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Abstract: We study regularity properties of quasiminimizers of the p-
Dirichlet integral on metric measure spaces. Our main objective is to adapt

the Moser iteration technique to this setting. However, we have been able to

run the Moser iteration fully only for minimizers. We prove Caccioppoli in-

equalities and local boundedness properties for quasisub- and quasisupermin-

imizers. This is done in metric spaces equipped with a doubling measure and

supporting a weak (1, p)-Poincaré inequality without assuming completness

of the metric space. New here seems to be that we do not assume complete-

ness and only require a weak (1, p)-Poincaré inequality, rather than a weak

(1, q)-Poincaré inequality for some q < p.
We also provide an example which shows that the dilation constant from

the weak Poincaré inequality is essential in the condition on the balls in the

Harnack inequality. This fact seems to be overlooked in the earlier literature

on nonlinear potential theory on metric spaces.
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1. Introduction

Let Ω ⊂ Rn be a bounded open set and 1 < p <∞. A function u ∈ W 1,p
loc (Ω)

is a Q-quasiminimizer, Q ≥ 1, of the p-Dirichlet integral in Ω if for every
open set Ω′

b Ω and for all ϕ ∈W 1,p
0 (Ω′) we have

∫

Ω′

|∇u|p dx ≤ Q

∫

Ω′

|∇(u+ ϕ)|p dx.

In the Euclidean case the problem of minimizing the p-Dirichlet integral
∫

Ω

|∇u|p dx

among all functions with given boundary values is equivalent to solving the
p-Laplace equation

div(|∇u|p−2∇u) = 0.

A minimizer, or 1-quasiminimizer, is a weak solution of the p-Laplace equa-
tion. Being a weak solution is clearly a local property, however, being a
quasiminimizer is not a local property. Hence, the theory for quasiminimizers
usually differs from the theory for minimizers. Quasiminimizers were appar-
ently first studied by Giaquinta–Giusti, see [13] and [14]. Quasiminimizers
have been used as tools in studying regularity of minimizers of variational
integrals. Namely, quasiminimizers have a rigidity that minimizers lack: the
quasiminimizing condition applies to the whole class of variational integrals
at the same time. For example, if a variational kernel f(x,∇u) satisfies the
inequalities

α|h|p ≤ f(x, h) ≤ β|h|p

for some 0 < α ≤ β < ∞, then the minimizers of
∫

f(x,∇u) are quasi-
minimizers of the p-Dirichlet integral. Apart from this quasiminimizers have
a fascinating theory in themselves. For more on quasiminimizers and their
importance see the introduction in Kinnunen–Martio [27].

Giaquinta and Giusti [13], [14] proved several fundamental properties for
quasiminimizers, including the interior regularity result that a quasiminimizer
can be modified on a set of measure zero so that it becomes Hölder continuous.
These results were extended to complete metric spaces by Kinnunen–Shan-
mugalingam [29].

In Rn minimizers of the p-Dirichlet integral are known to be locally Hölder
continuous. This can be seen using either of the celebrated methods by De
Giorgi (see [10]) and Moser (see [34] and [35]). Moser’s method gives Har-
nack’s inequality first and then Hölder continuity follows from this in a stan-
dard way, whereas De Giorgi first proves Hölder continuity from which Har-
nack’s inequality follows. At the first sight it seems that Moser’s technique is
strongly based on the differential equation, whereas De Giorgi’s method re-
lies only on the minimization property. In Kinnunen–Shanmugalingam [29]
De Giorgi’s method was adapted to the metric setting. They proved that
quasiminimizers are locally Hölder continuous, satisfy the strong maximum
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principle and Harnack’s inequality. The space was assumed to be doubling
in measure and to support a weak (1, q)-Poincaré inequality for some q with
1 < q < p.

The purpose of this paper is twofold. First, we shall adapt Moser’s it-
eration technique to the metric setting, and in particular show that the dif-
ferential equation is not needed in the background for the Moser iteration.
On the other hand, we will study quasiminimizers and show that certain
estimates, which are interesting as such, extend to quasiminimizers as well.
We have not been able to run the Moser iteration for quasiminimizers com-
pletely. Namely, there is one delicate step in the proof of Harnack’s inequality
using Moser’s method. This is the so-called jumping over zero in the expo-
nents related to the weak Harnack inequality. This is usually settled using
the John–Nirenberg lemma for functions of bounded mean oscillation. More
precisely, one have to show that a logarithm of a nonnegative quasisuper-
minimizer is a function of bounded mean oscillation. To prove this, the
logarithmic Caccioppoli inequality is needed, which has been obtained only
for minimizers. However, for minimizers we prove Harnack’s inequality using
the Moser iteration.

We will impose weaker requirements on the space than in Kinnunen–
Shanmugalingam [29]. They assume that the space is complete, equipped
with a doubling measure and supporting a weak (1, q)-Poincaré inequality
for some q < p. We do not assume completeness and also only assume
that the space supports a weak (1, p)-Poincaré inequality (doubling is still
assumed). However, by a result of Keith and Zhong [22] a complete metric
space equipped with a doubling measure that supports a weak (1, p)-Poincaré
inequality, admits a weak (1, q)-Poincaré inequality. For examples of metric
spaces equipped with a doubling measure supporting a Poincaré inequality,
see, e.g., A. Björn [3].

As for completeness, in Kinnunen–Shanmugalingam [29] as well as in
J. Björn [7], this was not assumed explicitly. However all three authors have
informed us that both papers are written under the implicit assumption that
the underlying metric space is complete. Thus this is the first paper, as
far as we know, in which regularity results for harmonic and p-harmonic
functions are obtained in a noncomplete setting. In fact this also applies to
the linear case. Linear potential theory has been developed axiomatically in
several different ways, but all such theories, as far as we know, assume the
underlying space to be locally compact.

At the end of the paper we provide an example which shows that the
dilation constant from the weak Poincaré inequality is essential in the con-
dition on the balls in the weak Harnack inequality (Theorem 9.2) and Har-
nack’s inequality (Theorem 9.3). This fact is overlooked in certain results
and proofs of [29]. In addition, certain quantitative statements in Kinnunen–
Martio [26], [27] and A. Björn [3] need to be modified according to our ex-
ample.

The paper is organized as follows. In the second section we impose re-
quirements for the measure and the third section focuses on the notation,
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definitions and concepts used throughout this paper. The fourth section ex-
plores the relationship between alternative definitions of Newtonian spaces
with zero boundary values in the setting of noncomplete metric spaces. Sec-
tion 5 introduces Sobolev–Poincaré inequalities crucial for us in what follows
and in Section 6 we will prove the equivalence of different definitions for
quasi(super)minimizers. The next two sections are devoted to Caccioppoli
inequalities and weak Harnack inequalities. In particular, local boundedness
results for quasisub- and quasisuperminimizers are proved. In Section 9 only
minimizers, i.e. 1-quasiminimizers, are studied. We prove Harnack’s inequal-
ity for minimizers and as a corollary Liouville’s theorem. In the final section
we give a counterexample motivating the results in Section 9.

Acknowledgements. The authors are grateful to Jana Björn, Juha Kin-
nunen and Nageswari Shanmugalingam for their interest and encouragement.
The first author is supported by the Swedish Research Council, while the sec-
ond author acknowledges the support of the Finnish Academy of Science and
Letters, Vilho, Yrjö and Kalle Väisälä Foundation. These results were par-
tially obtained while the second author was visiting Linköpings universitet
in February 2005.

2. Doubling

We assume throughout the paper that 1 < p <∞ and that X = (X, d, µ) is a
metric space endowed with a metric d and a positive complete Borel measure
µ such that 0 < µ(B) < ∞ for all balls B ⊂ X (we make the convention
that balls are nonempty and open). Let us here also point out that at the
end of Section 3 we further assume that X supports a weak (1, p)-Poincaré
inequality and that µ is doubling, which is then assumed throughout the rest
of the paper.

We emphasize that the σ-algebra on which µ is defined is obtained by the
completion of the Borel σ-algebra. We further extend µ as an outer measure
on X, so that for an arbitrary set A ⊂ X we have

µ(A) = inf{µ(E) : E ⊃ A is a Borel set}.

