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1 Introduction

1.1. Let A be a subset of the euclidean n-space Rn and let L ≥ 1. A map
f : A → Rn is L-bilipschitz if

|x − y|/L ≤ |fx − fy| ≤ L|x − y|

for all x, y ∈ A.
In general, an L-bilipschitz map f : A → Rn cannot be extended to a

bilipschitz map F : Rn → Rn, not even to a homeomorphism, but this is
often possible in the case the bilipschitz constant L is close to 1.

1.2. Let Φ be the set of increasing homeomorphisms ϕ : R+ → R+. If
ϕ ∈ Φ and δ > 0, we say that a set A ⊂ Rn has the (ϕ, δ)-bilipschitz
extension property, (ϕ, δ)-BLEP for short, if for 0 ≤ ε ≤ δ, every (1 + ε)-
bilipschitz map f : A → Rn has an extension to a (1 + ϕ(ε))-bilipschitz map
F : Rn → Rn. We say that a set A ⊂ Rn belongs to the class ϕ-BLEP if it
has the (ϕ, δ)-BLEP for some δ > 0. In the case ϕ(ε) = Cε we say that A
has the (C, δ)-linear BLEP.

It was shown in [ATV2] that a set A ⊂ Rn has (C, δ)-linear BLEP if it
satisfies a geometric condition called sturdiness; see 2.2 for the definition.
In this article we prove that the converse is true in the 2-dimensional case.
More precisely, we obtain the following theorem.

1.3. Theorem. Let A ⊂ R2 contain at least three points. Then the

following assertions are quantitatively equivalent:

(1) A is c-sturdy.
(2) A has the (C, δ)-linear BLEP.

Here quantitative equivalence means that C and δ depend only on c, and

conversely, c = c(C, δ).

The proof is given in section 4.3. Note that a set A ⊂ Rn consisting of
at most two points has the 1-linear BLEP but it is sturdy only in the cases
n = 1 or #A = 1.

For extension problems in higher dimensions and with more general bounds
for the bilipschitz constant, see [Vä] and the references in [ATV2].

Acknowledgements: We thank Antti Rasila for his help in drawing the
figure in Section 3, and Jussi Väisälä for useful remarks and corrections
concerning the whole manuscript.

2 Basic concepts

Notation follows closely our main reference [ATV2] and will not be repeated
here except for the abbreviation A(a, r) = A ∩ B̄(a, r).

However, we recall three geometric properties of sets that are needed in
our main result.
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2.1. Thickness. For each unit vector e ∈ Sn−1 we define the projection
πe : Rn → R by πex = x·e. Let A 6= ∅ be a bounded set in Rn. The thickness

of A is the number

θ(A) = inf {d(πeA) : e ∈ Sn−1}.

Alternatively, θ(A) is the infimum of all t > 0 such that A lies between two
parallel hyperplanes F, F ′ with d(F, F ′) = t. We have always 0 ≤ θ(A) ≤
d(A).

2.2. Sturdiness. Let A ⊂ Rn. For a ∈ A we set s(a) = sA(a) = d(a, A \
{a}). Then s(a) > 0 if and only if a is isolated in A.

Let c ≥ 1. We say that the set A ⊂ Rn is c-sturdy if
(1) θ(A(a, r)) ≥ 2r/c whenever a ∈ A, r ≥ cs(a), A 6⊂ B(a, r),
(2) θ(A) ≥ d(A)/c.

If A is unbounded, we omit (2), and the condition A 6⊂ B(a, r) of (1) is
unnecessary.

2.3. Relative connectivity [TV, 4.6]. Let A ⊂ Rn and M ≥ 1. A se-
quence (x0, x1, . . . , xN−1, xN) is proper if xj−1 6= xj for all j. A sequence
(x0, x1, . . . , xN−1, xN ) in A is M -relative in A if it is proper and

|xj−1 − xj|/M ≤ |xj − xj+1| ≤ M |xj−1 − xj|

for all j. Such a sequence is said to join the pairs (x0, x1) and (xN−1, xN).
The set A is M -relatively connected (abbr. RC) if every two proper pairs in
A can be joined by an M -relative sequence in A.

