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1 Introduction

Let Ω ⊂ R
n, n ≥ 2, be a bounded open set, K ≥ 1. A function u ∈ L2

loc(0, T ; W 1,2
loc (Ω))

is a parabolic quasiminimizer if

−

∫

spt φ

u
∂φ

∂t
dx dt +

∫

spt φ

|∇u|2

2
dx dt ≤ K

∫

spt φ

|∇(u − φ)|2

2
dx dt

for all functions φ ∈ C∞
0 (Ω × (0, T )), see [Wie87]. A 1-minimizer, called a mini-

mizer, is a weak solution of the heat equation

∂u

∂t
= ∆u.

Being a weak solution to a partial differential equation is a local property, but
being a quasiminimizer is not. Quasiminimizers do not provide a unique solution
to the Dirichlet problem, and they do not obey the comparison principle. These
facts indicate that the theory for quasiminimizers differs from the theory for mi-
nimizers, and unexpected phenomena occur. On the other hand, quasiminimizers
provide a unifying approach in the calculus of variations, since the quasimini-
mizing condition applies to the whole class of variational integrals at the same
time.

Our objective is to show that quasiminimizers belong to a slightly higher
Sobolev space than assumed a priori and, in particular, that the gradient of a
quasiminimizer satisfies a reverse Hölder inequality. This is always true locally,
that is, in the interior of a domain as shown by Wieser in [Wie87], but here we
study the question globally, that is, up to the boundary. In our case the regularity
of the boundary and the regularity of boundary values play a role. We assume that
the complement of a domain satisfies a capacity density condition. This condition
is essentially sharp for our main results, but we point out that the results of this
paper are interesting and new, as far as we know, already for smooth domains.
The results are true also for systems of quasiminimizers, but we consider the
scalar case for simplicity.

We derive a reverse Hölder inequality for the gradient near the lateral and
the initial boundary. These cases are essentially different and therefore they are
considered separately. Moreover, we obtain stronger results at the initial boun-
dary. The proofs for the estimates are based on Caccioppoli and Poincaré type
inequalities and the self-improving property of a reverse Hölder inequality. Hig-
her integrability estimates play a decisive role in studying regularity questions,
see [GM79], [GS82] and [Str80].

Elliptic quasiminimizers were first studied by Giaquinta and Giusti, see [GG82]
and [GG84]. The concept of a quasiminimizer was extended to the parabolic case
by Wieser in [Wie87]. Later the definition of a parabolic quasiminimizer and some
of the local regularity results have been extended to a wider class of variational
integrals by Zhou, see [Zho93] and [Zho94].
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The local higher integrability of the gradient for nonlinear elliptic systems was
observed by Elcrat and Meyers in [EM75] and for systems of parabolic equations
with quadratic growth conditions by Giaquinta and Struwe in [GS82]. Recently
Kinnunen and Lewis proved in [KL00] the local higher integrability for parabolic
systems with more general growth conditions.

Granlund considered in [Gra82] the global higher integrability of the gradient
in the elliptic case, when the complement of a domain satisfies a measure density
condition, and later Kilpeläinen and Koskela generalized the elliptic results for
the uniform capacity density condition in [KK94]. Arkhipova has studied the
regularity of systems of parabolic partial differential equations for example in
[Ark89], [Ark92] and [Ark95].

This work is organized as follows: In Section 2 we introduce the problem and
the basic notation. In Section 3 we recall the concept of capacity and derive
estimates near the lateral boundary. These estimates are crucial in Section 4,
where we prove the integrability of the gradient to a higher power near the lateral
boundary. Section 5 is devoted to estimates near the initial boundary. In the
last section we prove the self-improving property for a modified reverse Hölder
inequality and then complete the paper by proving the higher integrability of the
gradient of a quasiminimizer near the initial boundary.

2 Preliminaries

Let Ω be a bounded open set in R
n, n ≥ 2, u : Ω × (0, T ) → R and K ≥ 1.

A function u belonging to the parabolic space L2
loc(0, T ; W 1,2

loc (Ω)) is a parabolic
quasiminimizer if

−

∫

spt φ

u
∂φ

∂t
dx dt +

∫

spt φ

E(u) dx dt ≤ K

∫

spt φ

E(u − φ) dx dt, (2.1)

for every φ ∈ C∞
0 (Ω × (0, T )), E(u) = F (x, t,∇u) and F : Ω × (0, T ) × R

n → R

satisfies the following assumptions:

1. x 7→ F (x, t, ξ) and t 7→ F (x, t, ξ) are measurable for every ξ,

2. ξ 7→ F (x, t, ξ) is continuous for every (x, t),

3. there exist 0 < α ≤ β < ∞ such that

α |ξ|2 ≤ F (x, t, ξ) ≤ β |ξ|2 . (2.2)

There is a well-recognized difficulty in proving useful estimates for variational
integrals: one often needs a test function depending on a solution u itself, but u
is not admissible. For example the time derivative of the test function contains
∂u
∂t

which does not necessarily exist as a function. There are two ways to treat
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this difficulty: the first option is to use the Steklov averages like for example in
[DiB93] on pages 18 and 25, and the second option is to use a mollification of u
in the time direction. Here we use the latter approach and have

−

∫

spt(φ)

uε
∂φ

∂t
dx dt +

∫

spt(φ̃)

E(u) − KE(u − φ̃) dx dt ≤ 0, (2.3)

for every φ ∈ C∞
0 (Ω × (0, T )), where φ̃ is a standard mollification of φ and uε a

standard mollification of u in the time direction.
We finish this section with the notation used throughout the paper. Let Ω ⊂

R
n, n ≥ 2, be a bounded open set and D = Ω × (0, T ) a space-time domain.

We denote the points of the domain by z = (x, t) and use a shorthand notation
dz = dx dt. Given z0 = (x0, t0) ∈ D and ρ > 0, let

Bρ(x0) = {x ∈ R
n : |x − x0| < ρ },

denote an open ball in R
n, and let

Λρ(t0) = (t0 −
1

2
ρ2, t0 +

1

2
ρ2),

denote an open interval in R. A space-time cylinder in R
n+1 is denoted by

Qρ(z0) = Qρ = Bρ(x0) × Λρ(t0).

