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1 Introduction

The work is devoted to a recent trend in a posteriori error estimation which is
based on the concept of computational error control in terms of linear (goal-
oriented) functionals in addition to the classical error control in global energy
norms (see, e.g., [1], [2], [3], [9], [10], [12], [13], [14] and references therein).
Error estimates of such a type are strongly motivated by practical needs,
in which analysts are often interested not in the value of the overall error,
but in errors over certain parts of the solution domain or relative to some
interesting characteristics (“quantities of interest”). One way for estimating
such errors is to introduce a linear functional ` associated with a particular
subdomain of interest (or a quantity of interest) and to obtain an estimate
for < `, u − ū >, where u is the exact solution and ū is the approximate
one. In the paper we show that popular gradient averaging procedures can
be effectively used (even for strongly inhomogeneous meshes and without any
additional regularity of the exact solutions) for such type of error estimation
for linear elliptic problems and demonstrate the effectivity of the proposed
estimators in several numerical tests.

2 General scheme

In this section we present in a compact form a general scheme (cf. [9])
for obtaining the required estimates. Let Y be Hilbert space with a scalar
product (·, ·) and a norm ‖y‖Y = (y, y)1/2, V be Banach space with a norm
‖ · ‖V , Λ ∈ L(V, Y ), A ∈ L(Y, Y ) and

c1‖y‖
2
Y ≤ (Ay, y) ≤ c2‖y‖

2
Y ∀y ∈ Y, c3‖w‖V ≤ ‖Λw‖Y ∀w ∈ V0, (1)

where V0 is a subspace of V and c1, c2, c3 are positive constants. Given
f ∈ V ∗

0 , consider the following problem.

Primal Problem (P): Find u ∈ V0 such that

(AΛu, Λw) = < f,w > ∀w ∈ V0, (2)

where < ·, · > denotes the duality pairing of the spaces V0 and V ∗
0 .

Let ` be another element of V ∗
0 . We want to effectively estimate the quan-

tity < `, u− ū > for an arbitrary element ū ∈ V0 viewed as an approximation
of u. For this purpose one usually emploies the so-called adjoint problem (cf.
[1], [3], [11], [13]):

Adjoint Problem (Pa): Find v ∈ V0 such that

(A∗Λv, Λw) = < `,w > ∀w ∈ V0, (3)

where A∗ is the operator adjoint to A.

Remark 1: In the case of a selfadjoint operator (A ≡ A∗) both above prob-
lems are associated with a functional of the type J(w) = 1

2
(AΛw, Λw) + <
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µ,w >, which is known to have a unique minimizer in V0 for any µ ∈ V ∗
0 in

view of conditions (1).

Proposition 1: Let u and v be solutions of problems (P) and (Pa), respec-
tively. Then for ū, v̄ ∈ V0 we have

< `, u − ū > = E0(ū, v̄) + E1(ū, v̄), (4)

where

E0(ū, v̄) = < f, v̄ > − (AΛū, Λv̄), E1(ū, v̄) = (AΛ(u− ū), Λ(v− v̄)). (5)

For the proof see [9, p. 36].

The error decomposition (4) is valid for any elements ū and v̄ from V0. The
term E0(ū, v̄) is explicitly computable, whereas E1(ū, v̄) contains unknown
solutions of problems (P) and (Pa). It is obvious that the term E0(ū, v̄) is
dominating if v̄ is “sufficiently close” to v, i.e., in such a case E0(ū, v̄) can
serve as a directly computable estimator for the quantity < `, u− ū >. This
situation can happen in concrete real-life problems if we have enough com-
puter resources (time, memory) to compute the element v̄ (later on always
called as an approximation to v) be sufficiently accurate, i.e., close to v.
Another situation is when one has certain limits for computing v̄. In this
case, it seems that a more natural way is to use an approximate solution
of (Pa) having approximately the same quality as the approximate solution
of (P) (i.e., the element ū) and to try to recover the unknown Λu and Λv

in the term E1 by suitable post-processing techniques. We note also that
the same approximation v̄ can be used for different approximations for the
primal problem, and even for another primal problems (e.g., with different
f).

To be more precise, let Vh and Vτ be two finite-dimensional subspaces of
V0, and let ū = uh, v̄ = vτ , where uh and vτ are solutions of the following
problems

(AΛuh, Λwh)=< f,wh > ∀wh ∈ Vh, (A∗Λvτ , Λwτ )=< `,wτ > ∀wτ ∈ Vτ .

