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1 Introduction

The equations of motion of rigid body systems were established in the 19th
century; for example Appell [2] gives a very nice and complete classical treat-
ment of the subject. In the precomputer age solving a differential equation
meant algebraic manipulation of the system such that the solution could be
explicitly obtained. Hence in [2] a lot of space is devoted to various specific
situations and/or coordinate systems in which a complete solution could be
obtained. Of course explicit solutions are usually impossible to obtain and
hence the attention shifted gradually to qualitative, i.e. geometric, analysis
of the properties of the solution set. This point of view lead to a modern
differential geometric formulation of classical mechanics which can be found
in [3]. However, the techniques developed in [2] and [3], while interesting in
proper context, are not necessarily suitable or useful for numerical treatment
of multibody systems.

One of the earliest attempts at the numerical simulation of the multibody
systems was Baumgarte’s stabilization method [4]. Subsequently there has
been quite much interest in this topic and in [1] [7] [17] [19] many different
formulations are described. However, in spite of the extensive literature on
the subject the simulation of constrained multibody systems remains a chal-
lenging problem and it appears that no definitive solution to the problem has
been found.

The major difficulty in the simulations is how to respect the constraints
in long simulations and at the same time to avoid spurious oscillations which
occur quite often in various stabilization methods. In this paper we propose a
new method, based on our earlier work in [22], [23] and [24], which addresses
these issues.

Our computational model considers differential equations in jet spaces.
Hence the differential geometry is essential in our approach; nevertheless our
formulation differs from the standard geometric model given in [3]. We use
Lagrangian formalism to derive the equations of motion; this is more natural
in jet space context than Hamiltonian formalism. Constraints and possible
invariants (like conservation of energy) are taken into account by restricting
the dynamics to an appropriate submanifold of a jet space. As a consequence
quite much of the computing time is spent on projecting intermediate points
to this submanifold. On the other hand the drift off is completely avoided.
Since there are no spurious stiffness or oscillations we can use an explicit
method in time integration. We have adapted a well-known Runge–Kutta
method by Dormand and Prince with the classical step size control to our
context [11].

We consider only holonomic constraints in this paper. In case of point
masses these kind of systems were already used as examples in our earlier
papers. However, in multibody dynamics a good numerical representation of
the orientation of the rigid body is somewhat involved, and hence the gen-
eralization of our approach to this case required some work. Nonholonomic
problems, while certainly interesting, are beyond the scope of the present
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article and we refer to [5], [6], [12], and [15] for more details on this subject.

The structure of the article is as follows. In Section 2 we briefly recall
some geometric notions which are needed in our computational model. In Sec-
tion 3 we discuss the relevant variational principles leading to a Lagrangian
formulation of, and derive, the equations of motion for one rigid body with
external forces acting on it. We believe it is best to explain the main ideas in
this simple context because extension to many body case is then, due to the
holonomicity of the constraints, just a matter of establishing an appropriate
notation.

In Section 4 we extend everything to an arbitrary number of rigid bodies
and introduce invariants associated to multibody systems. We also recall for
completeness what happens in the planar case: the whole model becomes sig-
nificantly simpler because the orientations are trivial in this case. In Section
5 we describe the actual numerical subtasks which are needed in our imple-
mentation. The description is rather brief because we can use extensively
algorithms which are explained in more detail in [24]. Then in Section 6 we
present our numerical results and finally in Section 7 give some conclusions
and indicate some directions for future work.

Acknowledgements We are grateful for useful and motivating discus-
sions with Aki Mikkola and Asko Rouvinen from the Laboratory of Mecha-
tronics and Virtual Engineering, Lappeenranta University of Technology, Fin-
land.

2 Basic tools

For more information on standard differential geometry we refer to [20] and
on jets to [16]. Further details about calculus of variations can be found in
[9]. Differential equations in the jet space context are discussed in [14], [18]
and [21].

All maps and manifolds are assumed to be smooth, i.e. infinitely differ-
entiable. All analysis is local, hence various maps and manifolds need to be
smooth or defined only in some appropriate subsets. To simplify the notation
these subsets are not indicated.

2.1 Manifolds and jets

The `’th differential of a map f : R
m 7→ R

k is denoted by d`f and its value
at p by d`fp. The subscript is sometimes omitted for simplicity, if the point
p is clear from the context. Let M be a manifold. The tangent bundle of M
is denoted by TM , and the tangent space at p ∈ M by TpM . A distribution
D is a map that associates to each point p ∈ M a subspace Dp of TpM .

Let M be a submanifold of R
n. The objects defined on M can be taken

to be defined on R
n without writing explicitly the inclusion map. The inner

product in R
n is denoted by 〈·, ·〉 and the same notation will be used also

for inner products in TpM and TpR
n as usual. We may regard TpM as a

4



subspace of TpR
n. The orthogonal complement of TpM , the normal space, is

denoted by NpM .
Let π : E → B be a bundle and let πq : Jq(E) → B be the bundle of q-jets

of E . In the sequel we will mainly consider the case where E is the trivial
bundle E = R × R

n with the projection π : R × R
n → R. The coordinates

of Jq(E) (called jet coordinates) are denoted by (t, y1, . . . , yn, y1
1, . . . , y

n
q ).

A section of the bundle is a map y : B → E such that π ◦ y = id. In
case of the trivial bundle the section is simply the graph of the map. In
jet geometry it is usually more convenient to use sections than maps. For
simplicity of notation we will use the same letter for maps and sections, the
intended meaning being clear from the context.

2.2 Some matrix groups and algebras

The special orthogonal group is

SO(n) =
{

A ∈ R
n×n

∣

∣AT A = I , det(A) = 1
}

.

Let us introduce a convenient representation of elements of SO(3). We need
this in order to define the orientation of the rigid body. This representation
is discussed in detail in [15] where it is derived using quaternions. First let
S3 ⊂ R

4 be the unit sphere and let θ ∈ S3. Then we set

R =H̃HT =





−θ1 θ0 −θ3 θ2

−θ2 θ3 θ0 −θ1

−θ3 −θ2 θ1 θ0









−θ1 θ0 θ3 −θ2

−θ2 −θ3 θ0 θ1

−θ3 θ2 −θ1 θ0





T

=2





(θ0)2 + (θ1)2 − 1
2

θ1θ2 − θ0θ3 θ1θ3 + θ0θ2

θ1θ2 + θ0θ3 (θ0)2 + (θ2)2 − 1
2

θ2θ3 − θ0θ1

θ1θ3 − θ0θ2 θ2θ3 + θ0θ1 (θ0)2 + (θ3)2 − 1
2



 .

(2.1)

It is now straightforward to check that R ∈ SO(3). The parameters θi are
called Euler parameters.1 Let us note that

- the rows of H̃ and H are an orthonormal basis of TθS
3, i.e. HHT =

H̃H̃T = I.

- the parameters θ are not coordinates of SO(3) in the differential geo-
metric sense.

- θ and −θ correspond to the same element R. Hence S3 is a two sheeted
covering space of SO(3) and consequently SO(3) is diffeomorphic to
real projective space RP

3.

Let us list some properties of H̃ and H which are needed later. It is sometimes
convenient to regard H̃ and H as linear maps R

4 → R
3×4. In this way it is

natural to write H1 = H(θ1). The following formulas are easily verified by
direct computation.

1a.k.a. Rodrigues or Cayley-Klein parameters.
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Lemma 2.1.

H̃T H̃ = HT H = I − θθT

H̃1H
T − H̃HT

1 = H1H̃
T − HH̃T

1 = 0

H1H
T + HHT

1 = H̃1H̃
T + H̃H̃T

1 = 0.

Moreover if v, w ∈ R
4 are any vectors, then

H(v)w + H(w)v = H̃(v)w + H̃(w)v = 0.

In particular
H̃θ = Hθ = H̃1θ1 = H1θ1 = 0.

From the differential geometric point of view SO(n) is a Lie group, and
the corresponding Lie algebra is

so(n) =
{

A ∈ R
n×n

∣

∣AT = −A
}

.

Geometrically we may identify so(n) with TISO(n). The important point for
us is that so(3) and R

3 are naturally isomorphic as Lie algebras. To see this
note that any Ω̂ ∈ so(3) is of the form

Ω̂ =





0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0



 .

