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János Karátson Sergey Korotov

Helsinki University of Technology

Department of Engineering Physics and Mathematics

Institute of Mathematics
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1 Introduction

The maximum principle forms an important qualitative property of second
order elliptic boundary value problems [10, 23, 27]. Consequently, the discrete
analogues of the maximum principle (so-called discrete maximum principles,
DMPs) have drawn much attention. Various DMPs have been formulated
and proved including the case of finite difference, finite volume and finite el-
ement approximations, and corresponding geometric conditions on the com-
putational meshes have been given, see, e.g., [2, 4, 6, 7, 11, 19, 28] for linear
and [14, 15, 20] for nonlinear problems with standard (i.e., Dirichlet, and in
[14, 15] mixed) boundary conditions.

In this paper we address interface problems, which arise in various branches
of material science, biochemistry, multiphase flow etc., often when two dis-
tinct materials are involved with different conductivities or densities. Another
(for our work, motivating) example is from localized reaction-diffusion prob-
lems [12, 13], see at the end of this paper. Many special numerical methods
have been designed for interface problems, see e.g. [12, 25, 26, 24], but max-
imum principles have received less attention than for the case of standard
boundary value problems. A continuous minimum principle for a related
problem is given in [9]. The discrete maximum principle for suitable finite
difference discretizations of linear interface problems has been proved in [25].

Our goal is to prove discrete maximum principles for nonlinear elliptic
interface problems when finite element discretization is involved. The present
paper is the extension of our paper [14] to a class of such problems, and relies
on a similar technique using weak formulation and positivity conditions that
ensure well-posedness. We consider matching conditions for the solution itself
on the interface, i.e., the jump is allowed for the normal derivatives. Problems
with jump of the solution or without well-posedness may be the subject of
further research.

The paper is organized as follows. The formulation of the problem, to-
gether with the derivation of a continuous maximum principle, and the de-
scription of finite element discretization are given in Section 2. Discrete
maximum principles are proved and examples are given in Section 3.

2 Nonlinear elliptic interface problems: basic

properties and discretization

2.1 Formulation of the problem

We investigate nonlinear interface problems of the following form:
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− div
(

b(x,∇u)∇u
)

+ q(x, u) = f(x) in Ω \ Γ,

[ u]Γ = 0 on Γ,
[

b(x,∇u)∂u
∂ν

]

Γ
+ s(x, u) = γ(x) on Γ,

u = g(x) on ∂Ω,

(1)

where ∂Ω denotes the boundary of the domain Ω and the interface Γ is a
surface lying in Ω, further, [ u]Γ and

[

b(x,∇u)∂u
∂ν

]

Γ
denote the jump (i.e.,

the difference of the limits from the two sides of the interface Γ) of u and
b(x,∇u)∂u

∂ν
, respectively. We impose the following

Assumptions 2.1:

(A1) Ω is a bounded open domain in Rd, the interface Γ ⊂ Ω and the
boundary ∂Ω are piecewise smooth and Lipschitz continuous (d − 1)-
dimensional surfaces.

(A2) The scalar functions b : Ω × Rd → R, q : Ω × R → R and s :
Γ × R → R are measurable and bounded w.r.t. their first variable
x ∈ Ω (resp. x ∈ Γ) and continuously differentiable w.r.t. their second
variable η ∈ Rd (resp. ξ ∈ R). Further, f ∈ L2(Ω), γ ∈ L2(Γ) and
g ∈ H1(Ω).

(A3) The function b satisfies

0 < µ0 ≤ b(x, η) ≤ µ1 (2)

with positive constants µ0 and µ1 independent of (x, η), further, the

diadic product matrix η · ∂b(x,η)
∂η

is symmetric positive semidefinite and
bounded in matrix norm by some positive constant µ2 independent of
(x, η).

(A4) Let 2 ≤ p1 if d = 2, or 2 ≤ p1 ≤ 2d
d−2

if d > 2, further, let 2 ≤ p2 if

d = 2, or 2 ≤ p2 ≤ 2d−2
d−2

if d > 2. There exist functions α1 ∈ Ld/2(Ω),

α2 ∈ Ld−1(Γ) and a constant β ≥ 0 such that for any x ∈ Ω (or x ∈ Γ,
resp.) and ξ ∈ R

0 ≤
∂q(x, ξ)

∂ξ
≤ α1(x) + β|ξ|p1−2, 0 ≤

∂s(x, ξ)

∂ξ
≤ α2(x) + β|ξ|p2−2.

(3)

Remark 1. The role of assumption (A3) is to ensure that the Jacobian

matrices J(x, η) := ∂
∂η

(

b(x, η) η
)

are symmetric and satisfy the uniform

ellipticity property µ0|ζ|
2 ≤ J(x, η) ζ · ζ ≤ µ3|ζ|

2, ζ ∈ Rd (with µ3 =
µ1 + µ2), which will be required for well-posedness. For instance, assump-
tion (A3) holds for coefficients of the form b(x, η) = a(x, |η|) (see [8, 21]
for such nonlinearities), where the C1 function a : Ω × R+ → R satisfies
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0 < µ0 ≤ a(x, r) ≤ ∂
∂r

(a(x, r) r) ≤ µ3 (r > 0). More specially, one may
have b(x, η) = a(x) (i.e., linear principal part) with a measurable function a

satisfying 0 < µ0 ≤ a(x) ≤ µ3.