(6)
In a particular case of Vh ≡ Vτ , the term E0(uh, vτ ) vanishes due to the or-
thogonality condition in (6). To the contrary, using non-coinciding subspaces
Vh and Vτ one gets the estimate that has both terms presented. Further,
let Gh and Gτ be suitable post-processing operators defined on Vh and Vτ ,
respectively. We replace E1(uh, vτ ) by the directly computable functional
Ẽ(uh, vτ ) := E0(uh, vτ ) + Ẽ1(uh, vτ ), where

Ẽ1(uh, vτ ) := (A(Gh(Λuh) − Λuh), Gτ (Λvτ ) − Λvτ ). (7)

If the operators Gh and Gτ properly recover unknown elements Λu and Λv,
then one can expect that the difference between E1(uh, vτ ) and Ẽ1(uh, vτ )
is reasonably small, and, thus, the latter quantity can succesfully be used
instead of E1.
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3 Examples

In this section, the general error estimation scheme presented in Section 2,
is used for a construction of reliable estimators for the error < `, u − uh >

for two concrete model problems – scalar linear elliptic equation and linear
elasticity problem. In addition, the constructed estimators are of the integral
form and naturally suggest convenient mesh adaptivity procedures, which are
shown to be quite effective for both types of problems.

3.1 Linear elliptic equation of the second order

Problem Formulation: Let Ω be a bounded domain in R
d (d = 1, 2, ...)

with a Lipschitz continuous boundary ∂Ω. We set

Y = L2(Ω, Rd), V = H1(Ω), V0 = H1
0 (Ω), V ∗

0 = H−1(Ω),

define Λ as ∇ = ( ∂
∂x1

, . . . , ∂
∂xd

)T , and consider the problem: Find u such that

−div(A∇u) = f in Ω, u = 0 on ∂Ω, (8)

where f ∈ L2(Ω), the matrix A = {aij(x)}d
i,j=1 is symmetric and is such that

aij(x) ∈ L∞(Ω), A(x)ξ · ξ ≥ c4 ‖ξ‖2 ∀ξ ∈ R
d ∀x ∈ Ω. (9)

Problem (P) consists of finding u ∈ V0 such that

∫

Ω

A∇u · ∇w dx =

∫

Ω

fw dx ∀w ∈ V0. (10)

Let uh ∈ V0 be a continuous piecewise affine finite element approximation of
u computed on the primal mesh Th. For simplicity, we consider the following
linear functional

< `, u − uh > :=

∫

Ω

ϕ(u − uh) dx, where supp ϕ := ω ⊆ Ω, (11)

estimation of which gives a certain information about (local) behaviour of
the error u − uh in subdomain ω.

Adjoint Problem (Pa) consists of finding v ∈ V0 such that

∫

Ω

A∇v · ∇w dx = < `,w > ∀w ∈ V0. (12)

If, in (11), the function ϕ ∈ L2(Ω), then the adjoint problem (12) has a
unique solution.
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Construction of Estimator: Let vτ ∈ V0 be a continuous piecewise affine
finite element approximation of v computed on the adjoint mesh Tτ . Then
value (11) is estimated by Ẽ(uh, vτ ) = E0(uh, vτ ) + Ẽ1(uh, vτ ), with

E0 =

∫

Ω

fvτ dx −

∫

Ω

A∇vτ · ∇uh dx, (13a)

Ẽ1 =

∫

Ω

A(Gτ (∇vτ ) −∇vτ ) · (Gh(∇uh) −∇uh) dx, (13b)

where the post-processing operator (usually called gradient averaging) Gh

(or Gτ ): L∞(Ω, Rd) → H1(Ω, Rd) defines a vector-valued piecewise affine
function by setting each nodal values as, e.g., the mean (or weighted mean)
of values ∇uh (or ∇vτ ) on all elements incident with the corresponding nodal
point (cf. [6] and references therein).

Remark 2: In the above we consider problem (8) with a homogeneous Dirich-
let boundary condition only for simplicity. A more general problem with non-
homogeneous mixed boundary conditions can be treated in the same way.

