In the observation updating step of the Bayesian filtering it is assumed that we
know the conditional probability density of Cm

k+1 with respect to some measured

data Dk := {v1, v2, . . . , vk}. A new measurement vk+1 is obtained. We need
to calculate the conditional probability density of Cm

k+1 with respect to measure-

ments Dk+1 := {v1, v2, . . . , vk+1}. We suppose that the conditional expectation
E(Cm

k+1|Dk) is a Gaussian random variable with mean c̄k+1 and covariance matrix
Γk+1. By Theorems 6.3 and 6.4 the conditional probability density of Cm

k+1 with
respect to the data Dk+1 is Gaussian with mean

c̃k+1 := c̄k+1 + Cor(Cm
k+1, V

k+1) Cov(V k+1)−1(vk+1 − EV k+1) (6.35)

and covariance matrix

Γ̃k+1 = Γk+1 − Cor(Cm
k+1, V

k+1) Cov(V k+1)−1 Cor(Cm
k+1, V

k+1)T . (6.36)

Thus the observation updating step is defined if we are able to calculate the vector
EV k+1 and matrices Cov(V k+1) and Cor(Cm

k+1, V
k+1) given by Formulas (6.28)–

(6.30) for all k = 0, . . . , n − 1.

The evaluation of the matrices needed in the Bayesian filtering method depends on
the discretization space Vm, analytic semigroup {U(t)}t≥0, function c0, operators
Γ0, Q and Bk, vector bk and statistics of the observation noise S for all k = 1, . . . , n.
Usually the discretization space Vm is chosen such a way that the projection Pm is
fairly easy to calculate. For example, the basis functions ϕm

l have compact supports
and they are piecewise polynomial. The function c0 and operator Γ0 represent our
prior knowledge of the concentration distribution. The mean c0 should illustrate
the expected concentration distribution in the pipe and hence it depends heavily
on the application. Since the diffusion is a smoothing operation, we may assume
that the initial state is rather smooth. Thus the covariance operator Γ0 should have
some smoothness properties. Our certainty of the time evolution model is coded
into the Wiener process and hence into the operator Q. The choice of Q depends on
the application. The crucial factor in the evaluation of the matrices is the analytic
semigroup {U(t)}t≥0. Since it is defined by Formula (2.3), only in some special cases
we can present the analytic semigroup in a closed form. In Subsection 6.3.5 we
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study the one dimensional version of the problem. Then the analytic semigroup is a
convolution operator. The operator Bk and vector bk for all k = 1, . . . , n are related
to the measurement situation. We need to be able to solve the complete electrode
model for a known concentration distribution and also to calculate the Fréchet de-
rivatives of mappings U and g for that concentration distribution. The function g
depends on the application. At least for strong electrolytes and multiphase mixtures
relations between the conductivity and concentration distribution are studied and
discussed in the literature. The observation noise S represents the accuracy of the
measurement equipment.

6.3.5 One Dimensional Model Case

As an example we examine the one dimensional case. Then the pipeline is modeled by
the real line. In one dimension the electrical impedance tomography is not defined,
especially not in unbounded domains. We have to use some other measurement
process. Since we are interested in electrical impedance process tomography, the
observation equation in this model case is not specified. One possibility is to observe
point values of the concentration distribution through a blurring kernel and additive
noise. Then the observation equation is linear. From the point of view of the
evolution equation the one dimensional example is reasonable. We present some
aspects of the approach introduced in this section. Numerical implementations are
not included in this thesis.

Let (Ω,F , P) be a complete probability space. We examine the stochastic initial
value problem {

dC(t) = LC(t)dt + dW (t), t > 0,

C(0) = C0

(6.37)

where the operator L is defined by

L : H2(R) → L2(R)

f 7→ d

dx

(
κ(x)

d

dx
f

)
− v(x)

d

dx
f.

For simplicity we assume that the diffusion coefficient and velocity of the flow do
not depend on the space variable, i.e., κ(x) = κ > 0 and v(x) = v > 0 for all x ∈ R.
Let W be an L2(R)-valued Q-Wiener process where Q is a positive self-adjoint trace
class operator from L2(R) to itself with Ker Q = {0}. As a normal filtration we have
the augmentation {FW,P

t }t≥0 of the filtration generated by the Wiener process.

Analytic Semigroup

By Theorem 6.5 the convection–diffusion operator

L : D(L) ⊂ L2(R) → L2(R)

f 7→
(

κ
d2

dx2
− v

d

dx

)
f

where D(L) = H2(R) and κ, v > 0 generates an analytic semigroup. Furthermore,
the semigroup is strongly continuous. The semigroup is defined by Formula (2.3). We
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do not want to examine the spectral properties of the convection–diffusion operator.
We try to find an easier way to calculate the analytic semigroup. According to
Theorem 2.8 the solution to the initial value problem

{
∂
∂tc(t, x) = κ ∂2

∂x2 c(t, x) − v ∂
∂xc(t, x), t > 0,

c(0, x) = c0(x)
(6.38)

where c0 ∈ L2(R) is given by the analytic semigroup generated by the convection–
diffusion operator L. By solving the initial value problem (6.38) using other tech-
niques we are able to find the analytic semigroup generated by the convection–
diffusion operator. We may use a Ito diffusion to solve the initial value problem
(6.38) when c0 ∈ C2

0 (R) and then try to generalize the form of the solution to the
initial values c0 ∈ L2(R).

Definition 6.7. Let (Ω,F , P) be a probability space. A Ito diffusion is a stochastic
process X(t)(ω) = X(t, ω) : [0,∞) × Ω → Rn satisfying a stochastic differential
equation {

dX(t) = b(X(t))dt + σ(X(t))dB(t), t > 0,

X(0) = x
(6.39)

where x ∈ R, B(t) is m-dimensional Brownian motion and b : Rn → Rn and
σ : Rn → Rn×m are measurable functions satisfying

‖b(x)‖Rn + ‖σ(x)‖Rn×m ≤ C(1 + ‖x‖Rn)

for all x ∈ Rn with some constant C > 0 and

‖b(x) − b(y)‖Rn + ‖σ(x) − σ(y)‖Rn×m ≤ D‖x − y‖Rn

for all x, y ∈ Rn with some constant D > 0.

We denote the (unique) solution of the stochastic differential equation (6.39) by
{Xx(t)}t≥0. The existence and uniqueness of a solution is proved in [21, Theorem
5.2.1].

Definition 6.8. Let {X(t)}t≥0 be an Ito diffusion in Rn. The (infinitesimal) gen-
erator A of X is defined by

Af(x) = lim
t→0+

Ex[f(X(t))] − f(x)

t

for x ∈ Rn where Ex is the expectation with respect to the law of the Ito diffusion X
assuming that X(0) = x, i.e.,

Ex[f(X(t))] = E[f(Xx(t))] =

∫

Ω
f(Xx(t)) dP =

∫

Rn

f(y) L(Xx(t))(dy).

The set of functions f : Rn → R such that the limit exists at x is denoted by Dx(A)
while D(A) denotes the set of functions for which the limit exists for all x ∈ Rn.

The infinitesimal generator of an Ito diffusion has a presentation as a differential
operator.
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Theorem 6.9. [21, Theorem 7.3.3] Let X be the Ito diffusion

dX(t) = b(X(t))dt + σ(X(t))dB(t), t > 0.

If f ∈ C2
0 (Rn), then f ∈ D(A) and

Af(x) =
n∑

i=1

bi(x)
∂f

∂xi
+

1

2

n∑

i,j=1

(σσT )ij(x)
∂2f

∂xi∂xj

for all x ∈ Rn.

Theorem 6.9 indicates that Ito diffusions may be used for solving initial value prob-
lems.

Theorem 6.10. [21, Theorem 8.1.1] Let X be an Ito diffusion in Rn with generator
A. Let f ∈ C2

0 (Rn).

(i) We define
u(t, x) = Ex[f(X(t))] (6.40)

for all t > 0 and x ∈ Rn. Then u(t, ·) ∈ D(A) for each t > 0 and

∂

∂t
u(t, x) = Au(t, x), t > 0, x ∈ Rn, (6.41)

u(0, x) = f(x), x ∈ Rn (6.42)

where the right hand side of (6.41) is to be interpreted as A applied to the
function x 7→ u(t, x) for each t > 0.

(ii) Moreover, if w(t, x) ∈ C1,2(R×Rn) is a bounded function satisfying (6.41) and
(6.42), then w(t, x) = u(t, x) given by (6.40) for all t > 0 and x ∈ Rn.

By Theorem 6.9 the generator of the Ito diffusion

{
dX(t) = −vdt +

√
2κdB(t),

X(0) = x

is the convection–diffusion operator

A = κ
d2

dx2
− v

d

dx

and C2
0 (R) ⊂ D(A). Thus according to Theorem 6.10 the solution to the initial

value problem (6.38) where c0 ∈ C2
0 (R) is

c(t, x) = Ex[c0(X(t))]

for all t > 0 and x ∈ R. But

Xx(t) = x − vt +
√

2κB(t)

for all t > 0. Thus for all t > 0

Xx(t) ∼ N (x − vt, 2κt)
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and the density function of Xx(t) is

π(y) =
1

2
√

πκt
exp

(
−(x − y − vt)2

4κt

)

for all y ∈ R. Hence

c(t, x) = E[c0(X
x(t))] = E[c0(x − vt +

√
2κB(t))]

=
1

2
√

πκt

∫ ∞

−∞
c0(y)e−

(x−y−vt)2

4κt dy

for all t > 0 and x ∈ R. Let us denote

Φ(t, x) =
1

2
√

πκt
exp

(
−(x − vt)2

4κt

)

for all t > 0 and x ∈ R. Then

c(t, x) = (Φ(t, ·) ∗ c0)(x) (6.43)

for all t > 0 and x ∈ R where

(Φ(t, ·) ∗ f)(x) :=

∫ ∞

−∞
Φ(t, x − y)f(y) dy

for all f ∈ L2(R). Thus the solution to the initial value problem (6.38) is the
convolution of the intial value c0 with the probability density Φ if c0 ∈ C2

0 (R). We
want to generalize this result to L2-initial values.

We define an operator family {U(t)}t≥0 by

{
U(0)f = f,

(U(t)f)(x) = (Φ(t, ·) ∗ f)(x), t > 0,

for all f ∈ L2(R). Then U(t) is clearly linear for all t ≥ 0. Furthermore, U(t) is
bounded for all t ≥ 0 since

|Φ(t, ·) ∗ f(x)| ≤
∫ ∞

−∞
Φ(t, x − y)|f(y)| dy

≤
(∫ ∞

−∞
Φ(t, x − y) dy

) 1
2
(∫ ∞

−∞
Φ(t, x − y)|f(y)|2 dy

) 1
2

=

(∫ ∞

−∞
Φ(t, x − y)|f(y)|2 dy

) 1
2

and hence

‖U(t)f‖2
L2(R) =

∫ ∞

−∞
|Φ(t, ·) ∗ f(x)|2 dx ≤

∫ ∞

−∞

∫ ∞

−∞
Φ(t, x − y)|f(y)|2 dy dx

=

∫ ∞

−∞

∫ ∞

−∞
Φ(t, x − y) dx |f(y)|2 dy = ‖f‖2

L2(R)
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for all f ∈ L2(R). Thus U(t) is a bounded linear operator from L2(R)) to itself for
all t ≥ 0. Additionally,

U(t)U(s)f(x) =
1

4πκ
√

st

∫ ∞

−∞

∫ ∞

−∞
e−

((x−y)−vt)2

4κt e−
((y−z)−vs)2

4κs f(z) dzdy

=
1

4πκ
√

st

∫ ∞

−∞

∫ ∞

−∞
e
− ((t+s)y−sx−tz)2

4κst(t+s) dy e
− ((x−z)−v(t+s))2

4κ(t+s) f(z) dz

=
1

2
√

πκ(t + s)

∫ ∞

−∞
e
− ((x−z)−v(t+s))2

4κ(t+s) f(z) dz

= U(t + s)f(x)

for all f ∈ L2(R), s, t > 0 and x ∈ R. Therefore {U(t)}t≥0 is a semigroup since
U(t)U(0) = U(t) = U(0)U(t) for all t > 0.

Let c0 ∈ L2(R). The solution to the initial value problem (6.38) is c(t, x) = U(t)c0(x)
for all t ≥ 0 and x ∈ R because c(0, x) = U(0)c0(x) = c0(x) and

(
∂

∂t
− κ

∂2

∂x2
+ v

∂

∂x

)
c(t, x) =

((
∂

∂t
− κ

∂2

∂x2
+ v

∂

∂x

)
Φ(t, ·)

)
∗ c0(x) = 0.

Hence according to Theorem 2.8 the semigroup {U(t)}t≥0 is the strongly continuous
analytic semigroup generated by the convection–diffusion operator.

Wiener Process and the Initial Value

Our prior knowledge of the application we are interested in is coded into the choice
of the initial value and covariance operator of the Wiener process. The initial value
C0 is a Gaussian random variable measurable with respect to the σ-algebra FW,P

0 .
Hence we need to choose the mean c0 and covariance operator Γ0. In this model
case our prior assumption is that the concentration distribution is almost uniform
because in some real life applications that may be expected. Hence the mean could
be a constant function. Since it should belong to L2(R), we have to do a cutting.
In electrical impedance process tomography only finite number of electrodes are
set on the surface of the pipe. Therefore we get information only from a part of
the pipe. Our knowledge of the concentration distribution outside the so called
measurement region is slight. Hence we may assume that the mean is a constant in
the measurement region |x| ≤ M for some M > 0 and decays exponentially outside
of it, for instance

c0(x) =

{
c0 if |x| ≤ M,

c0e
−(|x|−M) if |x| > M,

(6.44)

for all x ∈ R where c0 is a positive constant.

We need to choose an appropriate covariance operator for the initial value C0. If the
stochastic initial value problem (6.37) has the strong solution, by Definition 4.44 for
almost all (t, ω) ∈ ΩT the solution C(t, ω) belongs to the domain of the convection–
diffusion operator, i.e., C(t, ω) ∈ H2(R) for almost all (t, ω) ∈ ΩT . Thus we may
expect that the initial value has some sort of smoothness properties. We assume
that (

1 − d2

dx2

)
C0 = η
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where η is the Gaussian white noise in L2(R). Then E[(f, η)(g, η)] = (f, g) for all
f, g ∈ L2(R). Thus for all f, g ∈ C∞

0 (R)

(f, g) = E
((

1 − d2

dx2

)
f, C0

)((
1 − d2

dx2

)
g, C0

)

=

(
Γ0

(
1 − d2

dx2

)
f,

(
1 − d2

dx2

)
g

)
.