It is more or less immediate that µ is a Borel regular measure, in the sense
defined by Federer [11], Section 2.2.3, i.e. for every E ⊂ X there is a Borel
set B ⊃ E such that µ(E) = µ(B). If E ⊂ X is measurable, then there exist
Borel sets A and B such that A ⊂ E ⊂ B and µ(B \ A) = 0. (Note that
Rudin [36] has a more restrictive definition of Borel regularity which is not
always fulfilled for our spaces.)

The measure µ is said to be doubling if there exists a constant Cµ ≥ 1,
called the doubling constant of µ, such that for all balls B = B(x0, r) := {x ∈
X : d(x, x0) < r} in X,

µ(2B) ≤ Cµµ(B),
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where λB = B(x0, λr). By the doubling property, if B(y,R) is a ball in X,
z ∈ B(y,R) and 0 < r ≤ R <∞, then

µ(B(z, r))

µ(B(y,R))
≥ C

( r

R

)s

(2.1)

for s = log2Cµ and some constant C only depending on Cµ. The exponent s
serves as a counterpart of dimension related to the measure.

A metric space is doubling if there exists a constant C < ∞ such that
every ball B(z, r) can be covered by at most C balls with radii 1

2
r. Alter-

natively and equivalently, for every ε > 0 there is a constant C(ε) such that
every ball B(z, r) can be covered by at most C(ε) balls with radii εr. It is
now easy to see that every bounded set in a doubling metric space is totally
bounded.

A metric space equipped with a doubling measure is doubling, and con-
versely any complete doubling metric space can be equipped with a doubling
measure. See Heinonen [20], Section 10.13, for more on doubling metric
spaces.

The following proposition is well known. However, since it does not seem
to appear explicitly in the literature, we give a short proof here.

Proposition 2.1. Let Y be a doubling metric space. Then Y is proper (i.e.,
closed and bounded subsets of Y are compact) if and only if Y is complete.

Proof. Assume that Y is proper and take a Cauchy sequence {xi}
∞
i=1. Then

for a sufficiently large radius r > 0, xi ∈ B(x1, r) ⊂ Y . By the properness of
Y this set is compact and the sequence has a limit in Y .

Conversely, let Y be complete and M be a closed and bounded subset of
Y . Then M is totally bounded, and hence compact, see, e.g., Rudin [37],
Theorem A4.

3. Newtonian spaces

In this paper a path in X is a rectifiable nonconstant continuous mapping
from a compact interval. (For us only such paths will be interesting, in
general a path is a continuous mapping from an interval.) A path can thus
be parameterized by arc length ds.

Definition 3.1. A nonnegative Borel function g on X is an upper gradient

of an extended real-valued function f on X if for all paths γ : [0, lγ ] → X,

|f(γ(0)) − f(γ(lγ))| ≤

∫

γ

g ds (3.1)

whenever both f(γ(0)) and f(γ(lγ)) are finite, and
∫

γ
g ds = ∞ otherwise. If

g is a nonnegative measurable function on X and if (3.1) holds for p-almost
every path, then g is a p-weak upper gradient of f .
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By saying that (3.1) holds for p-almost every path we mean that it fails
only for a path family with zero p-modulus, see Definition 2.1 in Shanmu-
galingam [38]. It is implicitly assumed that

∫

γ
g ds is defined (with a value

in [0,∞]) for p-almost every path.

If g ∈ Lp(X) is a p-weak upper gradient of f , then one can find a sequence
{gj}

∞
j=1 of upper gradients of f such that gj → g in Lp(X), see Lemma 2.4

in Koskela–MacManus [31].
If f has an upper gradient in Lp(X), then it has a minimal p-weak upper

gradient gf ∈ Lp(X) in the sense that for every p-weak upper gradient g ∈
Lp(X) of f , gf ≤ g µ-a.e., see Corollary 3.7 in Shanmugalingam [39]. The
minimal p-weak upper gradient can be given by the formula

gf (x) := inf
g

lim sup
r→0+

1

µ(B(x, r))

∫

B(x,r)

g dµ,

where the infimum is taken over all upper gradients g ∈ Lp(X) of f , see
Lemma 2.3 in J. Björn [7].

Lemma 3.2. Let u and v be functions with upper gradients in Lp(X). Then

guχ{u>v} + gvχ{v≥u} is a minimal p-weak upper gradient of max{u, v}, and

gvχ{u>v} + guχ{v≥u} is a minimal p-weak upper gradient of min{u, v}.

This lemma was proved in Björn–Björn [5], Lemma 3.2, and a different
proof was given in Marola [32], Lemma 3.5.

Following Shanmugalingam [38], we define a version of Sobolev spaces on
the metric space X.

Definition 3.3. Whenever u ∈ Lp(X), let

‖u‖N1,p(X) =

(
∫

X

|u|p dµ+ inf
g

∫

X

gp dµ

)1/p

,

where the infimum is taken over all upper gradients of u. The Newtonian

space on X is the quotient space

N1,p(X) = {u : ‖u‖N1,p(X) <∞}/∼,

where u ∼ v if and only if ‖u− v‖N1,p(X) = 0.

The space N 1,p(X) is a Banach space and a lattice, see Shanmugalin-
gam [38].

Definition 3.4. The capacity of a set E ⊂ X is the number

Cp(E) = inf ‖u‖pN1,p(X),

where the infimum is taken over all u ∈ N 1,p(X) such that u = 1 on E.
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The capacity is countably subadditive. For this and other properties
as well as equivalent definitions of the capacity we refer to Kilpeläinen–
Kinnunen–Martio [23] and Kinnunen–Martio [24], [25].

We say that a property regarding points in X holds quasieverywhere (q.e.)
if the set of points for which the property does not hold has capacity zero.
The capacity is the correct gauge for distinguishing between two Newtonian
functions. If u ∈ N 1,p(X), then u ∼ v if and only if u = v q.e. Moreover,
Corollary 3.3 in Shanmugalingam [38] shows that if u, v ∈ N 1,p(X) and u = v
µ-a.e., then u ∼ v.

Definition 3.5. We say that X supports a weak (1, p)-Poincaré inequality

if there exist constants C > 0 and λ ≥ 1 such that for all balls B ⊂ X, all
measurable functions f on X and for all upper gradients g of f ,

∫

B

|f − fB| dµ ≤ C(diamB)

(
∫

λB

gp dµ

)1/p

, (3.2)

where fB :=
∫

B
f dµ :=

∫

B
f dµ/µ(B).

By the Hölder inequality it is easy to see that if X supports a weak (1, p)-
Poincaré inequality, then it supports a weak (1, q)-Poincaré inequality for
every q > p. In the above definition of Poincaré inequality we can equivalently
assume that g is a p-weak upper gradient—see the comments above.

Let us throughout the rest of the paper assume that X supports a weak
(1, p)-Poincaré inequality and that µ is doubling.

It then follows that Lipschitz functions are dense in N 1,p(X) and that the
functions in N 1,p(X) are quasicontinuous, see [38]. This means that in the
Euclidean setting, N 1,p(Rn) is the refined Sobolev space as defined on p. 96
of Heinonen–Kilpeläinen–Martio [21].

We end this section by recalling that f+ = max{f, 0} and f− = max{−f, 0}.
Unless otherwise stated, the letter C denotes various positive constants

whose exact values are unimportant and may vary with each usage.

4. Newtonian spaces with zero boundary val-

ues

To be able to compare the boundary values of Newtonian functions we need
a Newtonian space with zero boundary values. We let for a measurable set
E ⊂ X,

N1,p
0 (E) = {f |E : f ∈ N 1,p(X) and f = 0 on X \ E}.

One can replace the assumption “f = 0 on X \E” with “f = 0 q.e. on X \E”
without changing the obtained space N 1,p

0 (E). Note that if Cp(X \ E) =
0, then N 1,p

0 (E) = N 1,p(E). The space N 1,p
0 (E) equipped with the norm

inherited from N 1,p(X) is a Banach space, see Theorem 4.4 in Shanmu-
galingam [39].
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The space N 1,p
0 (E) is however not the only natural candidate for a Newto-

nian space with zero boundary values, another natural candidate is N 1,p
b (Ω),

where we from now on assume that Ω ⊂ X is open.