2.2 Weak solutions

Theorem 1. Under Assumptions 2.1, problem (1) has a unique weak solution
u∗ ∈ H1(Ω) defined as follows:

∫

Ω

(

b(x,∇u∗) ∇u∗ · ∇v + q(x, u∗)v
)

dx +

∫

Γ

s(x, u∗)v dσ =

=

∫

Ω

fv dx +

∫

Γ

γv dσ ∀v ∈ H1
0 (Ω) (4)

and u∗ = g on ∂Ω. (5)

Proof. We first prove the theorem for homogeneous boundary condition,
i.e. when g = 0. In this case the weak solution u∗ can be obtained using
monotone operators, in a similar way as in [8, Chap. 6], therefore we only
indicate the main steps of the proof. First, we define

〈F (u), v〉 =

∫

Ω

(

b(x,∇u) ∇u · ∇v + q(x, u)v − fv
)

dx +

+

∫

Γ

(

s(x, u)v − γv
)

dσ (v ∈ H1
0 (Ω)), (6)

where the growth conditions in (A1)–(A4) ensure that the arising integrals

are finite. Let J(x, η) := ∂
∂η

(

b(x, η) η
)

as in Remark 1. Then, from (A3)-

(A4), we obtain that the Gateaux derivative F ′(u) exists, is self-adjoint for
all u and satisfies

〈F ′(u)v, v〉 =

∫

Ω

(

J(x,∇u) ∇v · ∇v + q′u(x, u)v2
)

dx +

+

∫

Γ

s′u(x, u)v2 dσ ≥ µ0

∫

Ω

|∇v|2 dx (7)

(for all u, v ∈ H1
0 (Ω)), where q′u, s′u denote derivatives w.r.t. u. Using the

standard Sobolev norm defined via

‖v‖2
1 =

∫

Ω

|∇v|2 dx (v ∈ H1
0 (Ω)),

the uniform ellipticity (7) implies that the operator equation F (u) = 0 has
a unique solution u∗ ∈ H1

0 (Ω). Here F (u∗) = 0 is equivalent to (4), i.e., u∗

is the weak solution.
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For non-homogeneous boundary conditions the problem can be reduced to
the homogeneous case using a usual translation. Let g ∈ H1(Ω) be arbitrary
and let us require (5) on the boundary. Then we look for u∗ in the form
u∗ = u + g, in which case u = 0 on ∂Ω. Substituting this sum into (4), we
observe that u must satisfy the same problem with homogeneous boundary
conditions and with coefficients

b̂(x, η) = b(x, η+∇g(x)), q̂(x, ξ) = q(x, ξ+g(x)), ŝ(x, ξ) = s(x, ξ+g(x)).

Here g(x) is independent of ξ, η, hence these coefficients remain C1 in their
second variable and satisfy the same growth conditions as b, q, s. This implies
existence and uniqueness for u, and then the same for u∗ owing to the relation
u∗ = u + g.

The above notion of weak solution is justified by showing that any classical
(or strong) solution is also a weak solution. To define the classical solution, we
assume in addition that the interface Γ is a closed surface, or more generally, it
is any compact subset of an (also piecewise smooth and Lipschitz continuous)
closed surface Γ̂ ⊂ Ω as illustrated in Figure 2.2. Let us denote by Ω0 the
interior of the surface Γ̂.

Ω

Ω Ω

Γ

0

0Ω

Γ

Figure 1: Interface in a domain

Definition 1. We call u : Ω → R a classical solution of problem (1) if
u ∈ C2(Ω \ Γ), u

∣

∣

Ω0
∈ C1(Ω0), u

∣

∣

Ω\Ω0
∈ C1(Ω \ Ω0) and u satisfies (1)

pointwise.

Proposition 1. A classical solution of problem (1) is also a weak solution.

Proof. Let x ∈ Γ̂, let ν denote the normal unit vector pointing out of
Ω0, and let ν̂ := −ν (the normal unit vector pointing out of Ω \ Ω0). The
jump of b(x,∇u)∂u

∂ν
at x is the difference of the limits of b(·,∇u) ∂u

∂ν
at x from

Ω0 and from Ω\Ω0. Using the definition ∂u
∂ν

(x) := lim
t→0+

1
t

(

u(x)−u(x− tν)
)

,

we thus have
[

b(x,∇u)
∂u

∂ν

]

x∈Γ

:= b
(

x,∇(u
∣

∣

Ω0
)(x)

)

lim
t→0+

1

t

(

u(x) − u(x − tν)
)