We assume that Γ0 is a convolution operator, i.e., Γ0f = γ0 ∗f for some γ0 ∈ L2(R).
Then by the Parseval formula,

(f, g) =

(
F

(
(γ0 ∗

(
1 − d2

dx2

)
f

)
, F

((
1 − d2

dx2

)
g

))

= (γ̂0(1 + ξ2)f̂ , (1 + ξ2)ĝ) = (γ̂0(1 + ξ2)2f̂ , ĝ)

for all f, g ∈ C∞
0 (R). Hence we have γ̂0(ξ) = (1 + ξ2)−2 for all ξ ∈ R. Thus by the

calculus of residues,

γ0(x) =
1√
2π

∫ ∞

−∞

eixξ

(1 + ξ2)2
dξ =

√
π

8
(1 + |x|)e−|x|

for all x ∈ R. Unfortunately, Γ0 defined as an integral operator having the integral
kernel γ0(x−y) is not a trace class operator. We have to do some sort of modification.
We define an integral operator Γ̃0 with the integral kernel γ̃0(x, y) = w(x)γ0(x −
y)w(y) where the function w is exponentially decaying at infinity, w(x) = 1 when
|x| < N with some N > 0 and 0 < w(x) ≤ 1 for all x ∈ R. Then Γ̃0 is self-adjoint
since γ0(x − y) = γ0(y − x) for all x, y ∈ R. By the Parseval formula,

(Γ̃0f, f) = (γ0 ∗ (wf), wf) = (γ̂0ŵf , ŵf) =

∫ ∞

−∞
γ̂0(ξ)|ŵf(ξ)|2 dξ

for all f ∈ L2(R). Since γ̂0(ξ) > 0 for all ξ ∈ R, the operator Γ̃0 is positive. If

Γ̃0f = 0, then (Γ̃0f, f) = 0. Thus ŵf = 0 almost everywhere. Hence f = 0 almost
everywhere because w > 0. Therefore the kernel of Γ̃0 is trivial. The operator Γ̃0 is
a composition of three operators, Γ̃0 = Mwmγ̂0Mw where

Mw : L2(R) → L2(R), f 7→ wf

is a multiplier and

mγ̂0 : L2(R) → L2(R), f 7→ F
−1(γ̂0f̂)

is a Fourier multiplier. Furthermore, mγ̂0 = m2

γ̂
1/2
0

. So

Γ̃0 = Mwm2

γ̂
1/2
0

Mw =
(
Mwm

γ̂
1/2
0

) (
m

γ̂
1/2
0

Mw

)
= B∗B

where
Bf := m

γ̂
1/2
0

Mwf = F
−1

(
γ̂

1/2
0 ŵf

)
= F

−1
(
γ̂

1/2
0

)
∗ (wf)

for all f ∈ L2(R). Thus B is an integral operator with the integral kernel

b(x, y) = F
−1

(
γ̂

1/2
0

)
(x − y)w(y) =

w(y)√
2π

∫ ∞

−∞

ei(x−y)ξ

1 + ξ2
dξ =

√
π

2
e−|x−y|w(y)
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for all x, y ∈ R. Since b is square integrable in R2, by Example D.7 the operator B is
a Hilbert-Schmidt operator. Hence according to Proposition D.12 the operator Γ̃0 is
nuclear. Therefore Γ̃0 is an appropriate covariance operator for a Gaussian random
variable and it is a smoothing operator. In future we shall mark it without the tilde.

In this model case we assume that our model for the flow is rather accurate. Hence
we use the same covariance operator for the Wiener process than for the initial value.

Discretization Space

We need a family {Vm}∞m=1 of finite dimensional subspaces of L2(R) satisfying the
following conditions

(i) Vm ⊆ Vm+1 for all m ∈ N,

(ii) ∪mVm = L2(R) and

(iii) Pmf → f in L2(R) as m → ∞ for all f ∈ L2(R) where Pm is the orthogonal
projection from L2(R) to Vm.

Let us choose

Vm := span
{√

mχ[ l−1
m

−m, l
m
−m], l = 1, . . . , 2m2

}

for all m ∈ N. Then Vm ⊆ Vm+1 and dimVm ≤ 2m2 for all m ∈ N.

Lemma 6.11. ∪mVm = L2(R).

Proof. Since Vm ⊂ L2(R) for all m ∈ N, then ∪mVm is a closed subspace of L2(R).
We want to show that the orthocomplement of ∪mVm is trivial. Let f ∈ L2(R) be
such that (f, ψ) = 0 for all ψ ∈ ∪mVm. Specially, for all intervals I ⊂ R such that
m(I) < ∞ we have (f, χI) = 0 because χI ∈ ∪mVm. Thus

1

m(I)

∫

I
f(x) dx = 0

for all intervals I ⊂ R such that m(I) < ∞. Since f ∈ L2(R), then f ∈ L1(I) for all
intervals I ⊂ R such that m(I) < ∞. Since for L1-functions almost all points are
the Lebesgue points,

f(x) = lim
n→∞

1

m(In)

∫

In

f(x) dx = 0

for almost all x ∈ R where In := (x − rn, x + rn) and limn→∞ rn = 0. Hence f ≡ 0
and the orthocomplement of ∪mVm is trivial. Thus ∪mVm = L2(R).

We denote

ψm
l :=

√
mχ[ l−1

m
−m, l

m
−m]
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for all l = 1, . . . , 2m2 and m ∈ N. Since (ψm
i , ψm

j ) = δij for all i, j = 1, . . . , 2m2, the

family {ψm
l }2m2

l=1 is an orthonormal basis of Vm for all m ∈ N. Thus dimVm = 2m2.
We can define the orthogonal projections Pm : L2(R) → Vm by

Pmf =
2m2∑

l=1

(f, ψm
l )ψm

l =
m2∑

l=−m2+1

m

∫ l
m

l−1
m

f dxχ[ l−1
m

, l
m ]

for all f ∈ L2(R).

Lemma 6.12. Pmf → f in L2(R) as m → ∞ for all f ∈ L2(R).

Proof. We can change the basis of Vm such a way that the new basis {ϕm
l }2m2

l=1 is an
orthonormal basis of Vm and

{ϕm−1
l }2(m−1)2

l=1 ⊂ {ϕm
l }2m2

l=1

for all m ∈ N. We start with the basis of V1. The new basis of V2 is made by adding
linearly independent members of the old basis to the basis of V1 and by using the
Gram-Schmidt orthogonalization procedure. So, the new basis at level m is obtained
by adding linearly independent members of the old basis to the basis at level m− 1
and by using the Gram-Schmidt orthogonalization procedure. Thus the basis is a
growing family of functions and we can index them by the appearance. In this way
we get an orthonormal basis {ϕl}∞l=1 of ∪mVm. The change of the basis does not
change the projection, since

Pmf =
2m2∑

l=1

(f, ψm
l )ψm

l =
2m2∑

l=1

(f, ψm
l )

2m2∑

j=1

(ψm
l , ϕj)ϕj =

2m2∑

j=1

(f, ϕj)ϕj

for all f ∈ L2(R).

Let ε > 0 and f ∈ L2(R). Then by Lemma 6.11 there exists fε ∈ ∪mVm such that
‖f − fε‖L2(R) < ε/3. Since {ϕl}∞l=1 is an orthonormal basis of ∪mVm, there exists
Mε ∈ N such that ‖fε − PMεfε‖L2(R) < ε/3. Thus

‖PMεf − f‖L2(R) ≤ ‖PMεf − PMεfε‖L2(R) + ‖PMεfε − fε‖L2(R) + ‖fε − f‖L2(R)

≤ ‖PMε‖‖fε − f‖L2(R) + ‖PMεfε − fε‖L2(R) + ‖fε − f‖L2(R) < ε.

Hence Pmf → f in L2(R) as n → ∞ for all f ∈ L2(R). Furthermore, {ϕl}∞l=1 is a
basis of L2(R).

According to Lemmas 6.11 and 6.12 the family {Vm}∞m=1 form a family of appropriate
discretization spaces in L2(R). The basis functions of Vm are the simplest one,
constant functions with finite supports.

Discretized Evolution Equation

The choice of the discretization level m depends on how accurate and how fast
computation we want to have. The support of a function in Vm belongs to the
interval [−m, m]. Since we know that the measurements give information only from
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a part of the pipe, the discretization level need not to be bigger than half of the width
of the measurement region. By the calculation in Subsection 6.3.4 the discretized
evolution equation is

Cm
k+1 = Am

k+1C
m
k + Em

k+1 + Wm
k+1

for all k = 0, . . . , n − 1. The matrix Am
k+1 is defined by (Am

k+1)ij := (U(∆k)ψ
m
j , ψm

i )

for all i, j = 1, . . . , 2m2. We are able to calculate the elements of the matrix Am
k+1

for all k = 0, . . . , n − 1. First of all, for all l = 1, . . . , 2m2, t > 0 and x ∈ R

U(t)ψm
l (x) =

√
m

2
√

πκt

∫ l
m
−m

l−1
m

−m
e−

(x−y−vt)2

4κt dy =

√
m

π

∫ mx−l+1+m2−mvt
2m

√
κt

mx−l+m2−mvt
2m

√
κt

e−z2
dz

=
√

m

[
I

(
mx − l + 1 + m2 − mvt

2m
√

κt

)
− I

(
mx − l + m2 − mvt

2m
√

κt

)]

where

I(x) :=
1√
π

∫ x

−∞
e−z2

dz =
1

2
+

1√
π

∫ x

0
e−z2

dz =
1

2
+ 2 erf(x)

for all x ∈ R and erf is the so called error function. Thus

(U(∆k)ψ
m
j , ψm

i )

= m

∫ i
m
−m

i−1
m

−m

[
I

(
mx − j + 1 + m2 − mv∆k

2m
√

κ∆k

)
− I

(
mx − j + m2 − mv∆k

2m
√

κ∆k

)]
dx

= 2m
√

κ∆k

∫ i−j+1−mv∆k
2m

√
κ∆k

i−j−mv∆k
2m

√
κ∆k

I(y) dy − 2m
√

κ∆k

∫ i−j−mv∆k
2m

√
κ∆k

i−j−1−mv∆k
2m

√
κ∆k

I(y) dy

for all i, j = 1, . . . , 2m2. Since
∫ x

−∞
I(y) dy =

e−x2

2
√

π
+ xI(x) =

e−x2

2
√

π
+

x

2
+ 2x erf(x)

for all x ∈ R, the elements of the matrix Am
k+1 are given by functions known by

mathematical softwares.

Since both Em
k+1 and Wm

k+1 are Gaussian random variables, the knowledge of the
means and covariance and correlation operators is sufficient to be able to present the
distribution of Cm

k+1 for all k = 0, . . . , n− 1. By the calculation in the previous sub-
section only the vector EEm

k+1 and matrices Cov Em
k+1, Cov Wm

k+1 and Cor(Cm
k , Em

k+1)
for all k = 0, . . . , n−1 are required. According to Formulas (6.21)–(6.23) it is enough
to know how to calculate the inner products (U(t)c0, ψ

m
i ) and (U(t)Γ0U∗(s)ψm

i , ψm
j )

and the integral ∫ s

r
(U(u − τ)QU∗(t − τ)ψm

i , ψm
j ) dτ (6.45)

for all i, j = 1, . . . , 2m2 and 0 ≤ r ≤ s ≤ t ≤ u ≤ T . We shall need the adjoint
operator of U(t) for all t > 0. Let f, g ∈ L2(R). Then

(U(t)f, g) =

∫ ∞

−∞
(Φ(t, ·) ∗ f)(x)g(x) dx

=

∫ ∞

−∞
f(y)

∫ ∞

−∞

1

2
√

πκt
e−

(x−y−vt)2

4κt g(x) dxdy

=

∫ ∞

−∞
f(y)(Φ∗(t, ·) ∗ g)(y) dy
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where

Φ∗(t, x) :=
1

2
√

πκt
exp

(
−(x + vt)2

4κt

)

for all t > 0 and x ∈ R. Thus{
U∗(0)f = f,

(U∗(t)f)(x) = (Φ∗(t, ·) ∗ f)(x), t > 0,

for all f ∈ L2(R). Hence similarly as above

U∗(t)ψm
l (x) =

√
m

[
I

(
mx − l + 1 + m2 + mvt

2m
√

κt

)
− I

(
mx − l + m2 + mvt

2m
√

κt

)]

for all l = 1, . . . , 2m2, t > 0 and x ∈ R. The function c0 is given by Formula (6.44).
Since the mean of the initial value has exponentially decaying tails, we need to know
how to calculate integrals of e−β|x|I(x) for some β > 0. Let α ∈ R. Then

∫ α

−∞
eβxI(x) dx =

1

β
eαβI(α) − 1

β
e

β2

4 I

(
α − β

2

)

=
1

2β

(
eαβ − e

β2

4

)
+

2

β

(
eαβ erf(α) − e

β2

4 erf

(
α − β

2

))

and
∫ ∞

α
e−βxI(x) dx =

1

β
e−αβI(α) +

1

β
e

β2

4

(
1 − I

(
α +

β

2

))

=
1

2β

(
e−αβ + e

β2

4

)
+

2

β

(
e−αβ erf(α) − e

β2

4 erf

(
α +

β

2

))
.

Therefore (U(t)c0, ψ
m
l ) = (c0,U∗(t)ψm

l ) for all l = 1, . . . , 2m2 is given by functions
known by the mathematical softwares because

(c0,U∗(t)ψm
l )

= c0

√
m

∫ −M

−∞
ex−M

[
I

(
x − l−1

m + m + vt

2
√

κt

)
− I

(
x − l

m + m + vt

2
√

κt

)]
dx+

+ c0

√
m

∫ M

−M

[
I

(
x − l−1

m + m + vt

2
√

κt

)
− I

(
x − l

m + m + vt

2
√

κt

)]
dx+

+ c0

√
m

∫ ∞

M
e−x+M

[
I

(
x − l−1

m + m + vt

2
√

κt

)
− I

(
x − l

m + m + vt

2
√

κt

)]
dx

= 2c0

√
mκt e−M+ l−1

m
−m−vt

∫ −mM−l+1+m2+mvt
2m

√
κt

−∞
e2

√
κtyI(y) dy+

− 2c0

√
mκt e−M+ l

m
−m−vt

∫ −mM−l+m2+mvt
2m

√
κt

−∞
e2

√
κtyI(y) dy+

+ 2c0

√
mκt

∫ mM−l+1+m2+mvt
2m

√
κt

−mM−l+1+m2+mvt
2m

√
κt

I(z) dz − 2c0

√
mκt

∫ mM−l+m2+mvt
2m

√
κt

−mM−l+m2+mvt
2m

√
κt

I(z) dz

+ 2c0

√
mκt eM− l−1

m
+m+vt

∫ ∞

mM−l+1+m2+mvt
2m

√
κt

e−2
√

κtyI(y) dy+

+ 2c0

√
mκt eM− l

m
+m+vt

∫ ∞

mM−l+m2+mvt
2m

√
κt

e−2
√

κtyI(y) dy.
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We have chosen that the covariance operators Γ0 and Q are the integral operator
with the integral kernel w(x)γ0(x−y)w(y) where γ̂0(ξ) = (1+ξ2)−2 for all ξ ∈ R and
w is exponentially decaying at infinity, w(x) = 1 when |x| < N with some N > 0
and 0 < w(x) ≤ 1 for all x ∈ R. We are not able to calculate the inner product
(U(t)Γ0U∗(s)ψm

i , ψm
j ) for i, j = 1, . . . , 2m2 and 0 ≤ s ≤ t ≤ T in a closed form. By

using the Parseval formula we notice that

(U(t)Γ0U∗(s)ψm
i , ψm

j ) = (γ0 ∗ (wU∗(s)ψm
i ), wU∗(t)ψm

j )

= (γ̂0F(wU∗(s)ψm
i ), F(wU∗(t)ψm

j ))

for all i, j = 1, . . . , 2m2 and 0 ≤ s ≤ t ≤ T . The Fourier transform of γ0 is known.
We can use the fast Fourier transform (FFT) algorithm to compute the Fourier
transform of wU∗(t)ψm

i for all i = 1, . . . , 2m2 and 0 ≤ t ≤ T . We need use some
numerical quadrature to calculate an approximation of the integral

∫ ∞

−∞
γ̂0(ξ)F(wU∗(s)ψm

i )(ξ)F(wU∗(t)ψm
j )(ξ) dξ.