Hence putting Ω = (Ω1, Ω2, Ω3) we have for any v ∈ R
3

Ω̂v = Ω × v. (2.2)

One consequence of this isomorphism is that the tangent bundle of SO(3) is
trivial:

TSO(3) ' SO(3) × R
3.

From this it follows that the tangent bundle of S3 is also trivial: TS3 '
S3 ×R

3. This is very important from the computational point of view as we
will see later.

2.3 Variational problems

Let (M,G) be an n–dimensional Riemannian manifold. We denote the coor-
dinates of M by y. By the standard abuse of notation the same letter is also
used for the curve y : R → M and its coordinate representation. Then let
us consider the variational problem where we want to find the extremals of
the following map.

J(y) =

∫

L(t, y, y1)dt (2.3)

where the integration interval, as well as the values of y at the end points,
are fixed during the variation. The integrand is called the Lagrangian.
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Definition 2.1. The Euler–Lagrange operator EL and the Euler–Lagrange
equations for the problem (2.3) are

EL(y) =
d

dt

∂L

∂y1

−
∂L

∂y
= 0. (2.4)

Extremals of (2.3) are solutions of the Euler–Lagrange equations.

Then given a Riemannian metric G we may consider

J(y) = 1
2

∫

〈y1, Gy1〉dt.

The extremals of this problem are called geodesics. Let us recall the Euler–
Lagrange equations for geodesics. First we set

[i j, k] =
1

2

(∂gik

∂yj
+

∂gjk

∂yi
−

∂gij

∂yk

)

i, j, k = 1, . . . , n.

These are called the Christoffel symbols of the first kind. To write down the
equations in a compact way we now introduce some nonstandard notation.
Let us define the matrices

Chrk ∈ R
n×n

(

Chrk
)

ij
= [i j, k].

Note that the matrices Chrk are symmetric. Putting all these matrices to-
gether we obtain a “three dimensional” object:

Chr =
(

Chr1, . . . , Chrn
)

∈ R
n×n×n Chrijk = [i j, k].

Note that Chr is not a tensor: it transforms differently in coordinate changes.
Anyway we can now view Chr as a bilinear map: given v, w ∈ R

n we can
now set

Chr(v, w) =
(

〈v, Chr1w〉, . . . , 〈v, Chrnw〉
)

.

Note that Chr(v, w) = Chr(w, v). Now a curve y : R → M is a geodesic, if

Gy2 + Chr(y1, y1) = 0. (2.5)

In differential geometry books the Christoffel symbols of the second kind are
more often used than the symbols of the first kind. The symbols of the second
kind are the components of the “matrix” G−1Chr. However, in computations
one wants to avoid inverting matrices because this is both inefficient and
unnecessary.

The equations for geodesics can be formulated in a coordinate free way
using the (Levi-Civita) connection. From this point of view the Christoffel
symbols represent the connection in a coordinate system.
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2.4 Differential equations

Let π : E → B be a bundle.

Definition 2.2. A (partial) differential equation of order q on E is a sub-
manifold Rq of Jq(E).

In jet coordinates the manifold Rq can be represented as a zero set of
some map f : Jq(E) ' R

(q+1)n+1 → R
k:

Rq : f(t, y, y1, . . . , yq) = 0. (2.6)

To define solutions we introduce the following one forms

αi
j = dyi

j−1 − yi
jdt i = 1, . . . , n j = 1, . . . , q. (2.7)

Let p ∈ Jq(E) and vp ∈ TpJq(E) and let us further define distributions C and
D by

Cp =
{

vp ∈ TpJq(E)
∣

∣αi
j(vp) = 0

}

,

Dp =TpRq ∩ Cp,
(2.8)

C is called Cartan distribution. Now we can define the solutions as follows.

Definition 2.3. Let Rq ⊂ Jq(E) be involutive and suppose that the distribu-
tion D defined in (2.8) is one-dimensional. A solution of Rq is an integral
manifold of D.

The importance of involutivity from the point of view of numerical com-
putations is discussed in [22]. Intuitively a system is involutive if we cannot
get new equations of order q or less by differentiating the equations and
eliminating the higher derivatives.

Now the equations of motion in Lagrangian mechanics take a very par-
ticular form and it turns out that using directly the above formulation of the
problem would be very inefficient. Fortunately it is not difficult to adapt the
jet space approach to this class of problems as we will see. Let us here briefly
indicate what kind of changes we have to make to the general framework.

As is well known the Lagrangian dynamics with holonomic constraints
gives a system of second order equations which can be written as

fλ(t, y, y1, y2, λ) = 0 (2.9)

where y : R → R
n gives the coordinates of the configuration space and

λ : R → R
` is the Lagrange multiplier. Now if we regard λ simply as any

other dependent variable, then we would have to work with the space J2(Eλ)
where Eλ = R × R

n × R
` and whose dimension is

dim
(

J2(Eλ)
)

= 3(n + `) + 1.

Moreover the system (2.9) is not in the involutive form; in fact usually one
has to differentiate and eliminate 4 times before we reach the involutive form,
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see [22] for an example. However, it is unnecessary to treat y and λ in the
same way, and we can work with the space J1(E) whose dimension is just

dim
(

J1(E)
)

= 2n + 1.

So our problem is geometrically as follows:

• the set of possible states of the system is given by a manifold M ⊂ J1(E)

• the dynamics of the system is given by a one dimensional distribution
D on M

Before a detailed description of the computational model let us here outline
the basic strategy. First the manifold M is given as a zeroset of some map,
and solutions are curves on M . To choose the right curve through some
point p we need to compute the appropriate distribution at p. Now given
p = (t, y, y1) ∈ M it is easy to see that vp = (1, y1, w) ∈ Cp for any w. Hence
our task is to compute the correct w. Next consider the section j1(y) : R →
M ⊂ J1(E) given by t 7→ (t, y(t), y′(t)); the tangent vector to this curve is
(1, y′(t), y′′(t)), and hence it seems that we should take w = y2. However, y2

is “outside”of J1(E), so this is not directly applicable. But then we show that
we can compute the correct y2 with help of the Euler–Lagrange equations,
and use this to define the right distribution.

3 One rigid body

It turns out that all the relevant ideas that we will need in our computational
model can be explained already in case of one rigid body, and extension to the
general case is mainly a matter of introducing appropriate notation. Hence
we feel that one gets a clearer picture of our approach by treating thoroughly
the simple case and then rapidly indicating how to pass to the general case.

Equations of motion for rigid bodies can be found in most textbooks on
classical mechanics. However, many formulations are not at all suitable for
numerical computations. There are also many books which are devoted to
computational aspects of multibody systems, see for example [1] [7] [15] [17]
[19]. Since our model is new we cannot, however, always refer to standard
literature for details, and hence we have to spend some time to describe our
approach. In particular as far as we know jet spaces have not been previously
used in multibody simulations.

3.1 Configuration space and state space

To describe the motion of a rigid body we need a fixed coordinate system (or
spatial coordinate system), and the coordinate system moving with the body
(or body coordinate system). The origin of the moving coordinate system is
assumed to be at the centre of mass of the body. A typical point in spatial
coordinates is denoted by x and in body coordinates by χ. The body itself
is denoted by B ⊂ R

3, its mass density by ρ and its mass by m = m(B).
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Definition 3.1. Let v ∈ R
3 and set

Iv =

∫

B

(

χ × (v × χ)
)

ρ(χ)dχ

I is the inertia tensor of body B.

One can readily check that I is symmetric and positive definite. The
position of the centre of mass in the fixed coordinate system is given the map
r = (r1, r2, r3) : R → R

3. To describe the motion of other points of the body
we need to specify the orientation of the rigid body; this can be done with a
rotation matrix. Now the relation between spatial and body coordinates is
given by the formula

x(t) = r(t) + R(t)χ

where R(t) ∈ SO(3). Hence the configuration space of one rigid body is
R

3 × SO(3). However, it is computationally not easy to work directly with
the space SO(3). Instead we will choose the following framework.

