A502

THREE SPHERES THEOREM FOR p-HARMONIC FUNCTIONS

Vladimir M. Miklyukov

Antti Rasila

Matti Vuorinen

TEKNILLINEN KORKEAKOULU TEKNISKA HÖCSKOLAN HELSINKI UNIVERSITY OF TECHNOLOGY TECHNISCHE UNIVERSITÄT HELSINKI UNIVERSITE DE TECHNOLOGIE D'HELSINKI

A502

THREE SPHERES THEOREM FOR *p*-HARMONIC FUNCTIONS

Vladimir M. Miklyukov Antti Rasila

Matti Vuorinen

Helsinki University of Technology Department of Engineering Physics and Mathematics Institute of Mathematics

Vladimir M. Miklyukov, Antti Rasila and Matti Vuorinen: *Three sphres theorem for p-harmonic functions*; Helsinki University of Technology, Institute of Mathematics, Research Reports A502 (2006).

Abstract: Three spheres theorem type is proved for the p-harmonic functions defined on the complement of k-balls in the Euclidean n-dimensional space.

AMS subject classifications: 35J60,35B05,35B50

Keywords: three circles theorem, *p*-harmonic functions, *p*-Laplacian

Correspondence

miklyuk@mail.ru, antti.rasila@tkk.fi, vuorinen@utu.fi

ISBN 951-22-8272-0 ISSN 0784-3143

Helsinki University of TechnologyDepartment of Engineering Physics and MathematicsInstitute of MathematicsP.O. Box 1100, 02015 HUT, Finlandemail:math@hut.fi http://www.math.hut.fi/

1 Introduction

A classical theorem by J. Hadamard gives the following relation between the maximum absolute values of an analytic function on three concentric circles.

1.1 Theorem. Let $R_1 < r_1 < r_2 < r_3 < R_2$ and let f be an analytic function in the annulus $\{z \in \mathbb{C} : R_1 < |z| < R_2\}$. Denote the maximum of |f(z)| on the circle |z| = r by M(r). Then

$$M(r_2)^{\log(r_3/r_1)} < M(r_1)^{\log(r_3/r_2)} M(r_3)^{\log(r_2/r_1)}.$$

This result, known as the three circles theorem, was given by Hadamard without proof in 1896 [3]. For a discussion of the history of this result, see e.g. [8] and [5, pp. 323–325]. It is a natural question, what results of this type can be proved for other classes of functions. For example, a version of Hadamard's theorem can be proved for subharmonic functions in \mathbb{R}^n , $n \geq 2$, see [7, pp. 128–131].

Some generalizations of the three circles theorem will be studied here. For the formulation of our main result, Theorem 2.1, we recall some standard notation and definitions from the book [4]. We will consider solutions $v: \Omega \to \mathbb{R}$ of the *p*-Laplace equation

$$\operatorname{div}(|\nabla v|^{p-2}\nabla v) = 0, \qquad 1$$

on an open set $\Omega \subset \mathbb{R}^n$ in the sense that will be described shortly. When p = 2 equation (1.2) reduces to the Laplace equation $\Delta u = 0$, whose solutions, harmonic functions, are studied in the classical potential theory. When $p \neq 2$ equation (1.2) is nonlinear and degenerates at the zeros of the gradient of v. It follows that the solutions, *p*-harmonic functions, need not be in $C^2(\Omega)$ and the equation must be understood in the weak sense. A weak solution of (1.2) is a function v in the Sobolev space $W_{\text{loc}}^{1,p}(\Omega)$ such that

$$\int_{\Omega} \langle |\nabla v|^{p-2} \nabla v, \nabla \varphi \rangle \, dm = 0 \tag{1.3}$$

for all $\varphi \in C_0^{\infty}(\Omega)$, where $\langle \cdot, \cdot \rangle$ denotes the scalar product of vectors in \mathbb{R}^n , and *m* is the Lebesgue measure in \mathbb{R}^n .

It is easy to see that for all $\varphi \in C_0^{\infty}(\Omega)$ and $v \in C^2(\Omega)$,

$$\int_{\Omega} \langle |\nabla v|^{p-2} \nabla v, \nabla \varphi \rangle \, dm = -\int_{\Omega} \varphi \operatorname{div} \left(|\nabla v|^{p-2} \nabla v \right) dm$$

and, consequently, each C^2 -solution to (1.2) is a weak solution to (1.2).

Fix an integer $k, 1 \le k \le n$ and a real number $t \ge 0$. The sets $B_k(t) = \{x \in \mathbb{R}^n : d_k(x) < t\}$ and $\Sigma_k(t) = \{x \in \mathbb{R}^n : d_k(x) = t\} = \partial B_k(t)$, where $d_k(x) = \left(\sum_{i=1}^k x_i^2\right)^{1/2}$, are respectively called k-ball and k-sphere in \mathbb{R}^n . For k = n the k-ball $B_k(t)$ coincides with the standard Euclidean ball $B^n(t)$ and

the k-sphere $\Sigma_k(t)$ is the Euclidean sphere $S^{n-1}(t)$. In particular, the symbol $\Sigma_k(0)$ below denotes the k-sphere with the radius 0, i.e.

$$\Sigma_k(0) = \{ x = (x_1, \dots, x_k, \dots, x_n) : x_1 = \dots = x_k = 0 \}.$$

Let $0 < \alpha < \beta < \infty$ be fixed and let

$$D_{\alpha,\beta} = \{ x \in \mathbb{R}^n : \alpha < d_k(x) < \beta \}.$$

For k = 1 the set $D_{\alpha,\beta}$ is the union of the two layers between two parallel hyperplanes. For 1 < k < n the boundary of the domain $D_{\alpha,\beta}$ consists of two coaxial cylindrical surfaces.