−
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− b
(

x,∇(u
∣

∣

Ω\Ω0
)(x)

)

lim
t→0−

1

t

(

u(x) − u(x − tν)
)

=

= b
(

x,∇(u
∣

∣

Ω0
)(x)

)

lim
t→0+

1

t

(

u(x) − u(x − tν)
)

+

+ b
(

x,∇(u
∣

∣

Ω\Ω0
)(x)

)

lim
s→0+

1

s

(

u(x) − u(x − sν̂)
)

=

=

(

b
(

x,∇(u
∣

∣

Ω0
)(x)

) ∂u

∂ν
+ b

(

x,∇(u
∣

∣

Ω\Ω0
)(x)

) ∂u

∂ν̂

)

x∈Γ

. (8)

Now let u be a classical solution. The assumptions imply that u ∈ H1(Ω),
and (5) holds trivially. For any v ∈ H1

0 (Ω), Green’s formula for equation (1)
on Ω0 and Ω \ Ω0, respectively, yields
∫

Ω0

fv dx =

∫

Ω0

(

b(x,∇u) ∇u · ∇v + q(x, u)v
)

dx −

∫

Γ̂

b
(

x,∇(u
∣

∣

Ω0
)
)∂u

∂ν
v dσ

and
∫

Ω\Ω0

fv dx =

∫

Ω\Ω0

(

b(x,∇u) ∇u·∇v+q(x, u)v
)

dx−

∫

Γ̂

b
(

x,∇(u
∣

∣

Ω\Ω0
)
)∂u

∂ν̂
v dσ.

Summing up, the integrand on Γ̂ becomes the jump on Γ (using (8)) and zero
on Γ̂ \ Γ (since ∇u is continuous there and ν̂ = −ν). In virtue of the jump
condition in (1), we altogether obtain
∫

Ω

fv dx =

∫

Ω

(

b(x,∇u) ∇u · ∇v + q(x, u)v
)

dx −

∫

Γ

[

b(x,∇u)
∂u

∂ν

]

Γ

v dσ

=

∫

Ω

(

b(x,∇u) ∇u · ∇v + q(x, u)v
)

dx +

∫

Γ

(

(s(x, u) − γ
)

v dσ .

2.3 Continuous maximum principles

We formulate and prove two continuous maximum principles for our PDE
problem (1). These statements provide the properties whose discrete ana-
logues can be expected for suitable FEM solutions.

Theorem 2. Let Assumptions 2.1 hold and

f(x) − q(x, 0) ≤ 0, x ∈ Ω, and γ(x) − s(x, 0) ≤ 0, x ∈ Γ. (9)

If the weak solution u of problem (1) belongs to C1(Ω \ Γ) ∩ C(Ω), then

maxΩ u ≤ max{0, max∂Ω g}. (10)

In particular, if g ≥ 0, then maxΩ u = max∂Ω g, and if g ≤ 0, then we have
the nonpositivity property maxΩ u ≤ 0.

In general, if u ∈ H1(Ω) only (without the above regularity assumption)
and g is a.e. bounded on ∂Ω, then the same statements hold if max u and
max g are replaced by ess sup u and ess sup g, respectively.
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Proof. We only prove the regular case, the general case is similar (if
max u and max g are replaced by ess sup u and ess sup g, respectively). Let

r(x, ξ) :=







q(x,ξ)−q(x,0)
ξ

, if ξ 6= 0,

∂q
∂ξ

(x, 0), if ξ = 0,
z(x, ξ) :=







s(x,ξ)−s(x,0)
ξ

, if ξ 6= 0,

∂s
∂ξ

(x, 0), if ξ = 0.

(11)
Here, using (A2), the functions r and z are continuous in ξ. Further, in view
of (A4), we have

r(x, ξ) ≥ 0, z(x, ξ) ≥ 0. (12)

We define

ã(x) := b(x,∇u(x)) (x ∈ Ω \ Γ), h̃(x) := r(x, u(x)) (x ∈ Ω), (13)

k̃(x) := z(x, u(x)) (x ∈ Γ).

Using also the notations

f̂(x) := f(x) − q(x, 0) and γ̂(x) := γ(x) − s(x, 0), (14)

the weak formulation of problem (1) is rewritten as

∫

Ω

(

ã ∇u · ∇v + h̃uv
)

dx +

∫

Γ

k̃uv dσ =

∫

Ω

f̂v dx +

∫

Γ

γ̂v dσ ∀v ∈ H1
0 (Ω).