Definition 3.2. The configuration (resp. state) space of one rigid body is
the bundle

Q = R × R
3 × S3 → R

(

resp. J1(Q)
)

.

Geometrically this means that we replace SO(3) by its covering space
S3, using the representation given by (2.1). Recall that in jet context it is
natural to think in terms of bundles; classically one thinks in terms of fibers,
and hence the state space is the tangent bundle of the configuration space.
This is really almost the same as our formulation because of the following
identifications:

J1(Q) ' R × T
(

R
3 × S3

)

' R × TR
3 × TS3.

Let us then introduce the bundle

π : E = R × R
7 → R y = (y1, . . . , y7) = (r, θ).

In this way we consider Q as a subset of E . Then we define

fθ : J1(E) → R
2 fθ(t, y, y1) =

(

|θ|2 − 1
〈θ, θ1〉

)

Mθ = f−1(0) ⊂ J1(E).

Definition 3.3. Mθ is the computational state space of one rigid body.

This representation of the state space is much more convenient than the
representation obtained by introducing coordinates on S3 or SO(3). Nei-
ther of these spaces is diffeomorphic to R

3, hence any coordinate system is
necessarily local. So in general one should change coordinates during the
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computation, and this would be very annoying. On the other hand the pa-
rameters θ, while not coordinates, provide anyway a global representation of
the configuration space.

Finally let us note that Mθ, being a submanifold of J1(E), is a differential
equation according to Definition 2.2. However, it is obviously underdeter-
mined : the dimension of the distribution defined in (2.8) is greater than one.
Note that dim

(

Cp

)

= 8 and it is straightforward to check that

dim
(

TpMθ ∩ Cp

)

= 7.

This dimension reflects in a natural way the degree of indeterminacy of the
system: there are 6 degrees of freedom and the time variable.

So we have now an appropriate state space for the computational pur-
poses. The next task is to introduce dynamics; i.e. choose an appropriate
distribution on Mθ.

3.2 Variational principle

The equations of motion of mechanical systems are usually derived from
some variational principle. There are many essentially equivalent principles,
see for example [2, Tome 2, p. 451 and p. 492], [3, Chapter 3] and [6, p.
205] for some discussion. In addition one has to choose between Hamiltonian
and Lagrangian formalism. We use the latter because it is more natural
in jet space context. The formulations of variational principles below are
adapted from [6, Chapter 4]. The statements are given geometrically, i.e. in
a coordinate free way. Expressing them in a coordinate system give formulas
which are found in classical textbooks.

We will use a variational principle to determine the distribution on Mθ.
To do this we first formulate the variational principle in J1(Q) and then
interprete the result in terms of Mθ ⊂ J1(E). The starting point is the
kinetic energy of the rigid body. To define this we need to introduce angular
velocities.

Let R : R → SO(3) and define

Ω̂ = RT R1 ω̂ = R1R
T .

These matrices belong to so(3); hence we can define corresponding Ω and
ω as in (2.2). Ω̂ and Ω (resp. ω̂ and ω) is called the body (resp. spatial)
angular velocity.

Definition 3.4. The kinetic energy of a rigid body is given by

T = Ttr + Tro = 1
2
m|r1|

2 + 1
2
〈Ω, IΩ〉 (3.1)

where Ttr is the translational energy and Tro the rotational energy.

The angular velocities are related to θ1 by the following simple formulas.
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Lemma 3.1.

Ω = 2Hθ1 ω = RΩ = 2H̃θ1.

Proof. Using Lemma 2.1 we compute

Ω̂ = RT R1 = HH̃T (H̃1H
T + H̃HT

1 ) = 2HHT
1

and it is straightforward to check that Ĥθ1 = HHT
1 , proving the claim for

Ω. Similar computation proves the formula for ω.

Hence the kinetic energy can be written as

T = 1
2
m|r1|

2 + 2 〈Hθ1, IHθ1〉.

Now the variational principle2 we need is:

The kinetic energy defines a Riemannian metric on the configuration
space. The motions of the rigid body in the absence of forces are
geodesics for this metric.

The technical difficulty in using this principle is related to the rotational
energy, so let us first treat the case that the rigid body is fixed at the centre
of mass. The problem is that we cannot directly use the equations (2.4) or
formulas (2.5) because the parameters θ are not coordinates on S3. Hence
we have to introduce some local coordinates, and express the parameters θ
in terms of these coordinates.

So let us choose a local parametrisation of S3, i.e. we choose some open
sets U1 ⊂ R

3 and U2 ⊂ S3 and a diffeomorphism ϕ : U1 → U2, θ = ϕ(α).
Hence we can write the rotational kinetic energy as

Tro = 2 〈Hdϕα1, IHdϕα1〉 = 1
2
〈α1, Groα1〉 (3.2)

where the Riemannian metric Gro is given by

Gro = 4dϕT HT
IHdϕ

Now we could use the Euler–Lagrange equations (2.4) or formula (2.5) to
compute the equations of motion in terms of α. However, we want to in-
terprete the resulting equations in terms of θ. It seems that in this case it
is best to start again from Euler–Lagrange equations, rather than trying to
express Christoffel symbols in terms of θ.

Hence we need to compute the Euler–Lagrange operator for the La-
grangian Tro. First let us define

dGro(v, w) =
(

〈

v,
∂Gro

∂α1
w
〉

,
〈

v,
∂Gro

∂α2
w
〉

,
〈

v,
∂Gro

∂α3
w
〉

)

Thus dGro is a symmetric bilinear map dGro : R
3 × R

3 → R
3. Next we

establish some formulas which are needed in the computations.

2a.k.a. the Jacobi principle [13]
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Lemma 3.2.

d2ϕ(α1, ·) =
( d

dt
dϕ
)T

dH θ1 = −H1 dϕ

Proof. The first formula is quite straightforward to check. Then let us denote
by Ai (resp. Bi) the ith column of the left (resp. right) hand side of the
second formula.Then using Lemma 2.1 we compute

Ai =
∂H

∂αi
θ1 = H

( ∂ϕ

∂αi

)

θ1 = −H(θ1)
∂ϕ

∂αi
= −H1

∂ϕ

∂αi
= −Bi

Lemma 3.3. The Euler–Lagrange operator for the rotational energy Tro is

ETro
(α) =

d

dt

∂Tro

∂α1

−
∂Tro

∂α
= 4 dϕT HT

IHθ2 + 8 dϕT HT
1 IHθ1 (3.3)

Proof. First we compute

d

dt

∂Tro

∂α1

=
d

dt
Groα1 =

4 dϕT HT
IH

d

dt

(

dϕα1

)

+ 4 dϕT HT
IH1 dϕα1+

4 dϕT HT
1 IHdϕα1 + 4

( d

dt
dϕ
)T

HT
IHdϕα1 =

4 dϕT HT
IHθ2 + 4 dϕT HT

1 IHθ1 + 4
( d

dt
dϕ
)T

HT
IHθ1.

Further we obtain

〈

α1,
∂Gro

∂αi
α1

〉

= 8
〈∂dϕ

∂αi
α1, H

T
IHθ1

〉

+ 8
〈∂H

∂αi
θ1, IHθ1

〉

.

Hence we can write

∂Tro

∂α
= 1

2
dGro(α1, α1) = 4d2ϕ(α1, ·)H

T
IHθ1 + 4

(

dH θ1

)T
IHθ1.

Then Lemma 3.2 gives the result.

3.3 Forces and constraints

In practice the rigid body is not free, but there are some forces acting on
it. First let us introduce potential forces. Recall that the potential is simply
a function U in the configuration space. The variational principle can be
extended to such systems in the following form:

13



Motions of a rigid body fixed at the centre of mass subject to potential
forces are given by the extremals of the Lagrangian

L(α, α1) = Tro − U(α).

Hence the computations in Lemma 3.3 readily yield

Corollary 3.1. The Euler–Lagrange operator for L = Tro − U is

EL(α) = dϕT
(

4 HT
IHθ2 + 8 HT

1 IHθ1 + ∇U
)

.

Next we have the effect of external forces. Since the body is fixed at one
point, we need only need to consider the torque acting on the body. Now
given the torque τ in body coordinates, or τs = Rτ in spatial coordinates,
how to incorporate this information in Euler–Lagrange equations? The ap-
propriate concept in our context is given in the following definition. For a
more general formulation we refer to [6, p.188].