FIGURE: 1-annulus $D_{\alpha,\beta}$ in \mathbb{R}^2 (left) and 2-annulus $D_{\alpha,\beta}$ in \mathbb{R}^3 (right).

Let $v \in C^0(D_{r,R})$, and let $M(r) = \limsup_{z \to \Sigma_k(r)} v(z)$. Suppose that $M(R) \ge M(r)$. Consider the function

$$v_{r,R}(x) = \begin{cases} \frac{v(x) - M(r)}{M(R) - M(r)}, & \text{for } M(R) > M(r), \\ \infty, & \text{otherwise,} \end{cases}$$

for r < R. Clearly, $\limsup_{z \to \Sigma_k(r)} v_{r,R}(z) \le 0$ and $\limsup_{z \to \Sigma_k(R)} v_{r,R}(z) \le 1$. Let

$$\xi(r,t) = \int_{r}^{t} s^{(1-k)/(p-1)} ds$$
, and $u_0^{k,p}(t) = \frac{\xi(r,t)}{\xi(r,R)}$.

Let $u(x) = u_0^{k,p}(d_k(x))$ for $x \in D_{r,R}$. It is clear (see Lemma 3.5) that u is a C^2 -solution to (1.2). We have

$$u(x)|_{\Sigma_k(r)} \equiv 0, \ u(x)|_{\Sigma_k(R)} \equiv 1,$$

and

$$u(x) \ge v_{r,R}(x) \text{ if } x \in \Sigma_k(r) \text{ or } x \in \Sigma_k(R).$$
(1.4)

2 Main results

We will prove the following Hadamard type theorem for the p-harmonic functions defined on the complement of a k-ball. We use the method of proof from [6].

2.1 Theorem. Let 1 , <math>R > r > 0 and let $v(x) \in W^{1,p}_{\text{loc}}(D_{r,\infty})$ be a continuous weak solution of (1.2) such that

$$\int_{r}^{\infty} dt \left(\int_{\Sigma_{k}(t)} |v_{r,R} - u|^{2} \left(|\nabla v_{r,R}|^{|p-2|} + |\nabla u|^{|p-2|} \right) d\mathcal{H}^{n-1} \right)^{-1} = \infty, \quad (2.2)$$

where \mathcal{H}^{n-1} is the (n-1)-dimensional Hausdorff measure. Then for all $t \in (r, R)$,

$$M(t) \le (M(R) - M(r))u_0^{k,p}(t) + M(r).$$
(2.3)

2.4 Corollary. Let 1 , <math>r > 0 and let $v(x) \in W^{1,p}_{loc}(D_{r,\infty})$, be a continuous weak solution of (1.2) such that

$$\lim_{R \to \infty} \frac{1}{R^2} \int_{D_{r,R}} |v_{r,R} - u|^2 \left(|\nabla v_{r,R}|^{|p-2|} + |\nabla u|^{|p-2|} \right) dm = 0.$$
(2.5)

Then for all $t \in (r, \infty)$ the inequality (2.3) holds.

2.6 Corollary. Let 1 , <math>R > r > 0 and let $v(x) \in W^{1,p}_{\text{loc}}(D_{r,\infty})$ be a continuous weak solution of (1.2) such that

$$\int_{D_{r,\infty}} |v_{r,R} - u|^2 \left(|\nabla v_{r,R}|^{|p-2|} + |\nabla u|^{|p-2|} \right) dm \le M < \infty.$$

Then for all $t \in (r, R)$ the inequality (2.3) holds.

For the formulation of a result of S. Granlund [2], Theorem 2.7 below, we introduce some notation and terminology. Let p > 1, $\Omega \subset \mathbb{R}^n$ be a bounded domain and let $F: \Omega \times \mathbb{R}^n \to \mathbb{R}$ be such that the following conditions hold.

1. There are constants $\beta > \alpha > 0$ such that for a.e. $x \in \Omega$

$$\alpha |z|^p \le F(x,z) \le \beta |z|^p.$$

2. For a.e. $x \in \Omega$ the function $z \mapsto F(x, z)$ is convex.

3. The function $x \mapsto F(x, \nabla u(x))$ is measurable for all $u \in W^{1,p}(\Omega)$.

Let

$$I(u) = \int_{\Omega} F(x, \nabla u(x)) \, dm.$$

A function $u \in W^{1,p}(\Omega)$ is a subminimum in Ω if $I(u) \leq I(u-\eta)$ for all non-negative $\eta \in W_0^{1,p}(\Omega)$. Let

$$M(r) = \operatorname{ess\,sup}_{x \in \overline{B}^n(r)} u(x), \qquad \overline{B}^n(r) \subset \Omega.$$

The following Hadamard type theorem was proved by S. Granlund in [2].

2.7 Theorem. Let u be a subminimum of

$$I(u) = \int_{\Omega} F(x, \nabla u(x)) dm,$$

 $r_1 < r < r_2$, and $\overline{B}^n(r_2) \subset \Omega$. Then u is bounded from above, and there is a constant

$$\lambda = \lambda(n, p, r/r_1, r_2/r, \alpha/\beta),$$

 $0 < \lambda < 1$ such that

$$M(r) \le \lambda M(r_1) + (1 - \lambda)M(r_2)$$

Since *p*-harmonic functions minimize (see e.g. [4, p. 59]) the integral

$$I(u) = \int_{\Omega} |\nabla u|^p \, dm,$$

Theorem 2.7 gives a special case of Theorem 2.1 with k = n.

3 Preliminaries

We start by recalling some basic properties of the Sobolev spaces from [4]. Let Ω be a nonempty open set in \mathbb{R}^n .

3.1 Lemma. [4, Theorem 1.24] Let $u \in W_0^{1,p}(\Omega)$ and $v \in W^{1,p}(\Omega)$ be bounded. Then $uv \in W_0^{1,p}(\Omega)$.