If |Bρ| denotes the Lebesgue measure of Bρ, then the integral average of u is
denoted by

uρ(t) =

∫

Bρ

u(x, t) dx =
1

|Bρ|

∫

Bρ

u(x, t) dx.

Finally, the time derivative of φ is denoted by φ′ or ∂φ
∂t

.

3 Estimates near the lateral boundary

In the following two sections we consider the higher integrability of the gradient
of a quasiminimizer near the lateral boundary. The proof for the higher inte-
grability contains the following intermediate stages: we derive a pre-Caccioppoli
type estimate near the lateral boundary which implies Caccioppoli’s estimate
and parabolic Poincaré’s inequality. Then we combine these estimates and apply
the self-improving property of a reverse Hölder inequality together with capacity
estimates.

We say that u is a global quasiminimizer if u ∈ L2(0, T ; W 1,2(Ω)) satisfies
(2.1) and the initial and boundary conditions

u(•, t) − ϕ(•, t) ∈ W 1,2
0 (Ω)

and

1

h

∫ h

0

∫

Ω

|u − ϕ|2 dx dt → 0 as h → 0,

(3.1)
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for a given ϕ ∈ W 1,2(0, T ; W 1,2(Ω)).

The next lemma is a pre-Caccioppoli type inequality.

Lemma 1 Let u be a global quasiminizer with the boundary and initial conditions
(3.1). Suppose that 0 < ρ < σ < M for some M > 0, and let Qρ ⊂ Qσ ⊂ R

n+1

be concentric cylinders. Then there exists a positive constant c = c(n,M, α, β,K)
such that

∫

Qρ∩D

|∇u|2 dz + ess sup
t∈Λρ∩(0,T )

∫

Bρ∩Ω

|u − ϕ|2 dx

≤ c

∫

(Qσ\Qρ)∩D

|∇u|2 dz +
c

(σ − ρ)2

∫

Qσ∩D

|u − ϕ|2 dz

+ c

∫

Qσ∩D

(
|ϕ′|

2
+ |∇ϕ|2

)
dz,

where D = Ω × (0, T ).

Proof: We may assume that Qρ ∩D 6= ∅ since otherwise the claim is trivial. Let
χh

0,t1
(t) ∈ C0(0, T ) be a piecewise linear approximation of a characteristic function

such that χh
0,t1

(t) = 1, when t ∈ (h, t1 − h), and
∣∣(χh

0,t1
(t))′

∣∣ ≤ c/h. We denote by

χh,ε
0,t1

(t), uε and ϕε the standard mollifications in the time direction and extend

u(•, t) − ϕ(•, t) ∈ W 1,2
0 (Ω) by zero outside Ω. Then we choose a test function

φε(x, t) = η2(x, t)(u(x, t) − ϕ(x, t))εχ
h,ε
0,t1

(t), t1 ∈ Λρ ∩ (0, T ),

where η ∈ C∞
0 (Qσ), 0 ≤ η ≤ 1, is a cut-off function such that η(x, t) = 1 in Qρ,

and

(σ − ρ) |∇η| + (σ − ρ)2

∣∣∣∣
∂η

∂t

∣∣∣∣ ≤ c. (3.2)

Let us insert this test function into (2.3) and consider the first term. We add and
subtract ϕεφ

′
ε, integrate by parts and apply the initial condition. For almost all

t1, we obtain

−

∫

D

uεφ
′
ε dz → −

∫

Ω×(0,t1)

|u − ϕ|2ηη′ dz

+
1

2

∫

Ω

|u(x, t1) − ϕ(x, t1)|
2η2(x, t1) dx

+

∫

Ω×(0,t1)

ϕ′η2(u − ϕ) dz,

as first ε → 0 and then h → 0. Next, denote by φ̃ε the mollification of φε and
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φ = η2(u − ϕ)χ0,t1 . For the second term of (2.3), we obtain
∫

spt(φ̃ε)

[
E(u) − KE(u − φ̃ε)

]
dz

→

∫

spt(φ)

[
E(u) − KE(u − η2(u − ϕ))

]
dz

=

∫

spt(φ)

E(u) dz − K

∫

spt(φ)\Qρ

E(u − η2(u − ϕ)) dz

− K

∫

spt(φ)∩Qρ

E(ϕ) dz,

(3.3)

as first ε → 0 and then h → 0. Collecting the facts, we arrive at
∫

spt(φ)

E(u) dz +
1

2

∫

Ω

|u(x, t1) − ϕ(x, t1)|
2η2(x, t1) dx

≤ K

∫

spt(φ)\Qρ

E(u − η2(u − ϕ)) dz + K

∫

spt(φ)∩Qρ

E(ϕ) dz

+

∫

Ω×(0,t1)

|ϕ|′ η2 |u − ϕ| dz +

∫

Ω×(0,t1)

|u − ϕ|2η |η′| dz.

(3.4)

Since σ < M , by Young’s inequality there exists a positive constant c = c(M, ε)
such that

∫

Ω×(0,t1)

|ϕ′| η2 |u − ϕ| dz

≤ ε

∫

Ω×(0,t1)

η2 |ϕ′|
2

dz +
c

(σ − ρ)2

∫

D

η2 |u − ϕ|2 dz.

Then we choose t1 ∈ Λρ ∩ (0, T ) such that

1

2
ess sup

t∈Λρ∩(0,T )

∫

Bρ∩Ω

|u − ϕ|2 dx ≤

∫

Bρ∩Ω

|u(x, t1) − ϕ(x, t1)|
2 η2(x, t1) dx.

These estimates together with (2.2) and (3.4) imply the result. ¤

The next lemma is Caccioppoli’s inequality. In the proof we use an itera-
tion technique to get rid of the term containing |∇u|2 on the right hand side in
Lemma 1.