In addition, Integral (6.45) has to be computed numerically. Consequently, we have
all information needed to perform the evolution updating step of the Bayesian fil-
tering.

6.4 Conclusions

In this thesis we have examined the non-stationary inverse problem concerning elec-
trical impedance process tomography. We have viewed it as a state estimation
problem. We have presented the continuous infinite dimensional state estimation
system corresponding to the problem. By studying the infinite dimensional evolu-
tion equation and linearizing the observation equation we have been able to introduce
the discretized state estimation system relating to the problem. The finite dimen-
sional state estimation problem has been solved in the Gaussian context by using
the Bayesian filtering method. However, the method introduced in Section 6.3 can
be applied to all non-stationary inverse problems in which the time evolution is
modeled by a linear stochastic differential equation with a sectorial operator and
the observation equation is linear or linearizable.

The solution (6.33)–(6.36) to the Bayesian filtering is valid only in the Gaussian
case. The assumption of Gaussianity seemed to be natural since the solution to
the infinite dimensional state evolution equation is a Gaussian process if the initial
value is assumed be a Gaussian random variable. Despite of the initial value the
state noise is always a Gaussian process. In some application non-Gaussian initial
values may be reasonable. Nonetheless, the non-Gaussian case is beyond the scope
of this thesis.

The main weakness of the method introduced in this thesis is the use of analytic
semigroups in solving the infinite dimensional state evolution equation. Since the
analytic semigroup is defined by using the spectral properties of the infinitesimal gen-
erator, only in some special cases we can present the analytic semigroup in a closed
form. Some other ways of solving infinite dimensional linear stochastic differential
equations should be researched.
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The examination of the continuous infinite dimensional state evolution equation
is beneficial for solving non-stationary inverse problems by the state estimation
method. The numerical computation requires space discretization. The discret-
ization error can be considered only by knowing the stochastic nature of the time
evolution of the object of interest. As was seen in the electrical impedance pro-
cess tomography problem in Section 6.3 the knowledge of the continuous infinite
dimensional state evolution equation of the concentration distribution allows us to
calculate the probability distribution of the discretization errors both in the evolu-
tion and observation equation. When the discretization error is taken into account,
the state estimation system is discretization invariant and hence the solution to the
non-stationary inverse problem does not depend on the discretization. Then we need
not choose the discretization level as high as possible for ensuring the accuracy of the
computation. If the aim in the Bayesian filtering is to have a real time monitoring of
the object of interest, we may use such a discretization level that the computation is
fast enough. Other discretization invariant estimation methods have been developed
in the PhD thesis of Lasanen [25].

In Subsection 6.3.5 we have studied a one dimensional version of the process tomo-
graphy problem. Since electrical impedance tomography is not defined in the one
dimension, the model case only illustrates the time evolution model used in the elec-
trical impedance process tomography problem. By numerical implementation of the
one dimensional version we would be able to visualize the discretization invariance
of the method. Unfortunately, we were not able to include numerical results to this
thesis. They will be presented in further publications of the author.



Appendix A

Resolvent

In this appendix we introduce basic properties of the resolvent set and operator of
a linear operator. Let (E, ‖ · ‖E) be a Banach space. We denote by B(E) the space
of bounded linear operators from E to E equipped with the operator norm

‖A‖B(E) := sup{‖Ax‖E : x ∈ E, ‖x‖E ≤ 1}
for all A ∈ B(E).

Definition A.1. Let A : D(A) ⊂ E → E be linear. The resolvent set ρ(A) and the
spectrum σ(A) of the operator A are

ρ(A) := {λ ∈ C : ∃ (λI − A)−1 ∈ B(E)} and σ(A) := C \ ρ(A).

If λ ∈ ρ(A), we denote R(λ, A) := (λI − A)−1. The operator R(λ, A) is said to
be the resolvent operator or simply the resolvent of the operator A. The so called
resolvent identity

R(λ, A) − R(µ, A) = (µ − λ)R(λ, A)R(µ, A)

is valid for all λ, µ ∈ ρ(A).

Let D ⊂ C be open. The function λ 7→ T (λ) from D to B(E) is said to be analytic
(or holomorphic) if for every disc B(a, r) in D there exists a series

∞∑

n=0

An(λ − a)n

where An ∈ B(E) which converges in B(E) to T (λ) for all λ ∈ B(a, r).

Proposition A.2. Let λ0 ∈ ρ(A). Then the disc

B
(
λ0, ‖R(λ0, A)‖−1

B(E)

)
:=

{
λ ∈ C : |λ − λ0| < ‖R(λ0, A)‖−1

B(E)

}

is contained in ρ(A) and for all λ in that disc

R(λ, A) = R(λ0, A)[I + (λ − λ0)R(λ0, A)]−1

=

∞∑

n=0

(−1)n(λ − λ0)
nRn+1(λ0, A).

(A.1)

Therefore the resolvent set ρ(A) is open in C and the mapping λ 7→ R(λ, A) is
analytic in ρ(A).
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Proof. Let λ0 ∈ ρ(A). For every y ∈ E the equation λx−Ax = y is equivalent to the
equation z+(λ−λ0)R(λ0, A)z = y where z := (λ0−A)x. If ‖(λ−λ0)R(λ0, A)‖B(E) <
1, then I + (λ − λ0)R(λ0, A) is invertable with a bounded inverse. Hence

x = R(λ0, A) [I + (λ − λ0)R(λ0, A)]−1 y =
∞∑

n=0

(−1)n(λ − λ0)
nRn+1(λ0, A)y.

Thus

R(λ, A) = R(λ0, A) [I + (λ − λ0)R(λ0, A)]−1 =
∞∑

n=0

(−1)n(λ − λ0)
nRn+1(λ0, A)

if |λ − λ0| < ‖R(λ0, A)‖−1
B(E). So the disc

{
λ ∈ C : |λ − λ0| < ‖R(λ0, A)‖−1

B(E)

}

belongs to ρ(A) and Expansion (A.1) is valid in that disc. Therefore ρ(A) is open
and the mapping λ 7→ R(λ, A) is holomorphic in ρ(A).



Appendix B

Vector Valued Functions

In this appendix we introduce the Bochner integration theory for Banach space
valued functions. In Section B.1 we have gathered measure theoretical notation
used in this appendix. The Bochner integration theory for functions with values
in an arbitrary Banach space is presented in Sections B.2 and B.4. The special
case of operator valued functions is considered in Sections B.3 and B.5. The main
references of this appendix are the books of Hille and Phillips [16] and Kuttler [24].
The Bochner integral can also be found among others in the books of Diestel and
Uhl [9] and Yosida [54], in the master’s thesis of Hytönen [17] and in the PhD thesis
of Mikkola [29].

B.1 Basic Definitions of Measure Theory

In this section we recall the basic notation of the measure theory on account of
consistence. Nevertheless, we assume the Lebesgue integration theory for scalar
valued functions to be known. The books of Kuttler [24] or Rudin [37] can be used
as a reference.

Let Ω be a set. A collection F of subsets of Ω is said to be a σ-algebra in Ω if F has
the following properties

(i) Ω ∈ F ,

(ii) if A ∈ F , then Ac ∈ F ,

(iii) if A = ∪∞
n=1An and An ∈ F for all n ∈ N, then A ∈ F .

If F is a σ-algebra in Ω, then (Ω,F) is called a measurable space and the members of
F are called the measurable sets in Ω. Let (Ω,F) and (E,G) be measurable spaces.
A function x : Ω → E is said to be measurable if x−1(A) ∈ F for all A ∈ G, i.e., the
inverse image of a measurable set is measurable.

Let E be a topological space. Then the Borel σ-algebra of E is the smallest σ-
algebra containing all open subsets of E. It is denoted by B(E) and the elements of

133
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B(E) are called the Borel sets of E. An E-valued measurable function is a mapping
x : Ω → E which is measurable from (Ω,F) to (E,B(E)).

Let (Ω,F) be a measurable space. A function µ : F → [0,∞] is a positive measure
if µ(A) < ∞ at least for one A ∈ F and µ is σ-additive, i.e., if {Ai} is a disjoint
countable collection of measurable sets,

µ

( ∞⋃

i=1

Ai

)
=

∞∑

i=1

µ(Ai).

The triplet (Ω,F , µ) is called a measure space. The measure space (Ω,F , µ) is σ-
finite if Ω is a countable union of sets Ωi with µ(Ωi) < ∞.

Let (Ω,F , µ) be a measure space and (E,G) a measurable vector space. A function
x : Ω → E is called simple if it is of the form

x(ω) =
n∑

k=1

akχAk
(ω)

for all ω ∈ Ω where n ∈ N, ak ∈ E, Ak ∈ F such that µ(Ak) < ∞ for all k = 1, . . . , n
and Ai ∩ Aj = ∅ if i 6= j, and

χAk
(ω) :=

{
1 if ω ∈ Ak,

0 if ω 6∈ Ak.

A simple function has only a finite number of values and the measure of the set in
which a simple function is nonzero is finite.

B.2 Strong and Weak Measurability

Let (Ω,F , µ) be a σ-finite measure space and (E, ‖ · ‖E) a Banach space. We define
two different kinds of measurabilities for functions from Ω to E. They will be used
in the definition of the Bochner integral.

Definition B.1. (i) A function x : Ω → E is said to be strongly measurable if
there exists a sequence {xn}∞n=1 of simple functions converging pointwise to x.

(ii) A function x : Ω → E is said to be weakly measurable if for each f ∈ E ′ the
scalar function ω 7→ 〈x(ω), f〉 is measurable.

Clearly, if x is measurable from (Ω,F) to (E,B(E)), it is weakly measurable. Our
task it to verify that strongly and weakly measurable functions are often measurable
and vice versa. The separability of the range of a function is the necessary and
sufficient condition.

Theorem B.2. A function x is strongly measurable if and only if it is measurable
and x(Ω) is separable.

Proof. “⇐” Let us assume that x is measurable and x(Ω) is separable. Let {ak}∞k=1

be dense in x(Ω) and n ∈ N. We set for all k = 1, . . . , n

Un
k :=

{
z ∈ E : ‖z − ak‖E ≤ min

1≤l≤n
‖z − al‖E

}
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and Bn
k := x−1(Un

k ). Then Un
k is a Borel set in E and hence Bn

k is measurable for
all k = 1, . . . , n. We form disjoint sets Dn

k by

Dn
k := Bn

k \
(⋃

l<k

Bn
l

)

for all k = 1, . . . , n. We define a sequence {xn}∞n=1 of measurable functions by

xn(ω) :=
n∑

k=1

akχDn
k
(ω)

for all ω ∈ Ω. Thus xn is the nearest approximation of x in the set {ak}n
k=1.

Since {ak}∞k=1 is dense in x(Ω), the functions xn converge pointwise to x. Since
(Ω,F , µ) is σ-finite, there exist sets Ωn ↑ Ω such that µ(Ωn) < ∞. We define
yn(ω) := χΩn(ω)xn(ω) for all n ∈ N. Then yn converges pointwise to x since for all
ω ∈ Ω and n large enough ω ∈ Ωn. Functions yn are simple because µ(Ωn) < ∞.
Hence x is strongly measurable.

“⇒” Let us assume that x is strongly measurable. Then there exists a sequence
{xn}∞n=1 of simple functions converging pointwise to x. A set x−1

n (U) is measurable
for all open U ⊂ E and n ∈ N since it is a finite union of measurable sets. Let
U ⊂ E be open and {Vm}∞m=1 a sequence of open sets satisfying the conditions

V m ⊆ U, V m ⊆ Vm+1 and U =

∞⋃

m=1

Vm.

Then

x−1(Vm) ⊆
∞⋃

n=1

∞⋂

k=n

x−1
k (Vm) ⊆ x−1(V m)

since xn converges pointwise to x. Hence

x−1(U) =
∞⋃

m=1

x−1(Vm) ⊆
∞⋃

m=1

∞⋃

n=1

∞⋂

k=n

x−1
k (Vm) ⊆

∞⋃

m=1

x−1(V m) ⊆ x−1(U).

Thus

x−1(U) =
∞⋃

m=1

∞⋃

n=1

∞⋂

k=n

x−1
k (Vm).

Since x−1
k (Vm) is measurable for all k, m ∈ N, then x−1(U) is measurable for all

open U ⊂ E as a countable intersection and unions of measurable sets. Since
{C : x−1(C) ∈ F} is a σ-algebra containing all open sets, x−1(B) is measurable for
all Borel sets B in E. Hence x is measurable.

We still have to show that x(Ω) is separable. Let

D := {a ∈ E : ∃n ∈ N such that xn(ω) = a for some ω ∈ Ω}.

Then xn(Ω) ⊂ D for all n ∈ N and D is a countable set and dense in D̄. Since xn

converges pointwise to x, then x(Ω) ⊂ D̄. As a subset of a separable set x(Ω) is
separable.
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To be able to prove that the measurabilities coincide if the ranges of functions are
separable, we need the following lemma. The lemma is interesting itself.

Lemma B.3. If E is separable and x is weakly measurable, the scalar function
‖x(·)‖E is measurable.

Proof. Let x be a weakly measurable function. Let us set

A := {ω ∈ Ω : ‖x(ω)‖E ≤ a} and Af := {ω ∈ Ω : |〈x(ω), f〉| ≤ a}

where a ∈ R and f ∈ E′. It is enough to prove that A is measurable. By the
definition,

A ⊆
⋂

‖f‖E′≤1

Af .

If ω ∈ ∩‖f‖E′≤1Af , then |〈x(ω), f〉| ≤ a for all f ∈ B ′ where B′ is the unit ball of
E′. But by the Hahn-Banach theorem there exists fω ∈ E′ such that ‖fω‖E′ = 1
and 〈x(ω), fω〉 = ‖x(ω)‖E . Hence ‖x(ω)‖E ≤ a and

A =
⋂

‖f‖E′≤1

Af .

We need the functional analytic fact that for separable Banach spaces the unit ball
of the dual space is weak*-separable.

Lemma B.4. [54, pp. 131–132] Let E be a separable Banach space and B ′ the unit
ball in E′. Then there exists a sequence {fn}∞n=1 ⊆ B′ with the property that for
every f0 ∈ B′ there exists a subsequence {fnk

}∞k=1 of {fn}∞n=1 such that 〈x, f0〉 =
limk→∞〈x, fnk

〉 for every x ∈ E.

Let {fn}∞n=1 be the sequence in Lemma B.4. If ω ∈ ∩∞
n=1Afn , then |〈x(ω), fn〉| ≤ a

for all n. Therefore |〈x(ω), f〉| = limk→∞ |〈x(ω), fnk
〉| ≤ a for all f ∈ B′. Thus

A =
⋂

‖f‖E′≤1

Af =
∞⋂

n=1

Afn .

Since x is weakly measurable, Afn is measurable for all n ∈ N. As a countable
intersection of measurable sets A is measurable. Hence the scalar function ‖x(·)‖E

is measurable.

The following theorem combines the strong and weak measurability.

Theorem B.5. A function x is strongly measurable if and only if it is weakly meas-
urable and x(Ω) is separable.