3.2 Lemma. [4, Lemma 3.11] If $v \in W^{1,p}(\Omega)$ is a weak solution of (1.2) in Ω , then

$$\int_{\Omega} \langle |\nabla v|^{p-2} \nabla v, \nabla \varphi \rangle \, dm = 0$$

for all $\varphi \in W_0^{1,p}(\Omega)$.

3.3 Theorem. [1, p. 99] Let $f : \mathbb{R}^n \to \mathbb{R}$ be a locally Lipschitz mapping. Let $E \subset \mathbb{R}^n$ be an n-measurable set and $g : E \to \mathbb{R}$ be a nonnegative measurable function. Then

$$\int_{E} g(x) |\nabla f(x)| \, dx_1 \cdots dx_n = \int_{\mathbb{R}} \left(\sum_{x \in f^{-1}(y)} g(x) \right) d\mathcal{H}^n(y). \tag{3.4}$$

3.5 Lemma. Let $1 , <math>0 < r < d_k(x)$ and fix an integer $1 \le k \le n$. Then

$$u(x) = \int_{r}^{d_{k}(x)} s^{\frac{1-k}{p-1}} \, ds$$

is a solution of (1.2), i.e.

$$\sum_{i=1}^{n} \left\{ \frac{\partial}{\partial x_{i}} \left(u_{x_{i}} [u_{x_{1}}^{2} + \ldots + u_{x_{n}}^{2}]^{\frac{p-2}{2}} \right) \right\} = 0.$$

Proof. We note that

$$\frac{\partial}{\partial x_i} d_k(x) = \frac{x_i}{d_k(x)},$$

and hence $u_{x_i} = x_i d_k(x)^{\frac{1-k}{p-1}-1}$. Then

$$u_{x_i} \left(u_{x_1}^2 + \dots + u_{x_k}^2 \right)^{\frac{p-2}{2}} = x_i d_k(x)^{\frac{1-k}{p-1}-1} \left[d_k(x)^{\frac{2(1-k)}{p-1}-2} \left(\sum_{j=1}^k x_j^2 \right) \right]^{\frac{p-2}{2}} \\ = x_i d_k(x)^{\frac{1-k}{p-1}-1} d_k(x)^{\frac{(1-k)(p-2)}{p-1}} = x_i d_k(x)^{-k}.$$

It follows that

$$\sum_{i=1}^{k} \frac{\partial}{\partial x_i} (x_i d_k(x)^{-k}) = \sum_{i=1}^{k} d_k(x)^{-k} - k \sum_{i=1}^{k} x_i^2 d_k(x)^{-k-2}$$
$$= k d_k(x)^{-k} - k d_k(x)^{-k-2} (\sum_{i=1}^{k} x_i^2) = 0.$$

Next we will prove two lemmas which are used later in the proof of Theorem 2.1.

3.6 Lemma. Let a > b > 0, p > 1. Then

$$C_1 \frac{a^{p-1} - b^{p-1}}{a-b} \le \frac{a^{p-1} + b^{p-1}}{a+b} \le C_2 \frac{a^{p-1} - b^{p-1}}{a-b},$$
(3.7)

with some constants $C_1, C_2 > 0$.

Proof. We examine the function

$$g_1(x) = \frac{(x^{p-1}+1)(x-1)}{(x^{p-1}-1)(x+1)}, \qquad x > 1.$$

It is clear that

$$\lim_{x \to 1} g_1(x) = \frac{1}{p-1}, \qquad \lim_{x \to \infty} g_1(x) = 1.$$
(3.8)

It is sufficient to find positive bounds for $g_1(x)$ for x > 1. We will prove that the bounds are in fact given by (3.8). First we note that

$$\begin{cases} (p-2)(x^p-1) + p(x-x^{p-1}) < 0, & \text{for } p \in (1,2), \\ (p-2)(x^p-1) + p(x-x^{p-1}) = 0, & \text{for } p = 2, \\ (p-2)(x^p-1) + p(x-x^{p-1}) > 0, & \text{for } p > 2, \end{cases}$$

and

$$\begin{cases} x - x^{p-1} < 0, & \text{for } p \in (1, 2), \\ x - x^{p-1} = 0, & \text{for } p = 2, \\ x - x^{p-1} > 0, & \text{for } p > 2. \end{cases}$$

Hence

$$\begin{cases} g_1(x) \in (1, 1/(p-1)), & \text{for } p \in (1, 2), \\ g_1(x) = 1, & \text{for } p = 2, \\ g_1(x) \in (1/(p-1), 1), & \text{for } p > 2. \end{cases}$$

3.9 Lemma. Let a > b > 0. Then

$$C_3(a^{p-2}+b^{p-2}) \le \frac{a^{p-1}-b^{p-1}}{a-b} \le C_4(a^{p-2}+b^{p-2}),$$
 (3.10)

for $p \geq 2$, and

$$C_3 \left(a^{2-p} + b^{2-p}\right)^{-1} \le \frac{a^{p-1} - b^{p-1}}{a-b} \le C_4 \left(a^{2-p} + b^{2-p}\right)^{-1}, \tag{3.11}$$

for $p \in (1,2]$ with some constants C_3 , $C_4 > 0$.