Lemma 2 (Caccioppoli) Let u be a global quasiminizer with the boundary and
initial conditions (3.1). Suppose that 0 < ρ < M for some M > 0, and let
Qρ ⊂ R

n+1. Then there exists a positive constant c = c(n, α, β,M,K) such that
∫

Qρ∩D

|∇u|2 dz ≤
c

ρ2

∫

Q2ρ∩D

|u − ϕ|2 dz + c

∫

Q2ρ∩D

(|ϕ′|
2
+ |∇ϕ|2) dz.
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Proof: We start with Lemma 1 and denote the constant of the first term on the
right by ĉ. We add ĉ

∫
Qρ∩D

|∇u|2 dz on both sides, divide by ĉ + 1 and obtain

∫

Qρ∩D

|∇u|2 dz

≤
ĉ

1 + ĉ

∫

Qσ∩D

|∇u|2 dz +
c

(1 + ĉ)(σ − ρ)2

∫

Qσ∩D

|u − ϕ|2 dz

+
c

1 + ĉ

∫

Qσ∩D

(
|ϕ′|

2
+ |∇ϕ|2

)
dz.

Then we choose

ρ0 = ρ, ρi+1 − ρi = (1 − λ)λiρ, i = 0, 1, . . . , where λ2 ∈ (
ĉ

1 + ĉ
, 1),

replace ρ by ρi and σ by ρi+1, and iterate to obtain
∫

Qρ∩D

|∇u|2 dz

≤

(
ĉ

1 + ĉ

)k+1 ∫

Qρk+1
∩D

|∇u|2 dz+

k∑

i=0

(
ĉ

1 + ĉ

)i
c

ĉ + 1

[
1

(ρi+1 − ρi)2

∫

Qρk+1
∩D

|u − ϕ|2 dz

+

∫

Qρk+1
∩D

(
|ϕ′|

2
+ |∇ϕ|2

)
dz

]
.

Letting k → ∞, we obtain the result. ¤

We have not considered the regularity of the lateral boundary so far. Examples
show that inward cusps are troublesome and that the boundary must satisfy some
regularity conditions. Here we assume that the complement of a domain satisfies
a uniform capacity density condition.

Next we recall how to calculate capacities in terms of quasicontinuous repre-
sentatives. Let 1 < p < ∞. We call u ∈ W 1,p(Ω) p-quasicontinuous if for each
ε > 0 there exists an open set V ⊂ R

n such that

capp(V, Rn) ≤ ε

and
u|Ω\V is continuous.

The p-quasicontinuous functions are intimately related to the Sobolev space
W 1,p(Ω). It is known, for example, that if u ∈ W 1,p(Ω), then u has a p-quasicontinuous
representative.
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Now, the variational p-capacity of a set E ⊂ Bρ(x) ⊂ R
n can be written in

the form

capp(E,B2ρ) = inf
u

∫

B2ρ

|∇u|p dx, (3.5)

where u ∈ W 1,p
0 (B2ρ) is p-quasicontinuous and u ≥ 1 in E except on a set of

p-capacity zero.
For a ball we obtain that there exists a positive constant c = c(n, p) such

that
capp(Bρ, B2ρ) = cρn−p.

For the basic properties of the capacity we refer to Chapter 2 of [HKM93].
Next we introduce a capacity density condition which we later impose on the

complement of a domain. For the higher integrability results this condition is
essentially sharp as pointed out in Remark 3.3 of [KK94] in the elliptic case.

Definition 3 Let 1 < p < ∞. A set E ⊂ R
n is uniformly p-thick if there exist

constants µ, ρ0 > 0 such that

capp(E ∩ Bρ(x), B2ρ(x)) ≥ µ capp(Bρ(x), B2ρ(x))

for all x ∈ E and for all 0 < ρ < ρ0.

If we replace the capacities with the Lebesgue measure, we obtain a measure
density condition. A set E satisfying the measure density condition is uniformly
p-thick for all p > 1. If p > n, then every nonempty set is uniformly p-thick.

The following lemma is sometimes useful when applying the capacity density
condition. The result is based on capacity estimates Theorem 2.2 and Lemma 2.16
of [HKM93], but details are left for the reader.

Lemma 4 Let Ω be a bounded open set, and suppose that R
n \ Ω is uniformly

p-thick. Choose y ∈ Ω such that B 4

3
ρ(y) \ Ω 6= ∅. Then there exists a positive

constant µ̃ = µ̃(µ, ρ0, n, p) such that

capp(B2ρ(y) \ Ω, B4ρ(y)) ≥ µ̃ capp(B2ρ(y), B4ρ(y)).

A uniformly p-thick domain satisfies a deep self-improving property. This re-
sult is due to Lewis, see [Lew88]. See also page 52 of [Mik96] and [Anc86].

Theorem 5 Let 1 < p ≤ n. If a set E is uniformly p-thick, then there exists q
such that 1 < q < p for which E is uniformly q-thick.

A uniformly q-thick set is also uniformly p-thick for all p ≥ q. This is a simple
consequence of Hölder’s inequality.

Next we establish a well-known version of the Sobolev-Poincaré inequality. In
this version the estimate depends on the capacity of a set in which the function
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equals zero. Later we use this estimate together with the boundary regularity
condition. For a proof, see for example Lemma 3.1 of [KK94] or Lemma 8.11 of
[Mik96].

Lemma 6 Suppose that u ∈ W 1,q(B2ρ) is q-quasicontinuous, where q ∈ [2∗, 2],
2∗ = 2n/(n + 2), n ≥ 2. Denote NBρ

(u) = {x ∈ Bρ : u(x) = 0}. Then there
exists a positive constant c = c(n) such that

(∫

B2ρ

|u|2 dx

)1/2

≤

(
c

capq(NBρ
(u), B2ρ)

∫

B2ρ

|∇u|q dx

)1/q

.

Next we prove parabolic Poincaré’s inequality near the lateral boundary. The
proof relies on the previous lemma and the pre-Caccioppoli type inequality.

Lemma 7 (parabolic Poincaré) Let u be a global quasiminizer with the boun-
dary and initial conditions (3.1). Let Qρ = Qρ(x0, t0) ⊂ R

n+1, suppose that R
n\Ω

is uniformly 2-thick and that B 4

3
ρ(x0) \ Ω 6= ∅. Suppose that ρ < M for some

M > 0. Then there exists a positive constant c = c(n,M, µ, ρ0, α, β,K) such that

ess sup
t∈Λ2ρ∩(0,T )

∫

B2ρ∩Ω

|u − ϕ|2 dx

≤ c

∫

Q4ρ∩D

|∇u|2 dz + c

∫

Q4ρ∩D

(
|ϕ′|

2
+ |∇ϕ|2

)
dz.

