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1 Introduction

A doubly infinite subordinator is defined as

Xs :=

{
−X

(1)
(−s)−, s ≤ 0,

X
(2)
s , s ≥ 0,

where X(1) and X(2) are two independent identically distributed subordina-
tors started at zero. We call the right-continuous inverse T of X an inverse
subordinator process. The paths of T are nondecreasing with flat pieces cor-
responding to the jumps of X. In the definition of X we can choose the initial
distribution (X

(1)
0 , X

(2)
0 ) such that the inverse subordinator T has stationary

increments (see Proposition 3 below).
In this paper we consider T as an input in the storage model

St = sup
s≤t

{Tt − Ts − µ (t − s)}. (1)

The storage model given by (1), where T is the local time at zero of a re-
flecting Brownian motion with drift was introduced by [7]. In [5] T is the
local time of an arbitrary diffusion. It is known that any inverse subordinator
is the local time of some Markov process. Thus, this work generalises the
results in [7] and [5]. The computations of the distributions of the ends of
busy and idle periods of S are similar to those in [7] and [5].

In the present paper we consider also a second storage process with the
same input T and a subordinator output. For this process we study its
stationary distribution and give an example when output is a stable subor-
dinator.

This paper is organised as follows. The inverse subordinator T as the
input in (1) is introduced in Section 2. In Section 3 we compute the stationary
distribution of S. The distributions of the ends of the busy and idle periods
are given in Section 4. The storage process with the subordinator output
is considered in Section 5. Finally, in Section 6 we summarise some needed
results on exponential random variables.

2 Preliminaries

Before defining the storage process with an inverse subordinator input we
construct the needed two-sided subordinator such that its inverse would have
stationary increments. For details on subordinators we refer to [2], [3].

Let X̃ = {X̃t : t ≥ 0} be a subordinator (i.e., an increasing Lévy process)

started at 0. The Laplace transform of X̃ is given by

E
(
e−α eXt

)
= e−tΦ(α) (α > 0).

The function Φ(α) is expressed via the Lévy-Khintchine formula

Φ(α) =

∫ ∞

0

(1 − e−αx) ν(dx),
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where ν is the Lévy measure. We assume that

m :=

∫ ∞

0

ν(x,∞)dx =

∫ ∞

0

x ν(dx) < ∞,

which is equivalent to E(X̃1) = m < ∞. Assume also that ν(0,∞) = ∞,
i.e., we exclude the case of compound Poisson processes.

Let the pair (ξ1, ξ2) be distributed as (UV, (1−U)V ), where U is a random
variable uniformly distributed on (0, 1) and V is independent of U and has
the distribution

P(V ∈ dv) =
1

m
v ν(dv), v ≥ 0.

The Laplace transform of (ξ1, ξ2) is then

E
(
e−α ξ1−β ξ2

)
=

1

m

Φ(α) − Φ(β)

α − β
. (2)

Following [6], we call a process X = {Xt : t ∈ R} a stationary two-sided
subordinator if

• the pair (X
(1)
0 , X

(2)
0 ) := (−X0−, X0) has distribution given by the right-

hand side of (2);

• the processes X̃(1) = {−X(−t)− + X0− : t ≥ 0} and X̃(2) = {Xt − X0 :

t ≥ 0} are independent (and independent of (X
(1)
0 , X

(2)
0 )) copies of X̃.

Denote by M the closed range of X, namely {Xt : t ∈ R}cl. The comple-
ment of M , say M c, consists of countably many disjoint open intervals. For
t ∈ R, define

Gt := sup{s ≤ t : s ∈ M} and Dt := inf{s > t : s ∈ M}.

In this case, Gt and Dt are the ends of the interval of M c straddling t. Define
the age and residual lifetimes by At := t−Gt, Rt := Dt − t. Before going on
we need the following definitions.

Definition 1. A set M ⊂ R is called stationary if for all t ∈ R, M + t =
{s + t : s ∈ M} has the same law as M .

Definition 2. A set M ⊂ R is called regenerative if

• for all t ∈ R, M ∩ [Gt,∞) and M ∩ (−∞, Gt] − Gt are independent;

• for all t ∈ R, M ∩ (−∞, Dt] and M ∩ [Dt,∞) − Dt are independent.