Proof. The proof is similar to that of Lemma 3.6. First we study the function

$$g_2(x) = \frac{x^{p-1} - 1}{(x-1)(x^{p-2}+1)}.$$

As in Lemma 3.6, it is sufficient for (3.10) to find positive bounds for $g_2(x)$ for x > 0. We note that $\lim_{x\to 1} g_2(x) = (p-1)/2$ and $\lim_{x\to\infty} g_2(x) = 1$. We obtain

$$\begin{cases} (p-3)(1-x^{p-1}) + (p-1)x(1-x^{p-3}) < 0, & \text{for } p \in (1,3), \\ (p-3)(1-x^{p-1}) + (p-1)x(1-x^{p-3}) = 0, & \text{for } p = 3, \\ (p-3)(1-x^{p-1}) + (p-1)x(1-x^{p-3}) > 0, & \text{for } p > 3, \end{cases}$$

and

$$\begin{cases} x(x^{p-3}-1) < 0, & \text{for } p \in (1,3), \\ x(x^{p-3}-1) = 0, & \text{for } p = 3, \\ x(x^{p-3}-1) > 0, & \text{for } p > 3. \end{cases}$$

It follows that

$$\begin{cases} g_2(x) \in ((p-1)/2, 1), & \text{for } p \in (1, 3), \\ g_2(x) = 1, & \text{for } p = 3, \\ g_2(x) \in (1, (p-1)/2), & \text{for } p > 3. \end{cases}$$

To prove (3.11) we study the function

$$g_3(x) = \frac{(x^{p-1} - 1)(x^{2-p} + 1)}{x - 1}.$$

Now $\lim_{x\to 1} g_3(x) = 2(p-1)$ and $\lim_{x\to\infty} g_3(x) = 1$. Again, we have

$$\begin{cases} (-2p+3)(x-1) + (x^{p-1} - x^{2-p}) < 0, & \text{for } p \in (1, 3/2), \\ (-2p+3)(x-1) + (x^{p-1} - x^{2-p}) = 0, & \text{for } p = 3/2, \\ (-2p+3)(x-1) + (x^{p-1} - x^{2-p}) > 0, & \text{for } p > 3/2, \end{cases}$$

and

$$\left\{ \begin{array}{ll} x^{p-1}-x^{2-p}<0, & \mbox{for } p\in(1,3/2), \\ x^{p-1}-x^{2-p}=0, & \mbox{for } p=3/2, \\ x^{p-1}-x^{2-p}>0, & \mbox{for } p>3/2, \end{array} \right.$$

and thus

$$\begin{cases} g_3(x) \in (2(p-1), 1), & \text{for } p \in (1, 3/2), \\ g_3(x) = 1, & \text{for } p = 3/2, \\ g_3(x) \in (1, 2(p-1)), & \text{for } p > 3/2. \end{cases}$$

4 Proof of Theorem 2.1

Suppose the contrary, that is, there exists $x_0 \in D_{r,R}$ such that

$$v(x_0) > (M(R) - M(r))u(x_0) + M(r), \qquad (4.1)$$

or

$$v_{r,R}(x_0) > u(x_0).$$

Fix some $\varepsilon_0 > 0$, for which

$$v_{r,R}(x_0) - u(x_0) > \varepsilon_0.$$

Consider the set

$$U = \{x \in D_{r,R} : v_{r,R}(x) - u(x) > \varepsilon_0\} \neq \emptyset.$$

Choose a component O of U such that $x_0 \in O$. It is clear that $\overline{O} \cap \partial D_{r,R} = \emptyset$ and $(v_{r,R}(x) - u(x))|_{\partial O} = 0$. Fix $\varepsilon_2 > \varepsilon_1 > 0$ and the balls $O_1 = B_k(x_0, \varepsilon_1)$, $O_2 = B_k(x_0, \varepsilon_2)$. Let $\varphi(x) = \eta(d_k(x))$ be a locally Lipschitz function with the properties:

$$\begin{cases} \varphi \equiv 1 & \text{for all } x \in O_1, \\ \varphi \equiv 0 & \text{for all } x \in D_{r,R} \setminus O_2. \end{cases}$$
(4.2)

Then the function $\psi = (v_{r,R}(x) - u(x))\varphi^2$ has a support supp $\psi \subset \overline{O}_2$ and by Lemma 3.1 $\psi \in W_0^{1,p}(\Omega)$. Since $v_{r,R}$ and u are generalized solutions of (1.2) we have by Lemma 3.2

$$\int_{\operatorname{supp}\psi} \langle \nabla\psi, |\nabla v_{r,R}|^{p-2} \nabla v_{r,R} - |\nabla u|^{p-2} \nabla u \rangle \, dm$$
$$= \int_{\operatorname{supp}\psi} \langle \nabla\psi, |\nabla v_{r,R}|^{p-2} \nabla v_{r,R} \rangle \, dm - \int_{\operatorname{supp}\psi} \langle \nabla\psi, |\nabla u|^{p-2} \nabla u \rangle \, dm = 0.$$

Next, we note that

$$\nabla \psi = \varphi^2 (\nabla v_{r,R} - \nabla u) + 2\varphi (v_{r,R} - u) \nabla \varphi.$$

Thus, we may write

$$0 = \int_{\operatorname{supp}\psi} \langle \nabla\psi, |\nabla v_{r,R}|^{p-2} \nabla v_{r,R} - |\nabla u|^{p-2} \nabla u \rangle \, dm$$

$$= \int_{O\cap O_2} \langle \nabla\psi, |\nabla v_{r,R}|^{p-2} \nabla v_{r,R} - |\nabla u|^{p-2} \nabla u \rangle \, dm$$

$$= \int_{O\cap O_2} \varphi^2 \langle \nabla v_{r,R} - \nabla u, |\nabla v_{r,R}|^{p-2} \nabla v_{r,R} - |\nabla u|^{p-2} \nabla u \rangle \, dm$$

$$+ 2 \int_{O\cap O_2} \varphi(v_{r,R} - u) \langle \nabla\varphi, |\nabla v_{r,R}|^{p-2} \nabla v_{r,R} - |\nabla u|^{p-2} \nabla u \rangle \, dm$$