Proof: By Lemma 1, we conclude that

ess sup
t∈Λ2ρ∩(0,T )

∫

B2ρ∩Ω

|u − ϕ|2 dx

≤ c

∫

Q4ρ∩D

|∇u|2 dz +
c

ρ2

∫

Q4ρ∩D

|u − ϕ|2 dz

+ c

∫

Q4ρ∩D

(
|ϕ′|

2
+ |∇ϕ|2

)
dz.

(3.6)

We extend u(•, t) − ϕ(•, t) ∈ W 1,2
0 (Ω) by zero outside Ω. Then by Lemma 4 and

the capacity of a ball, we obtain

cap2(NB2ρ
(u − ϕ), B4ρ(x0)) ≥ µ̃ cap2(B2ρ(x0), B4ρ(x0)) = cρn−2.

We estimate the second term on the right side of (3.6) by using Lemma 6 with
q = 2 and the previous capacity estimate. We obtain

c

ρ2

∫

Q4ρ∩D

|u − ϕ|2 dz

≤

∫

Λ4ρ∩(0,T )

cρn

ρ2 cap2(NB2ρ
(u − ϕ), B4ρ)

∫

B2ρ

|∇ (u − ϕ) |2 dx dt

≤ c

∫

Q4ρ∩D

|∇ (u − ϕ) |2 dx dt,

10



and the result follows. ¤

4 Reverse Hölder inequalities near the lateral

boundary

In this section we prove that the gradient of a quasiminimizer is integrable to a
higher power than assumed a priori. First we derive a reverse Hölder inequality
and then apply the self-improving property.

Lemma 8 (Giaquinta-Modica type inequality) Let u be a global quasimi-
nizer with the boundary and initial conditions (3.1). Let Qρ = Qρ(x0, t0), suppose
that R

n \ Ω is uniformly 2-thick and that B 4

3
ρ(x0) \ Ω 6= ∅. Suppose ρ < M

for some M > 0 and choose ε > 0. Then there exists a positive constant c =
c(n,M, δ, µ, ρ0, α, β,K, ε) and q < 2 such that

∫

Q2ρ∩D

|∇u|2 dz

≤
ε

|Q4ρ|

∫

Q4ρ∩D

|∇u|2 dz +

(
c

|Q4ρ|

∫

Q4ρ∩D

|∇u|q dz

)2/q

+
c

|Q4ρ|

∫

Q4ρ∩D

(
|ϕ′|

2
+ |∇ϕ|2

)
dz.

Proof: Again, we extend u(•, t)− ϕ(•, t) ∈ W 1,2
0 (Ω) by zero outside Ω. Then we

use Lemma 2 and divide the first term on the right into two parts

c

ρ2 |Q2ρ|

∫

Q2ρ∩D

|u − ϕ|2 dz

≤
c

ρ4

∫

Λ2ρ∩(0,T )

(∫

B2ρ

|u − ϕ|2 dx

)1−q/2(∫

B2ρ

|u − ϕ|2 dx

)q/2

dt,

(4.1)

where q ∈ [2n/(n + 2), 2) is fixed later. Then Lemma 6 and Lemma 7 imply

1

ρ2 |Q2ρ|

∫

Q2ρ∩D

|u − ϕ|2 dz

≤
c

ρ2

{
ρ2

|Q4ρ|

∫

Q4ρ∩D

|∇ (u − ϕ)|2 dz

+
ρ2

|Q4ρ|

∫

Q4ρ∩D

(
|∇ϕ|2 + |ϕ′|

2
)

dz

}1−q/2

·
1

ρ2

∫

Λ2ρ∩(0,T )

1

capq(NB2ρ
(u − ϕ), B4ρ)

∫

B4ρ∩D

|∇ (u − ϕ) |q dx dt.

(4.2)
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Next we would like to use the uniform capacity density condition, but this is
not possible straight away since q < 2, and we assumed that the complement of
a domain is uniformly 2-thick. However, the density condition satisfies the self-
improving property as stated in Theorem 5. This together with Lemma 4 implies

capq(NB2ρ
(u − ϕ), B4ρ) ≥ µ̃ capq(B2ρ, B4ρ) = cρn−q

for large enough q < 2. We apply this and Young’s inequality in (4.2) to obtain

1

ρ2 |Q2ρ|

∫

Q2ρ∩D

|u − ϕ|2 dz

≤
ε

|Q4ρ|

∫

Q4ρ∩D

|∇ (u − ϕ)|2 dz +
ε

|Q4ρ|

∫

Q4ρ∩D

(
|∇ϕ|2 + |ϕ′|

2
)

dz

+

(
c

|Q4ρ|

∫

Q4ρ∩D

|∇ (u − ϕ)|q dz

)2/q

.

Lemma 8 follows now easily. ¤

Now we have all the tools to prove the higher integrability of the gradient of
a quasiminimizer near the lateral boundary. The next theorem is one of our main
results.

Theorem 9 Let u ∈ L2(0, T ; W 1,2(Ω)) be a global quasiminimizer, and suppose
that ϕ ∈ W 1,2+δ(0, T ; W 1,2+δ(Ω)) is a boundary function such that

u(•, t) − ϕ(•, t) ∈ W 1,2
0 (Ω) and

1

h

∫ h

0

∫

Ω

|u − ϕ|2 dx dt → 0 as h → 0.

Suppose that R
n \Ω is uniformly 2-thick, let Qρ ⊂ R

n+1, and suppose that ρ < M
for some M > 0. Then there exist positive constants ε0 = ε0(n,M, δ, µ, ρ0, α, β,K),
c = c(n,M, δ, µ, ρ0, α, β,K) such that for all 0 ≤ ε < ε0, we have

(
1

|Qρ|

∫

Qρ∩D

|∇u|2+ε dz

)1/(2+ε)

≤

(
c

|Q4ρ|

∫

Q4ρ∩D

|∇u|2 dz

)1/2

+

(
c

|Q4ρ|

∫

Q4ρ∩D

|∇ϕ|2+ε + |ϕ′|
2+ε

dz

)1/(2+ε)

,

where D = Ω × (0, T ).
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Proof: We use the well-known Giaquinta-Modica lemma, see [GM79] or for
example page 122 of [Gia83] or page 187 of [CW98]. See also [Geh73]. The
Giaquinta-Modica lemma is formulated in the elliptic setting, but it extends to
the parabolic case as pointed out in [GS82]. Later we prove a modification of this
lemma, so for the proof we refer to Theorem 15.