(15)
Let M := max{0, max∂Ω g} and we introduce the piecewise C1 function v :=
max{u−M, 0}. Then we have v ≥ 0 and v|∂Ω = 0, further, u(x) = v(x)+M

for any x ∈ Ω unless v(x) = 0. Hence, for this v the left-hand side of (15)
satisfies

∫

Ω

(

ã ∇u · ∇v + h̃uv
)

dx +

∫

Γ

k̃uv dσ =

=

∫

Ω

(

ã |∇v|2 + h̃(v + M)v
)

dx +

∫

Γ

k̃(v + M)v dσ ≥ 0

since the functions ã, h̃, k̃, v and the constant M are nonnegative. On the
other hand, the assumptions f̂ ≤ 0, γ̂ ≤ 0 imply that for this v the right-
hand side of (15) satisfies

∫

Ω

f̂v dx +

∫

Γ

γ̂v dσ ≤ 0,

which together imply the relation

∫

Ω

(

ã |∇v|2 + h̃(v + M)v
)

dx +

∫

Γ

k̃(v + M)v dσ = 0.

8



By assumption (A3), here ã has a positive minimum, hence |∇v| = 0, i.e., v

is constant. We have seen that v|∂Ω = 0, hence we obtain that v ≡ 0, which
just means that (10) holds.

The following special case provides equality of maxima on ∂Ω without
assuming g ≥ 0:

Theorem 3. Let q ≡ 0 and s ≡ 0 in problem (1). Let us impose the
assumptions of Theorem 2, which now means that (A1)–(A3) are satisfied,
u ∈ C1(Ω \ Γ) ∩ C(Ω), and (9) takes the form

f(x) ≤ 0, x ∈ Ω and γ(x) ≤ 0, x ∈ Γ. (16)

Then
maxΩ u = max∂Ω g. (17)

(If u ∈ H1(Ω) only and g is a.e. bounded on ∂Ω, then ess sup u = ess sup g

on ∂Ω.)

Proof. We only prove the regular case again. If max∂Ω g ≥ 0 then (10)
implies (17). Let max∂Ω g < 0, say, max∂Ω g = −K with some K > 0. Then
the function w := u + K satisfies the same mixed problem with right-hand
sides f , γ and g + K, respectively, hence Theorem 2 is valid for this problem
as well, and (10) for w yields maxΩ w ≤ max{0, max∂Ω (g + K)} = 0. Then
maxΩ u ≤ −K = max∂Ω g.

Remark 2. Analogously to Theorems 2 and 3, corresponding minimum prin-
ciples and nonnegativity property hold if the sign conditions in (9) and (16)
are reversed.

2.4 Finite element discretization

Our basic assumption in the sequel that Ω is a polytopic domain and the
interface Γ is also polytopic. (We note that if ∂Ω or Γ are curved then
the convergence of the discrete solution to the exact one is a much more
difficult problem, out of the scope of this paper. Even for the simpler case of
Dirichlet problems in 3D without interface, such an analysis has been given
only recently in [16].)

We introduce a finite element discretization of our problem with simplicial
elements and continuous piecewise linear basis functions. Let Th be a a
conforming triangulation of Ω into tetrahedra, whose nodes are B1, ..., Bn̄.
Denote by φ1, ..., φn̄ the piecewise linear continuous basis functions defined
in a standard way, i.e., φi(Bj) = δij for i, j = 1, ..., n̄, where δij is the
Kronecker symbol. Let Vh denote the finite element subspace spanned by the
above basis functions:

Vh = span{φ1, ..., φn̄} ⊂ H1(Ω).

9



Let n < n̄ be such that

B1, ..., Bn (18)

are the nodes that lie in Ω and let

Bn+1, ..., Bn̄ (19)

be the nodes that lie on ∂Ω. Then the basis functions φ1, ..., φn satisfy ho-
mogeneous boundary condition on ∂Ω, i.e., φi ∈ H1

0 (Ω). We define

V 0
h = span{φ1, ..., φn} ⊂ H1

0 (Ω).

Further, let

gh =
n̄
∑

j=n+1

gjφj ∈ Vh (20)

(with gj ∈ R) be the piecewise linear approximation of the function g on ∂Ω
(and on the neighbouring elements). To find the FEM solution of (4)-(5) in
Vh, we solve the following problem: find uh ∈ Vh such that

∫

Ω

(

b(x,∇uh) ∇uh · ∇vh + q(x, uh)vh

)

dx +

∫

Γ

s(x, uh)vh dσ =

=

∫

Ω

fvh dx +

∫

Γ

γvh dσ ∀vh ∈ V 0
h (21)

and uh = gh on ∂Ω.

Theorem 4. Under Assumptions 2.1, problem (21) has a unique solution
uh ∈ Vh, and ‖u∗ − uh‖1 → 0 as h → 0.

Proof. The proof of Theorem 1 can be repeated to obtain uh, just
replacing H1(Ω) by Vh. The convergence of uh to u∗ in H1-norm follows in
the standard way from the ellipticity of the equation and the fact that the
finite-dimesional subspaces Vh satisfy the condition limh→0 dist (u, Vh) = 0
for all u ∈ H1(Ω), where dist (u, Vh) = infvh∈Vh

‖u − vh‖1 (see [5]).