$$\int_{O\cap O_2} \varphi^2 \langle \nabla v_{r,R} - \nabla u, |\nabla v_{r,R}|^{p-2} \nabla v_{r,R} - |\nabla u|^{p-2} \nabla u \rangle \, dm$$
$$= -2 \int_{O\cap O_2} \varphi(v_{r,R} - u) \langle \nabla \varphi, |\nabla v_{r,R}|^{p-2} \nabla v_{r,R} - |\nabla u|^{p-2} \nabla u \rangle \, dm$$

or

or

$$\left| \int_{O\cap O_2} \varphi^2 \langle \nabla v_{r,R} - \nabla u, |\nabla v_{r,R}|^{p-2} \nabla v_{r,R} - |\nabla u|^{p-2} \nabla u \rangle \, dm \right|$$

$$\leq 2 \int_{O\cap O_2} |\varphi| |v_{r,R} - u| |\nabla \varphi| \left| |\nabla v_{r,R}|^{p-2} \nabla v_{r,R} - |\nabla u|^{p-2} \nabla u \right| dm. \quad (4.3)$$

Let

$$\Phi(\lambda) = |\nabla(\lambda v_{r,R} + (1-\lambda)u)|^{p-2} \nabla(\lambda v_{r,R} + (1-\lambda)u)$$

for $\lambda \in [0,1]$, and note that

$$\Phi(0) = |\nabla u|^{p-2} \nabla u \quad \text{and} \quad \Phi(1) = |\nabla v_{r,R}|^{p-2} \nabla v_{r,R}.$$

Now we write

$$\begin{aligned} |\nabla v_{r,R}|^{p-2} \nabla v_{r,R} - |\nabla u|^{p-2} \nabla u &= \Phi(1) - \Phi(0) = \int_{0}^{1} \Phi'(\lambda) \, d\lambda \\ &= \int_{0}^{1} \left[(\nabla v_{r,R} - \nabla u) \, |\nabla(\lambda v_{r,R} + (1-\lambda)u)|^{p-2} + (p-2) \nabla(\lambda v_{r,R} + (1-\lambda)u) \right. \\ &\left. \cdot \left| \nabla(\lambda v_{r,R} + (1-\lambda)u) \right|^{p-4} \left\langle \nabla v_{r,R} - \nabla u, \nabla(\lambda v_{r,R} + (1-\lambda)u) \right\rangle \right] d\lambda, \end{aligned}$$

and obtain

$$\langle \nabla v_{r,R} - \nabla u, |\nabla v_{r,R}|^{p-2} \nabla v_{r,R} - |\nabla u|^{p-2} \nabla u \rangle$$

$$= |\nabla v_{r,R} - \nabla u|^2 \int_0^1 |\nabla (\lambda v_{r,R} + (1-\lambda)u)|^{p-2} d\lambda$$

$$+ (p-2) \int_0^1 |\nabla (\lambda v_{r,R} + (1-\lambda)u)|^{p-4} \langle \nabla v_{r,R} - \nabla u, \nabla (\lambda v_{r,R} + (1-\lambda)u) \rangle^2 d\lambda.$$

$$(4.5)$$

If $p \ge 2$ then

$$\langle \nabla v_{r,R} - \nabla u, |\nabla v_{r,R}|^{p-2} \nabla v_{r,R} - |\nabla u|^{p-2} \nabla u \rangle$$

$$\geq |\nabla v_{r,R} - \nabla u|^2 \int_0^1 \left| \nabla \left(\lambda v_{r,R} + (1-\lambda)u \right) \right|^{p-2} d\lambda.$$
 (4.6)

If p < 2, we have

$$\begin{split} |\nabla v_{r,R} - \nabla u|^2 \int_0^1 \left| \nabla \left(\lambda v_{r,R} + (1-\lambda)u \right) \right|^{p-2} d\lambda \\ + \left(p-2\right) \int_0^1 \left| \nabla \left(\lambda v_{r,R} + (1-\lambda)u \right) \right|^{p-4} \langle \nabla v_{r,R} - \nabla u, \nabla \left(\lambda v_{r,R} + (1-\lambda)u \right) \rangle^2 d\lambda \\ \ge \left(p-1\right) |\nabla v_{r,R} - \nabla u|^2 \int_0^1 \left| \nabla \left(\lambda v_{r,R} + (1-\lambda)u \right) \right|^{p-2} d\lambda. \end{split}$$

This together with (4.5) gives

$$\langle \nabla v_{r,R} - \nabla u, |\nabla v_{r,R}|^{p-2} \nabla v_{r,R} - |\nabla u|^{p-2} \nabla u \rangle$$

$$\geq (p-1) |\nabla v_{r,R} - \nabla u|^2 \int_0^1 \left| \nabla \left(\lambda v_{r,R} + (1-\lambda)u \right) \right|^{p-2} d\lambda, \quad 1 (4.7)$$

It follows from (4.4) that for every p > 1,

$$\left| |\nabla v_{r,R}|^{p-2} \nabla v_{r,R} - |\nabla u|^{p-2} \nabla u \right| \le C_5 |\nabla v_{r,R} - \nabla u| \int_0^1 \left| \nabla \left(\lambda v_{r,R} + (1-\lambda)u \right) \right|^{p-2} d\lambda,$$

$$(4.8)$$

at every point where $v_{r,R}$ has differential. Here $C_5 = 1 + |p-2|$. Setting

$$I(p) = \int_0^1 \left| \nabla (\lambda v_{r,R} + (1-\lambda)u \right|^{p-2} d\lambda$$

and using (4.3), (4.6), (4.7) and (4.8) we obtain

$$\int_{O\cap O_2} \varphi^2 I(p) |\nabla v_{r,R} - \nabla u|^2 dm \le C_6 \int_{O\cap O_2} I(p) |\varphi| |v_{r,R} - u| |\nabla \varphi| |\nabla v_{r,R} - \nabla u| dm,$$
(4.9)