The set M = {Xt : t ∈ R}cl defined above is a stationary regenerative
set (see e.g., [10], [6]).

Define the inverse subordinator process T = {Ts : s ∈ R} as

Ts := inf{t ∈ R : Xt > s}, s ∈ R.
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In terms of the two-sided subordinator X and its inverse T ,

At = t − XTt−, Rt = XTt
− t.

The random set M is stationary if the process (At, Rt) is stationary.

The inverse processes of X̃(i) and X(i) := X̃(i) + X
(i)
0 , i = 1, 2, are given

by

T̃ (i)
s = inf{t ≥ 0 : X̃

(i)
t > s} and T (i)

s = inf{t ≥ 0 : X
(i)
t > s}.

These processes are continuous and non-decreasing. As was mentioned be-
fore, the initial distributions X

(1)
0 and X

(2)
0 are chosen so that the process T

has stationary increments.

Proposition 3. The inverse subordinator process T = {Ts : s ∈ R} has
stationary increments and E(Ts) = s

m
, s ∈ R.

Proof. 1) Fix y ∈ R. By construction, Xy = {Xy
t := XTy+t : t ≥ 0} is a

subordinator generating M ∩ [y,∞), meaning {Xy
t : t ≥ 0}cl = M ∩ [y,∞).

Using the discussion above, the process Xy−y is identical in law to {Xt : t ≥
0}. Indeed, Xy − y can be written as X

y
t − y = (XTy

− y) + XTy+t −XTy
. By

stationarity and regenerativity of M , the process {XTy+t − XTy
: t ≥ 0} has

the same law as X̃(2) and the initial distribution (XTy
− y) is identical in law

to X
(2)
0 and independent of {XTy+t −XTy

: t ≥ 0}. Since {Ty+t − Ty : t ≥ 0}
is the right-continuous inverse of {Xy

t − y : t ≥ 0}, it follows that Ty+t − Ty

and Tt have the same law, that is T has stationary increments.
2)Take e.g., s > 0. Let ξ be an independent of X exponential random variable
with parameter α. Since P(Ts ≤ t) = P(Xt > s), we have

E(Tξ) =

∫ ∞

0

P(Tξ > t) dt

=

∫ ∞

0

P(Xt ≤ ξ) dt

=

∫ ∞

0

E(e−αXt) dt

=

∫ ∞

0

Φ(α)

mα
e−tΦ(α) dt =

1

mu
.

Hence by the uniqueness of the Laplace transform, E(Ts) = s
m

.

Remark 4. In the case when T is the local time of a stationary diffusion Y

as in [5], Proposition 3 can be proved by conditioning at Y0 and integrating
with respect to the speed measure of Y .

Remark 5. The process T (1) = {T
(1)
s : s ≥ 0} has been studied in [4], [11].

5



3 Stationary distribution of S

The basic object of our interest in this paper is the storage process S = {St :
t ∈ R} defined via

St := sup
−∞<s≤t

{Tt − Ts − µ(t − s)}.

Before stating the results we introduce the process

S̃
(1)
0 := sup

t≥0
{T̃

(1)
t − µt}.

Consider next a spectrally positive (i.e., without negative jumps) Lévy pro-

cess X̃
(1)
t − t

µ
. Its Laplace transform is given by

E
(
e
−α( eXt−

t
µ

)
)

= e
−t (Φ(α)−α

µ
) = et Ψ(α), (3)

where Ψ(α) = α
µ
− Φ(α). The following result is taken from [2] p. 190.

Lemma 6. If E
(
X̃1 −

1
µ

)
=
(
m − 1

µ

)
> 0 then the process X̃t −

t
µ

drifts to
+∞. Moreover, the equation

Ψ(α) = 0

has one positive solution α∗ and − inft≥0{X̃t−
t
µ
} is exponentially distributed

with parameter α∗.

Lemma 7. (see [8]) If µ > 1
m

then the random variable S̃
(1)
0 is exponentially

distributed with parameter α∗

µ
.