Definition 4.1. We write E ḃ Ω if E is bounded and dist(E,X \ Ω) > 0.
We also let Lipb(Ω) = {f ∈ Lip(X) : supp f ḃ Ω}, and N 1,p

b (Ω) = Lipb(Ω).

The closures here and below are with respect to the N 1,p-norm, and it is
immediate that N 1,p

b (Ω) is a Banach space. (By the way, the letter “b” has
been chosen by its proximity to “c” and because of the word “bounded”.)

Note that if X is complete, then E ḃ Ω if and only if E b Ω, and
Lipc(Ω) = Lipb(Ω). (Recall that E b Ω if E is a compact subset of Ω, and
that Lipc(Ω) = {f ∈ Lip(X) : supp f b Ω}.) When X is complete, we know
that N 1,p

b (Ω) = N 1,p
0 (Ω), see Shanmugalingam [39], Theorem 4.8.

The equality N 1,p
0 (Ω) = N 1,p

b (Ω) goes under the name “spectral synthe-
sis” in the literature. The history goes back to Beurling and Deny; Hed-
berg [18] showed the corresponding result for higher order Sobolev spaces
on Rn (modulo the Kellogg property which at that time was only known to
hold for p > 2 − 1/n, but was later proved in general by Wolff); see Adams–
Hedberg [1], Section 9.13, for a historical account as well as an explanation
of the name spectral synthesis. For spectral synthesis in very general func-
tion spaces on Rn, including, e.g., Besov and Lizorkin–Triebel spaces, see
Hedberg–Netrusov [19].

In the noncomplete case we have been unable to prove spectral synthe-
sis. Let us explain the difficulty: In the proof of Theorem 4.8 in Shanmu-
galingam [39] she first proves Lemma 4.10, and this later proof carries over
verbatim to the noncomplete case. However, if u ∈ N 1,p

0 (Ω), we do not see
how one can conclude that suppϕk ḃ Ω, where ϕk is given in the statement
of Lemma 4.10. This fact is the main purpose of Lemma 4.10 and it is used
in the subsequent proof of Theorem 4.8.

The following result is true.

Proposition 4.2. It is true that

N1,p
b (Ω) = Lip0(Ω) = {f ∈ N 1,p(X) : supp f ḃ Ω}

= {f ∈ N 1,p(X) : dist(supp f,X \ Ω) > 0}.

Here, Lip0(Ω) := N 1,p
0 (Ω) ∩ Lip(X). If Ω is bounded, then Lip0(Ω) =

{f ∈ Lip(X) : f = 0 outside of Ω}.
To prove this proposition we need a lemma which will also be useful to

us later.

Lemma 4.3. Let u ∈ N 1,p
0 (Ω) have bounded support and let ε > 0. Then

there is a function ψ ∈ Lipb(X) and a set E such that E ⊂ {x : dist(x,Ω) <
ε}, µ(E) < ε, ψ = u in X \ E and ‖ψ − u‖N1,p(X) < ε.

Note in particular that ψ = 0 in X \ (Ω∪E). (We consider a function in
N1,p

0 (Ω) to be identically 0 outside of Ω.)
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Proof. Assume first that 0 ≤ u ≤ 1.
Let A be the set of non-Lebesgue points of u, which has measure 0, see,

e.g., Heinonen [20], Theorem 1.8. Since u = 0 outside of Ω we get immediately
that A ⊂ Ω.

Let τ > 0. In the construction given in the proof of Theorem 2.12 in
Shanmugalingam [39], one find a set Eτ such that

τ pµ(Eτ ) → 0, as τ → ∞,

and a Cτ -Lipschitz function uτ on X \ Eτ . It is observed that uτ = u on
X \ (Eτ ∪ A).

In the proof in [39] one then extends uτ as a Cτ -Lipschitz function on X.
There are several ways to do this, but we here prefer to choose this extension
to be the minimal nonnegative Cτ -Lipschitz extension to X. It is thus given
by (we abuse notation and call also the extension uτ )

uτ (x) := max{uτ (y) − Cτd(x, y) : y ∈ X \ Eτ}+, x ∈ X.

It follows that uτ (x) = 0 when dist(x,Ω) ≥ 1/Cτ .
Choose now τ so large that µ(Eτ ) < ε, 1/Cτ < ε, and ‖uτ−u‖N1,p(X) < ε.

Letting ψ = uτ and

E = {x ∈ Eτ ∪ A : dist(x,Ω) < ε},

gives the desired conclusion in the case when 0 ≤ u ≤ 1, and hence also in
the case when u is nonnegative and bounded.

Let next u be arbitrary. By Lemma 4.9 in [39] we can find k > 0
such that µ({x : |u(x)| > k}) < ε and ‖u − uk‖N1,p(X) < ε, where uk =
max{min{u, k},−k}. Applying this lemma to (uk)± we find functions ψ± ∈
Lipb(Ω) and sets E± ⊂ {x : dist(x,Ω) < ε} such that µ(E±) < ε, ψ± = (uk)±

on X \ E± and ‖ψ± − (uk)±‖N1,p(X) < ε. Letting ψ = ψ+ − ψ− and E =
E+ ∪ E− ∪ {x : |u(x)| > k} completes the proof.

Lemma 4.4. Let u ∈ N 1,p
0 (Ω) and ε > 0. Then there is a function ψ ∈

Lipb(X) and a set E such that E ⊂ {x : dist(x,Ω) < ε}, µ(E) < ε, ψ = 0 in

X \ (Ω ∪ E), |ψ(x) − u(x)| < ε for x ∈ X \ E and ‖ψ − u‖N1,p(X) < ε.

Proof. By Lemma 2.14 in Shanmugalingam [39] we can find u′ ∈ N 1,p
0 (Ω) with

bounded support such that ‖u− u′‖N1,p(X) <
1
2
ε and µ({x : |u′(x) − u(x)| ≥

1
2
ε}) < 1

2
ε. Applying Lemma 4.3 to u′ and 1

2
ε gives a function ψ and a set

E ′ such that E ′ ⊂ {x : dist(x,Ω) < ε}, µ(E ′) < 1
2
ε, ψ = u′ on X \ E ′ and

‖ψ − u′‖N1,p(X) <
1
2
ε. Letting E = E ′ ∪ {x : |u′(x) − u(x)| ≥ 1

2
ε} concludes

the proof.

Proof of Proposition 4.2. The inclusions N 1,p
b (Ω) ⊂ Lip0(Ω) and

N1,p
b (Ω) ⊂ {f ∈ N 1,p(X) : supp f ḃ Ω}

⊂ {f ∈ N 1,p(X) : dist(supp f,X \ Ω) > 0}
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are clear.
Let ϕ ∈ Lip0(Ω) and ε > 0. By approximating as in Lemma 2.14 in

Shanmugalingam [39] we find a function ψ ∈ Lip0(Ω) with bounded support
and such that ‖ϕ− ψ‖N1,p(X) < ε. Let

ψk = (ψ+ − 1/k)+ − (ψ− − 1/k)+.

Then ‖ψ−ψk‖N1,p(X) → 0, as k → ∞, and ψk ∈ Lipb(Ω). Thus ϕ ∈ N 1,p
b (Ω).

Let finally ϕ ∈ N 1,p(X) be such that dist(suppϕ,X \ Ω) > 0. Let ε =
1
3

dist(suppϕ,X \ Ω) and Ω′ = {x : dist(x, suppϕ) < ε}. By Lemma 4.4 we
find a Lipschitz function ψ such that ‖ψ − ϕ‖N1,p(X) < ε and suppψ ⊂ {x :

dist(x, suppϕ) < 2ε}, i.e. ψ ∈ Lipb(Ω). Thus ϕ ∈ N 1,p
b (Ω).

5. Sobolev–Poincaré inequalities

In this section we introduce certain Sobolev–Poincaré inequalities which will
be crucial in what follows.

A result of HajÃlasz–Koskela [16] (see also HajÃlasz–Koskela [17]) shows
that in a doubling measure space a weak (1, p)-Poincaré inequality implies a
Sobolev-Poincaré inequality. More precisely, there exists a constant C > 0
only depending on p, Cµ and the constants in the weak Poincaré inequality,
such that

(
∫

B(z,r)

|f − fB(z,r)|
κp dµ

)1/κp

≤ Cr

(
∫

B(z,5λr)

gpf dµ

)1/p

, (5.1)

where κ = s/(s − p) if 1 < p < s and κ = 2 if p ≥ s, for all balls B(z, r) ⊂
X, for all integrable functions f on B(z, r) and for minimal p-weak upper
gradients gf of f .