where $C_6 = 2C_5 / \min\{1, p-1\}$. We note that

$$|\nabla(\lambda v_{r,R} + (1-\lambda)u)|^2 = \lambda^2 |\nabla v_{r,R}|^2 + 2\lambda(1-\lambda)\langle \nabla v_{r,R}, \nabla u \rangle + (1-\lambda)^2 |\nabla u|^2,$$

and therefore

$$\left|\lambda|\nabla v_{r,R}| - (1-\lambda)|\nabla u|\right| \le \left|\nabla(\lambda v_{r,R} + (1-\lambda)u)\right| \le \lambda|\nabla v_{r,R}| + (1-\lambda)|\nabla u|$$
(4.10)

for an arbitrary $\lambda \in [0, 1]$. Let $p \geq 2$. We suppose that $|\nabla v_{r,R}| > |\nabla u|$. Then by (4.10),

$$I(p) \leq \int_{0}^{1} \left(\lambda(|\nabla v_{r,R}| - |\nabla u|) + |\nabla u|\right)^{p-2} d\lambda$$

= $\frac{1}{|\nabla v_{r,R}| - |\nabla u|} \int_{|\nabla u|}^{|\nabla v_{r,R}|} s^{p-2} ds = \frac{1}{p-1} \frac{|\nabla v_{r,R}|^{p-1} - |\nabla u|^{p-1}}{|\nabla v_{r,R}| - |\nabla u|}.$ (4.11)

Next by (4.10),

$$I(p) \geq \int_{0}^{1} |\lambda| \nabla v_{r,R}| - (1-\lambda) |\nabla u||^{p-2} d\lambda$$

$$= \int_{0}^{1} |\lambda(|\nabla v_{r,R}| + |\nabla u|) - |\nabla u||^{p-2} d\lambda$$

$$= \int_{s}^{1} (\lambda(|\nabla v_{r,R}| + |\nabla u|) - |\nabla u|)^{p-2} d\lambda$$

$$+ \int_{0}^{s} (|\nabla u| - \lambda(|\nabla v_{r,R}| + |\nabla u|))^{p-2} d\lambda,$$

where

$$s = \frac{|\nabla u|}{|\nabla v_{r,R}| + |\nabla u|}.$$
(4.12)

By computing both of the last two integrals, we obtain

$$I(p) \ge \frac{1}{p-1} \frac{|\nabla v_{r,R}|^{p-1} + |\nabla u|^{p-1}}{|\nabla v_{r,R}| + |\nabla u|}.$$
(4.13)

Let $1 . As above, we assume <math>|\nabla v_{r,R}| > |\nabla u|$. Then by (4.10),

$$I(p) \leq \int_{0}^{1} \left| \lambda |\nabla v_{r,R}| - (1-\lambda) |\nabla u| \right|^{2-p} d\lambda$$

$$= \int_{0}^{1} \left| \lambda (|\nabla v_{r,R}| + |\nabla u|) - |\nabla u| \right|^{2-p} d\lambda$$

$$= \int_{0}^{s} \left(|\nabla u| - \lambda (|\nabla v_{r,R}| + |\nabla u|) \right)^{2-p} d\lambda$$

$$+ \int_{s}^{1} \left(\lambda (|\nabla v_{r,R}| + |\nabla u|) - |\nabla u| \right)^{2-p} d\lambda,$$

where s is defined in (4.12), and hence

$$I(p) \le \frac{1}{p-1} \frac{|\nabla v_{r,R}|^{p-1} + |\nabla u|^{p-1}}{|\nabla v_{r,R}| + |\nabla u|}.$$
(4.14)

By (4.11), it follows that

$$I(p) \ge \frac{1}{p-1} \frac{|\nabla v_{r,R}|^{p-1} - |\nabla u|^{p-1}}{|\nabla v_{r,R}| - |\nabla u|}.$$
(4.15)

Setting $a = |\nabla v_{r,R}|$ and $b = |\nabla u|$ in (3.7), (3.10) and (3.11), we can obtain by (4.11), (4.13), (4.14) and (4.15), for $p \ge 2$

$$C_7 \left(|\nabla v_{r,R}|^{p-2} + |\nabla u|^{p-2} \right) \le I(p) \le C_8 \left(|\nabla v_{r,R}|^{p-2} + |\nabla u|^{p-2} \right), \quad (4.16)$$

or

$$C_7 \left(|\nabla v_{r,R}|^{2-p} + |\nabla u|^{2-p} \right)^{-1} \le I(p) \le C_8 \left(|\nabla v_{r,R}|^{2-p} + |\nabla u|^{2-p} \right)^{-1}, \quad (4.17)$$

 $1 , with some constants <math>C_7$, $C_8 > 0$. The case $|\nabla v_{r,R}| < |\nabla u|$ is analogous. This may be written as

$$C_9 \left(|\nabla v_{r,R}|^{|p-2|} - |\nabla u|^{|p-2|} \right) \le I(p) \le C_{10} \left(|\nabla v_{r,R}|^{|p-2|} + |\nabla u|^{|p-2|} \right), \quad (4.18)$$

where $C_9 = \min\{C_7, 1/C_8\}$ and $C_{10} = \max\{1/C_7, C_8\}$. Thus by (4.9), (4.18) we find,