Proof: From Lemma 6, we get

P
(
S̃

(1)
0 > s

)
= P

(
∃t : T̃

(1)
t − µt > s

)

= P
(
∃t : X̃

(1)
t −

t

µ
< −

s

µ

)

= P
(
− inf

t≥0

{
X̃t −

t

µ

}
>

s

µ

)

= e
−α∗ s

µ ,

as claimed.
Due to Lemma 7 in what follows we shall only consider the case µ > 1

m
. In

the next proposition we show that St has the exponential distribution with
an atom at 0 (cf. [8], where the diffusion case is considered).

Proposition 8. The stationary distribution of S is given by

P(St > s) =
1

mµ
e
−α∗

µ
s
, s ≥ 0. (4)

In particular, P(St = 0) = 1 − 1
mµ

.
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Proof: Since St is stationary, it is enough to consider the case t = 0. Fix
s > 0. Since sup

0≤s<X
(1)
0
{T

(1)
s − s} = 0 and T

(1)
s = T̃

(1)

s−X
(1)
0

for s ≥ X
(1)
0 , we

have

S0 = sup
s≥0

{T (1)
s − µs}

= sup
s≥X

(1)
0

{T̃
(1)

s−X
(1)
0

− µs} ∨ 0

=
(

sup
s≥0

{T̃ (1)
s − µs} − µX

(1)
0

)
∨ 0

=
(
S̃

(1)
0 − µX

(1)
0

)
∨ 0. (5)

Hence, using Lemma 7, we obtain for s > 0,

P(S0 > s) = P
( S̃

(1)
0

µ
>

s

µ
+ X

(1)
0

)

= e
−α∗s

µ E
(
e−α∗X

(1)
0
)

=
1

mµ
e
−α∗

µ
s
,

where in the last step we use that

E
(
e−α∗X

(1)
0
)

=
Φ(α∗)

mα∗
=

1

mµ
.

The statement follows.

4 Busy and idle periods

Replacing the process Xt with X t
µ
, it is seen that we can always consider the

case µ = 1 and m = E(X1) < 1. From now on we assume that µ = 1.
If S0 = 0 define the starting and the ending times of the on-going idle period
at time zero as

gi := sup{t < 0 : St > 0}, di := inf{t > 0 : St > 0}.

If S0 > 0 define the starting and the ending times of the on-going busy period
at time zero as

gb := sup{t < 0 : St = 0}, db := inf{t > 0 : St = 0}.

As in [5], we consider the zero set of S. It is stationary since S is sta-
tionary. As it is shown in [5], given db − gb = v, the random variable db

is uniformly distributed on (0, v) (and the same holds for −gb). Hence it is
enough to compute the marginal distribution of −gb (or db) and of −gi (or
di).
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Let S0 > 0, that is there is a busy period at time zero. Consider the
process St for t ∈ [a1, a2], where

a1 := sup{t < 0 : t − Tt = S0}, a2 := inf{t > 0 : t − Tt = S0}.

For t ∈ (a1, a2), t − Tt < S0 and hence

St = Tt − t + sup
s≤t

{s − Ts}

= Tt − t + S0, t ∈ (a1, a2),

from which it is seen that a1 = gb, a2 = db.
The distributions of (−gb, db) and (−gi, di) can be computed similarly to [5].
The computations for −gb and di can be simplified using the properties of
exponential random variables given in Lemma 15 in Appendix.

Theorem 9. Let η be the inverse of Ψ(α), α ≥ α∗. Then the joint Laplace
transform of −gb and db, given that S0 > 0, is

E
(
eαgb−βdb |S0 > 0

)
=

α∗

α − β

(
α

η(α)
−

β

η(β)

)
, α 6= β. (6)

Proof: To compare, we give the computations for both −gb and db, which
are taken with small changes from [7] and [5].
1) (Computation of the distribution of db)
Since db can be presented as

db = τ
(S0−X

(2)
0 )∨0

+ S0 = τ
(S0−X

(2)
0 )∨0

+ (S0 − X
(2)
0 ) + X

(2)
0 ,

where

τ := inf{s : X̃(2)
s − s > t},

the crucial property in computation (cf. Corollary 3.3 in [5]) is that S0−X
(2)
0

is exponentially distributed and independent of X
(2)
0 . In [5] this was shown

using the Markov property of the diffusion Y at time zero and integrating
with respect to the speed measure of Y . From (5) it follows that {S0 >