The simplest examples of relatively connected sets are the connected ones,
but also many totally disconnected sets like the Cantor middle-third set sat-
isfy the RC-condition.

2.4. Lemma. Let A ⊂ Rn be a closed c-sturdy set. Then A is c1-RC for

every c1 > c.

Proof. Let a ∈ A and r > 0. Let c1 > c and assume that A ∩ B̄(a, r) 6=
{a} and A 6⊂ B̄(a, r). If R(a, r) = {x ∈ A | r/c1 ≤ |x − a| ≤ r} = ∅,
then θ(A(a, r)) ≤ θ(B̄(a, r/c1)) ≤ 2r/c1 < 2r/c, a contradiction with the
c-sturdiness of A. It follows that, under the above assumptions, R(a, r) 6= ∅,
and by [TV, 4.11], this implies the claim. �

2.5. Linear isometric approximation property. Let A ⊂ Rn. We say
that A has the (C, δ)-linear isometric approximation property (IAP) if given
0 < ε ≤ δ, a (1 + ε)-bilipschitz map f : A → Rn, a point a ∈ A and r > 0,
there is an isometry T = Ta,r : Rn → Rn such that

|Tx − f(x)| ≤ Cεr

for all x ∈ A ∩ B̄(a, r).
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2.6. Theorem. Suppose that a set A ⊂ Rn has the (C, δ)-linear BLEP.

Then it has the (C1, δ)-linear IAP with C1 = C1(C, n).

Proof. Let f : A → Rn be (1 + ε)-bilipschitz with 0 < ε ≤ δ. Suppose
that a ∈ A and r > 0. Since A has the (C, δ)-linear BLEP, there is a (1+Cε)-
bilipschitz extension F : Rn → Rn of f . Let Fa,r = F | B̄(a, r). Then Fa,r is
a 2Cεr-nearisometry and since θ(B̄(a, r)) = d(B̄(a, r)), [ATV1, 3.3] gives an
isometry T = Ta,r : Rn → Rn such that

||T − Fa,r||B̄(a,r) ≤ 2cnCεr.

In particular, we have |Tx − f(x)| ≤ 2Ccnεr for every x ∈ A(a, r), and the
proof is complete with C1 = 2cnC. �

3 Triangle maps

Since we work with the planar case, we use complex numbers whenever it
simplifies notation.

3.1. The basic triangle map f : {−1, 0, 1} → R2 is defined by

f(±1) = ±1 and f(0) = i
√

ε.

This map is (1 + ε)-bilipschitz, but any approximation of f by an isometry
T has an error at least

√
ε/2. This is seen by minimizing the distance from

the image of f to the straight line TR. The following elementary lemma
generalizes this idea.

3.2. Lemma. Let 0 ≤ δ ≤ δ′ ≤ 1/4, let A = {−1, a, 1} ⊂ R2 be

such that θ(A) = |a2| ≤ 2δ, and let f : A → R2 satisfy f(±1) = ±1 and

θ(fA) = |f(a)2| ≥ 2δ′. If the disks B̄(±1, δ′ − δ) and B̄(f(a), δ′ + δ) are

disjoint, then every isometry T : R2 → R2 satisfies ||T − f ||A ≥ δ′ − δ.

Proof. We emphasize that the conditions θ(A) = |a2| and θ(fA) = |f(a)2|
belong to the assumpions. In particular, they imply that −1 < a1 < 1 and
−1 < f(a)1 < 1 so that the situation is not too far from the basic map above.

Suppose that T is an isometry with ||T − f ||A < δ′ − δ and let L = TR.
Writing a′ = (a1, 0), we have

|Ta′ − Ta| = |a′ − a| = |a2| ≤ 2δ.