We define

g(x, t) =

{
|∇u(x, t)|q , (x, t) ∈ Ω × (0, T ),

0, otherwise ,

f(x, t) =

{
|∇ϕ(x, t)|q + |ϕ′(x, t)|q , (x, t) ∈ Ω × (0, T ),

0, otherwise .

and p = 2/q. If Ω \ B 4

3
ρ 6= ∅, Lemma 8 holds and if Ω \ B 4

3
ρ = ∅, a modification

of the local result, see [Wie87], holds. The conditions of the Giaquinta-Modica
lemma are satisfied. ¤

5 Estimates near the initial boundary

In this section we study the higher integrability near the initial boundary t = 0.
Here the regularity of the lateral boundary does not play a role, and weaker
assumptions are used.

We start by deriving Caccioppoli type inequalities and parabolic Poincaré’s
inequality. These estimates are applied in the next section where we prove a
reverse Hölder inequality near the initial boundary, and then show that it satisfies
the self-improving property.

Let us denote 2∗ = 2n/(n + 2). We say that u is a quasiminimizer for an
initial value problem if u ∈ L2(0, T ; W 1,2

loc (Ω)) satisfies (2.1) and the given initial
condition

1

h

∫ h

0

∫

C

|u(x, t) − ϕ(x)|2 dx dt → 0 as h → 0, (5.1)

for all compact C ⊂ Ω and for a given ϕ ∈ W 1,2∗(Ω). In the proof we apply the
weighted mean

uη
σ(t) =

∫

Bσ

η2(x, t)u(x, t) dx
/∫

Bσ

η2(x, t) dx

instead of a standard mean uσ(t). The weighted mean is applied in the local case
for example in [GS82] or [Cho93]. The weighted mean should approximate the
standard mean, and therefore the weight η is defined to be a cut-off function such
that η ∈ C∞

0 (Qσ), 0 ≤ η ≤ 1, η = 1 in Qρ, where 0 < ρ < σ < ∞, and

sup
x∈Bσ

η(x, t) ≤ c̃

∫

Bσ

η(x, t) dx, t ∈ Λσ, (5.2)

13



where Λσ = Λσ(t0) = (t0 −
1
2
σ2, t0 + 1

2
σ2).

The following lemma gives a detailed description of approximation properties
of the weighted mean. The first inequality in the lemma is obtained easily by
adding and subtracting uη

σ(t). The latter inequality is obtained by adding and
subtracting uσ(t) and using Hölder’s inequality together with (5.2). We omit the
details.

Lemma 10 Let u(•, t) ∈ L2(Ω) and η, uη
σ(t), uσ(t) be as above. Then there

exists a positive constant c = c(p, c̃) such that

∫

Bσ

|u − uσ(t)|2 dx ≤ c

∫

Bσ

|u − uη
σ(t)|2 dx ≤ c2

∫

Bσ

|u − uσ(t)|2 dx.

Here c̃ is the constant in (5.2).

From now on we assume that the cut-off function η also satisfies

∣∣∣∣
∂η

∂t

∣∣∣∣+ |∇η|2 ≤
c

(σ − ρ)2
.

Lemma 11 Let u be a quasiminimizer to an initial value problem with the initial
condition (5.1). Let 0 < ρ < σ < ∞, and let Qρ ⊂ Qσ = Qσ(x0, t0) ⊂ R

n+1 be
concentric cylinders such that dist{Bσ(x0), ∂Ω} > a > 0 and 0 ∈ Λρ(t0). Then
there exists a positive constant c = c(n, α, β, c̃,K, a) such that

∫

Qρ∩D

|∇u|2 dz + ess sup
t∈Λρ∩(0,T )

∫

Bρ

|u − uη
σ(t)|2 dx

≤ c

∫

(Qσ\Qρ)∩D

|∇u|2 dz +
c

(σ − ρ)2

∫

Qσ∩D

|u − uη
σ(t)|2 dz

+ c

(∫

Bσ

|∇ϕ|2
∗

dx

)2/2∗

.

Here c̃ is the constant in (5.2) and 2∗ = 2n/(n + 2).

Proof: We may assume that Qρ ∩D 6= ∅ since otherwise the claim is trivial. We
choose a test function

φε(x, t) = η2(x, t)(uε(x, t) − uη
σ,ε(t))χ

h,ε
0,t1

(t), t1 ∈ Λρ ∩ (0, T ),

where uη
σ,ε(t) is the weighted average of uε(x, t) and otherwise the notation is the

same as in Lemma 1. Now, let us consider the first term of (2.3). We insert the
test function, add and subtract uη

σ,ε(t)φ
′
ε and have

−

∫

Rn+1

uεφ
′
ε dz = −

∫

Rn+1

(uε − uη
σ,ε(t))φ

′
ε dz −

∫

Rn+1

uη
σ,ε(t)φ

′
ε dz.

14



Integrating by parts and using the definition of uη
σ,ε(t), we notice that the last

term vanishes

−

∫

Rn+1

uη
σ,ε(t)φ

′
ε dz

=

∫ ∞

−∞

χh,ε
0,t1

(t)

[∫

Bσ

uεη
2 dx −

∫
Bσ

η2 dx
∫

Bσ
η2uε dx∫

Bσ
η2 dx

]
(uη

2ρ,ε(t))
′ dt = 0.

Then we integrate the rest by parts, take limits, apply the initial condition and
conclude that

−

∫

Rn+1

uεφ
′
ε dz →−

∫

Ω×(0,t1)

|u − uη
σ(t)|2ηη′ dz

+
1

2

∫

Bσ

|u(x, t1) − uη
σ(t1)|

2 η2(x, t1) dx

−
1

2

∫

Bσ

|ϕ − ϕη
σ|

2 η2(x, 0) dx,

(5.3)

as first ε → 0 and then h → 0. Next we apply Lemma 10 together with Poincaré’s
inequality and conclude that

∫

Bσ

|ϕ − ϕη
σ|

2 dx ≤ c

(∫

Bσ

|∇ϕ| dx

)2/2∗

.