X
(2)
0 } = {S̃

(1)
0 > X

(1)
0 + X

(2)
0 }. Since S̃

(1)
0 and (X

(1)
0 , X

(2)
0 ) are independent,

it follows from Lemma 15(4) that given S0 > X
(2)
0 , the random variables

S0 −X
(2)
0 and X

(2)
0 are independent. Moreover, S0 −X

(2)
0 given S0 > X

(2)
0 is

exponentially distributed with parameter α∗ and

E
(
e−αX

(2)
0 ; S0 > X

(2)
0

)
= E

(
e−(α+α∗)X

(2)
0 −α∗X

(1)
0
)

= 1 −
Ψ(α + α∗)

α
. (7)

The rest of the computation of the distribution of db does not differ from one
in the proof of Theorem 3.1 in [5] and we omit it.
2)(Computation of the distribution of gb)
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To compute the distribution of gb we write first

|gb| = inf{t > X
(1)
0 : T

(1)
t − t = S0}

= inf{t > X
(1)
0 : T̃

(1)

t−X
(1)
0

− t = S0}

= X
(1)
0 + inf{t > 0 : T̃

(1)
t − t = S̃

(1)
0 }

= X
(1)
0 + inf{X̃

(1)
t− : t − X

(1)
t− = S̃

(1)
0 }

= X
(1)
0 − S̃

(1)
0 + inf{t : X̃

(1)
t− − t = −S̃

(1)
0 = inf

t≥0
{X̃

(1)
t − t}} (8)

Denote the last term in (8) by N . As in [7] we use the result from [1]

which states that the process {X̃
(1)
t − t : 0 ≤ t < N} is identical in law to

{X∗
t : 0 ≤ t < H∗

−θ}, where {X∗
t : t ≥ 0}, X∗

0 = 0, is a spectrally positive
Lévy process with

E(e−αX∗

t ) = etΨ(α+α∗),

θ ∼ Exp(α∗) is independent of X∗, and H∗
−θ stands for the first hitting time

of −θ for X∗. Let η∗ be the inverse of Ψ(α + α∗). Using Lemma 15(2), the
definition of η and fact that α∗ + η∗(α) = η(α), we have

E
(
e−α|gb| ; S0 > 0

)
= E

(
e−α(X

(1)
0 +H∗

−θ
− θ) ; θ > X

(1)
0

)

= E
(
e−αX

(1)
0 −(η∗(α)−α) θ ; θ > X

(1)
0

)

=
α∗

η∗(α) − α + α∗
E
(
e−(α∗+η∗(α))X

(1)
0
)

=
α∗

η(α) − α
E
(
e−η(α)X

(1)
0
)

=
α∗

η(α) − α

Φ(η(α))

mη(α)

=
α∗

(η(α) − α) m

(
1 −

Ψ(η(α))

η(α)

)

=
α∗

η(α) m
.

The fact that given db − gb = v, the random variable |gb| has uniform distri-
bution on (0, v) completes the proof.

Remark 10. Let the process X∗ be as above. Let θ be an exponentially
distributed random variable with parameter α∗ independent of X∗. Then

E
(
e−αH∗

−θ

)
=

α∗

α∗ + θ∗(α)
=

α∗

η(α)
.

Theorem 11. The joint Laplace transform of −gi and di, given that S0 = 0,
is

E(eαgi−βdi |S0 = 0) =
α∗µ

(m − 1)(α − β)

(
Ψ(α)

α − α∗
−

Ψ(β)

β − α∗

)
, α 6= β. (9)
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Proof: Suppose now that S0 = 0, i.e., there is an idle period at time
zero. From (5) it follows that {S0 = 0} = {X

(1)
0 > S̃

(1)
0 }. Notice that

−X
(1)
0 < gi < 0 and write

|gi| = inf
{

0 < t < X
(1)
0 : sup

s≥t

{T (1)
s − (s − t)} > 0

}

= inf
{

0 < t < X
(1)
0 : sup

s≥X
(1)
0

{T (1)
s − s} + t > 0

}

= inf
{

0 < t < X
(1)
0 : sup

s≥X
(1)
0

{T̃
(1)

s−X
(1)
0

− (s − X
(1)
0 )} − X

(1)
0 + t > 0

}

= inf
{
0 < t < X

(1)
0 : S̃

(1)
0 − X

(1)
0 + t > 0

}
,

from which we get |gi| = X
(1)
0 − S̃

(1)
0 . Thus, using Lemma 15(3), we obtain

E
(
eαgi ; S0 = 0

)
= E

(
e−α(X

(1)
0 −eS

(1)
0 ); X

(1)
0 > S̃

(1)
0

)

