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1 Introduction

The finite element method (FEM) is nowadays one of the most powerful
and popular numerical techniques widely used in various software packages
that solve problems in, for instance, mathematical physics and mechanics.
The initial step in FEM implementations is to establish an appropriate par-
tition (also called mesh, grid, triangulation, etc.) on the solution domain.
For a number of applications simplicial partitions are prefered over the oth-
ers due to their flexibility. However, such partitions cannot be constructed
arbitrarily from both theoretical and practical points of view. Thus, first
of all we must ensure, at least theoretically, that the finite element approx-
imations converge to the exact (weak) solution of the mathematical model
under consideration when the associated partitions become finer. Mainly due
to this reason the notions of regular families of partitions or nondegenerate
partitions or shape-preserving partitions appeared. Second, the regularity is
also important for real-life computations because degenerate partitions that
contain flat elements may yield ill-conditioned stiffness matrices.

In 1968, Milos Zlamal [19] introduced the so-called minimal angle con-
dition that ensures the convergence of the finite element approximations for
solving linear elliptic boundary value problems for d = 2. This condition
requires that there exists a constant o > 0 such that the minimal angle ag
of each triangle S in all triangulations used satisfies

ag > ag.

Zldmal’s condition can be generalized into RY for any d € {2,3,...} so
that all dihedral angles of simplicies and their lower-dimensional facets are
bounded from below by a positive constant. Later, the so-called inscribed ball
condition was introduced, see, e.g., [5, p. 124], which can also be used for
nonsimplicial elements, and which has an elegant geometrical interpretation:
the ratio of the radius of the inscribed ball of any element and the diameter
of this element must be bounded from below by a positive constant over all
partitions. Roughly speaking, no element of no partitions should degenerate
to a hyperplane as the discretization parameter A (i.e., the maximal diameter
of all elements in the corresponding partition 75) tends to zero. This property
is called in [5] the regularity of a family of partitions. For triangular elements
it is, obviously, equivalent to Zlamal’s condition.

In 1985, Lin and Xu [17] introduced a somewhat stronger regularity as-
sumption on triangular elements: each triangle S € 7, contains a circle of
radius c;h and is contained in a circle of radius coh, where ¢; and ¢y are
positive constants that do not depend on S and h. Later, this assumption
was modified as follows (see, e.g., [16]): a family of triangulations is called
strongly regqular if there exist two positive constants ¢; and ¢y such that for
all S € 7,

c1h? < measy S < coh?.

Notice that in this case no circle or angle conditions appear (cf. (1) and



(25)). Here and elsewhere in this paper meas, stands for the p-dimensional
measure.

Recently, in order to prove some superconvergence results, Brandts and
Kiizek [4] employed another regularity condition based on the circumscribed
ball about simplicial elements, which is the unique sphere on which all vertices
of the simplex lie (see (3)).

In the present paper we summarize the above proposed conditions into
four different definitions of regularity and prove in detail that all these defi-
nitions are equivalent for simplicial elements in two and three dimensions.

2 Preliminaries

Let Q@ ¢ R%d € {1,2,3,...} be a closed domain (i.e., the closure of a
domain). If its boundary 92 is contained in a finite number of (d — 1)-
dimensional hyperplanes, we say that Q is polytopic. Moreover, if Q is
bounded, it is called a polytope; in particular, Q is called a polygon for d = 2

and a polyhedron for d = 3.

A simplex S in R? is a convex hull of d + 1 points, Ay, A, ..., Agi1, that
do not belong to the same hyperplane. We denote by hg the length of the
longest edge of S. Let F; be the face of a simplex S opposite to the vertex A;
and let v; be the altitude from the vertex A; to the face F;. For d = 3 angles
between faces of a tetrahedron are called dihedral, whereas angles between
its edges are called solid.