Proof. “⇒” Let x be strongly measurable. Then x(Ω) is separable by Theorem B.2.
Since x is strongly measurable, there exists a sequence {xn}∞n=1 of simple functions
such that xn converges pointwise to x. Then by the continuity of the dual operation
〈xn(ω), f〉 → 〈x(ω), f〉 as n → ∞ for each ω ∈ Ω and for all f ∈ E ′. Since 〈x(·), f〉
is a limit of measurable complex functions, it is measurable. Hence x is weakly
measurable.
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“⇐”Let x be weakly measurable and x(Ω) separable. Let {ak}∞k=1 be dense in x(Ω).
Then x − ak is weakly measurable for all k ∈ N. Since x(Ω) separable, by Lemma
B.3 the norm ‖x(·) − ak‖E is measurable for all k ∈ N. Let ε > 0. We define for all
k ∈ N

Aε
k := {ω ∈ Ω : ‖x(ω) − ak‖E < ε}.

Then Aε
k ∈ F and ∪kA

ε
k = Ω since {ak}∞k=1 is dense in x(Ω). We set

Dε
k := Aε

k \
⋃

l<k

Aε
l

for all k ∈ N. Then the sets Dε
k are measurable, disjoint and ∪kD

ε
k = Ω. We define

xε(ω) :=

∞∑

k=1

akχDε
k
(ω)

for all ω ∈ Ω. Clearly, xε is a countable valued function and ‖x(ω)−xε(ω)‖E < ε for
all ω ∈ Ω. Since (Ω,F , µ) is σ-finite, there exist sets Ωn ↑ Ω such that µ(Ωn) < ∞.
We define for all n ∈ N and ω ∈ Ω

yn(ω) :=
n∑

k=1

akχ
D

1
n
k ∩Ωn

(ω) = χΩn(ω)χ⋃
k≤n D

1
n
k

(ω)x 1
n
(ω).

Then {yn}∞n=1 is a sequence of simple function converging pointwise to x. Thus x is
strongly measurable.

We have actually proved a somewhat stronger result that the statement of the the-
orem would indicate.

Corollary B.6. A function x is strongly measurable if and only if it is the uniform
limit of a sequence of countable valued functions.

The following corollary is the summary of this section.

Corollary B.7. Let x be a function from Ω to E. Then the following three state-
ments are equivalent:

(i) x is measurable and x(Ω) is separable,

(ii) x is strongly measurable,

(iii) x is weakly measurable and x(Ω) is separable.

In a separable Banach space all three measurabilities are equivalent.

B.3 Operator Valued Functions

Let (Ω,F , µ) be a σ-finite measure space and (E, ‖·‖E) and (F, ‖·‖F ) Banach spaces.
We denote by B(E, F ) the space of bounded linear operator from E to F with the
operator norm

‖U‖B(E,F ) := sup{‖Ux‖F : x ∈ E, ‖x‖E ≤ 1}
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for all U ∈ B(E, F ). Since B(E, F ) is a Banach space, the theory introduced in
the previous section can be applied to operator valued functions. Nevertheless, it is
convenient to define the strong and weak measurability for operator valued functions
differently than in Definition B.1.

Definition B.8. (i) The operator valued function U : Ω → B(E, F ) is said to
be uniformly measurable if there exists a sequence of simple operator valued
functions converging pointwise to U in the uniform operator topology.

(ii) The operator valued function U : Ω → B(E, F ) is said to be strongly measur-
able if the vector valued function U(·)x is strongly measurable in the sense of
Definition B.1 for all x ∈ E.

(iii) The operator valued function U : Ω → B(E, F ) is said to be weakly measur-
able if the vector valued function U(·)x is weakly measurable in the sense of
Definition B.1 for all x ∈ E.

It is clear that the uniform measurability of an operator valued function U is the
same as the strong measurability of U considered as a vector valued function in the
Banach space B(E, F ).

The connection between the three different types of measurability for operator valued
functions is given by the following theorem.

Theorem B.9. (i) The operator valued function U is strongly measurable if and
only if it is weakly measurable and U(Ω)x is separable for each x ∈ E.

(ii) The operator valued function U is uniformly measurable if and only if it is
weakly measurable and U(Ω) is separable.

Proof. The statement (i) is an immediate consequence of Theorem B.5. The state-
ment (ii) is not as obvious. The proof is similar to the one of Theorem B.5.

”⇒” Let us assume that U is uniformly measurable. Then there exists a sequence
{Un}∞n=1 of simple operator valued functions converging pointwise to U in the uni-
form operator topology, i.e., ‖Un(ω) − U(ω)‖B(E,F ) → 0 as n → ∞ for all ω ∈ Ω.
Thus for each x ∈ E and f ∈ F ′

|〈Un(ω)x, f〉 − 〈U(ω)x, f〉| ≤ ‖Un(ω)x − U(ω)x‖F ‖f‖F ′

≤ ‖Un(ω) − U(ω)‖B(E,F )‖x‖E‖f‖F ′ −→ 0

as n → ∞ for all ω ∈ Ω. Finite valued scalar functions 〈Un(·)x, f〉 are measurable
for each x ∈ E and f ∈ F ′. Therefore 〈U(·)x, f〉 is measurable for each x ∈ E and
f ∈ F ′ as a limit of measurable scalar functions. Hence U is weakly measurable.

We still have to show that U(Ω) is separable. Let

D := {A ∈ B(E, F ) : ∃n ∈ N such that Un(ω) = A for some ω ∈ Ω}.

Then Un(Ω) ⊂ D for all n ∈ N. In addition, D is a countable set and dense in D̄.
Since Un converges pointwise to U , then U(Ω) ⊂ D̄. As a subset of a separable set
U(Ω) is separable.
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”⇐” Let U be weakly measurable and U(Ω) separable. Let {Un}∞n=1 ⊂ B(E, F ) be
dense in U(Ω). For every n ∈ N we can find a sequence {xn

m}∞m=1 ⊂ E such that
‖xn

m‖E = 1 and

‖Unxn
m‖F ≥ ‖Un‖B(E,F ) −

1

m

for all m ∈ N. Since U(Ω) is separable, also U(Ω)x is separable for all x ∈ E.
Since U is weakly measurable, U is strongly measurable by Theorem B.5. Since U
is strongly measurable, for every x ∈ E there exists a sequence {f x

n}∞n=1 of simple
F -valued functions such that fx

n converges pointwise to U(·)x. Thus

|‖U(ω)x‖F − ‖fx
n (ω)‖F | ≤ ‖U(ω)x − fx

n (ω)‖F −→ 0

as n → ∞ for all ω ∈ Ω. Hence ‖U(·)x‖F is measurable for each x ∈ E as a limit of
measurable scalar functions. Thus ‖U(·)xn

m‖F is measurable for all m, n ∈ N. Also
the function

F (ω) := sup
m,n∈N

‖U(ω)xn
m‖F

for all ω ∈ Ω is measurable. Clearly, F (ω) ≤ ‖U(ω)‖B(E,F ) for all ω ∈ Ω. Actually,
an equality holds. For given ω ∈ Ω and m ∈ N there exists n ∈ N depending on ω
and m such that

‖U(ω) − Un‖B(E,F ) ≤
1

m
.

Hence for all m ∈ N and ω ∈ Ω

F (ω) ≥ ‖U(ω)xn
m‖F ≥ ‖Unxn

m‖F − ‖U(ω)xn
m − Unxn

m‖F

≥ ‖Un‖B(E,F ) − ‖U(ω) − Un‖B(E,F ) −
1

m

≥ ‖Un‖B(E,F ) −
2

m
≥ ‖U‖B(E,F ) −

3

m
.

Thus F (ω) = ‖U(ω)‖B(E,F ) for all ω ∈ Ω and ‖U(·)‖B(E,F ) is measurable.

Since U is weakly measurable, U − Un is weakly measurable for all n ∈ N. Hence
‖U(·) − Un‖B(E,F ) is measurable for all n ∈ N. Let ε > 0. We define for all n ∈ N

Aε
n := {ω ∈ Ω : ‖U(ω) − Un‖B(E,F ) < ε}.

Then Aε
n ∈ F and ∪nAε

n = Ω since {Un}∞n=1 is dense in U(Ω). We set

Dε
n := Aε

n \
⋃

k<n

Aε
k

for all n ∈ N. Then the sets Dε
n are measurable, disjoint and ∪nDε

n = Ω. We define

Uε(ω) :=
∞∑

n=1

UnχDε
n
(ω).

Clearly, Uε is a countable valued function and ‖U(ω) − Uε(ω)‖B(E,F ) < ε for all
ω ∈ Ω. Since (Ω,F , µ) is σ-finite, there exist sets Ωn ↑ Ω such that µ(Ωn) < ∞. We
define for all m ∈ N and ω ∈ Ω

Vm(ω) :=
m∑

n=1

Unχ
D

1
m
n ∩Ωm

(ω) = χΩm(ω)χ⋃
k≤m D

1
m
k

(ω)U 1
m

(ω).

Then {Vm}∞m=1 is a sequence of simple operator valued function converging pointwise
to U in the uniform operator topology. Thus U is uniformly measurable.



140 Vector Valued Functions

B.4 The Bochner Integral

Let (Ω,F , µ) be a σ-finite measure space and (E, ‖ · ‖E) a Banach space. Let x be
a simple function

x =
n∑

k=1

akχAk

from Ω to E. We define the Bochner integral of x to be

∫

Ω
x(ω) dµ :=

n∑

k=1

akµ(Ak).

Then the Bochner integral is well defined and linear on the set of simple functions.

Definition B.10. A strongly measurable function x is Bochner integrable if there
exists a sequence {xn}∞n=1 of simple functions converging pointwise to x and satisfy-
ing ∫

Ω
‖xn(ω) − xm(ω)‖E dµ −→ 0 (B.1)

as m, n → ∞. If x is Bochner integrable, we define the Bochner integral of x to be

∫

Ω
x(ω) dµ := lim

n→∞

∫

Ω
xn(ω) dµ.

We need to prove that the previous definition is appropriate.

Lemma B.11. The Bochner integral of a Bochner integrable function is well defined.

Proof. Let x be a simple function. Then

∥∥∥∥
∫

Ω
x(ω) dµ

∥∥∥∥
E

=

∥∥∥∥∥
n∑

k=1

akµ(Ak)

∥∥∥∥∥
E

≤
n∑

k=1

‖ak‖Eµ(Ak)

=

∫

Ω

n∑

k=1

‖ak‖EχAk
(ω) dµ =

∫

Ω
‖x(ω)‖E dµ.

Hence ∥∥∥∥
∫

Ω
x(ω) dµ

∥∥∥∥
E

≤
∫

Ω
‖x(ω)‖E dµ

for each simple function x.

Let x be a Bochner integrable function and {xn}∞n=1 a sequence of simple functions
converging pointwise to x and satisfying Condition (B.1). Then

{∫
Ω xn(ω) dµ

}∞
n=1

is a Cauchy sequence in E since

∥∥∥∥
∫

Ω
xn(ω) dµ −

∫

Ω
xm(ω) dµ

∥∥∥∥
E

≤
∫

Ω
‖xn(ω) − xm(ω)‖E dµ −→ 0

as m, n → ∞. Since E is complete,

lim
n→∞

∫

Ω
xn(ω) dµ



B.4. The Bochner Integral 141

exists in E.

We need to show that the Bochner integral does not depend on the choice of the
sequence satisfying Condition (B.1). Let {xn}∞n=1 and {ym}∞m=1 be two sequences
satisfying Condition (B.1) and converging pointwise to x. Let ε > 0. Then by
Fatou’s lemma,

∥∥∥∥
∫

Ω
xn(ω) dµ −

∫

Ω
ym(ω) dµ

∥∥∥∥
E

≤
∫

Ω
‖xn(ω) − ym(ω)‖E dµ

≤
∫

Ω
‖xn(ω) − x(ω)‖E dµ +

∫

Ω
‖ym(ω) − x(ω)‖E dµ

≤ lim inf
k→∞

∫

Ω
‖xn(ω) − xk(ω)‖E dµ + lim inf

k→∞

∫

Ω
‖ym(ω) − yk(ω)‖E dµ

<
ε

2
+

ε

2
= ε

if m, n ∈ N are large enough. Since ε > 0 is arbitrary, this shows that the integrals
converge to the same limit. Hence the Bochner integral is well defined.

There is an equivalent way to define Bochner integrable functions.

Theorem B.12. A function x is Bochner integrable if and only if it is strongly
measurable and ∫

Ω
‖x(ω)‖E dµ < ∞.

If x is Bochner integrable, there exists a sequence {yn}∞n=1 of simple functions such
that yn converges pointwise to x and satisfies ‖yn(ω)‖E ≤ 2‖x(ω)‖E for all n ∈ N
and ω ∈ Ω and ∫

Ω
‖yn(ω) − ym(ω)‖E dµ −→ 0

as m, n → ∞. In addition,

lim
n→∞

∫

Ω
‖x(ω) − yn(ω)‖E dµ = 0.

Proof. “⇒” Let x be Bochner integrable. By the definition it is strongly measur-
able. Let {xn}∞n=1 be a sequence of simple functions satisfying Condition (B.1) and
converging pointwise to x. By Fatou’s lemma,

∫

Ω
‖x(ω)‖E dµ ≤ lim inf

n→∞

∫

Ω
‖xn(ω)‖E dµ.

The right hand side is finite since the sequence {xn}∞n=1 satisfies Condition (B.1)
and thus

{∫
Ω ‖xn(ω)‖E dµ

}∞
n=1

is a Cauchy sequence in R. So

∫

Ω
‖x(ω)‖E dµ < ∞

for each Bochner integrable x.
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“⇐” Let x be a strongly measurable function and

∫

Ω
‖x(ω)‖E dµ < ∞.

Then there exists a sequence {xn}∞n=1 of simple functions converging pointwise to x.
Let us define

yn(ω) :=

{
xn(ω) if ‖xn(ω)‖E ≤ 2‖x(ω)‖E ,

0 if ‖xn(ω)‖E > 2‖x(ω)‖E ,

for all n ∈ N. If x(ω) = 0, then yn(ω) = 0 for all n ∈ N. If ‖x(ω)‖E > 0, for all n ∈ N
large enough yn(ω) = xn(ω). Thus yn converges pointwise to x and ‖yn(ω)‖E ≤
2‖x(ω)‖E for all n ∈ N and ω ∈ Ω. Since ‖yn(ω) − ym(ω)‖E ≤ 4‖x(ω)‖E for all
m, n ∈ N and ω ∈ Ω and ‖x(·)‖E ∈ L1(Ω), by Lebesgue’s dominated convergence
theorem,

lim
m,n→∞

∫

Ω
‖yn(ω) − ym(ω)‖E dµ = 0.

Hence the sequence {yn}∞n=1 satisfies Condition (B.1). Therefore x is Bochner integ-
rable.

Since yn converges pointwise to x and ‖yn(ω)−ym(ω)‖E ≤ 4‖x(ω)‖E for all m, n ∈ N
and ω ∈ Ω and ‖x(·)‖E ∈ L1(Ω),

0 = lim
n→∞

lim
m→∞

∫

Ω
‖yn(ω) − ym(ω)‖E dµ = lim

n→∞

∫

Ω
‖yn(ω) − x(ω)‖E dµ

by Lebesgue’s dominated convergence theorem.

Main properties of the Bochner integral are presented in the following theorem.