=
α∗

α − α∗

(
E
(
e−α∗X

(1)
0
)
− E

(
e−αX

(1)
0
))

=
α∗

α − α∗

(Φ(α∗)

mα∗
−

Φ(α)

mα

)

=
α∗Ψ(α)

(α − α∗) α m
.

5 On a storage with subordinator output

Here we define a storage model with the input given in Section 3 and the
output being a doubly infinite subordinator.

Let Z̃ = {Z̃t : t ≥ 0} be a subordinator started at 0 with the Laplace
transform given by

E
(
e−α eZt

)
= e−tϕ(α) (α > 0).

Let Z = {Zt : t ∈ R} be defined as

Zt :=

{
−Z

(1)
(−t)−, t ≤ 0,

Z
(2)
t , t ≥ 0,

where Z(1) = {Z
(1)
t : t ≥ 0} and Z(2) = {Z

(2)
t : t ≥ 0} are two independent

copies of Z̃. We assume next that Z is independent of X.
As in Section 3, we introduce

St := sup
−∞<s≤t

{Tt − Ts − (Zt − Zs)}

and
S̃

(1)
0 := sup

t≥0
{T̃

(1)
t − Zt}.

The following analog of Proposition 8 holds.
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Proposition 12. Assume that

E(X̃1)E(Z1) = Φ
′

(0) ϕ
′

(0) > 1. (10)

Then the process S is well-defined and its stationary distribution is given by

P(St > s) = K e−α∗ s, s ≥ 0,

where α∗ is the unique positive solution of the equation

α − Φ(ϕ(α)) = 0

and K = α∗

m ϕ(α∗)
.

The following lemma will be useful for the proof of the proposition.

Lemma 13. Assume that Φ
′

(0) ϕ
′

(0) > 1. Then S̃
(1)
0 is exponentially dis-

tributed with parameter α∗.

Proof: Consider the process Y = {Yt = Z̃ eXt
: t ≥ 0}. Clearly, Y is a

subordinator with the Laplace transform given by

E
(
e−αYt

)
= e−tΦ(ϕ(α)) (α > 0).

The process Yt − t is a spectrally positive Lévy process with the Laplace
transform

E
(
e−α(Yt−t)

)
= etΨ(α),

where Ψ(α) = α − Φ(ϕ(α)). If Ψ
′

(0) = 1 − Φ
′

(0) ϕ
′

(0) < 0 then (see [2] p.
190) the process Yt − t drifts to +∞ and − inf t≥0{Yt − t} is exponentially
distributed with parameter α∗, where α∗ is the unique solution of Ψ(α) = 0.

Since T̃ (1) is the right-continuous inverse of X̃(1) and Z(1) is increasing, we
write

P(S̃
(1)
0 > s) = P(∃t : T̃

(1)
t − Z

(1)
t > s)

= P(∃t : t − Z
(1)

eX
(1)
t−

> s)

= P(∃t : Yt− − t < −s)

= P(− inf
t≥0

{Yt − t} > s)

= e−α∗s,

as required.
Proof of Proposition 12: First we notice that S0 can be written as

S0 = sup
s≥X

(1)
0

{T̃
(1)

s−X
(1)
0

− Zs} ∨ 0

= sup
s≥0

{T̃ (1)
s − Z

s+X
(1)
0
} ∨ 0

=
(

sup
s≥0

{T̃ (1)
s − Ẑs} − Z

X
(1)
0

)
∨ 0,

11



where {Ẑs := Z
s+X

(1)
0

− Z
X

(1)
0

: s ≥ 0} is independent of Z
X

(1)
0

and has the

same law as Z̃. Denote

Ŝ0 := sup
s≥0

{T̃ (1)
s − Ẑs}.