If L does not meet the disk B(f(a), δ′ + δ), then

|Ta − f(a)| ≥ |Ta′ − f(a)| − |Ta′ − Ta| ≥ (δ′ + δ) − 2δ = δ′ − δ,

a contradiction.
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It follows that the line L meets all three disks B̄(±1, δ′−δ) and B(f(a), δ′+
δ). By assumption, these disks are disjoint, and by elementary geometry we
get

(δ′ − δ) + (δ′ + δ) > |f(a)2| = θ(fA) ≥ 2δ′,

which leads to a contradiction. The result follows from this. �

Later on we will need maps that are defined on a narrow neighbourhood
of a line but that still possess the essential features of the basic triangle map:
they should be (1 + cε)-bilipschitz but their approximation by isometries
should produce an error of the order

√
ε. The following lemmas show how to

construct these maps.

3.3. Lemma. Let 0 ≤ ε ≤ 1/10 and let a, b ∈ [0, 1] be such that 2ε ≤
a ≤ b/2. Then there is a C2 function f : R → R satisfying

(i) f(x) = 0 for x ≤ 0 and x ≥ b;

(ii) f(a) = ε3/2;

(iii) f is 2
√

ε-Lipschitz;

(iv) the curvature K of the graph y = f(x) satisfies K ≤ 1/
√

ε.

Proof. Let 0 < o < a and consider first the interval [o, a]. One should
think that o ≈ 0, but we need o > 0 for technical reasons. Let r =

√
ε. The

graph y = f(x) consists of two circular arcs and a line segment. The con-
struction is based on the diagram below, where also the notation is indicated.

lr

r
h

α

α ao

Part of the graph y = f(x) with h = ε
√

ε.

By elementary geometry the variables l and α must satisfy
{

2r sin α + l cos α = a − o

2r(1 − cos α) + l sin α = ε3/2,

and this system has the exact solution

l =
√

(a − o)2 − 4ε2 + ε3, α = arcsin(
√

ε(2(a − o) + lε − 2l)/(l2 + 4ε)).

The Lipschitz condition requires that tanα ≤ 2
√

ε. It is geometrically ob-
vious that α is decreasing in a, and thus α attains its maximum at a = 2ε.
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By substituting this value and choosing o small enough, we obtain α ≤
arcsin

√
ε ≤ arctan(2

√
ε).

A similar construction is used on the interval [a, b], and outside [o, b − o]
we define f(x) = 0. This function satisfies conditions (i)-(iv), but it is
only piecewise C2. However, at the six points where a circular arc is joined
either to another arc or to a line segment, we use standard smoothing by
clothoids (aka Cornu spirals), in an arbitrarily small neighbourhood of each
joint, in such a way that the Lipschitz constant does not change, the curvature
stays between the appropriate bounds, and the support of f does not expand
outside [0, b]; see [Ad, p. 636] for the basic construction. �

Using the following lemma we can construct tubular neighbourhood ex-
tensions for mappings of the type x 7→ (x, f(x)).

3.4. Lemma. Let 0 < ε < 1/10, let I ⊂ R be an interval and let

f : I → R be
√

ε-Lipschitz and C2. Define F : I × [−δ, δ] → R2 by setting

F (x, y) = x + if(x) + yn(x),

where n(x) is the upper unit normal to the graph y = f(x). Let K be the

maximal curvature of y = f(x). If Kδ ≤ ε, then F is (1 + 4ε)-bilipschitz.
Moreover, if f(x) = 0 except for a subinterval of length l, then |F (z) − z| ≤√

εl + δ for every z ∈ I × [−δ, δ].

Proof. Let zi = (xi, yi) ∈ I × [−δ, δ], i = 1, 2. Note that

|y| ≤ δ, |f ′(x)| ≤
√

ε and
|f ′′(x)|

(1 + f ′(x)2)3/2
≤ K

for all (x, y).
In complex form we have

n(x) =
1

√

1 + f ′(x)2
(−f ′(x) + i).