Definition 3.5. Fτ is Lagrangian torque corresponding to τ , if

〈Fτ , α1〉 = 〈τs, ω〉

for all α1.

The next version of the variational principle is as follows.

Lagrangian torques are added to the right hand side of Euler–Lagrange
equations.

Then we have to compute Fτ .

Lemma 3.4.

Fτ = 2dϕT HT τ.

Proof.

〈Fτ , α1〉 = 〈τs, ω〉 = 〈Rτ, 2H̃θ1〉

= 2〈H̃T H̃HT τ, dϕα1〉 = 2〈dϕT HT τ, α1〉.

Hence our system so far can be written as

EL(α) = dϕT
(

4 HT
IHθ2 + 8 HT

1 IHθ1 + ∇U
)

= 2dϕT HT τ.

Let us then introduce holonomic constraints. We will suppose that the con-
straints are scleronomic, i.e. do not depend on time. Hence the constraints
are given by the map

gα : U1 → R
`

where U1 is the domain of ϕ. Let us also set gα = g ◦ ϕ. Now the system is
required to stay in the subset of the configuration space defined by the zero
set of gα:

Mα = g−1
α (0) ⊂ U1.

To force the system to stay in the correct manifold the variational principle
is modified as follows:

14



In the presence of holonomic constraints a (fictious) constraint force
Fc, which is normal to the constraint manifold, is added to the right
hand side of Euler–Lagrange equations.

Hence at present we have

EL(α) = dϕT
(

4 HT
IHθ2 + 8 HT

1 IHθ1 + ∇U
)

= 2dϕT HT τ + Fc.

Lemma 3.5. We have

4 IHθ2 + HdgT λ + 8 HHT
1 IHθ1 + H∇U = 2τ (3.4)

where λ is the Lagrange multiplier.

Proof. The rows of dgα span NαMα. Hence

EL(α) = dϕT
(

4 HT
IHθ2 + 8 HT

1 IHθ1 + ∇U
)

= 2dϕT HT τ − dgT
αλ

for some λ. But then dgα = dg dϕ implies

dϕT
(

4 HT
IHθ2 + dgT λ + 8 HT

1 IHθ1 + ∇U − 2HT τ
)

= 0.

Since the columns of dϕ span TθS
3 this is equivalent to

4 HT
IHθ2 + dgT λ + 8 HT

1 IHθ1 + ∇U − 2HT τ ∈ NθS
3

whence pre-multiplying by H gives the desired formula.

For convenience let us give the following

Definition 3.6. The bilinear map

K(θ1, θ1) = HHT
1 IHθ1

is called the Christoffel map.

Note that K contains the information of the Christoffel symbols for the
metric defined by Gro.

Recall that our goal is to compute θ2. The previous Lemma shows that
we also have to compute λ in the process. Both can be determined as follows.

Algorithm 3.1.

• given (t, θ, θ1) do

– solve c and λ from the following system

{

4 Ic + HdgT λ = 2τ − 8 K − H∇U

dg HT c = |θ1|
2dg θ − d2g(θ1, θ1)

(3.5)

– set θ2 = HT c − |θ1|
2θ

15



Proof. Since θ2 ∈ R
4 ' TθS

3 ⊕ NθS
3 we have the corresponding decomposi-

tion
θ2 = HT c + aθ

for some c and a. Differentiating the constraint |θ|2 − 1 = 0 twice it is seen
that a = −|θ1|

2. Similarly differentiating the constraint g twice we get

dg θ2 + d2g(θ1, θ1) = 0

But then substituting the decomposition of θ2 to this equation (resp. to
(3.4)) gives the second (resp. first) equation in (3.5).

Now that the hard work has been done the rest follows rather painlessly. If
the centre of mass of the rigid body is not fixed, then the relevant Riemannian
metric is

G =

(

mI3 0
0 Gro

)

.

Computing the appropriate Euler–Lagrange operator is straightforward. Then
we have to also include the resultant of the external forces, denoted by F ,
which is applied at the centre of mass. Further we set d = (r2, c), Fe = (F, 2τ)
(where τ is the torque in body coordinates as before) and

H =

(

I3 0
0 H

)

∈ R
6×7 I =

(

0 0
0 |θ1|

2I4

)

∈ R
7×7

E =

(

mI3 0
0 4 I

)

K̃ =

(

0
K(θ1, θ1)

)

.

Next we introduce constraints. Let g : E → R
` be a map which does not

depend on time and set

R × Mg = g−1(0) ⊂ E .

Further we define

fhc : J1(E) → R
2` fhc(t, y, y1) =

(

dg y1

g

)

Mhc = f−1
hc

(0) ⊂ J1(E)

where the subscript hc refers to “holonomic constraints”.

Definition 3.7. The constrained configuration and state spaces are

Qco = Q∩
(

R × Mg

)

⊂ E

M = Mθ ∩ Mhc ⊂ J1(E)

Now with these notations we can compute the relevant Euler–Lagrange
equations in very much the same way as above. Since this extension is routine
we merely state the final result.
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Theorem 3.1. Let us consider the motion of a rigid body with the following
data:

- Lagrangian is L = T − U where T is given by (3.1) and U is the
potential.

- The body is subject to force Fe = (F, 2τ).

- Constrained state space is given as in Definition 3.7.

Then the following algorithm computes the distribution on M .

Algorithm 3.2.

• given p = (t, y, y1) ∈ M do

– solve (d, λ) from the following system

{

E d + HdgT λ = Fe − 8 K̃ − H∇U

dg HT d = dg I y − d2g(y1, y1)
(3.6)

– set y2 = HT d − Iy.

– set Dp = span{(1, y1, y2)}.

We summarize our conclusions as follows:

Algorithm 3.2 determines a one dimensional distribution on M . The
integral manifolds of this distribution give the motions of one rigid body.

Traditionally one speaks about equations of motion for the rigid body. In
this way we could say that the description of M and D are our equations of
motion. Note that in this model an integral manifold can always be repre-
sented by a curve y : R → Qco. This is due to the first component of the
distribution being always positive. Hence we will refer to the solutions as
curves whenever convenient.

3.4 Energy

Finally we examine how the energy W = T + U evolves.

Lemma 3.6. If y is a solution, then

dW

dt
= 〈Hy1, Fe〉 = 〈r1, F 〉 + 2〈Hθ1, τ〉 = 〈r1, F 〉 + 〈Ω, τ〉

17



Proof. The energy can be written as

W = 1
2
〈Hy1, E Hy1〉 + U(y)

Hence

dW

dt
= 〈Hy1, E Hy2〉 + 〈Hy1, E H1y1〉 + 〈∇U, y1〉

= 〈Hy1, E Hy2〉 + 〈∇U, y1〉 = 〈y1, H
T E d〉 + 〈∇U, y1〉

because H1y1 = (0, H1θ1) = (0, 0). Then using (3.6) we obtain

HT E d = HT Fe − HT HdgT λ − 8 HT K̃ − HT H∇U

Now the result follows from the following computations.

〈y1, H
T HdgT λ〉 = 〈y1, dgT λ〉 = 〈dg y1, λ〉 = 0

〈y1, H
T H∇U〉 = 〈y1,∇U〉

〈y1, H
T K̃〉 = 〈θ1, H

T HH1IHθ1〉 = 〈H1θ1, IHθ1〉 = 0

3.5 Classical formulation

Classically the equations of motion for the rigid body are often written as
follows. Let F be the resultant of the external forces and let τ be the torque
acting on the body. Then the equations of motion can be written as

{

mr2 = F

I Ω1 + Ω × I Ω = τ
(3.7)

The first equation is simply the Newton’s second law, and the second equation
is sometimes called Euler’s equation, and hence the whole system is called
Newton–Euler equations. Appell [2, p. 48] refers to this system combined
with the energy balance equation as sept équations universelles.

This way of viewing things is not so convenient when we have a system
of several interacting bodies with constraints. One reason is that in Newton–
Euler equations one has to consider internal as well as external forces. On
the other hand in the variational formulation only external forces appear.