We will also need an inequality for Newtonian functions with zero bound-
ary values. If f ∈ N 1,p

0 (B(z, r)), then there exists a constant C > 0 only
depending on p, Cµ and the constants in the weak Poincaré inequality, such
that

(
∫

B(z,r)

|f |κp dµ

)1/κp

≤ Cr

(
∫

B(z,r)

gpf dµ

)1/p

(5.2)

for every ballB(z, r) with r ≤ 1
3

diamX. For this result we refer to Kinnunen–
Shanmugalingam [29], equation (2.6). In [29] it was assumed that the space
supports a weak (1, q)-Poincaré inequality for some q with 1 < q < p. How-
ever, the assumption is not used in the proof of (5.2).

6. Quasi(super)minimizers

This section is devoted to quasiminimizers, and in particular to quasisuper-
minimizers. We prove the equivalence of different definitions for quasisuper-
minimizers.
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Definition 6.1. A function u ∈ N 1,p
loc (Ω) is a Q-quasiminimizer in Ω if for

all open Ω′
ḃ Ω and all ϕ ∈ N 1,p

0 (Ω′) we have
∫

Ω′

gpu dµ ≤ Q

∫

Ω′

gpu+ϕ dµ. (6.1)

A function u ∈ N 1,p
loc (Ω) is a Q-quasisuperminimizer in Ω if (6.1) holds for all

nonnegative ϕ ∈ N 1,p
0 (Ω′), and a Q-quasisubminimizer in Ω if (6.1) holds for

all nonpositive ϕ ∈ N 1,p
0 (Ω′).

We say that f ∈ N 1,p
loc (Ω) if f ∈ N 1,p(Ω′) for every open Ω′

ḃ Ω (or
equivalently that f ∈ N 1,p(E) for every E ḃ Ω). Observe that since X is not
assumed to be proper, it is not enough to require that for every x ∈ Ω there
is an r > 0 such that f ∈ N 1,p(B(x, r)).

A function is a Q-quasiminimizer in Ω if and only if it is both a Q-quasi-
subminimizer and a Q-quasisuperminimizer in Ω (this is most easily seen by
writing ϕ = ϕ+ − ϕ− and using (d) below).

When Q = 1, we drop “quasi” from the notation and say, e.g., that a
minimizer is a 1-quasiminimizer.

Proposition 6.2. Let u ∈ N 1,p
loc (Ω). Then the following are equivalent :

(a) The function u is a Q-quasisuperminimizer in Ω;
(b) For all open Ω′

ḃ Ω and all nonnegative ϕ ∈ N 1,p
0 (Ω′) we have

∫

Ω
′

gpu dµ ≤ Q

∫

Ω
′

gpu+ϕ dµ;

(c) For all µ-measurable sets E ḃ Ω and all nonnegative ϕ ∈ N 1,p
0 (E) we

have
∫

E

gpu dµ ≤ Q

∫

E

gpu+ϕ dµ;

(d) For all nonnegative ϕ ∈ N 1,p(Ω) with suppϕ ḃ Ω we have

∫

ϕ6=0

gpu dµ ≤ Q

∫

ϕ6=0

gpu+ϕ dµ;

(e) For all nonnegative ϕ ∈ N 1,p(Ω) with suppϕ ḃ Ω we have

∫

suppϕ

gpu dµ ≤ Q

∫

suppϕ

gpu+ϕ dµ;

(f) For all nonnegative ϕ ∈ Lipb(Ω) we have

∫

ϕ6=0

gpu dµ ≤ Q

∫

ϕ6=0

gpu+ϕ dµ;

(g) For all nonnegative ϕ ∈ Lipb(Ω) we have

∫

suppϕ

gpu dµ ≤ Q

∫

suppϕ

gpu+ϕ dµ.
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Remark 6.3. (1) If we omit “super” from (a) and “nonnegative” from (b)–
(g) we have a corresponding characterization for Q-quasiminimizers.
The proof of these equivalences is the same as the proof below.

(2) In the case when X is complete, Kinnunen–Martio [27], Lemmas 3.2,
3.4 and 6.2, gave the characterizations (a)–(d), and all of the statements
above as well as some more were shown to be equivalent in A. Björn [2].

(3) It is easy to see from the definition that if Ω1 ⊂ Ω2 ⊂ ... ⊂ Ω and
for every Ω′

ḃ Ω there is Ωj ⊃ Ω′, then u is a Q-quasisuperminimizer
in Ω if and only if u is a Q-quasisuperminimizer in Ωj for every j.
(Observe that when X is complete it is equivalent to just require that
Ω1 ⊂ Ω2 ⊂ ... ⊂ Ω and Ω =

⋃∞
j=1 Ωj, it then follows by compactness

that if Ω′
b Ω then there is Ωj ⊃ Ω′.)

(4) On Rn it is known that a function u is a superminimizer in an open set
Ω if and only if for every x ∈ Ω there is r > 0 such that u is a supermin-
imizer in B(x, r); this is sometimes called the sheaf property. To prove
the nontrivial implication one uses the p-Laplace equation together with
partition of unity; the same can be done for Cheeger superminimizers
in complete doubling metric spaces supporting a Poincaré inequality
(see J. Björn [8]).
For our superminimizers defined using upper gradients we do not have
a corresponding differential equation (and cannot use a partition of
unity argument). It is therefore unknown if the sheaf property holds
for our superminimizers, even if we restrict ourselves to complete metric
spaces.
Quasisuperminimizers do not form sheaves even in Rn (in fact not even
on R).

(5) Let us for the moment make the following definition. A function u ∈
N1,p

loc (Ω) is a strong quasisuperminimizer in Ω if for all nonnegative
ϕ ∈ N 1,p

b (Ω) (or N 1,p
0 (Ω)) we have
∫

ϕ6=0

gpu dµ ≤ Q

∫

ϕ6=0

gpu+ϕ dµ.

When X is complete this is equivalent to our definition, see A. Björn [2].
(Moreover, this definition was used by Ziemer [41] in Rn, but he was
no doubt aware of the equivalence in this case.)
In noncomplete metric spaces we have been unable to show that qua-
sisuperminimizers are strong quasisuperminimizers. For the purposes
of this paper our weaker assumption is enough, but it could happen that
for some other results about quasisuperminimizers (e.g. in the theory
of boundary regularity) the right condition is to require the functions
involved to be strong quasisuperminimizers.
For strong quasisuperminimizers the property described in (3) above
does not hold, unless the definitions indeed are equivalent: Let u be a
quasisuperminimizer in Ω which is not a strong quasisuperminimizer.
Let further

Ωj = {x : d(x, y) < j and dist(x,X \ Ω) ≥ 1/j},
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where y ∈ X is some fixed point. Then u is a strong quasisupermini-
mizer in Ωj for every j.

Proof. (a) ⇒ (c) (This is similar to the proof of Lemma 3.2 in Kinnunen–
Martio [27].) Let ε > 0. By the regularity of the measure we can find an
open set Ω′ such that E ⊂ Ω′

ḃ Ω and
∫

Ω′\E

gpu+ϕ dµ <
ε

Q
.

Since ϕ ∈ N 1,p
0 (Ω′) we have

∫

E

gpu dµ ≤

∫

Ω′

gpu dµ ≤ Q

∫

Ω′

gpu+ϕ dµ

= Q

∫

E

gpu+ϕ dµ+Q

∫

Ω′\E

gpu+ϕ dµ ≤ Q

∫

E

gpu+ϕ dµ+ ε.

Letting ε→ 0 completes the proof of this implication.
(c) ⇒ (d) ⇒ (f) This is trivial.
(f) ⇒ (a) Let Ω′

ḃ Ω be open and ϕ ∈ N 1,p
0 (Ω′) be nonnegative. Let

0 < ε < 1
2

dist(Ω′, X\Ω). By Lemma 4.3, we can find a nonnegative Lipschitz
function ψ and a set E ⊂ {x : d(x,Ω′) < ε} ḃ Ω such that µ(E) < ε, ψ = ϕ
in X \ E and ‖ψ − ϕ‖N1,p(X) < ε/Q1/p.