$$\int_{O\cap O_{2}} \varphi^{2} |\nabla v_{r,R} - \nabla u|^{2} (|\nabla v_{r,R}|^{|p-2|} + |\nabla u|^{|p-2|}) dm
\leq C_{11} \int_{O\cap O_{2}} |\varphi| |v_{r,R} - u| |\nabla \varphi| |\nabla v_{r,R} - \nabla u| (|\nabla v_{r,R}|^{|p-2|} + |\nabla u|^{|p-2|}) dm
\leq C_{11} \left(\int_{O\cap O_{2}} |\nabla \varphi|^{2} |v_{r,R} - u|^{2} (|\nabla v_{r,R}|^{|p-2|} + |\nabla u|^{|p-2|}) dm \right)^{1/2}
\cdot \left(\int_{O\cap O_{2}} \varphi^{2} |\nabla v_{r,R} - \nabla u|^{2} (|\nabla v_{r,R}|^{|p-2|} + |\nabla u|^{|p-2|}) dm \right)^{1/2} (4.19)$$

and

$$\int_{O\cap O_2} \varphi^2 |\nabla v_{r,R} - \nabla u|^2 (|\nabla v_{r,R}|^{|p-2|} + |\nabla u|^{|p-2|}) dm$$

$$\leq C_{11}^2 \int_{O\cap O_2} |\nabla \varphi|^2 |v_{r,R} - u|^2 (|\nabla v_{r,R}|^{|p-2|} + |\nabla u|^{|p-2|}) dm.$$

Remembering (4.2) we have

$$\int_{O\cap O_1} |\nabla v_{r,R} - \nabla u|^2 (|\nabla v_{r,R}|^{|p-2|} + |\nabla u|^{|p-2|}) dm$$

$$\leq C_{11}^2 \int_{D_{r,R} \cap (O_2 \setminus \overline{O_1})} |\nabla \varphi|^2 |v_{r,R} - u|^2 (|\nabla v_{r,R}|^{|p-2|} + |\nabla u|^{|p-2|}) dm.$$

Because φ is constant on $\Sigma_k(t)$ and $|\nabla d_k| \equiv 1$, we have by Theorem 3.3

$$\int_{D_{r,R}\cap(O_{2}\setminus\overline{O_{1}})} |\nabla\varphi|^{2} |v_{r,R} - u|^{2} (|\nabla v_{r,R}|^{|p-2|} + |\nabla u|^{|p-2|}) dm$$

$$\leq \int_{\{x:\varepsilon_{1} < d_{k}(x) < \varepsilon_{2}\}} |\nabla\varphi|^{2} |v_{r,R} - u|^{2} (|\nabla v_{r,R}|^{|p-2|} + |\nabla u|^{|p-2|}) dm = \int_{\varepsilon_{1}}^{\varepsilon_{2}} \eta'^{2} H(t) dt,$$

where

$$H(t) = \int_{\Sigma_k(t)} |v_{r,R} - u|^2 \left(|\nabla v_{r,R}|^{|p-2|} + |\nabla u|^{|p-2|} \right) d\mathcal{H}^{n-1}.$$
 (4.20)

By Hölder's inequality

$$1 \le \int_{\varepsilon_1}^{\varepsilon_2} \eta' H(t)^{1/2} H(t)^{-1/2} dt \le \left(\int_{\varepsilon_1}^{\varepsilon_2} \eta'^2 H(t) dt\right)^{1/2} \left(\int_{\varepsilon_1}^{\varepsilon_2} H^{-1}(t) dt\right)^{1/2}.$$

It follows that

$$\left(\int_{\varepsilon_1}^{\varepsilon_2} H^{-1}(t)dt\right)^{-1} \le \int_{\varepsilon_1}^{\varepsilon_2} \eta'^2 H(t)dt, \tag{4.21}$$

for all $\varphi(x) = \eta(d_k(x))$ satisfying (4.2).

We define a function $\hat{\eta}$ by the formula

$$\hat{\eta}(s) = \left(\int_{\varepsilon_1}^s H^{-1}(t)dt\right) \left(\int_{\varepsilon_1}^{\varepsilon_2} H^{-1}(t)dt\right)^{-1}.$$

Now $\hat{\eta}(\varepsilon_1) = 0$ and $\hat{\eta}(\varepsilon_2) = 1$. Because

$$\hat{\eta}'(s) = \frac{1}{H(s)} \left(\int_{\varepsilon_1}^{\varepsilon_2} \frac{dt}{H(t)} \right)^{-1},$$

we have by (4.21)

$$\left(\int_{\varepsilon_1}^{\varepsilon_2} H^{-1}(t)dt\right)^{-1} \leq \inf_{\varphi} \int_{\varepsilon_1}^{\varepsilon_2} \eta'^2 H(t)dt$$
$$\leq \int_{\varepsilon_1}^{\varepsilon_2} \hat{\eta}'^2 H(t)dt = \left(\int_{\varepsilon_1}^{\varepsilon_2} H^{-1}(t)dt\right)^{-1}.$$

Because

$$\int_{\varepsilon_1}^{\varepsilon_2} H^{-1}(t) dt$$
$$= \int_{\varepsilon_1}^{\varepsilon_2} dt \left(\int_{\Sigma_k(t)} |v_{r,R} - u|^2 \left(|\nabla v_{r,R}|^{|p-2|} + |\nabla u|^{|p-2|} \right) d\mathcal{H}^{n-1} \right)^{-1} \to \infty,$$

as $\varepsilon_2 \to \infty$, the claim follows.