The rest of the proof is almost similar to the proof of Lemma 1 from (3.3) onwards,
and we omit the details. ¤

Next we derive Caccioppoli’s inequality by using the hole filling iteration.

Lemma 12 (Caccioppoli) Let u be a quasiminimizer to an initial value problem
with the initial condition (5.1). Let 0 < ρ < ∞, and let Qρ = Qρ(x0, t0) ⊂ R

n+1

such that dist{B2ρ(x0), ∂Ω} > a > 0 and 0 ∈ Λρ(t0). Then there exists a positive
constant c = c(n, α, β, c̃,K, a) such that

∫

Qρ∩D

|∇u|2 dz ≤
c

ρ2
sup

bρ∈[ρ,2ρ]

∫

Qbρ∩D

|u − ubρ(t)|
2 dz

+ c

(∫

B2ρ

|∇ϕ|2
∗

dx

)2/2∗

.

Here c̃ is the constant in (5.2) and 2∗ = 2n/(n + 2).

Proof: We start with Lemma 11, denote the constant of the first term on the
right by ĉ, add ĉ

∫
Qρ∩D

|∇u|2 dz on both sides, divide by ĉ + 1, apply Lemma 10
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and obtain
∫

Qρ∩D

|∇u|2 dz

≤
ĉ

ĉ + 1

∫

Qσ∩D

|∇u|2 dz +
c

(ĉ + 1)(σ − ρ)2

∫

Qσ∩D

|u − uσ(t)|2 dz

+
c

ĉ + 1

(∫

Bσ

|∇ϕ|2
∗

dx

)2/2∗

.

Then we choose ρi similarly as in Lemma 2 replace ρ by ρi and σ by ρi+1 and
iterate to obtain the result. ¤

The next estimate is a parabolic Poincaré type inequality.

Lemma 13 (parabolic Poincaré) Let u be a quasiminimizer to an initial value
problem with the initial condition (5.1). Let 0 < ρ < ∞, and let Qρ = Qρ(x0, t0) ⊂
R

n+1 such that dist{B2ρ(x0), ∂Ω} > a > 0 and 0 ∈ Λρ(t0). Then there exists a
positive constant c = c(n, α, β, c̃,K, a) such that

ess sup
t∈Λρ∩(0,T )

∫

Bρ

|u − uη
2ρ(t)|

2 dx

≤ cρ2


 1

|Q2ρ|

∫

Q2ρ∩D

|∇u|2 dz +

(∫

B2ρ

|∇ϕ|2
∗

dx

)2/2∗

 .

Here c̃ is the constant in (5.2) and 2∗ = 2n/(n + 2).

Proof: By Lemma 11, we have

ess sup
t∈Λρ∩(0,T )

∫

Bρ

|u − uη
σ(t)|2 dx

≤ c

∫

Q2ρ∩D

|∇u|2 dz +
c

ρ2

∫

Q2ρ∩D

|u − uη
2ρ(t)|

2 dz

+ c

(∫

B2ρ

|∇ϕ|2
∗

dx

)2/2∗

.

Then Lemma 10 and Poincaré’s inequality imply

c

ρ2

∫

Q2ρ∩D

|u − uη
2ρ(t)|

2 dz ≤ c

∫

Q2ρ∩D

|∇u|2 dz.

The result follows by combining these estimates. ¤

Now we prove a reverse Hölder inequality for the gradient of a quasiminimizer.
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Lemma 14 (Giaquinta-Modica type inequality) Let u be a quasiminimizer
to an initial value problem with the initial condition (5.1). Let 0 < ρ < ∞ and
let Qρ = Qρ(x0, t0) ⊂ R

n+1 such that dist{B2ρ(x0), ∂Ω} > a > 0 and 0 ∈ Λρ(t0).
Choose ε > 0. Then there exists a positive constant c = c(n, α, β, c̃,K, ε, a) such
that

1

|Qρ|

∫

Qρ∩D

|∇u|2 dz

≤
ε

|Q4ρ|

∫

Q4ρ∩D

|∇u|2 dz +

(
c

|Q4ρ|

∫

Q4ρ∩D

|∇u|2
∗

dz

)2/2∗

+ c

(∫

B4ρ

|∇ϕ|2
∗

dx

)2/2∗

,

where 2∗ = 2n/(n + 2) and c̃ is the constant in (5.2).

Proof: We start with Lemma 12 and choose ρ0 ∈ [ρ, 2ρ] such that
∫

Qρ0
∩D

|u − uρ0
(t)|2 dz = sup

bρ∈[ρ,2ρ]

∫

Qbρ∩D

|u − ubρ(t)|
2 dz, (5.4)

and a cut-off function η ∈ C∞
0 (Q2ρ0

), 0 ≤ η ≤ 1, η = 1 in Qρ0
, satisfying (5.2).

By Lemma 10 (lemma is valid also for uη
2ρ0

(t)), we have

∫

Qρ0
∩D

|u − uρ0
(t)|2 dz ≤ c

∫

Qρ0
∩D

|u − uη
2ρ0

(t)|2 dz, (5.5)

and thus
∫

Qρ∩D

|∇u|2 dz ≤
c

ρ2

∫

Qρ0
∩D

|u − uη
2ρ0

(t)|2 dz

+ c

(∫

B2ρ

|∇ϕ(x)|2
∗

dx

)2/2∗

.