The fact that the first equation is of second order while the second one is of
first order already indicates that the variables r and Ω are not “on the same
level”. Physically this is clear since r describes position while Ω describes
(angular) velocity. In any case it would be hard to avoid the conclusion that
the Newton–Euler system is not very suitable for numerical computations,
see [15] for a detailed discussion.
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4 Systems of Rigid bodies

4.1 Extension to general case

Let us now formulate the problem with arbitrary number of rigid bodies. Let
the number of bodies be nb and let the configuration space be

Q = R ×
(

R
3 × S3

)nb

⊂ E = R × R
7nb

The coordinates of E are

(t, y) =
(

t, r(1), θ(1), . . . , r(nb), θ(nb)
)

where (r(i), θ(i)) denote the position and Euler parameters of the ith body.
The computational state space Mθ ⊂ J1(E) is the zero set of the map

fθ : J1(E) → R
2nb fθ(t, y, y1) =

















|θ(1)|2 − 1
〈

θ(1), θ
(1)
1

〉

...
|θ(nb)|2 − 1
〈

θ(nb), θ
(nb)
1

〉

















(4.1)

Let us further define

E = diag
(

E(1), . . . , E(nb)
)

I = diag
(

I(1), . . . , I(nb)
)

H = diag
(

H(1), . . . , H(nb)
)

Fe =
(

F (1)
e , . . . , F (nb)

e

)

d =
(

r
(1)
2 , c(1), . . . , r

(nb)
2 , c(nb)

)

K̃ =
(

K̃(1), . . . , K̃(nb)
)

(4.2)

where E(i) etc denotes the corresponding matrix or vector for the ith rigid
body. The Lagrangian and the energy of the system can now be written as

L = T − U =

nb
∑

i=1

1
2
mi|r

(i)
1 |2 + 2 〈H(i)θ

(i)
1 , I(i)H(i)θ

(i)
1 〉 − U(y)

=1
2
〈Hy1, EHy1〉 − U(y)

W = T + U =1
2
〈Hy1, E Hy1〉 + U(y).

Next we introduce constraints in the same way as in the case of one rigid
body, see Definition 3.7. We set

g : E → R
`

R × Mg = g−1(0) ⊂ E

fhc : J1(E) → R
2` fhc(t, y, y1) =

(

dg y1

g

)

Mhc = f−1
hc

(0) ⊂ J1(E)

Qco = Q∩
(

R × Mg

)

M = Mθ ∩ Mhc.

(4.3)

19



Since we have ` independent constraints one says that there are 6nb−` degrees
of freedom in the system. In our context this can be checked by computing
that

dim
(

TpM ∩ Cp

)

= 6nb − ` + 1.

Recall that “+1” is because of the time variable.
Then we get the following result. The proof is omitted because it is

essentially the same as in the case of one rigid body.

Theorem 4.1. Adopting the notations in (4.2) and (4.3), Algorithm 3.2
computes the distribution also in the case of several rigid bodies. Moreover
we have

dW

dt
= 〈Hy1, Fe〉.

Hence in absence of external forces the energy remains constant. Moreover
the constraint forces have no effect on energy. This is sometimes expressed
by saying that constraint forces do no work.

Note that the interconnection forces between different bodies do not ap-
pear in this formulation; we need only specify the external forces acting on
the system. On the other hand if Newton–Euler equations are used, it is
necessary to take care of interconnection forces as well. Hence it is by no
means obvious that both models really yield the same results. However, a
detailed discussion of the equivalence of variational and Newton–Euler mod-
els is beyond the scope of our article and we refer to [6, Chapter 4] for more
information and references on this topic.

Now if we have external forces acting on the system it is convenient to
define Wext, the work done by external forces:

Wext(t) =

∫ t

0

〈Hy1, Fe〉 ds

In this way the total energy

Wtotal = T + U − Wext

remains constant. This is useful in computations because we can compute
Wext approximatively using (for example) trapezoidal rule, and use this to
control the total energy balance.

4.2 Invariants

In addition to constraints, there may be invariants3 associated to the sys-
tem which are modelled by a map finv : J1(E) → R

r. While invariants
and constraints might superficially seem similar concepts, in reality they are
of very different nature. Constraints are externally imposed on the system.

3Invariants are also called constants of motion or sometimes even dynamical constraints.
In the latter case our constraints are then kinematic constraints.
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Mathematically this means that Lagrange multipliers are needed in the corre-
sponding equations. Physically this means that we introduce fictious forces
which realize constraints. Invariants on the other hand are logical conse-
quences of the dynamics. Hence their description requires neither Lagrange
multipliers nor fictious forces.

A typical example of an invariant is the conservation of energy: in the
absence of external forces we have seen that W is an invariant. Usually the
number of invariants is quite small, and indeed in many cases the energy is
the only invariant. The invariants define a manifold

Minv = f−1
inv

(0) ⊂ J1(E).

Geometrically Minv ∩ M can be interpreted as a submanifold of M which
is invariant by the flow induced by the dynamics of the system. Hence the
presence of invariants has no effect on the computation of the distribution.

4.3 Planar case

Of course the planar case is included in the above considerations as a special
case. However, treating planar case directly is much more efficient computa-
tionally. Hence we briefly indicate the appropriate model.

Now in this case the relation between spatial and body coordinates is
given by

x(t) = r(t) + R(t)χ

where R ∈ SO(2). But using the correspondence

β 7→

(

cos(β) − sin(β)
sin(β) cos(β)

)

it is seen that the configuration space is R
2 × S1. Computationally we can

regard β ∈ R, with the understanding that the relevant data should be 2π
periodic. Next, it is evident that

ω = Ω = (0, 0, β1)

and the inertia is described by the scalar

Ip =

∫

B

|χ|2ρ(χ)dχ.

The torque is also a scalar: τ ' (0, 0, τ). Then setting y = (r, β), Fe = (F, τ),
denoting the potential by U and defining

E =

(

mI2 0
0 Ip

)

we can write the Euler–Lagrange equations as

Ey2 + ∇U = Fe.
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This formula can of course be generalised to the case of system of nb planar
rigid bodies by following conventions:

E = diag
(

E(1), . . . , E(nb)
)

Fe =
(

F (1), τ 1, . . . , F (nb), τnb

)

.

Finally if the constraints are given by g we see that the relevant distribution
can be computed from the following equations.

{

Ey2 + dgT λ + ∇U = Fe

dg y2 = −d2g(y1, y1).
(4.4)

In particular it is seen that no term corresponding to Christoffel map appears
in the planar case. The determination of the (constrained) state space is
handled in the same way as in the general case.

5 Computations

The computational problem has 2 main ingredients:

(i) given p ∈ M , compute Dp

(ii) given a ∈ J1(E), project a to M .

Of course in the latter problem a must be sufficiently close to M so that the
projection is well defined. However, this is not a problem in practice since
this condition is always satisfied if the step size is sufficiently small.

5.1 Distribution

How to solve the system (3.6) as efficiently as possible? The following ap-
proach was already used in [23] where more details and references can be
found. Consider the block matrix

C =

(

A BT

B D

)

.

If A is invertible the Schur complement of A is

S = D − BA−1BT .

Now the Schur complement is useful in solving the linear system Cw = b if

– A is “easily invertible” and

– D (and hence S) is (much) smaller than A.

22



But this is precisely the situation in our case! The system (3.6) can be written
as

(

E H(dg)T

dg HT 0

)(

d

λ

)

=

(

Fe − 8K̃ − H∇U

dg I y − d2g(y1, y1)

)

.

The Schur complement is now

S = −dg HT E−1H(dg)T .

Typically the size of S is much smaller than the size of E. But even more
importantly, E is indeed easily invertible, because it is block diagonal matrix
with 6 × 6 blocks. Hence we solve the system (3.6) as follows:

Algorithm 5.1.

• solve Eu1 = Fe − 8K̃ − H∇U

• compute v1 = dg HT u1 − dg I y + d2g(y1, y1)

• solve Sv2 = v1.

• compute u2 = H(dg)T v2

• solve Eu3 = u2

• set (d, λ) =
(

u1 + u3,−v2
)

.