Let A = {x : ψ(x) 6= 0}. Since gu = gu+ψ µ-a.e. outside of A and
suppψ ḃ Ω we find that

∫

Ω′

gpu dµ ≤

∫

ψ 6=0

gpu dµ+

∫

Ω′\A

gpu dµ

≤ Q

∫

ψ 6=0

gpu+ψ dµ+

∫

Ω′\A

gpu+ψ dµ ≤ Q

∫

Ω′∪A

gpu+ψ dµ.

Thus
(
∫

Ω′

gpu dµ

)1/p

≤

(

Q

∫

Ω′∪A

gpu+ϕ dµ

)1/p

+

(

Q

∫

Ω′∪A

gpψ−ϕ dµ

)1/p

≤

(

Q

∫

Ω′

gpu+ϕ dµ+Q

∫

A\Ω′

gpu+ϕ dµ

)1/p

+ ε.

Since
∫

A\Ω′ g
p
u+ϕ dµ→ 0, as ε→ 0, we obtain the required estimate.

(a) ⇒ (b) Since gu = gu+ϕ µ-a.e. on ∂Ω′, we get
∫

Ω
′

gpu dµ =

∫

∂Ω′

gpu dµ+

∫

Ω′

gpu dµ

≤

∫

∂Ω′

gpu+ϕ dµ+Q

∫

Ω′

gpu+ϕ dµ ≤ Q

∫

Ω
′

gpu+ϕ dµ.

(b) ⇒ (e) Let ε > 0. By the regularity of the measure we can find δ > 0
such that Ω′′ := {x : dist(x, suppϕ) < 2δ} ḃ Ω and

∫

Ω′′\suppϕ

gpu+ϕ dµ <
ε

Q
.
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Letting Ω′ := {x : dist(x, suppϕ) < δ} we have

∫

suppϕ

gpu dµ ≤

∫

Ω
′

gpu dµ

≤ Q

∫

Ω
′

gpu+ϕ dµ

= Q

∫

suppϕ

gpu+ϕ dµ+Q

∫

Ω
′
\suppϕ

gpu+ϕ dµ

≤ Q

∫

suppϕ

gpu+ϕ dµ+ ε.

Letting ε→ 0 completes the proof of this implication.
(e) ⇒ (g) This is trivial.
(g) ⇒ (f) Let ϕj = (ϕ− 1/j)+. We get

∫

ϕ6=0

gpu dµ = lim
j→∞

∫

suppϕj

gpu dµ ≤ Q lim
j→∞

∫

suppϕj

gpu+ϕj
dµ

≤ Q lim
j→∞

∫

ϕ6=0

gpu+ϕj
dµ = Q

∫

ϕ6=0

gpu+ϕ dµ.

The following lemma is a crucial fact about quasisuperminimizers.

Lemma 6.4. Let uj be a Qj-quasisuperminimizer, j = 1, 2. Then min{u1, u2}
is a min{Q1 +Q2, Q1Q2}-quasisuperminimizer.

This is proved in Kinnunen–Martio [27], Lemmas 3.6, 3.7 and Corol-
lary 3.8, in the complete case. Their proofs also hold in the noncomplete
case.

7. Caccioppoli inequalities

In this section Caccioppoli inequalities are proved, and in particular the log-
arithmic Caccioppoli inequality is studied. We start with an estimate for
quasisubminimizers.

Proposition 7.1. Let u ≥ 0 be a Q-quasisubminimizer in Ω. Then for all

nonnegative η ∈ Lipb(Ω),

∫

Ω

gpuη
p dµ ≤ c

∫

Ω

upgpη dµ,

where c only depends on p and Q.

This estimate was proved for unweighted Rn by Tolksdorf [40], Theo-
rem 1.4, and for complete metric spaces in A. Björn [4], Theorem 4.1. The
proof given in [4] (which was an easy adaptation of Tolksdorf’s proof) applies
also to the noncomplete case.
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Proposition 7.2. Let u ≥ 0 be a Q-quasisubminimizer in Ω and α ≥ 0.
Then for all nonnegative η ∈ Lipb(Ω),

∫

Ω

uαgpuη
p dµ ≤ C

∫

Ω

up+αgpη dµ,

where C only depends on p and Q.

Proof. By Lemma 6.4, (u − t1/α)+ is also a Q-quasisubminimizer. Using
Proposition 7.1 we see that

∫

Ω

uαgpuη
p dµ =

∫ ∞

0

∫

uα>t

gpuη
p dµ dt

=

∫ ∞

0

∫

u>t1/α

gp
u−t1/αη

p dµ dt

≤ C

∫ ∞

0

∫

u>t1/α

(u− t1/α)pgpη dµ dt

= C

∫

Ω

∫ uα

0

(u− t1/α)p dt gpη dµ

≤ C

∫

Ω

up+αgpη dµ.

The constant C is the same as in Proposition 7.1. A better estimate in
the last step will give a better estimate of C, and in particular it is possible
to show that C → 0, as α → ∞, if we allow C to depend also on α.

Proposition 7.3. Let u > 0 be a Q-quasisuperminimizer in Ω and α > 0.
Then for all nonnegative η ∈ Lipb(Ω),

∫

Ω

u−α−pgpuη
p dµ ≤ C

α + p

α

∫

Ω

u−αgpη dµ,

where C only depends on p and Q.

In fact the constant C is the constant in Proposition 7.1.

Proof. Let first M > 0 be arbitrary and v = (M − u)+. Then v is a Q-
quasisubminimizer, by Lemma 6.4, and

gv(x) =

{

gu(x), if u(x) < M,

0, otherwise.

By Proposition 7.1 (with C being the constant from there), we get

∫

u<M

gpuη
p dµ =

∫

Ω

gpvη
p dµ ≤ C

∫

Ω

vpgpη dµ ≤ CM p

∫

u<M

gpη dµ.
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We thus get

∫

Ω

u−α−pgpuη
p dµ =

∫ ∞

0

∫

u−(α+p)>t

gpuη
p dµ dt

=

∫ ∞

0

∫

u<t−1/(α+p)

gpuη
p dµ dt

≤ C

∫ ∞

0

t−p/(α+p)

∫

u<t−1/(α+p)

gpη dµ dt

= C

∫

Ω

∫ u−(α+p)

0

t−p/(α+p) dt gpη dµ

= C
α + p

α

∫

Ω

u−αgpη dµ.

For superminimizers Proposition 7.3 can be improved.

Proposition 7.4. Suppose u > 0 is a superminimizer in Ω and let α > 0.
Then for all nonnegative η ∈ Lipb(Ω),

∫

Ω

u−α−1gpuη
p dµ ≤

( p

α

)p
∫

Ω

up−α−1gpη dµ. (7.1)

This result was proved in Kinnunen–Martio [28], Lemma 3.1, using a
suitable test function and a convexity argument. Unfortunately, it does not
seem possible to adapt their proof to quasisuperminimizers. In [28] the space
was supposed to be complete, however, the proof can be easily modified in
the noncomplete case. (Kinnunen–Martio had at their disposal regularity
results saying that u is locally bounded away from 0; which may have been
used implicitly in their proof. To clarify this point we note that using their
argument we can obtain the corresponding inequality for uδ := u + δ for all
δ > 0, and from this the inequality for u is easily obtained using Fatou’s
lemma.)

For subminimizers Proposition 7.2 can be improved.

Proposition 7.5. Suppose u ≥ 0 is a subminimizer in Ω and let α > 0.
Then for all nonnegative η ∈ Lipb(Ω),

∫

Ω

uα−1gpuη
p dµ ≤ c

∫

Ω

up+α−1gpη dµ,

where c = (p/α)p.

In Marola [32], this was proved under four additional assumptions, that
X is complete, that u is locally bounded, that ess infΩ u > 0 and that 0 ≤
η ≤ 1. The latter two are easy to remove by a limiting argument and a
scaling, respectively. Moreover, the proof in [32] can be easily modified in
the noncomplete case.