5 Proofs of the corollaries

Proof of Corollary 2.4

Let

$$H(t) = \int_{\Sigma_k(t)} |v_{r,R} - u|^2 \left(|\nabla v_{r,R}|^{|p-2|} + |\nabla u|^{|p-2|} \right) d\mathcal{H}^{n-1}.$$
 (5.1)

By Hölder's inequality

$$(R-r)^{2} = \left(\int_{r}^{R} dt\right)^{2} = \left(\int_{r}^{R} \frac{H^{-1/2}(t)}{H^{-1/2}(t)} dt\right)^{2} \le \left(\int_{r}^{R} H^{-1}(t) dt\right) \left(\int_{r}^{R} H(t) dt\right).$$

Hence

$$(R-r)^{2} \left(\int_{r}^{R} H^{-1}(t) dt \right)^{-1} \leq \left(\int_{r}^{R} H(t) dt \right).$$
 (5.2)

Now by (5.2) and Theorem 3.3

$$\left[\int_{r}^{R} dt \left(\int_{\Sigma_{k}(t)} |v_{r,R} - u|^{2} \left(|\nabla v_{r,R}|^{|p-2|} + |\nabla u|^{|p-2|} \right) d\mathcal{H}^{n-1} \right)^{-1} \right]^{-1} \\ \leq \frac{1}{(R-r)^{2}} \int_{D_{r,R}} |v_{r,R} - u|^{2} \left(|\nabla v_{r,R}|^{|p-2|} + |\nabla u|^{|p-2|} \right) dm \to 0,$$

as $R \to \infty$, proving the claim.

Since

$$\int_{D_{r,\infty}} |v_{r,R} - u|^2 \left(|\nabla v_{r,R}|^{|p-2|} + |\nabla u|^{|p-2|} \right) dm = M < \infty,$$

we have for R > r,

$$\frac{1}{R^2} \int_{D_{r,R}} |v_{r,R} - u|^2 \left(|\nabla v_{r,R}|^{|p-2|} + |\nabla u|^{|p-2|} \right) dm \le \frac{M}{R^2} \to 0,$$

as $R \to \infty$.

Acknowledgements

The research was supported by the Academy of Finland, grant 107317 and by the Foundation Vilho, Yrjö ja Kalle Väisälän rahasto of Finnish Academy of Science and Letters.

Vladimir M. Miklyukov:

Department of Mathematics Volgograd State University Universitetskii prospect 100, Volgograd 400062 RUSSIA Fax + tel: +7-8442 471608 Email: miklyuk@mail.ru

Antti Rasila:

Helsinki University of Technology Institute of Mathematics P.O.Box 1100, FIN-02015 TKK FINLAND Fax +358-9-451 3016 Email: antti.rasila@tkk.fi

Matti Vuorinen:

Department of Mathematics FIN-20014 University of Turku FINLAND Email: vuorinen@utu.fi

References

- L.C. EVANS AND R.F. GARIEPY: Measure theory and fine properties of functions. Studies in advanced Mathematics, CRC Press, Boca Raton – New York – London – Tokyo, 1992.
- [2] S. GRANLUND: Three-Circles Theorem For Variational Integrals. Universität Bonn preprint no. 507, April 1982.
- [3] J. HADAMARD: Sur les fonctions entirès. C.R. Acad. Sci. Paris 122 (1896), 1257–1258.
- [4] J. HEINONEN, T. KILPELÄINEN AND O. MARTIO: Nonlinear potential theory of degenerate elliptic equations. Clarendon Press 1993.
- [5] V. MAZ'YA AND T. SHAPOSHNIKOVA: Jacques Hadamard, a universal mathematician. History of Mathematics, 14, American Mathematical Society, Providence, RI; London Mathematical Society, London, 1998.
- [6] V.M. MIKLYUKOV AND M. VUORINEN: A generalized maximum principle for the differences of p-harmonic functions. Proceedings on Analysis and Geometry (Russian) (Novosibirsk Akademgorodok, 1999), 401– 413, Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat., ISBN 5-86134-091-9, Novosibirsk, 2000.
- [7] M. PROTTER AND H. WEINBERGER: Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984.
- [8] R.M. ROBINSON: Hadamard's three circles theorem, Bull. Amer. Math. Soc. 50 (1944), 795–802.

(continued from the back cover)

- A496 Jan Brandts , Sergey Korotov , Michal Krizek Dissection of the path-simplex in \mathbf{R}^n into n path-subsimplices March 2006
- A495 Sergey Korotov A posteriori error estimation for linear elliptic problems with mixed boundary conditions March 2006
- A494 Antti Hannukainen , Sergey Korotov Computational Technologies for Reliable Control of Global and Local Errors for Linear Elliptic Type Boundary Value Problems February 2006
- A493 Giovanni Formica , Stefania Fortino , Mikko Lyly
 A *vartheta* method-based numerical simulation of crack growth in linear elastic fracture
 February 2006
- A492 Beirao da Veiga Lourenco , Jarkko Niiranen , Rolf Stenberg A posteriori error estimates for the plate bending Morley element February 2006
- A491 Lasse Leskelä Comparison and Scaling Methods for Performance Analysis of Stochastic Networks December 2005
- A490 Anders Björn , Niko Marola Moser iteration for (quasi)minimizers on metric spaces September 2005
- A489 Sampsa Pursiainen A coarse-to-fine strategy for maximum a posteriori estimation in limited-angle computerized tomography September 2005
- A487 Ville Turunen Differentiability in locally compact metric spaces May 2005

HELSINKI UNIVERSITY OF TECHNOLOGY INSTITUTE OF MATHEMATICS RESEARCH REPORTS

The list of reports is continued inside. Electronical versions of the reports are available at *http://www.math.hut.fi/reports/*.

- A501 Marina Sirviö On an inverse subordinator storag June 2005
- A500 Outi Elina Maasalo , Anna Zatorska-Goldstein Stability of quasiminimizers of the p-Dirichlet integral with varying p on metric spaces April 2006
- A499 Mikko Parviainen Global higher integrability for parabolic quasiminimizers in nonsmooth domains April 2005
- A498 Marcus Ruter , Sergey Korotov , Christian Steenbock Goal-oriented Error Estimates based on Different FE-Spaces for the Primal and the Dual Problem with Applications to Fracture Mechanics March 2006
- A497 Outi Elina Maasalo Gehring Lemma in Metric Spaces March 2006

ISBN 951-22-8272-0 ISSN 0784-3143