Thus

|F (z1) − F (z2)|2 = |x1 − x2|2 +

∣

∣

∣

∣

∣

y1f
′(x1)

√

1 + f ′(x1)2
− y2f

′(x2)
√

1 + f ′(x2)2

∣

∣

∣

∣

∣

2

|f(x1) − f(x2)|2 +

∣

∣

∣

∣

∣

y1
√

1 + f ′(x1)2
− y2
√

1 + f ′(x2)2

∣

∣

∣

∣

∣

2

−2(x1 − x2)

(

y1f
′(x1)

√

1 + f ′(x1)2
− y2f

′(x2)
√

1 + f ′(x2)2

)

+2(f(x1) − f(x2))

(

y1
√

1 + f ′(x1)2
− y2
√

1 + f ′(x2)2

)

.
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Writing the right hand side above as |x1 − x2|2 + t1 + t2 + t3 + t4, where
t4 contains the last two terms, we have to estimate each term. Since F is
defined in a convex set, we can use the mean value theorem.

(i) To estimate t1, let g(x, y) = yf ′(x)/
√

1 + f ′(x)2. Then

|∇g|2 =
y2f ′′(x)2

(1 + f ′(x)2)3
+

f ′(x)2

1 + f ′(x)2
≤ δ2K2 + ε ≤ 2ε,

which implies that t1 ≤ 2ε|z1 − z2|2.
(ii) The upper bound t2 ≤ ε|x1−x2|2 follows from the Lipschitz condition.

(iii) We need both upper and lower bounds for t3. Applying the mean
value theorem for h(x, y) = y/

√

1 + f ′(x)2, we get

t3 =

(

− f ′(u)f ′′(u)v

(1 + f ′(u)2)3/2
(x1 − x2) +

1
√

1 + f ′(u)2
(y1 − y2)

)2

where (u, v) lies on the segment [z1, z2]. Using the estimate

2ε3/2|x1 − x2||y1 − y2| ≤ 2ε|x1 − x2||y1 − y2| ≤ ε|x1 − x2|2 + ε|y1 − y2|2,

it follows that

t3 ≤ εK2δ2|x1 − x2|2 +
1

1 + f ′(u)2
|y1 − y2|2 + 2

√
εKδ|x1 − x2||y1 − y2|

≤ ε3|x1 − x2|2 + |y1 − y2|2 + ε|x1 − x2|2 + ε|y1 − y2|2
≤ 2ε|x1 − x2|2 + (1 + ε)|y1 − y2|2.

In the opposite direction, we have

t3 ≥ 1

1 + ε
|y1 − y2|2 − 2

√
εKδ|x1 − x2||y1 − y2|

≥ (1 − 2ε)|y1 − y2|2 − ε|x1 − x2|2.

(iv) Rearranging and using the Taylor formula, we have

t4 =
2y1

√

1 + f ′(x1)2
(f(x1) − f(x2) − f ′(x1)(x1 − x2))

+
2y2

√

1 + f ′(x2)2
(f ′(x2)(x1 − x2) − f(x1) + f(x2))

=

(

y1f
′′(ξ1)

√

1 + f ′(x1)2
− y2f

′′(ξ2)
√

1 + f ′(x2)2

)

|x1 − x2|2,

where ξ1, ξ2 ∈ [x1, x2]. Since |f ′′(ξ)| ≤ K(1 + ε)3/2, this implies that

|t4| ≤ 2Kδ(1 + ε)3/2|x1 − x2|2 ≤ 3ε|x1 − x2|2.
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Using these estimates we obtain

|F (z1) − F (z2)|2 ≤ |x1 − x2|2 + 2ε|x1 − x2|2 + 2ε|y1 − y2|2 + ε|x1 − x2|2
+2ε|x1 − x2|2 + (1 + ε)|y1 − y2|2 + 3ε|x1 − x2|2

= (1 + 8ε)|x1 − x2|2 + (1 + 3ε)|y1 − y2|2,

so that |F (z1) − F (z2)| ≤
√

1 + 8ε |z1 − z2| ≤ (1 + 4ε)|z1 − z2|.
For the lower bound, we discard irrelevant positive terms and get

|F (z1) − F (z2)|2 ≥ |x1 − x2|2 + t3 − |t4|
≥ (1 − 4ε)|x1 − x2|2 + (1 − 2ε)|y1 − y2|2
≥ (1 − 4ε)|z1 − z2|2.