Note that the system Sv2 = v1 must be solved iteratively while E systems
are solved “exactly” by a direct method. Then we get the following overall
algorithm for the computation of the distribution.

Algorithm 5.2.

• given p = (x, y, y1) ∈ M do

– solve (d, λ) from the system (3.6) using Algorithm 5.1

– set y2 = HT d − Iy

– set Dp = span{(1, y1, y2)}.

5.2 Projection

We have in fact 3 relevant manifolds which we have to consider: Mθ, Mhc

and Minv. Let us first consider Mθ. Since this involves only Euler parameters
we formulate the projection directly in terms of θ. Moreover different rigid
bodies do not interact in the projection, so without loss of generality we
consider just one rigid body.
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In principle the orthogonal projection of (a, a1) ∈ TaR
4 to (θ, θ1) ∈ TθS

3

could be computed by solving the system



















θ + µ1θ + µ2θ1 = a

θ1 + µ2θ = a1

|θ|2 − 1 = 0

〈θ, θ1〉 = 0.

(5.1)

However, this would require Newton’s method. Instead we project with the
following algorithm.

Algorithm 5.3.

• given (a, a1) ∈ TaR
4 do

– set θ = a/|a|

– set θ1 = a1 − 〈a1, θ〉θ.

Note that the point thus obtained satisfies 3 last equations of (5.1). How-
ever, the first equation will be satisfied for some µ1 only if 〈a, a1〉 = 0.
Anyway in our application 〈a, a1〉 will always be “small”, more precisely
〈a, a1〉 = O(h), so we may say that the projection is “almost” orthogonal.

Next let us consider Mhc. Recall that we suppose that the constraints do
not depend on t. Then given a point (t, a, a1) ∈ J1(E), its orthogonal projec-
tion to (t, y, y1) ∈ Mhc can be computed by solving the following system.

F (y, y1, α, β) =









y + d2gT (y1, ·)α + dgT β − a
y1 + dgT α − a1

dg y1

g(y)









. (5.2)

But now we can do an “almost orthogonal” projection mimicking Algorithm
5.3 because the form of the equations is essentially the same in both cases.
Given (t, a, a1) ∈ J1(E) we can orthogonally project a to y ∈ Mg by solving
the system

{

y + (dg)T µ − a = 0

g(y) = 0.
(5.3)

But having computed this we can solve y1 and α from the system

{

y1 + (dg)T α − a1 = 0

dg y1 = 0.
(5.4)

Note that this is a linear system. Then we have obtained values (y, y1, α)
such that the last three equations of the system (5.2) are satisfied.

Algorithm 5.4.
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• given (t, a, a1) ∈ J1(E) do

– project a to y ∈ Mg by solving (5.3)

– solve y1 and α from system (5.4).

Finally we have the invariants, given by the map finv. Now in general this
map has no special structure, so given a = (t, a, a1) ∈ J1(E) we simply solve

{

p + (dfinv)
T µ − a = 0

finv(p) = 0.
(5.5)

All these projections are then combined as follows.

Algorithm 5.5.

• given pinit ∈ J1(E) do

– set p0 = pinit, j = 0

– repeat

project pj to pθ ∈ Mθ using Algorithm 5.3

project pθ to phc ∈ Mhc using Algorithm 5.4

project phc to pj+1 ∈ Minv by solving the system (5.5)

until convergence.

5.3 Constraints in practice

In practice the constraints for rigid bodies are of quite particular form. In
fact it turns out that there are only three basic constraints and all needed
constraints can be constructed by taking appropriate combinations of the
basic ones.

The first one is a coincidence constraint (or briefly C–constraint), given
by a map gc : R

14 → R
3. This constraint simply says that given points χ(i)

and χ(j) in the coordinate systems of bodies Bi and Bj are really the same
point in the spatial coordinate system. Hence

gc(Bi,Bj) = r(j) + R(j)χ(j) − r(i) − R(i)χ(i) = 0. (5.6)

Mathematically χ(i) and χ(j) can be arbitrary, but in practice they are the
positions of the relevant joint in the corresponding body coordinate systems.
We remind the reader that r(i) is the position of the centre of mass of the
body Bi and R(i) defines its orientation in the spatial (global) coordinate
system.

Next we introduce a basic constraint where we require that two unit
vectors a(i), a(j) given in body coordinate systems must be perpendicular
to each other in the spatial coordinate system. This is called symmetric
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orthogonality constraint (or SO–constraint), and is given by the following
map gso : R

8 → R:

gso(a(i), a(j)) = 〈R(i)a(i), R(j)a(j)〉 = 0. (5.7)

In the third constraint we are given a unit vector a(i) and the points χ(i)

and χ(j) in body coordinates. Let us consider the difference of χ(i) and χ(j)

in spatial coordinates:

d(i,j) = r(j) + R(j)χ(j) − r(i) − R(i)χ(i).

Now we require that this is orthogonal to a(i) which must naturally also be ex-
pressed in the spatial coordinates. This is called nonsymmetric orthogonality
constraint ( or O–constraint), and thus is given by go : R

14 → R:

go(a(i), d(i,j)) = 〈R(i)a(i), d(i,j)〉

= 〈R(i)a(i), r(j) + R(j)χ(j) − r(i)〉 − 〈a(i), χ(i)〉 = 0.
(5.8)

Note that an O–constraint has a singularity if d(i,j) happens to be zero. Table
1 indicates how one can define some typical joints using different combina-
tions of the basic constraints.

Table 1: Different types of joints.

type of joint types of constraints # of conditions
spherical 1 C 3
universal 1 C and 1 SO 4
revolute 1 C and 2 SO 5
cylindrical 2 SO and 2 O 4
translational 3 SO and 2 O 5

6 Numerical results

6.1 Implementation

We use a 5th order Runge–Kutta scheme by Dormand and Prince [11]. In [23]
and [24] we have explained in detail how this scheme (and other Runge–Kutta
methods) can be adapted to jet space context. To speed up the computation
system (5.5) was solved for 4th and 5th order approximations only, not for
the intermediate points. The tests indicated that this omission did not affect
the quality of the computed solutions. To solve (5.3) and (5.5) we used the
inexact Newton method [8]; how to apply this in our context is explained in
[24].
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6.2 Description of the models.

In the following examples rigid bodies are homogeneous solids with mass
density ρ = 7810.4 Gravitational acceleration is g = 9.81 in the negative
direction of x2-axis in spatial coordinates. The basic unit vectors are denoted
by

e1 := (1, 0, 0) e2 := (0, 1, 0) e3 := (0, 0, 1).

In Tables below we will specify the constraints by giving some vectors a(i), a(j), b(i)

and b(j) whose interpretation is as follows:

a(i) : orthogonal to axis of a joint in ith body coordinates

b(i) : orthogonal to a(i) and a(j) in ith body coordinates

b(j) : parallel to b(i) in jth body coordinates.

Given these vectors we will need the following orthogonality constraints:

SO : gso(a(i), a(j)), gso(b(i), a(j)), gso(a(i), b(j))

O : go(a(i), d(i,j)), go(b(i), d(i,j)).

If now in Table 1 we need a certain number of SO– or O–constraints, then we
take the corresponding constraints from the above list starting from left. For
example the universal joint needs just a(i) and a(j) while only the translational
joint uses b(j).

6.2.1 3D pendulum

This is a problem of three degrees of freedom. Our pendulum is initially at
rest along the spatial x1-axis. It is attached to a spherical joint, which lies in
the spatial origin. There are no external forces acting on the system, except
gravity; hence the energy W = T + U remains constant. We also tested
with an imposed constant torque which showed an interesting behaviour and
comment briefly on that.

Initial configuration is shown in Figure 6.1, where the spatial coordinate
axes are as follows: e1 towards the upper right corner, e2 upwards, e3 towards
the lower right corner. We used the program SolidWorks5 to calculate the
inertial tensor

I = diag
(

0.147, 3.175, 3.154
)

as well as the centre of mass m = 38.34 of the pendulum. Initially the centre
of mass in spatial coordinates is r =

(

0.765, 0, 0
)

, and the orientation is given
by Euler parameters θ = (1, 0, 0, 0). The vectors describing the position of
the joint are χ(0) = (0, 0, 0) and χ(1) = (−0.765, 0, 0).