As for local boundedness, we show in Corollary 8.3 that every quasisub-
minimizer is locally bounded above, so assuming that u is locally bounded
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is no extra assumption. Note that we will not use Proposition 7.5 to obtain
Corollary 8.3 (nor any other result in this paper). Here we just wanted to
quote Proposition 7.5, as it may be of independent interest.

The following lemma is the logarithmic Caccioppoli inequality for super-
minimizers and it will play a crucial role in the proof of Harnack’s inequality
using Moser’s method. We have not been able to prove a similar estimate for
quasisuperminimizers. Proposition 7.6 was originally proved in Kinnunen–
Martio [28].

Proposition 7.6. Suppose that u > 0 is a superminimizer in Ω which is

locally bounded away from 0. Let v = log u. Then v ∈ N 1,p
loc (Ω) and gv = gu/u

µ-a.e. in Ω. Furthermore, for every ball B(z, r) with B(z, 2r) ⊂ Ω we have

∫

B(z,r)

gpv dµ ≤
C

rp
,

where C = Cµ(2p/(p− 1))p.

The assumption that u is locally bounded away from 0 can actually be
omitted, since this follows from Theorem 9.2, for the proof of which we
however need this lemma in its present form.

Since we work in a possibly noncomplete metric space, there are really
two possibilities for what “locally” may mean; either that for every x ∈ Ω
there is a ball B(x, r) ⊂ Ω, such that u is bounded in B(x, r), or for every
open set G ḃ Ω, u is bounded in G (or equivalently every set G ḃ Ω). For
us the latter definition will be preferable.

We say that u is locally bounded in an open set Ω, if it is bounded in every
open set G ḃ Ω; locally bounded above and below are defined similarly.

Note also that the definition of locally here is in accordance with the
definition of locally in N 1,p

loc given in Section 6.

Proof. Let B(z, r) be a ball such that B(z, 2r) ⊂ Ω. As v is bounded below
in B(z, r) we have v ∈ Lp(B(z, r)). Clearly gv ≤ gu/u µ-a.e. in Ω. We obtain
the reverse inequality if we set u = exp v, hence gv = gu/u µ-a.e. in Ω. It
follows that gv ∈ Lploc(Ω) and consequently that v ∈ N 1,p

loc (Ω).
Let η ∈ Lipb(B(z, 2r)) so that 0 ≤ η ≤ 1, η = 1 on B(z, r) and gη ≤ 2/r.

If we choose α = p− 1 in Proposition 7.4 we have

∫

Ω

gpvη
p dµ =

∫

Ω

u−pgpuη
p dµ ≤ C

∫

Ω

gpη dµ,

where C = (p/(p− 1))p. From this and the doubling property of µ we obtain

∫

B(z,r)

gpv dµ ≤ Cr−pµ(B(z, r)),

where C is as in the statement of the lemma.
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It is noteworthy that the lemma can be proved without applying Proposi-
tion 7.4. Namely, we obtain the desired result by choosing ϕ in the definition
of superminimizers as ϕ = ηpu1−p and using a convexity argument as in the
proof of Lemma 3.1 in Kinnunen–Martio [28].

Let us also note that in fact we have not used the Poincaré inequality to
obtain any of the Caccioppoli inequalities in this section, with one exception.
In order not to require that u is locally bounded in Proposition 7.5 we need
to use Corollary 8.3. So if we add the assumption in Proposition 7.5 that u
is locally bounded, then all the results in this section hold without assuming
a Poincaré inequality.

Note also that our argument for obtaining Proposition 7.6 without the
assumption that u is locally bounded away from 0 does require the Poincaré
inequality.

8. Weak Harnack inequalities

In this section we prove weak Harnack inequalities for Q-quasisubminimizers
(Theorem 8.2) and Q-quasisuperminimizers (Theorem 8.5).

We start with a technical lemma.

Lemma 8.1. Let ϕ(t) be a bounded nonnegative function defined on the in-

terval [a, b], where 0 ≤ a < b. Suppose that for any a ≤ t < s ≤ b, ϕ
satisfies

ϕ(t) ≤ θϕ(s) +
A

(s− t)α
, (8.1)

where θ < 1, A and α are nonnegative constants. Then

ϕ(ρ) ≤ C
A

(R− ρ)α
, (8.2)

for all a ≤ ρ < R ≤ b, where C only depends on α and θ.

We refer to Giaquinta [12], Lemma 3.1, p. 161, for the proof. This lemma
says that, under certain assumptions, we can get rid of the term θϕ(s).

The Moser iteration technique yields that nonnegative Q-quasisubmini-
mizers are locally bounded.

Theorem 8.2. Suppose that u is a nonnegative Q-quasisubminimizer in Ω.

Then for every ball B(z, r) with B(z, 2r) ⊂ Ω and any q > 0 we have

ess sup
B(z,r)

u ≤ C

(
∫

B(z,2r)

uq dµ

)1/q

, (8.3)

where C only depends on p, q, Q, Cµ and the constants in the weak Poincaré

inequality.
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Corollary 8.3. Let u be a quasisubminimizer in Ω, then u is essentially

locally bounded from above in Ω. Similarly any quasisuperminimizer in Ω is

essentially locally bounded from below in Ω.

Recall that we defined what is meant by locally bounded right after stating
Proposition 7.6.

Proof. By Lemma 6.4, u+ is a nonnegative quasisubminimizer. Let G ḃ Ω
and let δ = 1

3
dist(G,X \ Ω). Using that X is a doubling space we can find

a finite cover of G by balls Bj = B(xj, δ), xj ∈ G. By Theorem 8.2,

ess sup
Bj

u ≤ ess sup
Bj

u+ ≤ C

(
∫

B(xj ,2δ)

uq+ dµ

)1/q

<∞.

Since the cover is finite we see that ess supG u <∞.

Proof of Theorem 8.2. First assume that r ≤ 1
6

diamX (which, of course, is
immediate if X is unbounded).

Second we assume that q ≥ p. Write Bl = B(z, rl), rl = (1 + 2−l)r
for l = 0, 1, 2, ..., thus, B(z, 2r) = B0 ⊃ B1 ⊃ ... . Let ηl ∈ Lipb(Bl) so
that 0 ≤ ηl ≤ 1, ηl = 1 on Bl+1 and gηl

≤ 4 · 2l/r (choose, e.g., ηl(x) =
min{2(rl − d(x, z))/(rl − rl+1) − 1, 1}+). Fix 1 ≤ t <∞ and let

wl = ηlu
1+(t−1)/p = ηlu

τ/p,

where τ := p+ t− 1. Then we have

gwl
≤ gηl

uτ/p +
τ

p
u(t−1)/pguηl µ-a.e. in Ω,

and consequently

gpwl
≤ 2p−1gpηl

uτ + 2p−1

(

τ

p

)p

ut−1gpuη
p
l µ-a.e. in Ω.

Using the Caccioppoli inequality, Proposition 7.2, with α = t− 1 we obtain

(
∫

Bl

gpwl
dµ

)1/p

≤ 2(p−1)/p

(
∫

Bl

(

gpηl
uτ +

(

τ

p

)p

ut−1gpuη
p
l

)

dµ

)1/p

≤ Cτ

(
∫

Bl

gpηl
uτ dµ

)1/p

≤ Cτ
2l

r

(
∫

Bl

uτ dµ

)1/p

,

The Sobolev inequality (5.2) implies (here we use that rl ≤ 2r ≤ 1
3

diamX)

(
∫

Bl

wκpl dµ

)1/κp

≤ Crl

(
∫

Bl

gpwl
dµ

)1/p

≤ Cτ(1 + 2−l)r
2l

r

(
∫

Bl

uτ dµ

)1/p

≤ Cτ2l
(
∫

Bl

uτ dµ

)1/p
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Using the doubling property of µ we have (remember that wl = uτ/p on Bl+1)

(
∫

Bl+1

(uτ/p)κp dµ

)1/κp

≤ Cτ2l
(
∫

Bl

uτ dµ

)1/p

.

Hence, we obtain

(
∫

Bl+1

uκτ dµ

)1/κτ

≤ (Cτ2l)p/τ
(
∫

Bl

uτ dµ

)1/τ

.