Using Lemma 13 , we obtain

P(S0 > s) = P
(
Ŝ0 − Z

X
(1)
0

> s
)

= e−α∗s E
(
e
−α∗Z

X
(1)
0

)

= e−α∗s E
(
e−ϕ(α∗)X

(1)
0
)

= e−α∗s Φ(ϕ(α∗))

mϕ(α∗)

= e−α∗s α∗

mϕ(α∗)
.

The statement follows.

Example 14. (Z is a stable subordinator)
Let Z(1) and Z(2) be stable subordinators with index γ, i.e.,

E
(
e−α eZ

(i)
t

)
= e−t αγ

, i = 1, 2.

For the stable subordinator Z̃ we have the following identity in distribution:

Z̃t ∼ t
1
γ Z̃1. (11)

The stationary distribution of S is given by

P(St > s) =
(α∗)1−γ

m
e−α∗ s, s > 0,

where α∗ is the unique positive solution of

α − Φ(αγ) = 0.

Next we compute the distribution of di given S0 = 0. Clearly di ≥ X
(2)
0 since

for t ∈ [0, X
(2)
0 ),

St = sup
0≤s≤t

{Zs} − Zt = 0.

We write

di = inf
{

t ≥ X
(2)
0 : sup

0≤s≤t

{Zs − Ts} + Tt − Zt > 0
}

= inf
{

t ≥ X
(2)
0 : sup

X
(2)
0 ≤s≤t

{Zs − Ts} + Tt − Zt > 0
}

= inf
{

t ≥ X
(2)
0 : Z

X
(2)
0

+ sup
X

(2)
0 ≤s≤t

{Z
′

s−X
(2)
0

− T̃
(2)

s−X
(2)
0

}

+ T̃
(2)

t−X
(2)
0

− Z
′

t−X
(2)
0

− Z
X

(2)
0

> 0
}

= X
(2)
0 + inf

{
t ≥ 0 : sup

0≤s≤t

{Z
′

s − T̃ (2)
s } + T̃

(2)
t − Z

′

t > 0
}

.
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Next we use the result from [9] that

P
(
Z

′

eX
(2)
t

< t for all sufficiently small t > 0
)

= 1,

from which it follows that

P
(
Z

′

t < T̃
(2)
t for all sufficiently small t > 0

)
= 1

and hence di = X
(2)
0 . Therefore,

E
(
e−αdi ; S0 = 0

)
= E

(
e−αX

(2)
0 ; Ŝ0 < Z

X
(1)
0

)

= E
(
e−αX

(2)
0 ; X

(1)
0 >

( Ŝ0

Z1

)γ)
.

Next we show that
(

bS0

Z1

)γ

is exponentially distributed. Using (11), we obtain

P
(( Ŝ0

Z1

)γ

> s
)

= P
(
Ŝ0 > Z1 s

1
γ

)

= E
(
e−α∗ s

1
γ Z1

)

= e(α∗)γ s.

Using this and Lemma 15(3) yields

E
(
e−αdi ; S0 = 0

)
= E

(
e−αX

(2)
0
)
− E

(
e−αX

(2)
0 −(α∗)γX

(1)
0
)

=
Φ(α)

mα
−

1

m

(Φ(α) − Φ((α∗)γ)

α − (α∗)γ

)

=
α α∗ − Φ(α)(α∗)γ

mα
(
α − (α∗)γ

) .

6 Appendix

Well-known results dealing with exponential random variables are given in
the following lemma.

Lemma 15. Let τ ∼ Exp(λ) and X,Y ≥ 0 be two arbitrary random vari-
ables independent of τ . Then

1. P(X < τ) = E(e−λX);

2. (the memoryless property) τ−X and X are conditionally independent,
given τ > X. Moreover, given τ > X, τ−X is exponentially distributed
with parameter λ and

E
(
e−βX ; τ > X

)
= E

(
e−(λ+β)X

)
;

3. E
(
e−α(X−τ); τ < X

)
=

λ

α − λ

(
E(e−λX) − E(e−αX)

)
;

13



4. Given τ > X + Y , the random variables X and τ − X − Y are in-
dependent. Moreover, given τ > X + Y , τ − X − Y is exponentially
distributed with parameter λ and

E
(
e−αX ; τ > X + Y

)
= E

(
e−(α+λ)X−λY

)
.

The proof of Lemma 15 is straight-forward and is omitted.

References
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