This implies that |F (z1) − F (z2)| ≥
√

1 − 4ε |z1 − z2| ≥ |z1 − z2|/(1 + 4ε).
The proof for the bilipschitz condition is now complete, and the last

inequality is obvious. �

3.5. Lemma. Let A ⊂ Rn and let ε ≤ 1/10. Suppose that a ∈ A, r > 0
and let f : A → Rn be (1 + ε)-bilipschitz such that |f(z) − z| ≤ εr whenever

|z−a| ≤ r/2 and f(z) = z for |z−a| ≥ r/2. Define F : A∪ (Rn \B(a, r)) →
Rn by setting

F (z) =

{

f(z) for z ∈ A,

z for |z − a| ≥ r.

Then F is (1 + 3ε)-bilipschitz.

Proof. Let z1 ∈ A ∩ B(a, r/2) and |z2 − a| ≥ r. Then |z1 − z2| ≥ r/2,
which implies that

|F (z1) − F (z2)| = |f(z1) − z2| ≤ |f(z1) − z1| + |z1 − z2| ≤ εr + |z1 − z2|
≤ (1 + 2ε)|z1 − z2|.

In the opposite direction, we have

|F (z1) − F (z2)| = |f(z1) − z2| ≥ |z1 − z2| − |f(z1) − z1| ≥ |z1 − z2| − εr

≥ (1 − 2ε)|z1 − z2| ≥ |z1 − z2|/(1 + 3ε),

since ε ≤ 1/10.
All other cases for z1, z2 are trivial, and the proof is complete. �

Finally, we need an estimate on the distortion of angles under bilipschitz
maps.

3.6. Lemma. Let 1 < t ≤ 2 and let f : {0, 1, t} → Rn be (1+ε)-bilipschitz
with ε ≤ 1/100. Let A = f(0), B = f(1), C = f(t) and α = ∠BAC. Then

α ≤ 2.1
√

ε.
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Proof. Consider the triangle with vertices A, B, C. Elementary geo-
metrical considerations show that α is maximal in the case AB = 1 + ε,
BC = (t − 1)(1 + ε), and AC = t/(1 + ε). Using trigonometry and Taylor
approximation we obtain

sin α ≤ 2
√

(t − 1)ε ≤ 2
√

ε ≤ 0.2.

Furthermore, for these values we have α ≤ 1.01 sinα ≤ 2.1
√

ε, and the proof
is complete. �

4 Main proofs

We use triangle maps to prove the following theorem, which constitutes the
first part of our main result.

4.1. Theorem. Let λ ≥ 1, c > (30λ)8, and let A ⊂ R2 be λ-relatively

connected but not c-sturdy. Then for 1/
√

c ≤ ε ≤ 1/(30λ)4 there is a (1 +
48ε)-BL map f : A → R2 with the following property: there are a ∈ A and

r > 0 such that

||T − f ||A(a,r) ≥ (r/6000λ3)
√

ε

for all isometries T : R2 → R2.

Proof. Since A is not (1/ε2)-sturdy, there are two possibilities.
Case 1: Condition 2.2(1) is not satisfied. In this case there are a ∈ A and

r > 0 such that A 6⊂ B(a, r), s(a) ≤ ε2r and θ(A(a, r)) ≤ 2ε2r. By scaling,
we may assume that a = 0, r = 1, and then A 6⊂ B(1) = B(0, 1), s(0) ≤ ε2,
θ(A(0, 1)) ≤ 2ε2. Furthermore, we may assume that A(0, 1) is contained in
the 2ε2-neighbourhood of R ⊂ R2.