Next we define a simplicial partition T;, over the polytope Q C R?. We
subdivide  into a finite number of simplices (called elements or simplicial
elements), so that their union is Q, any two simplices have disjoint interiors
and any facet of any simplex is a facet of another simplex from the partition
or belongs to the boundary 0.

The set F = {7}, }n>0 is called a family of partitions if for any € > 0 there
exists 7, € F with h < e.

3 On the equivalence of various regularity con-
ditions

The regularity conditions presented in the introduction can, in fact, be sum-

marized into four conditions for the regularity of simplicial partitions which

we will present below. In what follows, all constants C; are independent of
S and h, but can depend on the dimension d € {2, 3}.

Condition 1: There exists a constant C; > 0 such that for any partition
T, € F and any simplex S € 7;, we have

measy S > C1hY . (1)



Condition 2: There exists a constant C; > 0 such that for any partition
T, € F and any simplex S € 7}, there exists a ball B C S with radius r such
that

T 2 Oghs . (2)

Condition 3: There exists a constant C'3; > 0 such that for any partition
7, € F and any simplex S € 7;, we have

measy S > Cy measy B, (3)

where B O S is the circumscribed ball about S.

Condition 4: There exists a constant Cy > 0 such that for any partition
T, € F, any simplex S € 7j,, and any dihedral or solid angle « of S, we have

(0% Z C4. (4)

Before we prove that the above four conditions are equivalent, we present
three auxiliary lemmas.

Lemma 1. For any simplex S, and any i € {1,...,d+ 1}, d € {2,3}, we

have
measy S < hé, (5)
measg_; F; < hdS_l, (6)
U; S hs. (7)

P roof: Relations (5) and (6) follow from the fact that the distance between
any two points of a simplex S is not larger than hg. Thus, S and any of its
faces F; (if d = 3), or edges F; (if d = 2), are contained in a cube and a
square with edges of length hg. Inequality (7) is obvious. O

Lemma 2. For any simplex S we have
2r% > hg > 2r, (8)

where r° is the radius of the circumscribed ball BY about S, and r is a radius
of any ball B C S.

Proof: Since BC S C BY, their diameters are nondecreasing. The sharp
inequality in (8) is evident. O

Recall that for any i € {1,...,d + 1} we have

1
measy S = p v; measy_1 ;. (9)



Lemma 3. If condition (1) holds and d € {2,3}, then there exist positive
constants Cs, Cg, and C7 such that for any partition T, € F, any simplex
S €Ty, and any i € {1,...,d+ 1}, we have

measy_q F; > C%h‘é’l, (10)
(% Z CGhs, (11)
sina > Cf, (12)

where « 18 any dihedral or solid angle of the simplex S.

Proof From (1), (9), and (7), we obtain

1 1
C1h < measq S = p v; measy_; F; < 7 hs measg_1 F;, (13)
which implies (10). Further, the inequality (11) follows from (13) if we use
relation (6) in the last inequality of (13).
For any angle a of triangular elements or dihedral angle « for tetrahedral
elements, we get
. Ui
sina > — > Cg.
hs
Similar relations hold for the solid angles of the triangular faces of tetrahedron
S (i.e., when d = 3), since in this case altitudes in the triangular faces
are not greater than an appropriate altitude v; of the tetrahedron. Thus,
C7 = arcsin Cg. O

Theorem 1. For the dimension d € {2,3}, conditions 1, 2, 3, and 4 are
equivalent.

P roof: We prove that condition (1) is equivalent to each of conditions (2),

(3), and (4).

(1) = (2): Let Bg be the inscribed ball of of S with the radius rg and
the center Og. We decompose S into d + 1 subsimplicies — conv {Og, F;},
i€ {l,...d+1}. All of them have the same altitude rg, i.e., by (9), we get

d+1

1
er measq—1 Fj. (14)
i=1

measg S = p

Further, for any face of any simplex inequality (6) is valid, i.e., d meas; S <
rs(d+ 1)h%, and now using (1), we finally observe that

rs(d+1)h§™" > d meas, S > Cid hg, (15)

Chd
d+1
(2) = (1): Obviously, from the fact that B C S and (2) we get

which implies Condition 2 if we take B = Bg, r = rg, and Cy =

measy S > measg B > mr? > w O h, (16)



which implies Condition 1.