Let us now formulate the nonlinear algebraic system corresponding to
(21). First we rewrite problem (21) with the notations (11) and (14):

∫

Ω

(

b(x,∇uh) ∇uh · ∇vh + r(x, uh)uhvh

)

dx +

+

∫

Γ

z(x, uh)uhvh dσ =

∫

Ω

f̂vh dx +

∫

Γ

γ̂vh dσ (22)

10



∀vh ∈ V 0
h . We set

uh =
n̄
∑

j=1

cjφj, (23)

and look for the coefficients c1, . . . , cn̄. For any c̄ = (c1, ..., cn̄) ∈ Rn̄, i =
1, ..., n and j = 1, ..., n̄, we set

bij(c̄) :=

∫

Ω

b(x,

n̄
∑

k=1

ck∇φk) ∇φj · ∇φi dx,

rij(c̄) :=

∫

Ω

r(x,

n̄
∑

k=1

ckφk) φjφi dx,

zij(c̄) :=

∫

Γ

z(x,

n̄
∑

k=1

ckφk) φjφi dσ, di(c̄) :=

∫

Ω

f̂φi dx +

∫

Γ

γ̂φi dσ ,

aij(c̄) := bij(c̄) + rij(c̄) + zij(c̄). (24)

Putting (23) and vh = φi into (22), we obtain the n × n̄ system of algebraic
equations

n̄
∑

j=1

aij(c̄) cj = di, i = 1, ..., n. (25)

Using the notations

A(c̄) :={aij(c̄)}, i, j = 1, ..., n,

Ã(c̄) :={aij(c)}, i = 1, ..., n; j = n + 1, ..., n̄,
(26)

d :={dj}, c := {cj}, j = 1, ..., n, and

c̃ :={cj}, j = n + 1, ..., n̄,

system (25) turns into
A(c̄)c + Ã(c̄)c̃ = d. (27)

Defining further

Ā(c̄) :=
[

A(c̄) Ã(c̄)
]

, c̄ :=

[

c

c̃

]

, (28)

we rewrite (27) as follows
Ā(c̄)c̄ = d. (29)

In order to obtain a system with a square matrix, we enlarge our system to
an n̄ × n̄ one. Since uh = gh on ∂Ω, the coordinates ci with n + 1 ≤ i ≤ n̄

satisfy automatically ci = gi, i.e.,

c̃ = g̃ := {gj}, j = n + 1, ..., n̄,

hence we can replace (27) by the equivalent system
[

A(c̄) Ã(c̄)
0 I

] [

c

c̃

]

=

[

d

g̃

]

. (30)
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3 Maximum principle for the discretized prob-

lem

3.1 Background

First we recall a basic definition in the study of DMP (cf. [29, p. 23]):

Definition 2. A square n × n matrix M = (mij)
n
i,j=1 is called irreducibly

diagonally dominant if it satisfies the following conditions:

(i) M is irreducible, i.e., for any i 6= j there exists a sequence of nonzero
entries {mi,i1 ,mi1,i2 , . . . ,mis,j} of M , where i, i1, i2, . . . , is, j are distinct
indices,

(ii) M is diagonally dominant, i.e., |mii| ≥
n
∑

j=1
j 6=i

|mij|, i = 1, ..., n,

(iii) for at least one index i0 ∈ {1, ..., n} the above inequality is strict, i.e.,

|mi0,i0 | >

n
∑

j=1
j 6=i0

|mi0,j|.

Let us now consider a system of equations of order (n + m) × (n + m):

Āc̄ = b̄,

where the matrix Ā has the following structure:

Ā =

[

A Ã

0 I

]

. (31)

Here I is the m×m identity matrix and 0 is the m×n zero matrix. Following
[6], we introduce

Definition 3. An (n + m) × (n + m) matrix Ā with the structure (31) is
said to be of generalized nonnegative type if the following properties hold:

(i) aii > 0, i = 1, ..., n,

(ii) aij ≤ 0, i = 1, ..., n, j = 1, ..., n + m (i 6= j),

(iii)
n+m
∑

j=1

aij ≥ 0, i = 1, ..., n,

(iv) There exists an index i0 ∈ {1, . . . , n} for which
n
∑

j=1

ai0,j > 0.

(v) A is irreducible.

12



Remark 3. In the original definition in [6, p. 343], it is assumed instead
of the above properties (iv)-(v) that the principal block A is irreducibly
diagonally dominant. However, the latter follows directly from Definition 3
under the given sign conditions on aij.

We also note that a well-known theorem [29, p. 85] implies in this case
that A−1 > 0, i.e., the entries of the matrix A−1 are positive.

The known results on various discrete maximum principles (e.g., [6, 7, 14,
20]) are essentially based on the following theorem:

Theorem 5. Let Ā be a (n+m)×(n+m) matrix with the structure (31), and
assume that Ā is of generalized nonnegative type in the sense of Definition
3.