Theorem B.13. (i) If x and x̃ are Bochner integrable and α, β ∈ C,

α

∫

Ω
x(ω) dµ + β

∫

Ω
x̃(ω) dµ =

∫

Ω
(αx(ω) + βx̃(ω)) dµ,

i.e., the Bochner integral is a linear operator from the set of Bochner integrable
functions to E.

(ii) If x is Bochner integrable,

∥∥∥∥
∫

Ω
x(ω) dµ

∥∥∥∥
E

≤
∫

Ω
‖x(ω)‖E dµ.

(iii) Let F be a Banach space. If x is Bochner integrable and A is a bounded linear
operator from E to F ,

A

∫

Ω
x(ω) dµ =

∫

Ω
Ax(ω) dµ.

Proof. (i) Let {yn}∞n=1 and {ỹn}∞n=1 be sequences of simple functions stated in The-
orem B.12 corresponding to the Bochner integrable functions x and x̃, respectively.
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If α, β ∈ C, then αx + βx̃ is Bochner integrable since the simple function αyn + βỹn

converges pointwise to αx + βx̃ and
∫

Ω
‖αyn(ω) + βỹn(ω) − (αym(ω) + βỹm(ω))‖E dµ

≤ |α|
∫

Ω
‖yn(ω) − ym(ω)‖E dµ + |β|

∫

Ω
‖ỹn(ω) − ỹm(ω)‖E dµ −→ 0

as m, n → ∞. The Bochner integral is linear on the set of simple functions. Hence

α

∫

Ω
yn(ω) dµ + β

∫

Ω
ỹn(ω) dµ =

∫

Ω
(αyn(ω) + βỹn(ω)) dµ

for all α, β ∈ C. Therefore

α

∫

Ω
x(ω) dµ + β

∫

Ω
x̃(ω) dµ = lim

n→∞

(
α

∫

Ω
yn(ω) dµ + β

∫

Ω
ỹn(ω) dµ

)

= lim
n→∞

∫

Ω
(αyn(ω) + βỹn(ω)) dµ

=

∫

Ω
(αx(ω) + βx̃(ω)) dµ

for all α, β ∈ C.

(ii) Let {yn}∞n=1 be a sequence of simple functions stated in Theorem B.12 corres-
ponding to the Bochner integrable function x. In the proof of Lemma B.11 we
showed that ∥∥∥∥

∫

Ω
x(ω) dµ

∥∥∥∥
E

≤
∫

Ω
‖x(ω)‖E dµ

for each simple function x. By the continuity of a norm,
∥∥∥∥
∫

Ω
x(ω) dµ

∥∥∥∥
E

= lim
n→∞

∥∥∥∥
∫

Ω
yn(ω) dµ

∥∥∥∥
E

≤ lim
n→∞

∫

Ω
‖yn(ω)‖E dµ.

Since yn converges pointwise to x, ‖yn(ω)‖E ≤ 2‖x(ω)‖E for all n ∈ N and ω ∈ Ω
and ‖x(·)‖E ∈ L1(Ω), according to Lebesgue’s dominated convergence theorem,

∥∥∥∥
∫

Ω
x(ω) dµ

∥∥∥∥
E

≤
∫

Ω
‖x(ω)‖E dµ

for each Bochner integrable x.

(iii) Let A ∈ B(E, F ) and x be a simple function. Then

A

∫

Ω
x(ω) dµ = A

n∑

k=1

akµ(Ak) =

n∑

k=1

Aakµ(Ak)

=

∫

Ω

n∑

k=1

AakχAk
(ω) dµ =

∫

Ω
Ax(ω) dµ.

Let {yn}∞n=1 be a sequence of simple functions stated in Theorem B.12 corresponding
to the Bochner integrable function x. Then Ayn converges pointwise to Ax and

∫

Ω
‖Ayn(ω) − Aym(ω)‖F dµ ≤ ‖A‖B(E,F )

∫

Ω
‖yn(ω) − ym(ω)‖E dµ −→ 0
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as m, n → ∞ Hence Ax is Bochner integrable. By the continuity of the operator A,

A

∫

Ω
x(ω) dµ = lim

n→∞
A

∫

Ω
yn(ω) dµ = lim

n→∞

∫

Ω
Ayn(ω) dµ =

∫

Ω
Ax(ω) dµ

for each Bochner integrable x.

Theorem B.12 allows us to define the space of Bochner integrable functions.

Definition B.14. A function x belongs to the space Lp(Ω,F , µ; E) for 1 ≤ p < ∞
if x is strongly measurable and

∫

Ω
‖x(ω)‖p

E dµ < ∞.

We identify two functions in Lp(Ω,F , µ; E) if they are equal almost everywhere, i.e.,
x(ω) = y(ω) for all ω ∈ Ω \ A with µ(A) = 0.

We denote

‖x‖p := ‖x‖Lp(Ω,F ,µ;E) :=

(∫

Ω
‖x(ω)‖p

E dµ

) 1
p

. (B.2)

It is clear that Lp(Ω,F , µ; E) is a norm space with the norm given by Formula (B.2).
In fact, Lp(Ω,F , µ; E) is a Banach space. In the proof of the completeness we use
the following lemma.

Lemma B.15. If {xn}∞n=1 is a sequence in Lp(Ω,F , µ; E) satisfying

∞∑

n=1

‖xn+1 − xn‖p < ∞,

there exists x ∈ Lp(Ω,F , µ; E) such that xn converges pointwise almost everywhere
and in Lp(Ω,F , µ; E) to x.

Proof. Let {xn}∞n=1 be a sequence in Lp(Ω,F , µ; E) satisfying the assumption. We
denote

gn(ω) :=
n∑

k=1

‖xk+1(ω) − xk(ω)‖E

for all n ∈ N and ω ∈ Ω. Then gn belongs to Lp(Ω) since it is measurable and

‖gn‖Lp(Ω) ≤
n∑

k=1

‖xk+1 − xk‖p < ∞

for all n ∈ N. We set

g(ω) := lim
n→∞

gn(ω) =
∞∑

k=1

‖xk+1(ω) − xk(ω)‖E

for all ω ∈ Ω. By Lebesgue’s monotone convergence theorem,

‖g‖Lp(Ω) = lim
n→∞

‖gn‖Lp(Ω) ≤
∞∑

k=1

‖xk+1 − xk‖p < ∞.
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Hence g ∈ Lp(Ω) and thus g(ω) < ∞ for almost all ω ∈ Ω. We mark the set in
which g(ω) = ∞ with A. Then µ(A) = 0.

Let m > n. Then

xm(ω) − xn(ω) =
m−1∑

k=n

(xk+1(ω) − xk(ω))

for all ω ∈ Ω. Thus

‖xm(ω) − xn(ω)‖E ≤
m−1∑

k=n

‖xk+1(ω) − xk(ω)‖E ≤
∞∑

k=n

‖xk+1(ω) − xk(ω)‖E

for all ω ∈ Ω. If ω /∈ A,

∞∑

k=n

‖xk+1(ω) − xk(ω)‖E −→ 0

as n → ∞. Hence if ω /∈ A, then {xn(ω)}∞n=1 is a Cauchy sequence in E and
limn→∞ xn(ω) exists. We denote

x(ω) :=

{
limn→∞ xn(ω) if ω /∈ A,

0 if ω ∈ A.

Since xn is strongly measurable, xn(Ω) is separable for all n ∈ N by Theorem B.2.
Let {an

k}∞k=1 be a dense subset of xn(Ω) for all n ∈ N. Let us set D := {an
k}∞k,n=1.

Then D∩xn(Ω) is dense in xn(Ω) and D̄ is separable. Additionally, by the definition
x(Ω) ⊂ D̄. Hence x(Ω) is separable. If f ∈ E ′, according to continuity of the dual
operation 〈x(ω), f〉 = limn→∞〈xn(ω), f〉 if ω /∈ A, and 〈x(ω), f〉 = 0 if ω ∈ A. Hence
〈x(·), f〉 is measurable as a limit of measurable scalar functions 〈xn(·)χAc(·), f〉. So
x is weakly measurable. Since x is weakly measurable and x(Ω) is separable, x is
strongly measurable by Theorem B.5.

Let ε > 0. By Fatou’s lemma,
∫

Ω
‖x(ω) − xn(ω)‖p

E dµ ≤ lim inf
m→∞

∫

Ω
‖xm(ω) − xn(ω)‖p

E dµ.

For n large enough

‖xm − xn‖p ≤
[∫

Ω

(
m−1∑

k=n

‖xk+1(ω) − xk(ω)‖E

)p] 1
p

≤
∞∑

k=n

‖xk+1 − xk‖p < ε

if m > n. Since ε > 0 is arbitrary, limn→∞ ‖x − xn‖p = 0.

We still have to prove that x ∈ Lp(Ω,F , µ; E). Let ε > 0. For n ∈ N large enough

‖x‖p ≤ ‖x − xn‖p + ‖xn‖p ≤ ‖xn‖p + ε < ∞.

Hence x ∈ Lp(Ω,F , µ; E).

Theorem B.16. Lp(Ω,F , µ; E) is complete. In addition, every Cauchy sequence
has a subsequence which converges pointwise almost everywhere.
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Proof. Let {xn}∞n=1 be a Cauchy sequence in Lp(Ω,F , µ; E). We choose such a
subsequence {xnk

}∞k=1 that ‖xnk+1
−xnk

‖p ≤ 2−k. Then the subsequence satisfies the
assumptions of Lemma B.15. By the lemma the subsequence converges pointwise
almost everywhere and in Lp(Ω,F , µ; E) to x ∈ Lp(Ω,F , µ; E). Since a limit is
unique, the theorem is proved.

By Theorem B.12 we know that the set of simple functions is dense in L1(Ω,F , µ; E).
The next theorem states that simple functions are also dense in Lp(Ω,F , µ; E) for
p > 1 if the measure µ is finite.

Theorem B.17. Assume that µ(Ω) < ∞. If x ∈ Lp(Ω,F , µ; E) for p ≥ 1, there
exists a sequence {xn}∞n=1 of simple functions such that xn converges pointwise al-
most everywhere and in Lp(Ω,F , µ; E) to x and satisfies ‖xn(ω)‖E ≤ 2‖x(ω)‖E for
all n ∈ N and almost all ω ∈ Ω.

Proof. Simple functions belong to Lp(Ω,F , µ; E) for p ≥ 1 since they are strongly
measurable and

‖x‖p
p =

n∑

k=1

‖ak‖p
Eµ(Ak) < ∞

for a simple function x. Let x ∈ Lp(Ω,F , µ; E). By Hölder’s inequality,

‖x‖L1(Ω;E) ≤ ‖1‖
L

p
p−1 (Ω)

‖x‖Lp(Ω;E) = µ(Ω)
1− 1

p ‖x‖Lp(Ω;E) < ∞.

So x is Bochner integrable. By Theorem B.12 there exists a sequence {xn}∞n=1

of simple functions such that xn converges pointwise almost everywhere and in
L1(Ω,F , µ; E) to x and satisfies ‖xn(ω)‖E ≤ 2‖x(ω)‖E for all n ∈ N and almost
all ω ∈ Ω. Since ‖x(ω) − xn(ω)‖p

E ≤ 3p‖x(ω)‖p
E for all n ∈ N and almost all ω ∈ Ω,

by Lebesgue’s dominated convergence theorem,

‖x − xn‖p
p =

∫

Ω
‖x(ω) − xn(ω)‖p

E dµ −→ 0

as n → ∞.

Bochner integrable functions can be approximated by simple functions in L1-norm.
The following theorem states that the approximating functions can be chosen in such
a way that the values of approximating functions are values of the original function
if we allow the approximating functions to have countably many values.

Theorem B.18. Let x be Bochner integrable and ε > 0. Then there exists a subdi-
vision of Ω into disjoint sets {Ak}∞k=1 ⊂ F such that for an arbitrary ωk ∈ Ak the
function

xε =

∞∑

k=1

x(ωk)χAk

is countable valued, Bochner integrable and satisfies the relation

∫

Ω
‖x(ω) − xε(ω)‖E dµ < ε.

Furthermore, this remains valid for all refinements of the above subdivision.
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Proof. Since (Ω,F , µ) is σ-finite, there exist Ωn ↑ Ω such that µ(Ωn) < ∞. We
denote S̃n := Ωn \ ∪k<nΩk. Then S̃n ∈ F are disjoint and ∪nS̃n = Ω. We may
redefine a subdivision {Sn} of Ω such that Sn are disjoint and 0 < µ(Sn) < ∞ for
all n ∈ N by adding all S̃k such that µ(S̃k) = 0 to some S̃l with µ(S̃l) > 0.

Let x be Bochner integrable and ε > 0. Since x is strongly measurable, by Corollary
B.6 for every n ∈ N there exists a countable valued function xε,n such that

‖xε,n(ω) − x(ω)‖E <
2−n−1ε

µ(Sn)

for all ω ∈ Ω. For every n ∈ N let {an
l }∞l=1 be the set of all values of the function

xε,n on Sn. We denote An
l := x−1

ε,n(an
l )∩Sn for all l, n ∈ N. Then An

l are disjoint for
all l, n ∈ N and ∪∞

l=1A
n
l = Sn for all n ∈ N.

Let ωn
l ∈ An

l be arbitrary for all l, n ∈ N. We define the function

xε(ω) :=
∞∑

l,n=1

x(ωn
l )χAn

l
(ω)

for all ω ∈ Ω. Then xε is countable valued and hence strongly measurable. Let
ω ∈ An

l for some l, n ∈ N. Then xε,n(ω) = xε,n(ωn
l ) = an

l . Hence

‖xε(ω) − x(ω)‖E ≤ ‖x(ωn
l ) − xε,n(ωn

l )‖E + ‖xε,n(ω) − x(ω)‖E <
2−nε

µ(Sn)

for all ωn
l ∈ An

l . Thus

∫

Ω
‖x(ω) − xε(ω)‖E dµ ≤

∞∑

l,n=1

∫

Ω
‖x(ωn

l ) − x(ω)‖EχAn
l
(ω) dµ

<
∞∑

l,n=1

2−nε

µ(Sn)
µ(An

l ) =
∞∑

n=1

2−nε = ε.

Furthermore,

∫

Ω
‖xε(ω)‖E dµ ≤

∫

Ω
‖x(ω) − xε(ω)‖E dµ +

∫

Ω
‖x(ω)‖E dµ

<

∫

Ω
‖x(ω)‖E dµ + ε < ∞.

Hence xε is Bochner integrable. The construction of the function xε allows all
refinements.

Bounded operators commute with the Bochner integral by Theorem B.13. The
boundedness is not a necessary condition.

Theorem B.19. Let F be a Banach space and T : D(T ) ⊂ E → F a closed
linear operator. If x ∈ L1(Ω,F , µ; E), x(ω) ∈ D(T ) for almost all ω ∈ Ω and
Tx ∈ L1(Ω,F , µ; F ),

T

∫

Ω
x(ω) dµ =

∫

Ω
Tx(ω) dµ.
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Proof. Let T be a closed linear operator from D(T ) ⊂ E to F and x a Bochner in-
tegrable function such that x(ω) ∈ D(T ) for all ω ∈ Ω and Tx is Bochner integrable.
Let ε > 0. By Theorem B.18 there exists two subdivisions of Ω, one corresponding
to an ε-approximation of x and the other an ε-approximation of Tx. Let {An}∞n=1

be a common refinement of these two subdivisions and ωn ∈ An for all n ∈ N. We
define

xε(ω) :=

∞∑

n=1

x(ωn)χAn(ω)

for all ω ∈ Ω. Then xε and Txε are Bochner integrable and
∫

Ω
‖x(ω) − xε(ω)‖E dµ < ε and

∫

Ω
‖Tx(ω) − Txε(ω)‖F dµ < ε.