(1) = (3): From (1) and (5) we observe that h¢ > meas; S > C1h%. Also,
measq B¥ = Cs(d)(r®)?, where Cs(2) = 7 and Cs(3) = 7. We prove that
under condition (1), there exists a constant Cy > 0 such that for any simplex
S from any partition 7;, € F we have

r¥ < Cohs . (17)
If (17) holds, then using (1) we immediately prove (3) as follows

(Ts)d . Cl
Gy C§Cs(ad)

measg S > C’lhg >4 meas,; B°. (18)

Consider first the case d = 2. Let S denote the triangular element
A1 A Az, Tt is well-known that
o5 _ [Aide] - [AsAs| - | A1 Ay

4 meass S

. (19)

Then in view of (1) (for d = 2) and the fact that any edge of S is of a length
not greater than hg we have

so_hs 1

= ACEE T AC hs = Cohs.

For the case d = 3 we use the following formula for the calculation of the
circumradius presented in [6, p. 316] (cf. [14, p. 212]) for the tetrahedral
element S = A1A2A3A4

s VVs

Y] meass S’

(20)

where
Ve = 251512 + 23130312 + 23131312 — 1115 — 1513 — I3l (21)

In the above [, and [,,3 are the lengths of opposite edges of S, p = 1,2,3.
Obviously, using again the fact that [; < hg, j =1,...,6, we have Vg < 618,
Thus, from (1) (for d = 3) and (20) we get

/6 he
S < S — \/éhg:Cth.

VYN S YT

(3) = (1): In view of (3) and (8) we observe that

C3Cs(d)

measy S > Cy measy B = C5Cq(d)(r”)? > 5

hg,  (22)

which implies Condition 1.
(1) = (4): See (12).

(4) = (1): First we consider the case d = 2. Let S be again the triangular
element A;A;A; and let hg = |A1Az|. Now, we cut out of the edge A;A;



Figure 1: lustration for the proof (4) = (1).

the segment |MN| of the length % with the endpoints M and N be at the
distance %5 from the vertices A; and As, respectively (see the left of Figure
1).

Thus, |Ay M| = |[NA3| = %S. Since the angles /Ay A1 Az and LAy A3 A, are
bounded from above and below due to (4), we can form a rectangle K LN M
inside of S (see the shadowed area in Figure 1 (left)) so that |M K| = |LN| =
%5 tan Cy. It is clear then that measy, S > measy KLNM = %S%S tanCy =

C’lh%, where C; = %tan Cy.

Consider now the case d = 3 and let S denote a tetrahedron A;A3A3A4
(see Figure 1 (right)). Using the above argumentation for the triangular
faces A1 Ay A3 and A; A3 A, we can form two rectangles K LN M and PQN M
with areas equal to % h% tan Cy. Further, we consider the prism KLNQPM,
which is inside of the tetrahedron S. Thus, measz S > C;h%, where C; =

6i4tan2 Cysin Cy, due to boundedness of the dihedral angle between faces
A1A2A3 and A1A3A4, see (4) O

Definition 1. A family of simplicial partitions is called regular if Condition
1 or 2 or 3 or 4 holds.

Remark 1. Consider a tetrahedron whose base is an equilateral triangle
with a very high altitude (ending at the centre of the base). Then the three
dihedral angles at the base are almost 90° and the remaining three angles are
approximately 60°. However, some solid angles are very small. Therefore, in
Condition 4 a positive lower bound on solid angles is prescribed.

Remark 2. Condition (1) seems to be simpler than the ball conditions or
the angle condition, and therefore, it may be preferred in theoretical finite
element analysis. On the other hand, the angle conditions are often used in
finite element codes to keep simplices nondegenerating.