If the vector c̄ = (c1, ..., cn+m) ∈ Rn+m is such that (Āc̄)i ≤ 0, i = 1, ..., n,
then

maxi=1,...,n+m ci ≤ max{0, maxi=n+1,...,n+m ci}. (32)

If, in addition,
n+m
∑

j=1

aij = 0, i = 1, ..., n, (33)

then
maxi=1,...,n+m ci = maxi=n+1,...,n+m ci. (34)

Proof. As stated in Remark 3, A is irreducibly diagonally dominant.
This, together with (i)-(iii), implies both statements (32) and (34), see [6,
Th. 3] and [14, Th. 3], respectively.

3.2 Algebraic conditions for the discrete maximum prin-

ciple

The following theorem is the main result of the present paper since it will
allow us to derive various forms of the discrete maximum principle. The sign
condition (36) is similar to the one given in [7, 14].

Theorem 6. Let Assumptions 2.1 hold and let

f(x) − q(x, 0) ≤ 0, x ∈ Ω, and γ(x) − s(x, 0) ≤ 0, x ∈ Γ. (35)

Let us consider a family of simplicial triangulations Th (h > 0) satisfying the
following property: for any i = 1, ..., n, j = 1, ..., n̄ (i 6= j)

∇φi · ∇φj ≤ −
σ0

h2
< 0 (36)

on supp φi ∩ supp φj with σ0 > 0 independent of i, j and h.

(1) Let the triangulations Th be regular, i.e., there exist constants c1, c2 > 0
such that for any h > 0 and any simplex T ∈ Th

c1h
d ≤ meas(T ) ≤ c2h

d (37)

13



(where meas denotes d-dimensional measure). Then for sufficiently small
h, the matrix Ā(c̄) defined in (28) is of generalized nonnegative type in the
sense of Definition 3.

(2) More generally, for statement (1) to hold, it suffices to assume instead of
(37) that the triangulations Th are only quasi-regular in the following sense:
the left-hand side of (37) is replaced by

c1h
γ ≤ meas(T ) (38)

with some γ ≥ d satisfying

2 ≤ γ < 3 if d = 2, 3 ≤ γ < min{ 12
p1−2

, 5 − p2

2
} if d = 3 (39)

(or in general, d ≤ γ < min{ 4d
(p1−2)(d−2)

, 3 + (4−p2)(d−2)
2

} if d ≥ 3) where p1

and p2 are defined in Assumptions 2.1, (A4).

Proof. The coefficients of Ā(c̄) satisfy

aij(c̄) =

∫

Ω

[

b(x,∇uh) ∇φi · ∇φj + r(x, uh) φiφj

]

dx +

∫

Γ

z(x, uh) φiφj dσ

(i = 1, ..., n, j = 1, ..., n̄). We now prove the properties (i)-(v) in the case
(2); the conditions (38)-(39) are only used in part (ii).

(i) From our assumptions b ≥ µ0 > 0, r ≥ 0 and z ≥ 0 we have

aii(c̄) ≥ µ0

∫

Ω

|∇φi|
2 dx > 0.

(ii) Let i = 1, ..., n, j = 1, ..., n̄ with i 6= j and let Ωij denote the interior
of supp φi ∩ supp φj. If Ωij = ∅ then

aij(c̄) = 0.

If Ωij 6= ∅ then properties (12) and (36) and the fact 0 ≤ φi ≤ 1, i = 1, ..., n̄,
imply

aij(c̄) ≤ −
σ0

h2
µ0 meas(Ωij) +

∫

Ωij

r(x, uh) dx +

∫

Γij

z(x, uh) dσ, (40)

using notation Γij = Γ ∩ Ωij. Here, from (11) and Assumption (A4),

∫

Ωij

r(x, uh) dx =

∫

Ωij

∂q

∂ξ
(x, θuh) dx ≤

∫

Ωij

(

α1(x) + β|θuh|
p1−2

)

dx ≤

≤

∫

Ωij

α1(x) dx + β

∫

Ωij

|uh|
p1−2 dx

14



(where we had some θ = θ(x) ∈ [0, 1]), and in just the same way we have

∫

Γij

z(x, uh) dσ ≤

∫

Γij

α2(x) dσ + β

∫

Γij

|uh|
p2−2 dσ.

Now we can estimate the integrals

∫

Ωij

|uh|
p1−2 dx and

∫

Γij

|uh|
p2−2 dσ as

follows. We define p∗ := 2d
d−2

and p∗∗ := 2(d−1)
d−2

if d ≥ 3, and p∗ := p∗∗ := +∞
if d = 2. Then the Sobolev embedding estimates

‖v‖Lp∗ (Ω) ≤ k1‖v‖1, ‖v‖Lp∗∗ (Γ) ≤ k2‖v‖1, v ∈ H1(Ω), (41)

hold with constants k1, k2 > 0, where ‖v‖1 = ‖v‖H1(Ω) (see [1]). Assume for
a while that p1, p2 > 2 and let us fix real numbers r and t satisfying

γ

2
< r ≤

p∗

p1 − 2
,

d − 1

d + 1 − γ
< t ≤

p∗∗

p2 − 2
. (42)

Such numbers exist since for d ≥ 3, by (39),

γ <
2p∗

p1 − 2
and γ < 3 +

(4 − p2)(d − 2)

2
= d + 1 +

(2 − p2)(d − 2)

2
=

= d + 1 −
(p2 − 2)(d − 1)

p∗∗
.