Then we divide the first term on the right into two parts, estimate the first part
by essential supremum and apply Lemma 10 to the latter. We obtain

1

ρ2 |Qρ0
|

∫

Qρ0
∩D

|u − uη
2ρ0

(t)|2 dz

≤
c

ρ2
ess sup

t∈Λρ0
∩(0,T )

(∫

Bρ0

|u − uη
2ρ0

(t)|2 dx

)1−2∗/2

1

ρ2
0

∫

Λρ0
∩(0,T )

(∫

B2ρ0

|u − u2ρ0
(t)|2 dx

)2∗/2

dt.
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Then we apply Lemma 13 to the first part, Poincaré’s inequality to the latter
part, and have

1

ρ2 |Qρ0
|

∫

Qρ0
∩D

|u − uη
2ρ0

(t)|2 dz

≤ c


 1

|Q4ρ|

∫

Q4ρ∩D

|∇u|2 dz +

(∫

B4ρ

|∇ϕ|2
∗

dx

)2/2∗



1−2∗/2

·
1

|Q4ρ|

∫

Q4ρ∩D

|∇u|2
∗

dz

Finally, the result is obtained by using Young’s inequality. ¤

6 Reverse Hölder inequalities near the initial

boundary

The previous lemma makes sense if the gradient of the initial value function is
integrable to the power 2n/(n + 2) instead of 2. Next we show that the reverse
Hölder inequality has the self-improving property also in this setting.

Theorem 15 Let D = Ω × (0, T ), p > 1, q = pn/(n + 2) and γ > 0. Choose
ε̃ > 0 and denote δΛ4ρ(t̃0) = 1 if 0 ∈ Λ4ρ(t̃0) and δΛ4ρ(t̃0) = 0 otherwise. Suppose

that g ≥ 0, g ∈ Lp(Q4ρ(x̃0, t̃0)∩D), f ≥ 0, f ∈ Lq+γ(Q4ρ(x̃0, t̃0)∩D) and suppose
that there exists a positive constant b = b(ε̃) such that

1

|Qρ|

∫

Qρ∩D

gp dz ≤
ε̃

|Q4ρ|

∫

Q4ρ∩D

gp dz

+ b

(
1

|Q4ρ|

∫

Q4ρ∩D

gq dz

)p/q

+ bδΛ4ρ(t̃0)

(∫

B4ρ

f q dx

)p/q

,

(6.1)

for all bounded cylinders Q4ρ = Q4ρ(x̃0, t̃0) ⊂ R
n+1 such that dist{B4ρ(x̃0), ∂Ω} >

a > 0. Then there exist positive constants ε0 = ε0(b, γ, n, p, a) and c =
c(b, γ, n, p, a) such that for all 0 ≤ ε < ε0, we have

(
1

|QR|

∫

QR∩D

gp+ε dz

)1/(p+ε)

≤ c

(
1

|Q4R|

∫

Q4R∩D

gp dz

)1/p

+ cδΛ4R

(∫

B4R

f q+ε dx

)1/q+ε

,
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for all bounded cylinders Q4R = Q4R(x0, t0) ⊂ R
n+1 such that

dist{B4R(x0), ∂Ω} > a > 0.

Proof: The proof consists of several steps. First we divide the space-time cylinder
into smaller Whitney-type cylinders. In each Whitney-type cylinder we are able to
derive estimates with constants that are independent of the place. Then we divide
the space-time cylinder into a good set and a bad set. In the good set the function
gp is bounded, and in the bad set we can estimate the average of the function.
The Calderón-Zygmund decomposition is usually applied for this, but here we
use a different strategy which seems to work better in the parabolic case also
with more general growth conditions. Finally, we obtain the higher integrability
by using Fubini’s theorem.

We denote Q0 = Q4R(z0) = Q4R(x0, t0) and divide Q0 into the Whitney-type
cylinders (see for example page 15 of [Ste93])

Qi = Qri
(zi), i = 1, 2, . . . ,

where ri is comparable to the parabolic distance of Qi to ∂Q0. The parabolic
distance is defined to be

distp {E,F} = inf
E,F

{
|x − x| + |t − t|1/2

}
,

where the infimum is taken taken over the sets E and F , that is, (x, t) ∈
E, (x, t) ∈ F . In addition, the cylinders Qi are of bounded overlap (meaning
that every z belongs at the most to a fixed finite number of cylinders), and

Q5ri
⊂ Q0.

We choose

λ0 =

(
1

|Q0|

∫

Q0∩D

gp dz

)1/p

and λ > λ0.

For (x, t) ∈ Q0 ∩ D, we define

h(x, t) =
1

ĉ |Q0|
1/p

min{|Qi|
1/p : (x, t) ∈ Qi}g(x, t),

where ĉ ≥ 1 is fixed later. Suppose that we have (x̂, t̂) ∈ Qi such that h(x̂, t̂) > λ,
and define

α =
|Q0|

|Qi|
.

Then for r, ri/20 ≤ r ≤ ri, we have

1

|Qr|

∫

Qr∩D

gp dz ≤
c |Q0|

|Qi|

1

|Q0|

∫

Q0∩D

gp dz ≤ ĉpαλp,
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where ĉ is chosen to be large enough. By Lebesgue’s theorem

lim
r→0

1∣∣Qr(x̂, t̂)
∣∣

∫

Qr(bx,bt)∩D

gp dz=gp(x̂, t̂) > ĉpαλp

for almost all (x̂, t̂). By these two estimates and continuity of the integral there
exists ρ, 0 < ρ ≤ ri/20 and c(n, p) ≥ 1 such that

c−1αλp ≤
1

|Qρ|

∫

Qρ∩D

gp dz ≤
c

|Q20ρ|

∫

Q20ρ∩D

gp dz ≤ c2αλp. (6.2)

First, this chain of inequalities implies that we can absorb the first term on the
right side of (6.1) into the left by choosing ε̃ > 0 small enough, and thus we have

1

|Qρ|

∫

Qρ∩D

gp dz ≤ c

(
1

|Q4ρ|

∫

Q4ρ∩D

gq dz

)p/q

+ cδΛ4ρ

(∫

B4ρ

f q dx

)p/q

.

Together with properties of the Whitney decomposition, (6.2) also implies that
there exists c ≥ 1 such that

c−1λp ≤
1

|Qρ|

∫

Qρ∩D

hp dz ≤
c

|Q20ρ|

∫

Q20ρ∩D

hp dz ≤ c2λp. (6.3)

We have α−p/q ≤ (|Qi| / |Q0|)
p/q ≤ 1 and thus by the previous estimates, we

obtain

1

|Q20ρ|

∫

Q20ρ∩D

hp dz ≤ c

(
1

|Q4ρ|

∫

Q4ρ∩D

hq dz

)p/q

+ cδΛ4ρ

(∫

B4ρ

f q dx

)p/q

.