4 Final remarks

In 1957, Synge [18, p. 211] proved that linear triangular elements have opti-
mal interpolation properties in the C''-norm provided there exists a positive



constant vy < 7 such that for any 7, € F and any triangle S € 7, we have

Vs < Y0, (23)

where g is the maximal angle of S. We observe that in this case the minimal
angles ag may tend to zero as h — 0. On the other hand, if Zlamal’s
condition holds, then the maximal angle condition (23) holds as well. In
1974, several authors [1, 2, 7, 8] independently proved the convergence of
the finite element method under Synge’s condition. According to [11], the
maximal angle condition (23) is equivalent to the following circumscribed
ball condition for d = 2: there exists a constant C'yy > 0 such that for any
partition 7;, € F and any triangle S € 7, we have (cf. (17))

¥ < Chohs. (24)

The associated families of partitions are called semireqular. Each regular
family is semiregular, but the converse implication does not hold. Therefore,
(3) implies (24), but (24) does not imply (3).

Synge’s condition (23) is generalized to the case of tetrahedra in [12] and
[15]. However, an extension of (23) or (24) to R so that simplicial finite
elements preserve their optimal interpolation properties in Sobolev norms is
still an open problem.

It is easy to verify that conditions (1) and (2) are equivalent also for
non-simplicial finite elements.

Replacing (1) and (2) by
measy S > C}h?, (25)

and
s Z Céh,

respectively, we can show that these conditions are also equivalent. The
associated family of such partitions is called strongly reqular (cf. [5, p. 147]).

Remark 3. Let us point out that for a strongly regular family of partitions
the well-known inverse inequalities hold (see [5, p. 142]), e.g.,

C
lonlls < <-llonllo - Von € Vi, (26)

where V}, are finite element subspaces of the Sobolev space H!((2), the symbol
C stands for a constant independent of h and || - || is the standard Sobolev
norm. Inverse inequalities play an important role in proving convergence of
the finite element method of various problems (see [15]).

Remark 4. In [3], [9], and [10] we show how to generate partitions with
nonobtuse dihedral angles, i.e., all simplices satisfy the maximal angle con-
dition in R?. Such partitions guarantee the discrete maximum principle for
a class of nonlinear elliptic problems solved by linear simplicial elements (see

[13]).



References

1]

2]

[10]

[11]

[12]

[13]

[14]

BaABUSKA, 1., Aziz, A. K., On the angle condition in the finite element
method, SIAM J. Numer. Anal. 13 (1976), 214-226.

BARNHILL, R. E., GREGORY, J. A., Sard kernel theorems on trian-

gular domains with application to finite element error bounds, Numer.
Math. 25 (1975/1976), 215-229.

BRrRANDTS, J., KoroTOV, S., KRiZEK, M., Dissection of the path-
simplex in R™ into n path-subsimplices, Preprint A496 (2006), Helsinki
University of Technology (submitted).

BRrRANDTS, J., KRiZEK, M., Gradient superconvergence on uniform
simplicial partitions of polytopes, IMA J. Numer. Anal. 23 (2003), 489—
505.

CiarRLET, P. G., The Finite Element Method for Elliptic Problems.
North-Holland, Amsterdam, 1978.

FIEDLER, M., Geometrie simplexu v E,,, Casopis Pést. Mat. XII (1954),
297-320.

GREGORY, J. A., Error bounds for linear interpolation on triangles,
In Proc. MAFELAP II J.R. Whiteman (ed.) Academic Oress, London
(1976), 163-170.

JAMET, P., Estimations de l'erreur pour des éléments finis droits
presque dégénérés, RAIRO Anal. Numér. 10 (1976), 43-60.

KoroTov, S., KRIZEK, M., Acute type refinements of tetrahedral
partitions of polyhedral domains, SIAM J. Numer. Anal. 39 (2001),
724-733.