We apply [TV, 4.11(2)] with c = 4λ to find points u, v ∈ A as follows.
Since s(0) ≤ ε2 < ε, the set A(0, 2ε) contains at least two points. Also
A 6⊂ B(1), and thus there is a point u ∈ A∩B(8λε) \B(2ε). Similarly, since
80λ2ε ≤ 1, there is v ∈ A∩B(80λ2ε)\B(20λε). There are six possibilities for
the order of the points 0, u1, v1 and of these only two are essentially different;
we consider the case where 0 < u1 < v1 < 1, the other cases being similar.
However, the constants appearing below apply for all cases and may thus
seem unnecessarily large for this special case.

We construct a bilipschitz map f : A → R2 as follows:

• Apply Lemma 3.3 with substitutions 0 7→ 0, a 7→ u1, b 7→ v1. This
gives a 2

√
ε-Lipschitz map f1 : R → R such that f1(x) = 0 if x 6∈ [0, v1],

f1(u1) = ε3/2, and K ≤ 1/
√

ε.

• Apply Lemma 3.4 with ε 7→ 4ε, δ 7→ 2ε2, I 7→ R and f 7→ f1. Then
Kδ ≤ 2ε3/2 ≤ 4ε, and the resulting map F : R × [−δ, δ] → R2 is
(1 + 16ε)-BL. Also, we have l ≤ 160λ2ε and therefore

|F (z) − z| ≤ 160λ2ε3/2 + 2ε2 < ε

for all z.
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• We extend the definition of F outside B(1) by F (z) = z. Substitute
ε 7→ 16ε and r = 1/2 in Lemma 3.5. Since 160λ2ε ≤ r/2, we have
|F (z) − z| ≤ ε ≤ 16εr for |z| ≤ r/2 and F (z) = z for |z| ≥ r/2. It
follows that F is (1 + 48ε)-BL.

• The domain of definition for F contains the set A and by restriction
we get the required (1 + 48ε)-BL map f : A → R2.

It remains to show that f cannot be well approximated by isometries. For
this it suffices to consider the restriction f | {0, u, v} in the disk B = B̄(0, r1),
where r1 = 160λ2ε. Let A′ = {0, u, v} and let h : R2 → R2 be a similarity
such that h(0) = −1, h(v) = 1 and let g = hfh−1 : hA′ → hfA′. Since
f(0) = 0, f(v) = v, Lemma 3.2 can be applied to g. The similarity ratio t of
h satisfies 1/80λ2ε ≤ t ≤ 1/10λε, and thus θ(hA′) ≤ 2ε2/10λε = ε/5λ and
θ(ghA′)) ≥ (ε3/2−2ε2)/160λ2ε >

√
ε/162λ2. Thus the error of approximation

of g by an isometry is at least

√
ε/324λ2 − ε/10λ ≥ √

ε/340λ2,

and therefore

||T − f ||A(0,r1) ≥ 10λε(
√

ε/340λ2) = ε3/2/34λ =
r1

6000λ3

√
ε

for all isometries T . This completes the proof for Case 1.
Case 2: Condition 2.2(2) is not satisfied. This implies that A is bounded

and θ(A) < ε2d(A). Using λ-relative connectedness, we can find points
a, b, c ∈ A such that 1 ≤ |a − b|/|b − c| ≤ λ. Using Lemmas 3.3 and 3.4, we
can construct a map f : A → R2 that by 3.2 contradicts the requirements.
The details are similar to Case 1 and are omitted.

This completes the proof. �

4.2. Theorem. Let λ ≥ 1000, let A ⊂ Rn be a closed set that is not

λ-relatively connected. Then there is ε ≤ 2/(λ − 2) and a (1 + ε)-bilipschitz
map f : A → Rn with the following property: If F : Rn → Rn is a (1 + δ)-
bilipschitz extension of f , then

δ ≥ 1/20 ln2 ε.