(6.4)

We define the level sets

G(λ) = {(x, t) ∈ Q0 ∩ D : h(x, t) > λ},

G̃(λ) = {x ∈ B0 : f(x) > λ},

where B0 = B4R(x0). Next we use (6.4) and the level sets to calculate

1

|Q20ρ|

∫

Q20ρ∩D

hp dz ≤cηpλp +

(
|Q4ρ|

−1

∫

Q4ρ∩G(ηλ)

hq dz

)p/q

+ cδΛ4ρ

(
|B4ρ|

−1

∫

B4ρ∩G̃(ηλ)

f q dx

)p/q

.

(6.5)
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By Hölder’s inequality and (6.3), there exists c ≥ 1 such that

(
1

|Q4ρ|

∫

Q4ρ∩D

hq dz

)(p−q)/q

≤ cλp−q. (6.6)

Then we choose η > 0 small enough and use (6.3) to absorb the first term on the
right of (6.5) into the left. Next we apply (6.6) and arrive at

1

|Q20ρ|

∫

Q20ρ∩D

hp dz ≤c |Q4ρ|
−1 λp−q

∫

Q4ρ∩G(ηλ)

hq dz

+ cδΛ4ρ

(
|B4ρ|

−1

∫

B4ρ∩G̃(ηλ)

f q dx

)p/q

.

(6.7)

By Vitali’s covering theorem, we have a disjoint set of cylinders

{Q4ρi
(z̃i)}

∞
i=1, z̃i ∈ G(λ)

such that almost everywhere

G(λ) ⊂ ∪∞
i=1Q20ρi

(z̃i) ⊂ Q0,

and (6.7) holds in every cylinder. Multiplying (6.7) by |Q4ρ| remembering q =
pn/(2 + n) to get rid of |B4ρ|

−1 and summing over i, we obtain

∫

G(λ)

hp dz ≤
∞∑

i=1

∫

Q20ρi
∩D

hp dz

≤ cλp−q

∫

G(ηλ)

hq dz + cδΛ4R(t0)

(∫

G̃(ηλ)

f q dx

)p/q

.

(6.8)

By integrating, using Fubini’s theorem and (6.8), we have

∫

G(λ0)

hp+ε dz

=

∫

G(λ0)

(∫ h

λ0

(λε)′ dλ + (λ0)
ε

)
hp dz

= ε

∫ ∞

λ0

λε−1

∫

G(λ)

hp dz dλ + (λ0)
ε

∫

G(λ0)

hp dz

≤ c

∫ ∞

λ0

ελε−1+p−q

∫

G(ηλ)

hq dz dλ

+ cελε−1δΛ4R(t0)

∫ ∞

λ0

(∫

G̃(ηλ)

f q dx

)p/q

dλ + (λ0)
ε

∫

G(λ0)

hp dz.
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We estimate this integral in two parts. First, by Fubini’s theorem, we see that

ε

∫ ∞

λ0

λε−1+p−q

∫

G(ηλ)

hq dz dλ + (λ0)
ε

∫

G(λ0)

hp dz

= cε

∫

G(ηλ0)

(∫ h/η

λ0

λε−1+p−q dλ

)
hq dz + (λ0)

ε

∫

G(λ0)

hp dz

≤
cε

ε + p − q

∫

G(λ0)

hε+p dz + c(λ0)
ε

∫

G(ηλ0)

hp dz.

Then we divide the boundary term into two parts. By Fubini’s theorem and
Hölder’s inequality, we have

ε

∫ ∞

λ0

λε−1

(∫

G̃(ηλ)

f q dx

)p/q

dλ

≤

(∫

G̃(ηλ0)

f q dx

)p/q−1 ∫

G̃(ηλ0)

∫ f/η

λ0

ελε−1f q dλ dx

≤ cR2ε/(q+ε)

(∫

G̃(ηλ0)

f q+ε dx

)(p+ε)/(q+ε)

.

We collect the estimates, choose ε > 0 small enough to absorb the term containing
hp+ε into the left and conclude that

∫

G(λ0)

hp+ε dz ≤ c(λ0)
ε

∫

G(ηλ0)

hp dz

+ cδΛ4R
R2ε/(q+ε)

(∫

G̃(ηλ0)

f q+ε dx

)(p+ε)/(q+ε)

.

Notice that if the term we would like to absorb is infinite, we can replace h by
min{h, k}, k > λ0, for which (6.8) continues to hold, and finally let k → ∞. We
remember that q = pn/(n + 2) and easily obtain

1

|QR|

∫

QR∩D

hp+ε dz ≤
c(λ0)

ε

|Q4R|

∫

Q4R∩D

hp dz

+ cδΛ4R

(∫

B4R

f q+ε dx

)(p+ε)/(q+ε)

.

Since we are far away from the boundary of Q4R on the left side, the definition
of h(z) and λ0 implies the result. ¤

The next theorem is the higher integrability for the gradient of a quasimimizer
near the initial boundary.
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Theorem 16 Let u be a quasiminimizer to an initial value problem with the
initial condition (5.1). Let 0 < R < ∞ and let QR = QR(x0, t0) ⊂ R

n+1 such that
dist{B4R(x0), ∂Ω} > a > 0 and 0 ∈ ΛR(t0). Then there exist positive constants
ε0 = ε0(n, δ, α, β, c̃,K, a) and c = c(n, δ, α, β, c̃,K, a) such that for every 0 ≤ ε <
ε0, we have

(
1

|QR|

∫

QR∩D

|∇u|2+ε dz

)1/(2+ε)

≤ c

(
1

|Q4R|

∫

Q4R∩D

|∇u|2 dz

)1/2

+ c

(∫

B4R

|∇ϕ|2
∗+ε dx

)1/(2∗+ε)

,

where 2∗ = 2n/(2 + n) and c̃ is the constant in (5.2).

Proof: We choose

g = |∇u| , p = 2, q = 2n/(2 + n), f = |∇ϕ(x)|

and use Theorem 15. If we are near the initial boundary Lemma 14 holds and if
we are far away from the initial boundary, we can use the local result, see [Wie87],
to satisfy the condition of Theorem 15. ¤
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