Remark 3: For averaging procedures in higher dimensions we refer to [4]. The
scheme proposed above is also valid for approximations obtained via finite
elements of higher orders, the relevant averagings in this case are given, e.g.,
in [5] (and in references therein).

Remark 4: Successful replacement of unknown solutions by the averaged gra-
dients is actually based on the phenomenon of the superconvergence [4, 5, 14],
which is mathematically proved only in the presence of sufficient smooth-
ness of the exact solutions and sufficient regularity of the meshes used in
computations. The performance of the estimator for such special cases was
demonstrated, e.g., in some tests in [9, 8]. However, the estimator surpris-
ingly works very well even if we have no additional regularity of the solution
and use in computations strongly inhomogeneous meshes. This is clearly
shown in all below tests (also for the linear elasticity) in which we consider
the solution domains with reentrant corners. In all the tests of the present
paper we define averaged gradients using weighted mean of relevant values
of gradients with respect to areas of triangles in each patch. This choice of
averaging is used mainly due to the fact that triangles in meshes used can
be of quite different sizes in what follows and, thus, simple mean does not
seem to be reasonable. However, the tests performed showed that another
averaging procedures give very similar results.

Test 1a. Let Ω be a planar (i.e., d = 2) L-shaped domain with re-entrant
corner at (0, 0) obtained from a square (−1, 1) × (−1, 1), ω := (−0.2, 0) ×
(−0.2, 0) (see Fig. 1 (left)), let ϕ ≡ 1 in ω and vanish outside of ω, A be the
unit matrix, f ≡ 10 in Ω. The finite element solution uh is calculated on Th

with 88 nodes, the error < `, u − uh >= 0.005346.
The results of performance of the estimator for various choices of adjoint

meshes (having 31, 42, . . . , 2077 nodes, see Figure 1 (right)) are presented
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in Figure 2. The behaviour of the estimator Ẽ and its terms, E0 and Ẽ1,
demonstrated there is very typical for all other tests for this type of problems.
To evaluate the quality of the estimator we use the so-called effectivity index

Ieff :=
Ẽ(uh, vτ )

< `, u − uh >
,

and clearly observe that: a) estimator gives reasonably good results (0.72 ≤
Ieff ≤ 0.93) for adjoint meshes which are considerably coarser than the
primal meshes (in this case both terms in the estimator are quite comparable);
b) estimator is asymptotically correct (Ieff → 1 as τ → 0) (in this case,
Ẽ1 → 0 and Ẽ converges to the exact error). In this case, only the first term
E0 can be used, in fact, for the estimation.
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Figure 1: Ω, ω, Th (88 nodes), uh, and typical Tτ (31 and 247 nodes) for
Test 1a
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Figure 2: Behaviour of estimator Ẽ and its parts, E0 and Ẽ1, for various
choices of adjoint meshes in Test 1a. Mesh Th has 88 nodes in all computa-
tions

Test 1b (adaptivity). The estimator Ẽ is, in fact, an integral over Ω, i.e.,

Ẽ(uh, vτ ) :=
∑

T∈T
(i)

h

IT , (14)

where each contribution IT is a value of the integral taken over a particular
element T of the current primal mesh T

(i)
h . To construct the next primal

mesh T
(i+1)

h in order to decrease the value (11), we propose the following
adaptive procedure. First, we find the maximum among all modulus |IT |’s
and, secondly, mark up those elements T ’s which have their contributions
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larger than the “user-given threshold” θ (θ ∈ [0, 1]) times that maximum
value. Refining the marked elements (and making the mesh conforming), we

get T
(i+1)

h .
This procedure has been tested for the same problem as in Test 1a, with

initial T
(0)

h having 59 nodes and with Tτ taken the same (42 nodes) for all
4 refinements steps (threshold θ := 0.7 in all the steps for simplicity). The
results are reported in Table 1.

We observe that the exact error (6-th column in Table 1) and the corre-
sponding estimator values (5-th column in Table 1) monotonically decrease.
The values of Ieff are very close to 1 in all computations, also in the case
when the primal mesh is, e.g., 4.5 times more dense than the corresponding
adjoint mesh (see the last raw in Table 1). Several corresponding meshes are
presented in Figure 3.