Proof. We use the concept of upper sets from [TV, 4.9]. Since A is
not λ-relatively connected, the upper set Ã consists of more than one ln λ-
component. Let γ be a ln λ-component that is not the greatest element; see
[TV, 3.2]. By [TV, 3.4(11) and 3.4(14)] the set πγ is compact, and by [TV,
3.4(12)] we have A ∩ B(πγ, (λ − 1)d(πγ)) = πγ. Choose a, b ∈ πγ such that
|a − b| = d(πγ) and then z ∈ A \ πγ such that d(z, πγ) is minimal. We
may assume that |b − z| ≤ |a − z|, and hence ∠abz ≥ π/3. Using suitable
similarities, we may assume that b = 0, |a−b| = 1 and z = te1 with t ≥ λ−1.

We choose ε = 2/(t − 1) ≤ 2/(λ − 2) < 0.01 and construct a (1 + ε)-
bilipschitz map f : A → Rn as follows. Let f | (A \ B(0, 1)) = id, and let f
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rotate B̄(0, 1) so that f(0) = 0 and f(a) = e1. To calculate the bilipschitz
constant L of f , we note that the worst case arises from a = −e1, f(a) = e1;
this seems geometrically obvious and can be proved by solving an elementary
extremal value problem. Thus

L ≤ t + 1

t − 1
= 1 +

2

t − 1
= 1 + ε.

Suppose now that f can be extended to a (1+δ)-bilipschitz map F : Rn →
Rn. We apply Lemma 3.6 to the map F−1 | {0, e1, 2e1, 4e1, . . . , 2

Ne1, z},
where N = blog2 tc. Let ai = F−1(2ie1) for i = 0, 1, 2, . . . , N and aN+1 = z.
The lemma implies that ∠ai0ai+1 ≤ 2.1

√
δ, and therefore

1 ≤ π

3
≤ ∠a0z ≤

N
∑

i=0

∠ai0ai+1 ≤ 2.1
√

δ(N + 1) ≤ 2.1
√

δ(log2 t + 1)

≤ 2.1
√

δ(1.5 ln t + 1) ≤ 3.15
√

δ ln(2t).

Since t = 2/ε + 1 ≤ 2.1/ε, we obtain

δ ≥ 1

10 ln2(4.2/ε)
≥ 1

20 ln2 ε
.

This completes the proof. �

4.3. Proof of Theorem 1.3. The implication (1) ⇒ (2) was the main result
of [ATV2].

For the converse part, suppose that A has the (C, δ)-linear BLEP. Let
λ ≥ 2/δ + 2 so that ε = 2/(λ − 2) ≤ δ and suppose that A is not λ-RC. We
may assume that λ ≥ 1000. Let f : A → R2 be the (1 + ε)-bilipschitz map
given by Theorem 4.2. Since A has the (C, δ)-linear BLEP, we have

Cε ≥ 1

20 ln2 ε
.

This leads to a contradiction unless ε ≥ ε(C) > 0, which is equivalent to
λ ≤ λ(C, δ) < ∞.

It follows that A is λ-relatively connected with the above bound.
By Theorem 2.6 the set A has the (C1, δ)-IAP with C1 = C1(C). Suppos-

ing that A is not c-sturdy, we must find an upper bound for c, and may thus
assume that c > (30λ)8 ∨ 482/δ2. Let ε = 1/

√
c so that 48ε ≤ δ. Applying

Theorem 4.1, we obtain a (1 + 48ε)-bilipschitz map f : A → R2 such that

||T − f ||A(a,r) ≥ (r/6000λ3)
√

ε

for some a ∈ A, r > 0 and for all isometries T . The IAP of A thus leads to
the estimate

C1 · 48ε ≥ √
ε/6000λ3,

which is a contradiction unless ε ≥ ε(C, λ), or equivalently, unless c ≤ c(C, δ).
It follows that A is c-sturdy with the above bound, and the proof of the

main theorem is complete. �
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4.4. Remark. The first part of the above proof can be easily modified to
show that a planar set A having the ϕ-BLEP is relatively connected if

lim
ε→0

ϕ(ε) ln2 ε = 0.
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