4We use standard SI units in our models.
5http://www.solidworks.com.
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Figure 6.1: Initial configuration of the pendulum.

6.2.2 Planar quadrangle with joints

This is a problem of one degree of freedom. Since this is a planar problem
it is of course inefficient to use a 3D code to solve it. However, to model it
we use 4 different types of joints, so this problem is very suitable for testing
basic constraints. The kinematic chain consists of three rigid bodies and a
fixed ground body. Each body, including the ground one, is attached to an
adjacent one through a joint. For testing purposes we have chosen revolute
joints only at the ground body, whereas the other two joints are spherical
or cylindrical. There is a single external torque acting on one of the bodies.
The spatial coordinate axes are in the Figure 6.2 as follows: e1 towards right,
e2 upwards, e3 towards the reader.

In Table 4, where the corresponding setup is presented, symbol Bi (resp.
Bj) stands for the “first body” (resp. “second body”). From the same table
we find that the joints restrict 17 degrees of freedom from the system. From
Tables 2 and 3 one can find the chosen parameters of the model.

Initial configuration is sketched in Figure 6.2, where global and local
coordinate systems are also shown. The local coordinate system of the ground
body coincides with the global one. The system starts from rest.
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Table 2: Parameters of the planar quadrangle.

Body i mass inertia tensor τ

Body 1 78.10 I
(1) = diag(0.08, 26.05, 26.1) (0, 0, -1200)

Body 2 156.20 I
(2) = diag(0.16, 208.3, 208.4) -

Body 3 156.20 I
(3) = diag(0.16, 208.3, 208.4) -

Table 3: Initial configuration of the planar quadrangle.

Body i r(i) θ(i)

Body 1
(

0.500, 0.866, 0
) (

0.866, 0, 0, 0.500
)

Body 2
(

2.824, 2.553, 0
) (

0.978, 0, 0, 0.210
)

Body 3
(

3.574, 1.687, 0
) (

0.877, 0, 0, 0.481
)

Table 4: Joints of the planar quadrangle. Here χ(i) is the position of the joint
in ith body coordinate system.

joint type Bi Bj # of cond. χ(i) χ(j) a(i) b(i) a(j)

revolute 0 1 5 (0, 0, 0) (-1, 0, 0) e2 e1 e3

spherical 1 2 3 (1, 0, 0) (-2, 0, 0) - - -

cylindrical 2 3 4 (2, 0, 0) (2, 0, 0) e1 e2 e3

revolute 3 0 5 (-2, 0, 0) (2.5, 0, 0) e1 e2 e3

Figure 6.2: Initial configuration of the planar quadrangle.

6.2.3 Crank mechanism

This example is of one degree of freedom, yet a real 3D-problem. Again
we have three solids, a ground body, and four joints: revolute, spherical,
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universal, and translational. There is an external torque acting on the body
1 so that the corner joint is moving along a circle centred at the global origin
and perpendicular to e1. The spatial coordinate axes are in the Figure 6.3
as follows: e1 towards the lower right corner, e2 upwards, e3 towards the
lower left corner. Joint information is represented in Table 7. Parameters of
the model are given in Tables 5 and 6. Initial configuration is illustrated in
Figure 6.3 and the system starts from rest.

Table 5: Parameters of the crank mechanism.

Body i mass inertia tensor τ

Body 1 19.50 I
(1) = diag(0.02, 0.41, 0.42) (0, 0, -50)

Body 2 70.29 I
(2) = diag(0.07, 18.99, 19.04) -

Body 3 7.81 I
(3) = diag(0.01, 0.01, 0.01) -

Table 6: Initial configuration of the crank mechanism.

Body i r(i) θ(i)

Body 1
(

0, 0,−0.25
) (

0.707, 0, 0.707, 0
)

Body 2
(

0.9, 0,−0.5
) (

1, 0, 0, 0
)

Body 3
(

1.8, 0,−0.5
) (

1, 0, 0, 0
)

Table 7: Joints of the crank mechanism.

joint type Bi Bj # of cond. χ(i) χ(j) a(i) b(i) a(j) b(j)

spherical 1 2 3 (0.25, 0, 0) (−0.9, 0, 0) - - - -

translat. 0 3 5 (0, 0, 0) (−1.8, 0, 0.5) e2 e3 e1 e3

universal 2 3 4 (0.9, 0, 0) (0, 0, 0) e2 - e3 -

revolute 1 0 5 (−0.25, 0, 0) (0, 0, 0) e2 e1 e1 -

6.3 Test runs.

Simulations were done with a 1.75GHz PC using Linux operating system,
the algorithms were coded entirely in C++ and compiled with the Gnu C++

compiler. Figures 6.1, 6.2, 6.3 were done with OpenGL Framework and other
figures were plotted with Matlab. In Tables 8, 9, and 10, CPU times are given
in seconds. Time interval was limited to t = [0, 10] in all of the tests and the
absolute Newton tolerance was taken as tolabs = 10−5.

We are mainly interested in the following comparisons:
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Figure 6.3: Initial configuration of the crank mechanism.

• The quasi-orthogonal projection presented here (in the Algorithms 5.3
and 5.4) vs. the usual orthogonal projection from [24].

• The study of the effect of imposing/ignoring the energy conservation.

In the absence (resp. presence) of external forces we take finv = W (resp.
finv = Wtotal). Recall that the computation of Wtotal involves a time integra-
tion which is handled with the trapezoidal rule.

3D pendulum. In the step size control we use Atol = Rtol = 10−6, facmax =
3.0 [11], and initial step size h0 = 0.25. The corresponding step sizes are in
Figure 6.5 and run characteristics in Table 8.

Compared to our usual orthogonal projection [24], the quasi-orthogonal
projection needs 10% more timesteps, and rejects steps three times as much
as the usual method, but uses a bit less Newton iterations (on the average,
yet the maximum number is twice that of the usual orthogonal projection).
Still, the overall CPU time spent by the new method is only a half, therefore
the quasi-orthogonal approach is 50% faster. This latter result illustrates well
the noticeable effectiveness of the quasi-orthogonal approach. Then again,
the number of rejected steps and #dfinv, #d2finv indicate some sort of sen-
sitivity of the quasi-orthogonal method, and it would be useful to find a
strategy to reduce this sensitivity making the method more robust in this
sense. Nevertheless, the results were qualitatively correct.

Also we like to point out that the quasi-orthogonal was more robust than
the usual orthogonal projection when an external torque τ was applied (to
save space we do not tabulate these computations). When |τ | ≈ 10, including
the energy invariant increased the computing time for both methods, but the
quasi-orthogonal one suffered much less (110% increase) than the orthogonal
one (276% increase). When |τ | ≈ 50 the quasi-orthogonal needed a lot more
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Newton iterations but the stepsize stayed reasonable, whereas the orthogonal
suffered from radically decreasing stepsize.

In Table 11, by comparing the “Pendulum” panel to Table 8, can be seen
that by ignoring the energy invariant the computation has speeded up in
both the quasi-orthogonal (20%) and the usual orthogonal projection (5%)
as expected due to reduced amount of work. But here more interesting is
that now the number of quasi-orthogonal projections is significantly reduced:
it is now about the same as (indeed even less than) with the usual projec-
tion. This shows that finv is, while itself a small system, slowing down the
overall convergence of the quasi-orthogonal method. Nevertheless the quasi-
orthogonal one is 58% faster, the total CPU time is only a third of the usual
method.

In Figure 6.4 we have plotted fluctuations of different energies. Note
that we do not need to do time integration to compute the total energy, and
hence one source of numerical errors is eliminated. It is seen that the energy
remains practically constant as it should. However, if the conservation of
energy is not explictly imposed, the drift-off is quite significant even on short
time interval.