Thus ∫

Ω
xε(ω) dµ =

∞∑

n=1

x(ωn)µ(An) = lim
N→∞

N∑

n=1

x(ωn)µ(An)

and ∫

Ω
Txε(ω) dµ =

∞∑

n=1

Tx(ωn)µ(An) = lim
N→∞

T

(
N∑

n=1

x(ωn)µ(An)

)
.

Since T is a closed linear operator,
∫

Ω
xε(ω) dµ ∈ D(T ) and T

∫

Ω
xε(ω) dµ =

∫

Ω
Txε(ω) dµ.

Let {εn}∞n=1 be a sequence of positive numbers converging to zero. Since xεn con-
verges to x in L1(Ω,F , µ; E) and Txεn to Tx in L1(Ω,F , µ; F ),

lim
n→∞

∫

Ω
xεn(ω) dµ =

∫

Ω
x(ω) dµ

and

lim
n→∞

T

∫

Ω
xεn(ω) dµ = lim

n→∞

∫

Ω
Txεn(ω) dµ =

∫

Ω
Tx(ω) dµ.

Since T is a closed linear operator,
∫

Ω
x(ω) dµ ∈ D(T ) and T

∫

Ω
x(ω) dµ =

∫

Ω
Tx(ω) dµ.

If x(ω) ∈ D(T ) only for almost all ω ∈ Ω, the definitions of xε and Txε have to be
changed in a set of measure zero. Hence the statement is proved.

Since there is not an order relation in an arbitrary Banach space, there do not exist
versions of Lebesgue’s monotone convergence theorem and Fatou’s lemma. But a
modification of Lebesgue’s dominated convergence theorem holds also in this setting.

Theorem B.20. Let {xn}∞n=1 be a sequence of strongly measurable functions. If
x is strongly measurable and xn converges pointwise almost everywhere to x with
‖xn(ω)‖E ≤ g(ω) for all n ∈ N and almost all ω ∈ Ω where g ∈ L1(Ω), then x is
Bochner integrable and

∫

Ω
x(ω) dµ = lim

n→∞

∫

Ω
xn(ω) dµ.
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Proof. Since ‖xn(ω)‖E ≤ g(ω) for all n ∈ N and almost all ω ∈ Ω and g ∈ L1(Ω),
the functions xn are Bochner integrable. Since ‖xn(ω) − xm(ω)‖E ≤ 2g(ω) for all
m, n ∈ N and almost all ω ∈ Ω, by Lebesgue’s dominated convergence theorem,

lim
m,n→∞

∫

Ω
‖xn(ω) − xm(ω)‖E dµ = 0.

So {xn}∞n=1 is a Cauchy sequence in L1(Ω,F , µ; E). According to Theorem B.16
there exists a subsequence {xnk

}∞k=1 and y ∈ L1(Ω,F , µ; E) such that xnk
converges

pointwise almost everywhere and in L1(Ω,F , µ; E) to y. But limk→∞ xnk
(ω) = x(ω)

for almost all ω ∈ Ω. So x = y almost everywhere. Hence x is Bochner integrable
and xn converges in L1(Ω,F , µ; E) to x. Thus

∥∥∥∥
∫

Ω
x(ω) dµ −

∫

Ω
xn(ω) dµ

∥∥∥∥
E

≤
∫

Ω
‖xn(ω) − x(ω)‖E dµ −→ 0

as n → ∞. Therefore ∫

Ω
x(ω) dµ = lim

n→∞

∫

Ω
xn(ω) dµ

and the theorem is proved.

B.5 The Bochner Integral of Operator Valued Functions

We must distinguish between the uniform Bochner integral and strong Bochner
integral of operator valued functions. If U : Ω → B(E, F ) is uniformly measurable
and ∫

Ω
‖U(ω)‖B(E,F ) dµ < ∞,

U ∈ L1(Ω,F , µ; B(E, F )) and the theory of Section B.4 applies directly. In that
case, ∫

Ω
U(ω) dµ ∈ B(E, F )

and is the limit in the uniform operator topology of the approximating integrals.
The operator

∫
Ω U(ω) dµ is called the uniform Bochner integral of U . On the other

hand if U is strongly measurable and

∫

Ω
‖U(ω)x‖F dµ < ∞

for all x ∈ E, i.e., U(·)x ∈ L1(Ω,F , µ; F ) for each x ∈ E, the theory of Section B.4
merely asserts that ∫

Ω
U(ω)x dµ = V (x)

is an element of F . It requires additional argument to show that V ∈ B(E, F ).

Theorem B.21. If U(·)x ∈ L1(Ω,F , µ; F ) for each x ∈ E,

V x =

∫

Ω
U(ω)x dµ

defines a bounded linear operator from E to F .
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Proof. Let U(·)x ∈ L1(Ω,F , µ; F ) for all x ∈ E. Then V is well defined and linear
on E. In order to show that V is bounded we consider a transformation W from
E to L1(Ω,F , µ; F ) defined by (Wx)(ω) := U(ω)x for all ω ∈ Ω. One sees directly
that W is linear. If xn → x in E and Wxn → y in L1(Ω,F , µ; F ) as n → ∞, then
(Wxn)(ω) → (Wx)(ω) as n → ∞ for all ω ∈ Ω and there exists a subsequence
{xnk

}∞k=1 such that (Wxnk
)(ω) → y(ω) as k → ∞ for almost all ω ∈ Ω. Since the

limit is unique, y(ω) = (Wx)(ω) for almost all ω ∈ Ω, i.e., y = Wx in L1(Ω,F , µ; F ).
Thus W is closed. By the closed graph theorem W is bounded. Therefore for all
x ∈ E

‖V x‖F ≤
∫

Ω
‖U(ω)x‖F dµ = ‖Wx‖L1(Ω;F ) ≤ ‖W‖B(E,L1(Ω,F ,µ;F ))‖x‖E .

Hence V is bounded.

The operator V is called the strong Bochner integral of U and denoted by

V :=

∫

Ω
U(ω) dµ.

Since uniformly measurable operator valued functions are strongly measurable, we
have two different integrals for functions in L1(Ω,F , µ; B(E, F )). The following
theorem shows that the integrals coincide.

Theorem B.22. If U ∈ L1(Ω,F , µ; B(E, F )), the uniform and strong Bochner
integral are equal.

Proof. Let U be a simple operator valued function. Then

(∫

Ω
U(ω) dµ

)
x =

n∑

k=1

Ukxµ(Ak) =

∫

Ω
U(ω)x dµ

for all x ∈ E.

Let U ∈ L1(Ω,F , µ; B(E, F )). Then U is uniformly measurable and hence strongly
measurable. Furthermore,

∫

Ω
‖U(ω)‖B(E,F ) dµ < ∞

and thus for each x ∈ E
∫

Ω
‖U(ω)x‖F dµ ≤

∫

Ω
‖U(ω)‖B(E,F ) dµ ‖x‖E < ∞.

Therefore both the uniform and strong Bochner integrals are defined. Since U ∈
L1(Ω,F , µ; B(E, F )), there exists a sequence {Un}∞n=1 of simple operator valued
functions converging pointwise almost everywhere to U in the uniform operator
topology and satisfying

∫

Ω
‖Un(ω) − Um(ω)‖B(E,F ) dµ −→ 0
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as m, n → ∞. Thus for each x ∈ E the sequence {Un(·)x}∞n=1 of simple F -valued
functions converges pointwise almost everywhere to U(·)x and satisfies

∫

Ω
‖Un(ω)x − Um(ω)x‖F dµ −→ 0

as m, n → ∞. Hence for all x ∈ E

(∫

Ω
U(ω) dµ

)
x = lim

n→∞

(∫

Ω
Un(ω) dµ

)
x = lim

n→∞

∫

Ω
Un(ω)x dµ =

∫

Ω
U(ω)x dµ

and therefore the uniform and strong Bochner integrals have the same value.





Appendix C

Integration Along a Curve

In this appendix the Bochner integration theory introduced in Appendix B is used
to define the integral of a vector valued function along a curve in the complex plane.
This sort of integrals are needed in the definition of the analytic semigroup generated
by a sectorial operator in Chapter 2.

Let (E, ‖ · ‖E) be a Banach space and γ a curve in C, i.e., there exists such a
parametrization

γ = {λ ∈ C : λ = γ(ϕ) := γ1(ϕ) + iγ2(ϕ), ϕ ∈ [a, b] ⊂ R}

where a < b that γi, i = 1, 2, are piecewise continuously differentiable functions from
[a, b] to R. We say that γ is a curve in a set D ⊂ C if γ ⊂ D. Let x : C → E be
a vector valued function. We define the integral of x along the curve γ to be the
Bochner integral ∫

γ
x(λ) dλ :=

∫ b

a
x(γ(ϕ))γ′(ϕ) dϕ

if x(γ(·)) is strongly measurable from [a, b] to E and

∫ b

a
‖x(γ(ϕ))‖E |γ′(ϕ)| dϕ < ∞.

If (F, ‖ · ‖F ) is a Banach space and U : C → B(E, F ) is an operator valued function,
the integral of U along the curve γ can be defined as a uniform Bochner integral

∫

γ
U(λ) dλ :=

∫ b

a
U(γ(ϕ))γ′(ϕ) dϕ

if U(γ(·)) is uniformly measurable from [a, b] to B(E, F ) and

∫ b

a
‖U(γ(ϕ))‖B(E,F )|γ′(ϕ)| dϕ < ∞.

Then the integral ∫

γ
U(λ) dλ

is a bounded linear operator from E to F .
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C.1 Analytic Functions

We want to show that some of the results of the complex analysis are valid for
operator valued functions.

Definition C.1. Let (E, ‖ · ‖E) be a Banach space and D ⊂ C open. The function
x : D → E is said to be holomorphic (or analytic) in D if for every disc B(a, r) ⊂ D
there exists a series ∞∑

n=0

cn(λ − a)n

where cn ∈ E which converges in E to x(λ) for all λ ∈ B(a, r).

If U : C → B(E, F ) is analytic in an open set D ⊂ C, the function 〈U(λ)x, f〉 is an
analytic scalar function in D for all x ∈ E and f ∈ F ′. Let γ be a curve in D. Since
the function ϕ 7→ γ(ϕ) is continuous, the function ϕ 7→ 〈U(γ(ϕ))x, f〉 is measurable
as a composite function of a continuous and analytic function for all x ∈ E and
f ∈ F ′. Hence U(γ(·)) is weakly measurable from [a, b] to B(E, F ). Since [a, b] is
separable and U(γ(·)) is continuous, U(γ([a, b])) is separable. Therefore U(γ(·)) is

uniformly measurable by Theorem B.9. If the length |γ| :=
∫ b
a |γ′(ϕ)| dϕ of γ is

finite,
∫ b

a
‖U(γ(ϕ))‖B(E,F )|γ′(ϕ)| dϕ ≤ |γ| max

ϕ∈[a,b]
‖U(γ(ϕ))‖B(E,F ) < ∞.

Hence the integral ∫

γ
U(λ) dλ

is defined for analytic functions U if the length of γ is finite. If there exists inform-
ation about the behaviour of the norm of an analytic operator valued function, the
integral along a curve with infinite length may be defined.

Let γ be a closed curve, i.e., γ(a) = γ(b). By the Cauchy integral theorem,

0 =

∮

γ
〈U(λ)x, f〉 dλ =

∫ b

a
〈U(γ(ϕ))x, f〉γ ′(ϕ) dϕ

=

〈∫ b

a
U(γ(ϕ))xγ′(ϕ) dϕ, f

〉
=

〈∮

γ
U(λ)x dλ, f

〉

for all x ∈ E and f ∈ F ′. Thus
∮

γ
U(λ) dλ = 0.

Therefore the Cauchy integral theorem is valid for holomorphic operator valued
functions.

On the other hand, let γ be a closed curve and ξ 6∈ γ. By the Cauchy integral
formula,

〈U(ξ)x, f〉 Indγ(ξ) =
1

2πi

∮

γ

〈U(λ)x, f〉
ξ − λ

dλ =
1

2πi

∫ b

a

〈U(γ(ϕ))x, f〉
ξ − γ(ϕ)

γ′(ϕ) dϕ

=

〈
1

2πi

∫ b

a

U(γ(ϕ))x

ξ − γ(ϕ)
γ′(ϕ) dϕ, f

〉
=

〈
1

2πi

∮

γ

U(λ)x

ξ − λ
dλ, f

〉
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for all x ∈ E and f ∈ F ′ where

Indγ(ξ) :=
1

2πi

∮

γ

dλ

ξ − λ
.

Thus

U(ξ) Indγ(ξ) =
1

2πi

∮

γ

U(λ)

ξ − λ
dλ.

Therefore the Cauchy integral formula is valid for holomorphic operator valued func-
tions.

The following theorem is the summary of this section.

Theorem C.2. Let U : C → B(E, F ) be analytic in an open set D ⊂ C and γ a
closed curve in D. Then ∮

γ
U(λ) dλ = 0.

If ξ 6∈ γ,

U(ξ) Indγ(ξ) =
1

2πi

∮

γ

U(λ)

ξ − λ
dλ.





Appendix D

Special Operators

In this chapter we present some special bounded linear operators in Banach and
Hilbert spaces. We consider the spaces of nuclear and Hilbert-Schmidt operators.
References of this chapter are the books of Da Prato and Zabczyk [35], Kuo [23],
Pietsch [32] and Treves [52]. Nuclear operators are also treaded among others in
the book of Köthe [22] and Hilbert-Schmidt operators in the books of Dunford and
Schwartz [10] and Köthe [22].

D.1 Hilbert-Schmidt Operators

Let (U, (·, ·)U ) and (H, (·, ·)H) be separable Hilbert spaces.

Lemma D.1. Let {ek}∞k=1 and {dk}∞k=1 be two orthonormal bases in U . Then

∞∑

k=1

‖Tek‖2
H =

∞∑

k=1

‖Tdk‖2
H

for a linear operator T from U to H.

Proof. Let {fk}∞k=1 be an orthonormal basis in H. Then for a linear operator T

∞∑

k=1

‖Tek‖2
H =

∞∑

k=1

∞∑

j=1

|(Tek, fj)H |2 =
∞∑

j=1

∞∑

k=1

|(ek, T
∗fj)U |2 =

∞∑

j=1

‖T ∗fj‖2
U

=

∞∑

j=1

∞∑

k=1

|(T ∗fj , dk)U |2 =

∞∑

k=1

∞∑

j=1

|(fj , Tdk)H |2 =

∞∑

k=1

‖Tdk‖2
H .

Thus if the series
∑∞

k=1 ‖Tek‖2
H converges for some {ek}∞k=1, it converges for any

other {dk}∞k=1 and if the series
∑∞

k=1 ‖Tek‖2
H is divergent for some {ek}∞k=1, it is for

any other {dk}∞k=1.