Table 1: The results for adaptivity in Test 1b

Prim Adj E0 Ẽ1 Ẽ

∫

ω

ϕ (u − uh) dx Ieff

T
(0)

h (59) 42 0.000785 0.003433 0.004218 0.005428 0.78

T
(1)

h (72) 42 0.000586 0.001774 0.002360 0.002739 0.86

T
(2)

h (90) 42 0.000582 0.001217 0.001799 0.001804 0.99

T
(3)

h (149) 42 0.000470 0.000939 0.001409 0.001540 0.91

T
(4)

h (186) 42 0.000420 0.000824 0.001244 0.001338 0.93
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Figure 3: Meshes T
(0)

h (59 nodes), Tτ (42 nodes), T
(1)

h (72 nodes) and T
(4)

h

(186 nodes) for Test 1b

3.2 The linear elasticity problem

Problem Formulation: The classical formulation consists of finding the
displacement u and the stress σ in a bounded elastic body Ω ⊂ R

d such that

divσ + f = 0 in Ω , σ = L ε, ε(u) =
1

2

(
∇u + (∇u)T

)
, (15)

u = u0 on Γ1 , σ n = g on Γ2 , (16)

where n is the unit outward normal to the boundary ∂Ω = Γ1 ∪ Γ2, f and g
are the given volume and surface loads, and u0 prescribes the displacement
on Γ1.
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In the above, L = L(x) = (Lijkl(x))d
i,j,k,l=1 denotes the fourth order

tensor of the elastic coefficients, which satisfy the symmetry condition

Ljikl = Lijkl = Lklij , i, j, k, l = 1, . . . , d, (17)

and the condition that there exists a positive constant c5 such that

L(x) τ : τ ≥ c5|τ |
2 ∀τ ∈ M

d×d
s . (18)

In the above, M
d×d
s denotes the space of symmetric tensors of the second

order and the symbol “:” stands for the scalar product of symmetric tensors,
i.e.,

τ : κ :=
d∑

i,j=1

τijκij, Lτ : κ :=
d∑

i,j,k,l=1

Lijklτijκkl, |τ |2 := τ : τ,

for τ, κ ∈ M
d×d
s .

Further, let

Lijkl ∈ L∞(Ω), f ∈ L2(Ω, Rd), g ∈ L2(Γ2, R
d), u0 ∈ H1(Ω, Rd), (19)

and let (17)–(18) hold almost everywhere in Ω. In what follows we set

Y = L2(Ω, Md×d
s ), V = H1(Ω, Rd), V0 = {v ∈ H1(Ω, Rd) | v = 0 on Γ1} ,

identify Λv with ε(v) and apply the scheme proposed in Section 2.

Problem (P) reads: Find u ∈ V0 + u0 such that

∫

Ω

Lε(u) : ε(w) dx =

∫

Ω

f · w dx +

∫

Γ2

g · w ds ∀w ∈ V0. (20)

Let uh ∈ V0 + u0 be a continuous piecewise affine finite element approxi-
mation of u computed on (primal) mesh Th. Similarly to Section 3.1, we can
wish to estimate the quantity

< `,u − uh >:=

∫

Ω

Φ · (u − uh) dx, where suppΦ := ω ⊆ Ω, (21)

providing with information on the error u − uh in (local) subdomain ω.

Corresponding Problem (Pa): Find v ∈ V0 such that

∫

Ω

Lε(v) : ε(w) dx = < `,w > ∀w ∈ V0. (22)

Problem (22) is uniquely solvable provided Φ ∈ L2(Ω, Rd).
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Construction of Estimator: Let vτ ∈ V0 be a continuous piecewise affine
finite element approximation of v computed on (adjoint) mesh Tτ . The value

(21) is evaluated then by Ẽ(uh,vτ ) = E0(uh,vτ ) + Ẽ1(uh,vτ ), where

E0(uh,vτ ) =

∫

Ω

f · vτ dx +

∫

Γ2

g · vτ ds −

∫

Ω

L ε(uh) : ε(vτ ) dx, (23a)

Ẽ1(uh,vτ ) =

∫

Ω

L (Gh(ε(uh)) − ε(uh)) : (Gτ (ε(vτ )) − ε(vτ )) dx , (23b)

Gh(ε(uh)) :=
1

2

(
Gh(∇uh) + (Gh(∇uh))T

)
, (24a)

Gτ (ε(vτ )) :=
1

2

(
Gτ (∇vτ ) + (Gτ (∇vτ ))

T
)
. (24b)

In (23)–(24), the gradient averaging operators Gh and Gτ are similar to those
used in Section 3.1 (cf. [6]).