This estimate holds for all τ ≥ p. We use it with τ = qκl to obtain

(
∫

Bl+1

uqκ
l+1

dµ

)1/qκl+1

≤ (Cq2lκl)p/qκ
l

(
∫

Bl

uqκ
l

dµ

)1/qκl

.

By iterating we obtain the desired estimate

ess sup
B(z,r)

u ≤
(

(Cq)
P

∞

i=0 κ
−i

(2κ)
P

∞

i=0 iκ
−i)p/q

(
∫

B(z,2r)

uq dµ

)1/q

=
(

(Cq)κ/(κ−1)(2κ)κ/(κ−1)2
)p/q

(
∫

B(z,2r)

uq dµ

)1/q

≤ C

(
∫

B(z,2r)

uq dµ

)1/q

. (8.4)

The theorem is proved for q ≥ p and r ≤ 1
6

diamX.

By the doubling property of the measure and (2.1), it is easy to see that
(8.4) can be reformulated in a bit different manner. Namely, if 0 ≤ ρ < r̃ ≤
2r, then

ess sup
B(z,ρ)

u ≤
C

(1 − ρ/r̃)s/q

(
∫

B(z,r̃)

uq dµ

)1/q

. (8.5)

See Kinnunen–Shanmugalingam [29], Remark 4.4.

If 0 < q < p we want to prove that

ess sup
B(z,ρ)

u ≤
C

(1 − ρ/2r)s/q

(
∫

B(z,2r)

uq dµ

)1/q

,

when 0 ≤ ρ < 2r <∞. Now suppose that 0 < q < p and let 0 ≤ ρ < r̃ ≤ 2r.
We choose q = p in (8.5), then

ess sup
B(z,ρ)

u ≤
C

(1 − ρ/r̃)s/p

(
∫

B(z,r̃)

uqup−q dµ

)1/p

≤
C

(1 − ρ/r̃)s/p

(

ess sup
B(z,r̃)

u
)1−q/p

(
∫

B(z,r̃)

uq dµ

)1/p
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By Young’s inequality

ess sup
B(z,ρ)

u ≤
p− q

p
ess sup
B(z,r̃)

u+
C

(1 − ρ/r̃)s/q

(
∫

B(z,r̃)

uq dµ

)1/q

≤
p− q

p
ess sup
B(z,r̃)

u+
C

(r̃ − ρ)s/q

(

(2r)s
∫

B(z,2r)

uq dµ

)1/q

,

where the doubling property (2.1) was used to obtain the last inequality. We
need to get rid of the first term on the right-hand side. By Lemma 8.1 (let
ϕ(t) = ess supB(z,t) u) we have

ess sup
B(z,ρ)

u ≤
C

(1 − ρ/2r)s/q

(
∫

B(z,2r)

uq dµ

)1/q

for all 0 ≤ ρ < 2r. If we set ρ = r, we obtain (8.3) for every 0 < q < p and
the proof is complete for the case when r ≤ 1

6
diamX.

Assume now that r > 1
6

diamX and let r′ = 1
12

diamX. Then we can find
z′ ∈ B(z, r) such that

ess sup
B(z′,r′)

u ≥ ess sup
B(z,r)

u.

Using the doubling property and the fact that B(z ′, 2r′) ⊂ B(z, 2r) ⊂ X =
B(z′, 12r′) we find that

ess sup
B(z,r)

u ≤ ess sup
B(z′,r′)

u ≤ C

(
∫

B(z′,2r′)

uq dµ

)1/q

≤ C

(
∫

B(z,2r)

uq dµ

)1/q

,

which makes the proof complete.

Remark 8.4. The quasi(sub)minimizing property (6.1) is not needed in the
proof of Theorem 8.2. As our proof shows, it is enough to have a Caccioppoli
inequality like in Proposition 7.2.

Next we present a certain reverse Hölder inequality for Q-quasisuper-
minimizers.

Theorem 8.5. Suppose that u is a nonnegative Q-quasisuperminimizer in

Ω. Then for every ball B(z, r) with B(z, 2r) ⊂ Ω and any q > 0 we have

ess inf
B(z,r)

u ≥ C

(
∫

B(z,2r)

u−q dµ

)−1/q

, (8.6)

where C only depends on p, q, Q, Cµ and the constants in the weak Poincaré

inequality.

Proof. The result can be obtained for general r after having obtained it for
r ≤ 1

6
diamX in the same way as in the proof of Theorem 8.2. We may thus

assume that r ≤ 1
6

diamX.
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Assume next that u > 0. As in the proof of Theorem 8.2, write Bl =
B(z, rl), rl = (1+2−l)r for l = 0, 1, 2, ... . Let ηl ∈ Lipb(Bl) so that 0 ≤ ηl ≤ 1,
ηl = 1 on Bl+1 and gηl

≤ 4 · 2l/r. Fix t ≥ max{1, q + p − 1}. Thus
τ := t+ 1 − p ≥ q. Let

wl = ηlu
1+(−t−1)/p = ηlu

−τ/p.

Then we have

gwl
≤ gηl

u−τ/p +

(

τ

p

)

u(−t−1)/pguηl µ-a.e. in Ω

and consequently

gpwl
≤ 2p−1gpηl

u−τ + 2p−1

(

τ

p

)p

u−t−1gpuη
p
l µ-a.e. in Ω.

Using the Caccioppoli inequality, Proposition 7.3, with α = τ , we obtain

(
∫

Bl

gpwl
dµ

)1/p

≤ 2(p−1)/p

(
∫

Bl

(

gpηl
u−τ +

(

τ

p

)p

u−t−1gpuη
p
l

)

dµ

)1/p

≤ Cτ

(
∫

Bl

gpηl
u−τ dµ

)1/p

≤ Cτ
2l

r

(
∫

Bl

u−τ dµ

)1/p

,

where we note that C depends on q but not on τ . The Sobolev inequality
(5.2) implies

(
∫

Bl

wκpl dµ

)1/κp

≤ Crl

(
∫

Bl

gpwl
dµ

)1/p

≤ Cτ(1 + 2−l)r
2l

r

(
∫

Bl

u−τ dµ

)1/p

≤ Cτ2l
(
∫

Bl

u−τ dµ

)1/p

Using the doubling property of µ we have (notice that wl = u−τ/p on Bl+1)

(
∫

Bl+1

(u−τ/p)κp dµ

)1/κp

≤ Cτ2l
(
∫

Bl

u−τ dµ

)1/p

.

Hence, we obtain

(
∫

Bl+1

u−κτ dµ

)−1/κτ

≥ (Cτ2l)−p/τ
(
∫

Bl

u−τ dµ

)−1/τ

.

This estimate holds for all τ > 0. We use it with τ = qκl to obtain

(
∫

Bl+1

u−qκ
l+1

dµ

)−1/qκl+1

≥ (Cq2lκl)−p/qκ
l

(
∫

Bl

u−qκ
l

dµ

)−1/qκl

.
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By iterating as in the proof of Theorem 8.2, we obtain the desired estimate

ess inf
B(z,r)

u ≥ C

(
∫

B(z,2r)

u−q dµ

)−1/q

.

The proof is complete for u > 0.

If u is a nonnegative Q-quasisuperminimizer in Ω, it is evident that also
u+ β is for all constants β > 0. Hence we may apply (8.6) to obtain

ess inf
B(z,r)

(u+ β) ≥ C

(
∫

B(z,2r)

(u+ β)−q dµ

)−1/q

for all β > 0, where the constant C is independent of β. Letting β → 0+

completes the proof.

Remark 8.6. As in the proof of Theorem 8.2 the quasi(super)minimizing
property (6.1) is not really needed. Again, it is enough to have a Caccioppoli
inequality in the spirit of Proposition 7.3.

9. Harnack’s inequality for minimizers

We stress that results in this section are valid only for (super)minimizers of
the p-Dirichlet integral.

A locally integrable function u in Ω is said to belong to BMO(Ω) if the
inequality

∫

B

|u− uB| dµ ≤ C (9.1)

holds for all balls B ⊂ Ω. The smallest bound C for which (9.1) is satisfied is
said to be the “BMO-norm” of u in this space, and is denoted by ‖u‖BMO(Ω).

We will need the following result.

Theorem 9.1. Let u ∈ BMO(B(x, 2r)) and let q = 1/6Cµ‖u‖BMO(Ω), then

∫

B(x,r)

eq|u−uB | dµ ≤ 16.