Further, γ ≥ 2 implies r ≥ 1 and t ≥ 1. If 1
r

+ 1
s

= 1
t
+ 1

l
= 1 then Hölder’s

inequality implies

∫

Ωij

|uh|
p1−2 dx ≤ ‖1‖Ls(Ωij)

∥

∥

∥
|uh|

p1−2
∥

∥

∥

Lr(Ωij)
= meas(Ωij)

1/s ‖uh‖
p1−2

L(p1−2)r(Ωij)
.

(43)
Here (p1 − 2)r ≤ p∗ and (41) imply

‖uh‖
p1−2

L(p1−2)r(Ωij)
≤ ‖uh‖

p1−2

L(p1−2)r(Ω)
≤ const. · ‖uh‖

p1−2

Lp∗ (Ω)
≤ const. · ‖uh‖

p1−2
1 .

Owing to the basic FEM convergence result, we have ‖uh‖1 → ‖u∗‖1, where
u∗ is the exact weak solution of our problem. Hence if h is less than some
fixed h0 then (43) finally turns into

∫

Ωij

|uh|
p1−2 dx ≤ K1 meas(Ωij)

1/s (44)

with some constant K1 > 0 independent of h. In just the same way we obtain

∫

Γij

|uh|
p2−2 dx ≤ K2 meas(Γij)

1/l . (45)
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Finally, if p1 or p2 equals 2 then the corresponding equality (44) or (45) holds
with s = 1 or l = 1, respectively.

The integrals of α1(x) and α2(x) can be estimated with Hölder’s inequality
similarly to (43) by letting 2

d
+ 1

s′
= 1

d−1
+ 1

l′
= 1:

∫

Ωij

α1(x) dx ≤ K3 meas(Ωij)
1/s′ ,

∫

Γij

α2(x) dσ ≤ K4 meas(Γij)
1/l′

with K3 = ‖α1‖Ld/2(Ω) and K4 = ‖α2‖Ld−1(Γ).
Substituting all the estimates in (40), we obtain

aij(c̄) ≤ −
σ0µ0

h2
meas(Ωij) + βK1 meas(Ωij)

1/s + K3 meas(Ωij)
1/s′

+ βK2 meas(Γij)
1/l + K4 meas(Γij)

1/l′ .
(46)

We can write

aij(c̄) ≤ A
ij
1 (h) + A

ij
2 (h) + A

ij
3 (h) + A

ij
4 (h)

where, with suitable constants C0, C1, C2, C3, C4 > 0 independent of h and
i, j,

A
ij
1 (h) := −

C0

h2
meas(Ωij) + C1 meas(Ωij)

1/s,

A
ij
2 (h) := −

C0

h2
meas(Ωij) + C2 meas(Γij)

1/l,

A
ij
3 (h) := −

C0

h2
meas(Ωij) + C3 meas(Ωij)

1/s′ ,

A
ij
4 (h) := −

C0

h2
meas(Ωij) + C4 meas(Γij)

1/l′ .

We verify that for small enough h we have A
ij
k (h) < 0 (k = 1, 2, 3, 4).

Using 1
r

+ 1
s

= 1 and (38), we have

A
ij
1 (h) = meas(Ωij)

1/s
(

−
C0

h2
meas(Ωij)

1/r + C1

)

≤

≤ meas(Ωij)
1/s

(

−C5 h−2+(γ/r) + C1

)

.

Since (42) implies γ
r

< 2, the term in brackets tends to −∞ as h → 0 and

hence A
ij
1 (h) < 0 for small h.

Using (38) again and the fact that meas(Γij) ≤ const · hd−1 (since h is
the diameter of the simplices and Γij lies on the (d−1)-dimensional surface),
we have

A
ij
2 (h) ≤ −C6 hγ−2 + C7 h

d−1
l .

Since (42) implies 1 − 1
l

= 1
t

< d+1−γ
d−1

= 1 − γ−2
d−1

, we obtain d−1
l

> γ − 2, i.e.,

the second term tends to 0 faster and hence A
ij
2 (h) < 0 for small h.
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The terms A
ij
3 (h) and A

ij
4 (h) can be handled similarly, since s′ and l′

satisfy the same estimates as s and l. Namely, we have d
2

= p∗

p∗−2
and d− 1 =

p∗∗

p∗∗−2
, hence by substituting d

2
and d − 1 for r and t, respectively, we obtain

that (42) holds in the special case p1 = p∗ and p2 = p∗∗. Owing to the
condition 2

d
+ 1

s′
= 1

d−1
+ 1

l′
= 1, the numbers s′ and l′ play the same role

as s and l and therefore the above estimates on A
ij
1 (h) and A

ij
2 (h) can be

repeated for A
ij
3 (h) and A

ij
4 (h).