Definition D.2. A linear operator T : U → H is said to be a Hilbert-Schmidt
operator if

∞∑

k=1

‖Tek‖2
H < ∞

for an orthonormal basis {ek}∞k=1 in U .
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By Lemma D.1 the definition of Hilbert-Schmidt operators is independent of the
choice of the basis {ek}∞k=1. We denote by B(U, H) the Banach space of all bounded
linear operators from U into H endowed with the operator norm

‖T‖B(U,H) := sup{‖Tx‖H : x ∈ U, ‖x‖U ≤ 1}

for all T ∈ B(U, H) and by B2(U, H) the collection of Hilbert-Schmidt operators
from U to H. We define the Hilbert-Schmidt norm by

‖T‖B2(U,H) :=

( ∞∑

k=1

‖Tek‖2
H

) 1
2

for all T ∈ B2(U, H). If U = H, we use the notation B(H) := B(H, H) and
B2(H) := B2(H, H).

Theorem D.3. Let (U, (·, ·)U ), (H, (·, ·)H) and (E, (·, ·)E) be separable Hilbert spaces
and Q ∈ B(E, U), R ∈ B(H, E) and S, T ∈ B2(U, H). Then

(i) ‖αT‖B2(U,H) = |α|‖T‖B2(U,H) for all α ∈ C,

(ii) ‖S + T‖B2(U,H) ≤ ‖S‖B2(U,H) + ‖T‖B2(U,H),

(iii) ‖T ∗‖B2(H,U) = ‖T‖B2(U,H),

(iv) ‖T‖B(U,H) ≤ ‖T‖B2(U,H),

(v) RT is a Hilbert-Schmidt operator from U to E and

‖RT‖B2(U,E) ≤ ‖R‖B(H,E)‖T‖B2(U,H),

(vi) TQ is a Hilbert-Schmidt operator from E to H and

‖TQ‖B2(E,H) ≤ ‖Q‖B(E,U)‖T‖B2(U,H).

Proof. The statement (i) is obvious.

(ii) Let S, T ∈ B2(U, H) and {ek}∞k=1 be an orthonormal basis in U . Then by the
Minkowski inequality,

( ∞∑

k=1

‖(S + T )ek‖2
H

) 1
2

≤
( ∞∑

k=1

‖Sek‖2
H

) 1
2

+

( ∞∑

k=1

‖Tek‖2
H

) 1
2

.

Thus ‖S + T‖B2(U,H) ≤ ‖S‖B2(U,H) + ‖T‖B2(U,H).

The statement (iii) is a consequence of the proof of Lemma D.1.

(iv) Let T be a Hilbert-Schmidt operator from U to H and x ∈ U . Let {fk}∞k=1 be
an orthonormal basis in H. Then

‖Tx‖2
H =

∞∑

k=1

|(Tx, fk)|2 =

∞∑

k=1

|(x, T ∗fk)|2

≤ ‖x‖2
U

∞∑

k=1

‖T ∗fk‖2
U = ‖x‖2

U‖T ∗‖2
B2(H,U)

= ‖T‖2
B2(U,H)‖x‖2

U .
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Thus ‖T‖B(U,H) ≤ ‖T‖B2(U,H).

(v) Let R ∈ B(H, E) and T ∈ B2(U, H). Let {ek}∞k=1 be an orthonormal basis in U .
Then

‖RT‖2
B2(U,E) =

∞∑

k=1

‖RTek‖2
E ≤ ‖R‖2

B(H,E)

∞∑

k=1

‖Tek‖2
H = ‖R‖2

B(H,E)‖T‖2
B2(U,H).

Hence RT is a Hilbert-Schmidt operator from U to E and the claimed inequality is
valid.

(vi) Let Q ∈ B(E, U) and T ∈ B2(U, H). Then by the statements (iii) and (v),

‖TQ‖B2(E,H) = ‖Q∗T ∗‖B2(H,E) ≤ ‖Q∗‖B(U,E)‖T ∗‖B2(H,U) = ‖Q‖B(E,U)‖T‖B2(U,H)

and hence TQ is a Hilbert-Schmidt operator from E to H.

Corollary D.4. The Hilbert-Schmidt norm is a norm in B2(U, H).

By Theorem D.3 Hilbert-Schmidt operators are bounded, i.e., B2(U, H) ⊆ B(U, H).
If U is finite dimensional, B2(U, H) = B(U, H). But if U is infinite dimensional,
B2(U, H) ⊂ B(U, H), e.g. the identity operator is bounded but not a Hilbert-
Schmidt operator.

Proposition D.5. A Hilbert-Schmidt operator from U to H is compact.

Proof. Let T be a Hilbert-Schmidt operator from U to H and {ek}∞k=1 an orthonor-
mal basis in U . Then

∑∞
k=1 ‖Tek‖2

H < ∞. Let {fk}∞k=1 be an orthonormal basis in
H. Then Tx =

∑∞
k=1 (Tx, fk)Hfk for all x ∈ U . Thus

∥∥∥∥∥Tx −
n∑

k=1

(Tx, fk)Hfk

∥∥∥∥∥

2

H

=

∞∑

k=n+1

|(Tx, fk)H |2 =

∞∑

k=n+1

|(x, T ∗fk)U |2

≤ ‖x‖2
U

∞∑

k=n+1

‖T ∗fk‖2
U −→ 0

as n → ∞ for all x ∈ U since
∑∞

j=1 ‖T ∗fj‖2
U =

∑∞
k=1 ‖Tek‖2

H by the proof of Lemma
D.1. Hence T is the limit of finite rank operators in the operator norm. Therefore
T is compact.

We equip the norm space B2(U, H) with the Hilbert-Schmidt inner product

(S, T )B2(U,H) :=
∞∑

k=1

(Sek, T ek)H (D.1)

for all S, T ∈ B2(U, H) where {ek}∞k=1 is an orthonormal basis in U . Then B2(U, H)
is a Hilbert space.

Proposition D.6. The space of Hilbert-Schmidt operators from U into H is a sep-
arable Hilbert space.
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Proof. Let {ek}∞k=1 and {fk}∞k=1 be orthonormal bases in U and H, respectively. The
series on the right hand side of (D.1) converges absolutely since 2|(Sek, T ek)H | ≤
‖Sek‖2

H + ‖Tek‖2
H for all S, T ∈ B2(U, H). The Hilbert-Schmidt inner product is

independent of the basis {ek}∞k=1 because
∑∞

k=1 (Sek, T ek)H =
∑∞

k=1 (T ∗fk, S
∗fk)H

for all S, T ∈ B2(U, H). Since (T, T )B2(U,H) = ‖T‖2
B2(U,H) and (·, ·)H is an inner

product in H, the Hilbert-Schmidt inner product is an inner product in B2(U, H).
Hence B2(U, H) is an inner product space.

To prove the completeness of B2(U, H) let us assume that {Tn}∞n=1 is a Cauchy
sequence in B2(U, H). By Theorem D.3 the sequence {Tn}∞n=1 is also a Cauchy
sequence in B(U, H). Since B(U, H) is a Banach space, there exists T ∈ B(U, H)
such that ‖T − Tn‖B(U,H) → 0 as n → ∞. We need to prove that T ∈ B2(U, H) and
‖T − Tn‖B2(U,H) → 0 as n → ∞. Since {Tn}∞n=1 is a Cauchy sequence in B2(U, H),
it is bounded, i.e., there exists C > 0 such that ‖Tn‖B2(U,H) ≤ C for all n ∈ N. Let
{ek}∞k=1 be an orthonormal basis in U . Then for each N ∈ N

N∑

k=1

‖Tek‖2
H = lim

n→∞

N∑

k=1

‖Tnek‖2
H ≤ lim

n→∞
‖Tn‖2

B2(U,H) ≤ C2.

Hence ‖T‖B2(U,H) ≤ C and T ∈ B2(U, H). Let ε > 0. Then there exists M > 0 such
that ‖Tm − Tn‖B2(U,H) < ε for all m, n ≥ M . Then for m ≥ M and each N ∈ N

N∑

k=1

‖(T − Tm)ek‖2
H = lim

n→∞

N∑

k=1

‖(Tn − Tm)ek‖2
H ≤ lim

n→∞
‖Tn − Tm‖2

B2(U,H)

≤ lim sup
n→∞

‖Tn − Tm‖2
B2(U,H) ≤ ε2.

Hence ‖T − Tm‖B2(U,H) ≤ ε for all m ≥ M . Therefore B2(U, H) is complete.

Let T ∈ B2(U, H) and {fk}∞k=1 be an orthonormal basis in H. Then for all x ∈ U

Tx =

∞∑

k=1

(Tx, fk)Hfk =

∞∑

k,l=1

(x, el)U (Tel, fk)Hfk

=
∞∑

k,l=1

(T, fk ⊗ el)B2(U,H)(fk ⊗ el)(x)

where (fk ⊗ el)(x) = (x, el)Ufk for all x ∈ U . The set {fk ⊗ el}∞k,l=1 is orthonormal
in B2(U, H). Furthermore,

∥∥∥∥∥T −
n∑

k=1

m∑

l=1

(Tel, fk)H(fk ⊗ el)

∥∥∥∥∥

2

B2(U,H)

=
∞∑

j=1

∥∥∥∥∥
∞∑

k=n+1

∞∑

l=m+1

(Tel, fk)H(fk ⊗ el)(ej)

∥∥∥∥∥

2

H

=
∞∑

j=m+1

∥∥∥∥∥
∞∑

k=n+1

(Tej , fk)Hfk

∥∥∥∥∥

2

H

=
∞∑

j=m+1

∞∑

k=n+1

|(Tej , fk)H |2 −→ 0
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as m, n → ∞ since
∑∞

j,k=1 |(Tej , fk)H |2 =
∑∞

j=1 ‖Tej‖2
H < ∞. Hence {fk ⊗ el}∞k,l=1

is an orthonormal basis in B2(U, H).

As an example of a Hilbert-Schmidt operator we present the Hilbert-Schmidt integral
operator in L2(R).

Example D.7 (The Hilbert-Schmidt integral operator). Let k ∈ L2(R2). We
define the operator K : L2(R) → L2(R) by

Kf(t) =

∫ ∞

−∞
k(t, s)f(s) ds

for all t ∈ R. Then K is a Hilbert-Schmidt operator and ‖K‖B2(L2(R)) = ‖k‖L2(R2).

Proof. Let f ∈ L2(R). Then

‖Kf‖2
L2(R) =

∫ ∞

−∞

∣∣∣∣
∫ ∞

−∞
k(t, s)f(s) ds

∣∣∣∣
2

dt ≤
∫ ∞

−∞

(∫ ∞

−∞
|k(t, s)f(s)| ds

)2

dt

≤
∫ ∞

−∞

∫ ∞

−∞
|k(t, s)|2 ds

∫ ∞

−∞
|f(s)|2 ds dt = ‖k‖2

L2(R2)‖f‖2
L2(R).

Thus K is a bounded linear operator from L2(R) to itself and ‖K‖B(L2(R)) ≤
‖k‖L2(R2).

To show that K is actually a Hilbert-Schmidt operator we use the Fubini theorem.
Since ∫

R2

∣∣∣k(t, s)
∣∣∣
2

dsdt =

∫

R2

|k(t, s)|2 dsdt < ∞,

by the Fubini theorem, ∫ ∞

−∞

∣∣∣k(t, s)
∣∣∣
2

ds < ∞

for almost all t ∈ R, i.e., k(t, ·) ∈ L2(R) for almost all t ∈ R. Let {en}∞n=1 be an
orthonormal basis in L2(R). Then for almost all t ∈ R

∥∥∥k(t, ·)
∥∥∥

2

L2(R)
=

∞∑

n=1

∣∣∣∣
(
k(t, ·), en(·)

)
L2(R)

∣∣∣∣
2

=
∞∑

n=1

∣∣∣∣
∫ ∞

−∞
k(t, s)en(s) ds

∣∣∣∣
2

.

Hence by Lebesgue’s monotone convergence theorem,

‖k‖2
L2(R2) =

∥∥k̄
∥∥2

L2(R2)
=

∫ ∞

−∞

∞∑

n=1

∣∣∣∣
∫ ∞

−∞
k(t, s)en(s) ds

∣∣∣∣
2

dt

=
∞∑

n=1

∫ ∞

−∞

∣∣∣∣
∫ ∞

−∞
k(t, s)en(s) ds

∣∣∣∣
2

dt.

Therefore

∞∑

n=1

‖Ken‖2
L2(R) =

∞∑

n=1

∫ ∞

−∞

∣∣∣∣
∫ ∞

−∞
k(t, s)en(s) ds

∣∣∣∣
2

dt = ‖k‖2
L2(R2).

Hence K is a Hilbert-Schmidt operator and ‖K‖B2(L2(R)) = ‖k‖L2(R2).
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D.2 Nuclear Operators

Let (E, ‖ · ‖E) and (F, ‖ · ‖F ) be Banach spaces.

Definition D.8. A bounded linear operator T is said to be nuclear if there exist
sequences {aj}∞j=1 ⊂ F and {ϕj}∞j=1 ⊂ E′ such that T has the representation

Tx =
∞∑

j=1

aj〈x, ϕj〉

for all x ∈ E and
∞∑

j=1

‖aj‖F ‖ϕj‖E′ < ∞.

Proposition D.9. A nuclear operator from E to F is compact.

Proof. Let T be a nuclear operator from E to F . Then there exist sequences
{aj}∞j=1 ⊂ F and {ϕj}∞j=1 ⊂ E′ such that T has for all x ∈ E the representation
Tx =

∑∞
j=1 aj〈x, ϕj〉 with

∑∞
j=1 ‖aj‖F ‖ϕj‖E′ < ∞. Then

∥∥∥∥∥∥
Tx −

n∑

j=1

aj〈x, ϕj〉

∥∥∥∥∥∥
F

≤
∞∑

j=n+1

‖aj‖F |〈x, ϕj〉| ≤ ‖x‖E

∞∑

j=n+1

‖aj‖F ‖ϕj‖E′ −→ 0

as n → ∞ for all x ∈ E. Hence T is the limit of finite rank operators in the operator
norm. Therefore T is compact.

Let B1(E, F ) be the collection of nuclear operators from E into F . We use the
notation B1(E) := B1(E, E). We endow B1(E, F ) with the norm

‖T‖B1(E,F ) := inf





∞∑

j=1

‖aj‖F ‖ϕj‖E′ : Tx =
∞∑

j=1

aj〈x, ϕj〉 for all x ∈ E





for all T ∈ B1(E, F ).

Theorem D.10. Let (E, ‖ · ‖E), (F, ‖ · ‖F ) and (G, ‖ · ‖G) be Banach spaces and
Q ∈ B(G, E), R ∈ B(F, G) and S, T ∈ B1(E, F ). Then

(i) ‖αT‖B1(E,F ) = |α|‖T‖B1(E,F ) for all α ∈ C,

(ii) ‖S + T‖B1(E,F ) ≤ ‖S‖B1(E,F ) + ‖T‖B1(E,F ),

(iii) ‖T‖B(E,F ) ≤ ‖T‖B1(E,F ),

(iv) ‖T ′‖B1(F ′,E′) ≤ ‖T‖B1(E,F ),

(v) RT is a nuclear operator from E to G and

‖RT‖B1(E,G) ≤ ‖R‖B(F,G)‖T‖B1(E,F ),
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(vi) TQ is a nuclear operator from G to F and

‖TQ‖B1(G,F ) ≤ ‖Q‖B(G,E)‖T‖B1(E,F ).

Proof. The statement (i) is obvious.