This theorem was proved in Buckley [9], Theorem 2.2. The proof is
related to the proof of the John–Nirenberg inequality, and in fact this theorem
can be obtained as a rather straightforward corollary of the John–Nirenberg
inequality.

For the formulation of the John–Nirenberg inequality and proofs of it
valid in doubling metric spaces we refer to [9] and the appendix in Mateu–
Mattila–Nicolau–Orobitg [33].

Now we are ready to provide the proof for the weak Harnack inequality.
A sharp version of the following theorem is proved in Kinnunen–Martio [28],
under the additional assumption that the space is complete.
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Theorem 9.2. If u is a nonnegative superminimizer in Ω, then there are

q > 0 and C > 0, only depending on p, Cµ and the constants in the weak

Poincaré inequality, such that

(
∫

B(z,2r)

uq dµ

)1/q

≤ C ess inf
B(z,r)

u (9.2)

for every ball B(z, r) such that B(z, 20λr) ⊂ Ω.

Here λ is the dilation constant in the weak Poincaré inequality.

Proof. Let u > 0 be bounded away from 0. By Theorem 8.5 we have

ess inf
B(z,r)

u ≥ C

(
∫

B(z,2r)

u−q dµ

)−1/q

= C

(
∫

B(z,2r)

u−q dµ

∫

B(z,2r)

uq dµ

)−1/q(∫

B(z,2r)

uq dµ

)1/q

.

To complete the proof, we have to show that
∫

B(z,2r)

u−q dµ

∫

B(z,2r)

uq dµ ≤ C

for some q > 0. Write v = log u. We want to show that v ∈ BMO(B(z, 4r)).
Let B(x, r′) ⊂ B(z, 4r) and let r′′ = min{8r, r′}. It is easy to see that
B(x, r′) = B(x, r′′) (recall that in metric spaces balls may not have unique
centre or radius). It is also easy to see that

2B(x, λr′′) ⊂ B(z, 16λr + d(x, z)) ⊂ B(z, 20λr) ⊂ Ω.

By the weak (1, p)-Poincaré inequality and Proposition 7.6 we have
∫

B(x,r′)

|v − vB(x,r′)| dµ =

∫

B(x,r′′)

|v − vB(x,r′′)| dµ

≤ Cr

(
∫

B(x,λr′′)

gpv dµ

)1/p

≤ C ′,

where C ′ only depends on p, Cµ and the constants in the weak Poincaré
inequality. Thus ‖v‖BMO(B(z,4r)) ≤ C ′.

Let now q = 1/6C ′Cµ. By Theorem 9.1,
∫

B(z,2r)

e−qv dµ

∫

B(z,2r)

eqv dµ =

∫

B(z,2r)

eq(vB(z,2r)−v) dµ

∫

B(z,2r)

eq(v−vB(z,2r)) dµ

≤

(
∫

B(z,2r)

eq|v−vB(z,2r)| dµ

)2

≤ 256,

from which the claim follows for u bounded away from 0.
If u is an arbitrary nonnegative superminimizer, then clearly uβ := u+β ≥

β is a superminimizer for all constants β > 0. Hence we may apply (9.2) to
uβ. Letting β → 0+ and using Fatou’s lemma completes the proof.
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From this we easily obtain Harnack’s inequality.

Theorem 9.3. Suppose that u is a nonnegative minimizer in Ω. Then there

exists a constant C ≥ 1, only depending on p, Cµ and the constants in the

weak Poincaré inequality, such that

ess sup
B(z,r)

u ≤ C ess inf
B(z,r)

u

for every ball B(z, r) for which B(z, 20λr) ⊂ Ω.

Here λ is the dilation constant in the weak Poincaré inequality.

Proof. Combine Theorems 8.2 and 9.2.

From Harnack’s inequality it follows that minimizers are locally Hölder
continuous (after modification on a set of measure zero) and satisfy the strong
maximum principle, see, e.g., Giusti [15]. Furthermore, we obtain Liouville’s
theorem as a corollary of Harnack’s inequality.

Corollary 9.4. (Liouville’s theorem) If u is a bounded or nonnegative p-
harmonic function on all of X, then u is constant.

By definition, a p-harmonic function is a continuous minimizer.

Proof. Let v = u− infX u. For x ∈ X we thus get,

v(x) ≤ sup
B(x,r)

v ≤ C inf
B(x,r)

v → 0, as r → ∞.

Thus v ≡ 0, and u is constant.

10. The need for λ in Theorems 9.2 and 9.3

It may seem that a better proof could eliminate the need for λ in Theo-
rem 9.2 and consequently also in Theorem 9.3, in particular after noting that
no λ is needed in Theorems 8.2 and 8.5. However, λ is really essential in
Theorems 9.2 and 9.3.

Example 10.1. Let XM = R2 \ ((−M,M) × (0, 1)), M ≥ 1, equipped
with Euclidean distance and the restriction of Lebesgue measure, which is
doubling. By, e.g., Theorem 10.5 in HajÃlasz–Koskela [17], XM supports a
weak (1, 1)-Poincaré inequality.

Let us fix M ≥ 2 and let X = XM . Let next Ω = (−M,M)2 ∩X (which
is disconnected) and

u(x, y) =

{

1, if y ≥ 1,

0, if y ≤ 0.

Since gu ≡ 0 we see that u is p-harmonic in Ω (for all p). Let further
B = B((0, 0), 2) (as a ball in X). Then 1

2
MB ⊂ Ω, and this shows that
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the constant 20λ cannot be replaced by 1
2
M neither in Theorem 9.2 nor in

Theorem 9.3. By varying M we see that the constant 20λ in Theorems 9.2
and 9.3 cannot be replaced by any absolute constant.

Note that in this example X is complete. However, Ω was disconnected.
We next make a modification of Ω to obtain a connected counterexample as
well.

Let Ωε = Ω ∪
(

B((−M, 0),M) \ B((−M, 0),M − ε)
)

, where 0 < ε < 1
and the balls are taken within X. Note that Ωε is a connected subset of
X. Let next fε(x, y) = min{y+, 1} on ∂Ωε and let uε be the solution to
the Dirichlet problem with boundary values fε on ∂Ωε for p = 2, i.e. the
2-harmonic function which takes the boundary values q.e. (see, e.g., Björn–
Björn–Shanmugalingam [6]).

The harmonic measure of ∂Ω \ ∂Ωε with respect to Ω tends to 0. Hence
uε → u uniformly on B, which shows that the constant 20λ cannot be re-
placed by 1

2
M in Theorems 9.2 and 9.3, even if Ω is required to be connected.

We know that X1 supports a weak Poincaré inequality with some dilation
constant λ1. By applying the affine map (x, y) 7→ (Mx, y) it is easy to see
that XM satisfies a weak Poincaré inequality with dilation constant Mλ1.
This shows that the constant 20λ in Theorems 9.2 and 9.3 has the right
growth.

This example also shows that the dilation constant from the Poincaré
inequality (called τ ′ in [29]) needs to be inserted in the condition on the balls
B(z, R) in Corollary 7.3 in Kinnunen–Shanmugalingam [29]. The authors [30]
have communicated that the first result in need of a slight modification in [29]
is Theorem 5.2. Several of the results in the following sections need similar
treatment.

The results and proofs of [29] have been referred to in several papers.
It should be observed that all the qualitative results in [29], as well as in
the papers depending on it, are not affected by this inadvertence. However,
there are certain quantitative statements in Kinnunen–Martio [26], [27] and
A. Björn [3] that need to be modified in a similar fashion.
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integrali multipli regolari, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. 3
(1957), 25–43.

[11] Federer, H., Geometric Measure Theory, Springer-Verlag, Berlin–
Heidelberg, 1969.

[12] Giaquinta, M., Multiple Integrals in the Calculus of Variations and

Nonlinear Elliptic Systems, Princeton Univ. Press, Princeton, NJ, 1983.

[13] Giaquinta, M. and Giusti E., On the regularity of the minima of
variational integrals, Acta Math. 148 (1982), 31–46.

[14] Giaquinta, M. and Giusti E., Quasi-minima, Ann. Inst. H. Poincaré
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