Table 8: Run characteristics of the pendulum.

quasi-orth. orthogonal
projection projection

# succ. (rej.) steps 164(36) 151(12)
Newton: av(max) 0.97(8) 1.43(4)

# dist 1395 1136
# proj 1280 1070

CPU dist 0.84 0.69
CPU proj 1.65 4.30
CPU total 2.53 5.05

# dg 4856 6124
# d2gi 9669 18372
# d3gi - 0
# dfinv 1211 631
# d2finv 397 25

Planar quadrangle. In the step size control we use Atol = Rtol = 10−8,
facmax = 3.0, and initial step size h0 = 0.25. Run characteristics are in Table
9. The step sizes and the corresponding evolution of the energies with the
quasi-orthogonal projection are represented in Figures 6.7 and 6.6. In the left
panel of Figure 6.6 the potential energy is oscillating as one would physically
expect since it consists only of gravity, moreover the period of oscillation is
getting shorter as the torque is speeding up the system. This speedup is
roughly linear in velocity and clearly visible in the quadratic tendency of the
kinetic energy.
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Figure 6.4: On the left: energies of the pendulum when the conservation
of the energy is imposed. On the right: the total energy with and without
conservation of energy.
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Figure 6.5: Step sizes of the pendulum.

On the right panel is a magnification of the total energy which stays
nearly constant when the conservation of energy is imposed. There are a few
occasional spikes, that become more frequent and stronger with increasing
kinetic energy. The large number of maximum Newton iterations is related
to these spikes. Without invariants the drift off of the energy is again quite
rapid.

The quasi-orthogonal projection needs more steps (twice as many as the
usual orthogonal projection) to converge, but is still 50% faster in CPU time.
This shows the quasi-orthogonal projection is 4 times faster.
Crank mechanism. In the step size control we use Atol = Rtol = 10−7,
facmax = 3.0, and initial step size h0 = 0.25. Run characteristics are in Table
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Table 9: Run characteristics of the planar quadrangle.

quasi-orth. orthogonal
projection projection

# succ. (rej.) steps 1300(168) 1218(149)
Newton: av(max) 3.25(265) 1.82(4)

# dist 10139 9427
# proj 9721 10932

CPU dist 42.46 40.95
CPU proj 175.66 457.73
CPU total 218.91 499.41

# dg 47842 57473
# d2gi 613105 977041
# d3gi - 52388
# dfinv 27958 14961
# d2finv 12194 4746
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Figure 6.6: On the left: energies of the planar quadrangle when the conser-
vation of the energy is imposed. On the right: the total energy with and
without conservation of energy.

10. Evolution of energies is represented in Figure 6.8 and the step sizes in
Figure 6.9. The results are similar to the planar quadrangle case so we will be
brief here. The most notable differences are that the differentials of finv are
evaluated 3-5 times as often, and the quasi-orthogonal projection needs about
the same number of steps yet uses only a quarter of CPU time compared to
the usual orthogonal projection. Hence the quasi-orthogonal projection is 4
times faster here as well.
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Figure 6.7: Step sizes of the planar quadrangle.

Table 10: Run characteristics of the crank mechanism.

quasi-orth. orthogonal
projection projection

# succ. (rej.) steps 2086(352) 2070(113)
Newton: av(max) 6.69(215) 2.61(6)

# dist 16859 15175
# proj 13358 17458

CPU dist 88.08 78.44
CPU proj 757.65 3198.90
CPU total 848.67 3292.00

# dg 124303 123597
# d2gi 1778438 2101149
# d3gi - 36758
# dfinv 108843 31219
# d2finv 58003 10981

7 Conclusion and perspectives

We have derived a computational model to simulate multibody dynamics with
holonomic constraints. This approach is based on jet spaces and Lagrangian
formalism and avoids the traditional drift-off problems by an orthogonal pro-
jection onto the relevant manifold.

As we have seen in the numerical examples above our method can take
into account arbitrary (holonomic) constraints and in addition we can include
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Figure 6.8: On the left: energies of the crank mechanism when the conser-
vation of the energy is imposed. On the right: the total energy with and
without conservation of energy.
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Figure 6.9: Step sizes of the crank mechanism.

any invariants, such as the conservation of energy, in our model. Hence
our simulations can run indefinitely as far as the physical relevance of the
constraints is concerned.

Computationally the most expensive part in our simulations is the pro-
jection step; this may take as much as 90% of the total time. However, this
aspect is not fully optimized in our code. Much of the time goes to up-
dating various differentials, and it is clear that these updates could be less
frequent. Another possibility to speed up the code would be to use automatic
differentiation [10]. However, exploring this idea was left to future work.

Another topic that we aim to work on is to improve further the quasi-
orthogonal iteration: now we iterate first onto Mhc ∩Minv and then onto Mθ.
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Table 11: Test runs without the conservation of energy.

quasi-orth. orthogonal
projection projection

pendulum:
# succ. (rej.) steps 153(23) 152(13)
Newton: av(max) 0.929(2) 0.987(4)
# proj 795 833
CPU total 1.98 4.80
# dg 4158 5885

planar quadrangle:
# succ. (rej.) steps 1487(181) 1226(161)
Newton: av(max) 0.113(2) 0.995(3)
# proj 4332 6852
CPU total 95.03 301.05
# dg 32003 40476

crank mechanism:
# succ. (rej.) steps 1996(87) 2077(129)
Newton: av(max) 0.325(2) 1.42(5)
# proj 7133 11147
CPU total 191.27 2099.30
# dg 45054 87018

However, during the latter step θ1 may change significantly and we need to
re-iterate onto Mhc ∩Minv again. One possible reason for this is that in some
cases the condition number of the relevant matrix in the Newton iteration
was relatively big, resulting in the slow convergence. This could probably be
fixed by some suitable precondition method. In any case it would be useful
to develop a strategy to get onto the Mθ ∩ Mhc ∩ Minv without losing the
efficiency of the quasi-orthogonal iteration.

We did not consider nonholonomic systems in the present article because
treating them would have augmented the length of the paper considerably.
The formulation of nonholonomic problems is very different from the holo-
nomic ones, for example nonholonomic problems are not variational (in a
standard sense); see [5, p. 208] for a discussion and further references. How-
ever, we believe that the general framework of jet spaces is also suitable for
numerical solution of nonholonomic systems and we hope to treat this case
in future papers.
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On an inverse subordinator storage

June 2006

A500 Outi Elina Maasalo , Anna Zatorska-Goldstein

Stability of quasiminimizers of the p–Dirichlet integral with varying p on metric

spaces

April 2006

A499 Mikko Parviainen

Global higher integrability for parabolic quasiminimizers in nonsmooth domains

April 2005

A498 Marcus Ruter , Sergey Korotov , Christian Steenbock

Goal-oriented Error Estimates based on Different FE-Spaces for the Primal and

the Dual Problem with Applications to Fracture Mechanics

March 2006

A497 Outi Elina Maasalo

Gehring Lemma in Metric Spaces

March 2006

A496 Jan Brandts , Sergey Korotov , Michal Krizek

Dissection of the path-simplex in Rn into n path-subsimplices

March 2006

A495 Sergey Korotov

A posteriori error estimation for linear elliptic problems with mixed boundary

conditions

March 2006

A494 Antti Hannukainen , Sergey Korotov

Computational Technologies for Reliable Control of Global and Local Errors for

Linear Elliptic Type Boundary Value Problems

February 2006



HELSINKI UNIVERSITY OF TECHNOLOGY INSTITUTE OF MATHEMATICS

RESEARCH REPORTS

The list of reports is continued inside. Electronical versions of the reports are

available at http://www.math.hut.fi/reports/ .

A507 Pekka Alestalo , Dmitry A. Trotsenko

Bilipschitz extendability in the plane

August 2006

A506 Sergey Korotov

Error control in terms of linear functionals based on gradient averaging tech-

niques

July 2006

A505 Jan Brandts , Sergey Korotov , Michal Krizek

On the equivalence of regularity criteria for triangular and tetrahedral finite

element partitions

July 2006

A504 Janos Karatson , Sergey Korotov , Michal Krizek

On discrete maximum principles for nonlinear elliptic problems

July 2006

A503 Jan Brandts , Sergey Korotov , Michal Krizek , Jakub Solc

On acute and nonobtuse simplicial partitions

July 2006

ISBN-13 978-951-22-8402-3 (printed)

ISBN-10 951-22-8402-2 (printed)

ISBN-13 978-951-22-8403-0 (elektronic)

ISBN-10 951-22-8403-0 (elektronic)

ISSN 0784-3143