KoroTov, S., KriZEK, M., Global and local refinement techniques
yielding nonobtuse tetrahedral partitions, Comput. Math. Appl. 50
(2005), 1105-1113.

KRiZEK, M., On semiregular families of triangulations and linear inter-
polation, Appl. Math. 36 (1991), 223-232.

KRriZEK, M., On the maximum angle condition for linear tetrahedral
elements, SIAM J. Numer. Anal. 29 (1992), 513-520.

KRriZEK, M., LIN QUN, On diagonal dominance of stiffness matrices in
3D, East-West J. Numer. Math. 3 (1995), 59-69.

KRiZEK, M., STROUBOULIS, T., How to generate local refinements of
unstructured tetrahedral meshes satisfying a regularity ball condition,
Numer. Methods Partial Differential Equations 13 (1997), 201-214.

10



[15]

[16]

[18]

[19]

KRIZEK, M., NEITTAANMAKI, P., Mathematical and Numerical Meth-
ods in Modelling in Electrical Engineering: Theory and Applications,

Kluwer Academic Publishers, 1996.

LiN, J., LIN QUN, Global superconvergence of the mixed finite element
methods for 2-d Maxwell equations, J. Comput. Math. 21 (2003), 637
646.

LiNn QunN, XU, J., Linear finite elements with high accuracy, J. Comput.
Math. 3 (1985), 115-133.

SYNGE, J. L., The Hypercircle in Mathematical Physics, Cambridge
Univ. Press, Cambridge, 1957.

ZLAMAL, M., On the finite element method, Numer. Math. 12 (1968),
394-409.

11






(continued from the back cover)

A501

A500

A499

A498

A497

A496

A495

A494

A493

Marina Sirvio
On an inverse subordinator storage
June 2006

Outi Elina Maasalo , Anna Zatorska-Goldstein

Stability of quasiminimizers of the p—Dirichlet integral with varying p on metric
spaces

April 2006

Mikko Parviainen
Global higher integrability for parabolic quasiminimizers in nonsmooth domains
April 2005

Marcus Ruter , Sergey Korotov , Christian Steenbock

Goal-oriented Error Estimates based on Different FE-Spaces for the Primal and
the Dual Problem with Applications to Fracture Mechanics

March 2006

Outi Elina Maasalo
Gehring Lemma in Metric Spaces
March 2006

Jan Brandts , Sergey Korotov , Michal Krizek
Dissection of the path-simplex in R™ into n path-subsimplices
March 2006

Sergey Korotov

A posteriori error estimation for linear elliptic problems with mixed boundary
conditions

March 2006

Antti Hannukainen , Sergey Korotov

Computational Technologies for Reliable Control of Global and Local Errors for
Linear Elliptic Type Boundary Value Problems

February 2006

Giovanni Formica , Stefania Fortino , Mikko Lyly

A vartheta method—based numerical simulation of crack growth in linear elastic
fracture

February 2006



HELSINKI UNIVERSITY OF TECHNOLOGY INSTITUTE OF MATHEMATICS
RESEARCH REPORTS

The list of reports is continued inside. Electronical versions of the reports are
available at http://www.math.hut.fi/reports/ .

A506 Sergey Korotov
Error control in terms of linear functionals based on gradient averaging tech-
niques
July 2006

A505 Jan Brandts , Sergey Korotov , Michal Krizek
On the equivalence of regularity criteria for triangular and tetrahedral finite
element partitions
July 2006

A504 Janos Karatson , Sergey Korotov , Michal Krizek
On discrete maximum principles for nonlinear elliptic problems
July 2006

A503 Jan Brandts, Sergey Korotov , Michal Krizek , Jakub Solc
On acute and nonobtuse simplicial partitions
July 2006

A502 Vladimir M. Miklyukov , Antti Rasila, Matti Vuorinen
Three sphres theorem for p-harmonic functions
June 2006

ISBN 951-22-8315-8
ISSN 0784-3143