(ii) Let S, T ∈ B1(E, F ) and ε > 0. Then there exist sequences {aj}∞j=1, {bj}∞j=1 ⊂
F and {ϕj}∞j=1, {φj}∞j=1 ⊂ E′ such that S and T have the representations Sx =∑∞

j=1 aj〈x, ϕj〉 and Tx =
∑∞

j=1 bj〈x, φj〉 for all x ∈ E with
∑∞

j=1 ‖aj‖F ‖ϕj‖E′ <
‖S‖B1(E,F )+ε/2 and

∑∞
j=1 ‖bj‖F ‖φj‖E′ < ‖T‖B1(E,F )+ε/2. We define the sequences

{cj}∞j=1 ⊂ F and {ψj}∞j=1 ⊂ E′ by c2j+1 := aj and c2j := bj and ψ2j+1 := ϕj and
ψ2j := φj for all j ∈ N. Then (S + T )x =

∑∞
j=1 cj〈x, ψj〉 for all x ∈ E and

‖S + T‖B1(E,F ) ≤
∞∑

j=1

‖cj‖F ‖ψj‖E′ < ‖S‖B1(E,F ) + ‖T‖B1(E,F ) + ε.

Since ε > 0 is arbitrary, ‖S + T‖B1(E,F ) ≤ ‖S‖B1(E,F ) + ‖T‖B1(E,F ).

(iii) If T is a nuclear operator from E to F ,

‖Tx‖F ≤
∞∑

j=1

‖aj‖F |〈x, ϕj〉| ≤ ‖x‖E

∞∑

j=1

‖aj‖F ‖ϕj‖E′

for all representations Tx =
∑∞

j=1 aj〈x, ϕj〉 and x ∈ E. By taking the infimum over
all representations we get ‖T‖B(E,F ) ≤ ‖T‖B1(E,F ).

(iv) Let T be a nuclear operator from E to F and ε > 0. Then there exist
sequences {aj}∞j=1 ⊂ F and {ϕj}∞j=1 ⊂ E′ such that T has the representation
Tx =

∑∞
j=1 aj〈x, ϕj〉 for all x ∈ E and

∑∞
j=1 ‖aj‖F ‖ϕj‖E′ < ‖T‖B1(E,F ) + ε. Hence

for all φ ∈ F ′

〈Tx, φ〉 =

〈 ∞∑

j=1

aj〈x, ϕj〉, φ
〉

=
∞∑

j=1

〈x, ϕj〉〈aj , φ〉 =

〈
x,

∞∑

j=1

〈aj , φ〉ϕj

〉
= 〈x, T ′φ〉.

Thus the Banach adjoint T ′ ∈ B(F ′, E′) has the representation T ′φ =
∑∞

j=1〈aj , φ〉ϕj

for all φ ∈ F ′. Since F ⊂ F ′′ and ‖aj‖F ′′ = ‖aj‖F and hence
∑∞

j=1 ‖aj‖F ′′‖ϕj‖E′ <
‖T‖B1(E,F ) +ε, the Banach adjoint T ′ is nuclear and ‖T ′‖B1(F ′,E′) < ‖T‖B1(E,F ) +ε.
Since ε > 0 is arbitrary, ‖T ′‖B1(F ′,E′) ≤ ‖T‖B1(E,F ).

(v) Let R ∈ B(F, G) and T ∈ B1(E, F ). Then RTx =
∑∞

j=1 Raj〈x, ϕj〉 for all
representation Tx =

∑∞
j=1 aj〈x, ϕj〉 and x ∈ E. Thus

‖RT‖B1(E,G) ≤
∞∑

j=1

‖Raj‖G‖ϕj‖E′ ≤ ‖R‖B(F,G)

∞∑

j=1

‖aj‖F ‖ϕj‖E′ < ∞.

Hence RT ∈ B1(E, G). By taking the infimum over all representations of T we get
the claimed inequality.

(vi) Let Q ∈ B(G, E) and T ∈ B1(E, F ). Then

TQy =
∞∑

j=1

aj〈Qy, ϕj〉 =
∞∑

j=1

aj〈y, Q′ϕj〉
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for each representation Tx =
∑∞

j=1 aj〈x, ϕj〉 and y ∈ G. Thus

‖TQ‖B1(G,F ) ≤
∞∑

j=1

‖aj‖F ‖Q′ϕj‖G′ ≤ ‖Q′‖B(E′,G′)

∞∑

j=1

‖aj‖F ‖ϕj‖E′ < ∞.

Hence TQ ∈ B1(G, F ). By taking the infimum over all representations of T we get
the claimed inequality since ‖Q′‖B(E′,G′) = ‖Q‖B(G,E).

As a corollary of Theorem D.10 B1(E, F ) is a norm space with the norm ‖ ·‖B1(E,F ).
Actually, B1(E, F ) is complete.

Theorem D.11. The space of nuclear operator from E to F is a Banach space.

Proof. To prove the completeness let us assume that {Tn}∞n=1 is a Cauchy sequence
in B1(E, F ). By Theorem D.10 the sequence {Tn}∞n=1 is also a Cauchy sequence
in B(E, F ). Since B(E, F ) is a Banach space, there exists T ∈ B(E, F ) such that
‖T − Tn‖B(E,F ) → 0 as n → ∞. We need to prove that T ∈ B1(E, F ) and ‖T −
Tn‖B1(E,F ) → 0 as n → ∞. We determine a monotonically increasing sequence

{nk}∞k=1 of indices such that ‖Tl − Tm‖B1(E,F ) < 1/2k+2 for all l, m ≥ nk. Then for

all k ∈ N there exist sequences {ak
j }∞j=1 ⊂ F and {ϕk

j }∞j=1 ⊂ E′ such that the nuclear

operator Tnk+1
−Tnk

has the representation (Tnk+1
−Tnk

)x =
∑∞

j=1 ak
j 〈x, ϕk

j 〉 for all

x ∈ E and
∑∞

j=1 ‖ak
j ‖F ‖ϕk

j ‖E′ < 1/2k+2. Let k ∈ N. Consequently, for all p ∈ N

(Tnk+p
− Tnk

)x =

k+p−1∑

l=k

(Tnl+1
− Tnl

)x =

k+p−1∑

l=k

∞∑

j=1

al
j〈x, ϕl

j〉

for all x ∈ E. By taking the limit p → ∞ we obtain the identity (T − Tnk
)x =∑∞

l=k

∑∞
j=1 al

j〈x, ϕl
j〉 for all x ∈ E because the series on the right hand side converges

absolutely. Since

‖T − Tnk
‖B1(E,F ) ≤

∞∑

l=k

∞∑

j=1

‖al
j‖F ‖ϕl

j‖E′ ≤ 1

2k+1
,

the operator T − Tnk
is nuclear and hence is also T . Finally,

‖T − Tn‖B1(E,F ) ≤ ‖T − Tnk
‖B1(E,F ) + ‖Tnk

− Tn‖B1(E,F ) <
1

2k

for all n ≥ nk and hence ‖T − Tn‖B1(E,F ) → 0 as n → ∞.

In separable Hilbert spaces the product of two Hilbert-Schmidt operators is nuclear.

Proposition D.12. Let (U, (·, ·)U ), (H, (·, ·)H) and (E, (·, ·)E) be separable Hilbert
spaces. If T ∈ B2(U, H) and S ∈ B2(H, E), then ST ∈ B1(U, E) and

‖ST‖B1(U,E) ≤ ‖S‖B2(H,E)‖T‖B2(U,H).

Proof. Let T ∈ B2(U, H), S ∈ B2(H, E) and {fj}∞j=1 be an orthonormal basis in H.
Then

STx =
∞∑

j=1

(Tx, fj)HSfj =
∞∑

j=1

(x, T ∗fj)USfj
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for all x ∈ U . Thus

‖ST‖B1(U,E) ≤
∞∑

j=1

‖Sfj‖E‖T ∗fj‖U ≤




∞∑

j=1

‖Sfj‖2
E




1
2



∞∑

j=1

‖T ∗fj‖2
U




1
2

= ‖S‖B2(H,E)‖T ∗‖B2(H,U) = ‖S‖B2(H,E)‖T‖B2(U,H).

Therefore ST ∈ B1(U, E) and the claimed inequality is valid.

D.2.1 Trace Class Operators

Let (H, (·, ·)H) be a separable Hilbert space and {ek}∞k=1 an orthonormal basis in H.
If T ∈ B1(H), we define the trace of T by

Tr T :=
∞∑

j=1

(Tej , ej)H .

Proposition D.13. If T ∈ B1(H), then Tr T is a well defined number independent
of the orthonormal basis {ek}∞k=1.

Proof. Let T be a nuclear operator in H. Then there exist sequences {aj}∞j=1 ⊂ H
and {ϕj}∞j=1 ⊂ H ′ such that T has the representation Th =

∑∞
j=1 aj〈h, ϕj〉 for

all h ∈ H and
∑∞

j=1 ‖aj‖H‖ϕj‖H′ < ∞. By the Riesz representation theorem for
all j ∈ N there exists bj ∈ H such that 〈h, ϕj〉 = (h, bj)H for all h ∈ H and
‖bj‖H = ‖ϕj‖H′ . Thus

∞∑

k=1

|(Tek, ek)H | =

∞∑

k=1

∣∣∣∣∣∣

∞∑

j=1

(ek, bj)H(aj , ek)H

∣∣∣∣∣∣
≤

∞∑

j=1

∞∑

k=1

|(ek, bj)H(aj , ek)H |

≤
∞∑

j=1

( ∞∑

k=1

|(aj , ek)H |2
) 1

2
( ∞∑

k=1

|(ek, bj)H |2
) 1

2

=
∞∑

j=1

‖aj‖H‖bj‖H < ∞.

(D.2)

Hence the series
∑∞

k=1 (Tek, ek) converges absolutely and furthermore,

∞∑

k=1

(Tek, ek)H =
∞∑

j=1

∞∑

k=1

(ek, bj)H(aj , ek)H =
∞∑

j=1

(aj , bj)H .

Thus the definition of Tr T is independent of {ek}∞k=1.

According to Estimate (D.2),

|Tr T | ≤ ‖T‖B1(H) (D.3)

for all T ∈ B1(H).
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Proposition D.14. A non-negative self-adjoint operator T ∈ B(H) is nuclear if
and only if for an orthonormal basis {ej}∞j=1 in H

∞∑

j=1

(Tej , ej)H < ∞.

In addition, ‖T‖B1(H) = Tr T .

Proof. “⇒” If T is nuclear, then Tr T < ∞ by Estimate (D.3).

“⇐” Let T be a non-negative self-adjoint operator such that
∑∞

j=1 (Tej , ej)H < ∞
for an orthonormal basis {ej}∞j=1 in H. First we show that T is compact. Let T 1/2

denote the non-negative self-adjoint square root of T [36, Theorem 13.31]. Then
T 1/2h =

∑∞
j=1

(
T 1/2h, ej

)
H

ej for all h ∈ H and

∥∥∥∥∥∥
T 1/2h −

n∑

j=1

(
T 1/2h, ej

)
H

ej

∥∥∥∥∥∥

2

H

=
∞∑

j=n+1

∣∣∣
(
T 1/2h, ej

)
H

∣∣∣
2

=
∞∑

j=n+1

∣∣∣
(
h, T 1/2ej

)
H

∣∣∣
2

≤ ‖h‖2
H

∞∑

j=n+1

∥∥∥T 1/2ej

∥∥∥
2

H
= ‖h‖2

H

∞∑

j=n+1

(Tej , ej)H −→ 0

as n → ∞ for all h ∈ H. Hence the operator T 1/2 is the limit of finite rank operators
in the operator norm. Therefore T 1/2 is compact and T = T 1/2T 1/2 is a compact
operator as well.

Let {fk}∞k=1 be the sequence of all normalized eigenvectors of T and {λk}∞k=1 the
corresponding sequence of eigenvalues. Then Th =

∑∞
k=1 λk(h, fk)Hfk for all h ∈ H

since T is a compact self-adjoint operator [14, Theorem 5.1, pp. 113–115]. Thus

∞∑

j=1

(Tej , ej)H =
∞∑

j=1

∞∑

k=1

λk|(ej , fk)H |2 =
∞∑

k=1

λk‖fk‖2
H =

∞∑

k=1

λk.

Hence ∞∑

k=1

‖λkfk‖H‖fk‖H =
∞∑

k=1

λk < ∞

and therefore T is nuclear. Furthermore, Tr T =
∑∞

k=1 λk. Since ‖T‖B1(H) ≤∑∞
k=1 λk and |Tr T | ≤ ‖T‖B1(H), we have ‖T‖B1(H) = Tr T .

Let T ∈ B(H). Then T ∗T is a positive self-adjoint operator in H. Thus there exists
positive self-adjoint R ∈ B(H) such that R2 = T ∗T and ‖Rx‖H = ‖Tx‖H for all
x ∈ H [36, Theorem 12.34]. We define the operator U : R(R) → R(T ) by Ux := Ty
where x = Ry. Then URx = Tx for all x ∈ H since Ker(R) = Ker(T ). Thus

‖URx‖H = ‖Tx‖H = ‖Rx‖H

for all x ∈ H. Hence U is an isometry from R(R) to R(T ). Therefore U has a
continuous extension to a linear isometry from the closure of R(R) to the closure
of R(T ). Additionally, we define Ux = 0 for all x ∈ R(R)⊥. Hence U ∈ B(H) and
‖U‖B(H) = 1. The operators R and U are called the polar decomposition of T .
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Theorem D.15. A bounded linear operator T : H → H is nuclear if and only if

∞∑

k=1

λk < ∞

where {λk}∞k=1 are the eigenvalues of (T ∗T )1/2.

Proof. We denote R := (T ∗T )1/2.

“⇐” Let us assume that
∑∞

k=1 λk < ∞ where {λk}∞k=1 are the eigenvalues of R.
Since R is a non-negative self-adjoint operator in H and Tr R =

∑∞
k=1 λk < ∞,

by Proposition D.14 the operator R is nuclear and ‖R‖B1(H) = Tr R. There exists
U ∈ B(H) such that URx = Tx for all x ∈ H and ‖U‖B(H) = 1. Thus by Theorem
D.10 the operator T is nuclear and

‖T‖B1(H) ≤ ‖U‖B(H)‖R‖B1(H) = Tr R =
∞∑

k=1

λk.

“⇒” Let T ∈ B1(H). Since T = UR and U is an isometry from the closure of R(R)
to the closure of R(T ), there exists the bounded linear inverse of U from the closure
of R(T ) to the closure of R(R). We define V x = U−1x for all x ∈ R(T ). Then V
is an isometry from the closure of R(T ) to the closure of R(R). Additionally, we
define V x = 0 for all x ∈ R(T )⊥. Then V ∈ B(H) and ‖V ‖B(H) = 1. Furthermore,
V Tx = Rx for all x ∈ H since Ker(T ) = Ker(R). Thus by Theorem D.10 the
operator R is nuclear and

‖R‖B1(H) ≤ ‖V ‖B(H)‖T‖B1(H) = ‖T‖B1(H).

Hence Tr R =
∑∞

k=1 λk < ∞ by Proposition D.14.

Corollary D.16. Let T ∈ B1(H). Then

‖T‖B1(H) = Tr(T ∗T )1/2 =
∞∑

k=1

λk

where {λk}∞k=1 are the eigenvalues of (T ∗T )1/2.

By Theorem D.15 and Corollary D.16 it is justified that the nuclear operators in H
are also called trace class operators.
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