Test 2a. We solve the plane stress problem (i.e., d = 2) in domain Ω
with re-entrant corner at (0, 0) obtained from a square (−1, 1) × (−1, 1),
ω := (−0.2, 0.0) × (−0.1, 0.1) (see Fig. 4 (left)). The Young modulus E =
106, Poisson ratio ν = 0.3, f ≡ (0, 0), the Dirichlet boundary condition
u0 = (0,±1) is prescribed on the upper and lower parts of ∂Ω, respectively.
In the remaining portions of ∂Ω the homogeneous Neumann condition is
imposed. The finite element solution uh is calculated on Th with 120 nodes,
the error < `,u−uh >= 0.002067 for Φ = (1, 1) in ω and Φ = (0, 0) outside
of ω. The results of computations for various choices of adjoint meshes are
presented in Figure 5.

As in Test 1a, we see that the estimator gives reasonably good values
(0.61 ≤ Ieff ≤ 0.79) for the case when adjoint meshes are coarser than
the primal ones. Similarly to a scalar elliptic problem, we clearly observe
the asymptotic convergence of the estimator as the adjoint meshes used are
becoming more and more dense.
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Figure 4: Ω, ω, Th (120 nodes), Von Mises stress distribution, and typical Tτ

(75 and 435 nodes) for Test 2a

Test 2b (adaptivity). The adaptivity procedure is performed as proposed
in Test 1b with the threshold θ = 0.6 in all 4 refinement steps. The results
are presented in Table 2. Similarly to Test 1b, we observe that the estima-
tor values and the corresponding exact error values monotonically decrease.
Several corresponding meshes are presented in Figure 6.
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Figure 5: Behaviour of estimator Ẽ and its parts, E0 and Ẽ1, for various
choices of adjoint meshes in Test 2a. Mesh Th has 120 nodes in all computa-
tions
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Figure 6: The meshes T
(0)

h (61 nodes), Tτ (62 nodes), T
(1)

h (70 nodes) and

T
(4)

h (111 nodes) for Test 2b

Table 2: The results for adaptivity in Test 2b

Prim Adj E0 Ẽ1 Ẽ

∫

ω

Φ · (u − uh)dx Ieff

T
(0)

h (61) 62 0.001448 0.000543 0.001991 0.002898 0.69

T
(1)

h (70) 62 0.001417 0.000482 0.001899 0.002644 0.72

T
(2)

h (90) 62 0.001222 0.000531 0.001753 0.002433 0.72

T
(3)

h (103) 62 0.001147 0.000514 0.001661 0.002334 0.71

T
(4)

h (111) 62 0.001006 0.000498 0.001504 0.002211 0.68

4 Final Comments

1. Our approach is different from those proposed in [1, 3], where it is
assumed that the primal and adjoint problems are always solved in the same
space. Using our technique one can obtain reliable estimates also for the
case when the number of nodes in the adjoint mesh is considerably smaller
than the number of nodes in the primal mesh. The estimator still works
very well even if we have no additional regularity of the solution and use in
computations strongly inhomogeneous meshes.

2. The effectivity of the proposed technique, strongly increases when one
is interested not in a single solution of the primal problem for a concrete data,
but analyzes a series of approximate solutions for a certain set of boundary
conditions and various right-hand sides (which is typical in the engineering
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design when it is necessary to model the behavior of a construction for var-
ious working regimes). In this case, the adjoint problem can be solved only
once for each linear functional (e.g., on a very dense adjoint mesh), and this
solution can be further used in testing the accuracy of approximate solutions
of various primal problems.

3. Our tests demonstrate the high effectivity of the adaptive procedure
proposed in the paper, see also [8].

4. Estimates for the error measured in terms of specially constructed
linear functionals can also be used for reliable evaluating local integral norms
of the error, see [7] and [9] for details.

5. The approach proposed in this paper has been recently successfully
tested for evaluating the nonlinear J-integral (see [12] for definitions), which
serves as a fracture criterion in linear elastic fracture mechanics, in the work
[11].

6. It seems to be possible to use the same ideology also for approximations
obtained, e.g., by the hp-FEMs.
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