Altogether, we obtain that for small enough h, A
ij
k (h) < 0 (k = 1, 2, 3, 4),

that is, there exists h0 > 0 such that

aij(c̄) < 0 (47)

for all h ≤ h0 and all i, j.

(iii) For any i = 1, ..., n,

n̄
∑

j=1

aij(c̄) =

∫

Ω

[

b(x,∇uh) ∇φi · ∇(
n̄
∑

j=1

φj) + r(x, uh) φi(
n̄
∑

j=1

φj)
]

dx

+

∫

Γ

z(x, uh) φi(
n̄
∑

j=1

φj) dσ

=

∫

Ω

r(x, uh) φi dx +

∫

Γ

z(x, uh) φi dσ ≥ 0,

(48)

using the fact that
∑n̄

j=1 φj ≡ 1 and r, z, φi are nonnegative.

(iv) Assume for contradiction that
n
∑

j=1

aij(c̄) = 0 for all i = 1, ..., n. This

means that A(c̄) carries the n-tuple of ones {1, ..., 1} into the zero vector.
This is impossible since A(c̄) is symmetric and positive definite, and hence
one-to-one.

(v) For any i, j = 1, ..., n with i 6= j, let us pick a sequence of neighbouring
vertices Bik (k = 1, ..., s) in Ω that connect Bi with Bj (i.e., i0 = i and
is = j). Here (47) shows that aik,ik+1

(c̄) < 0, hence by Definition 2, A(c̄) is
irreducible.

Theorem 6 enables us to derive the discrete the maximum principle for
system (27):

Theorem 7. Under the conditions of Theorem 6, we have

maxΩ uh ≤ max{0, max∂Ω gh}. (49)

In particular, if g ≥ 0, then maxΩ uh = max∂Ω gh, and if g ≤ 0, then we
have the nonpositivity property maxΩ uh ≤ 0.
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Proof. Theorem 6 states that the condition of Theorem 5 is satisfied
with Ā(c) and n̄ substituted for Ā and n+m, respectively. Hence (32) yields

maxi=1,...,n̄ ci ≤ max{0, maxi=n+1,...,n̄ ci}. (50)

Since ci = gi for all i = n + 1, ..., n̄, estimate (50) is equivalent to (49).

The analogous minimum principle for system (27) can be verified in the
same way.

Theorem 8. Let the conditions of Theorem 6 hold, except for (35) which is
now replaced by

f(x) − q(x, 0) ≥ 0 (x ∈ Ω) and γ(x) − s(x, 0) ≥ 0 (x ∈ Γ). (51)

Then we have
min

Ω
uh ≥ min{0, min

∂Ω
gh}. (52)

In particular, if g ≤ 0, then min
Ω

uh = min
∂Ω

gh, and if g ≥ 0, then we have

the nonnegativity property min
Ω

uh ≥ 0.

Let us now consider the special case q ≡ 0 and s ≡ 0. Then the counter-
part of Theorem 3 is valid, which we now formulate for both the maximum
and minimum principles. Moreover, the strict negativity in (36) can be re-
placed by the weaker nonnegativity property, regularity conditions on the
mesh like (38)-(39) are not required, and the result for a proper mesh holds
for all parameters h instead of only sufficiently small h.

Theorem 9. Let us consider the following special case of problem (1):































− div
(

b(x,∇u)∇u
)

= f(x) in Ω \ Γ,

[ u]Γ = 0 on Γ,
[

b(x,∇u)∂u
∂ν

]

Γ
= γ(x) on Γ,

u = g(x) on ∂Ω,

(53)

Let (A1)–(A3) of Assumptions 2.1 hold and let the triangulation Th satisfy
the following property: for any i = 1, ..., n, j = 1, ..., n̄ (i 6= j)

∇φi · ∇φj ≤ 0. (54)

Then the following results hold:

(1) If f ≤ 0 and γ ≤ 0, then maxΩ uh = max∂Ω gh.
(2) If f ≥ 0 and γ ≥ 0, then min

Ω
uh = min

∂Ω
gh.

(3) If f = 0 and γ = 0, then the ranges of uh and gh coincide, i.e., we
have [min

Ω
uh, maxΩ uh] = [min

∂Ω
gh, max∂Ω gh] for the corresponding intervals.
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Proof. (1) The conditions of Theorem 5 follow similarly as in Theorem
6. The difference arises in proving property (ii), i.e., aij(c) ≤ 0, where only
(54) is sufficient, since the assumptions q ≡ 0 and s ≡ 0 imply r ≡ 0 and
z ≡ 0. In order to apply statement (34) of Theorem 5, it remains to verify

that
n̄
∑

j=1

aij(c) = 0, i = 1, ..., n. Since r ≡ 0 and z ≡ 0, the argument used in

(48) yields that this holds indeed. Statement (2) follows from (1) by replacing
u by −u, and (3) is a direct consequence of (1) and (2).

Remark 4. Conditions (36) and (54) can be in fact relaxed such that ∇φi ·
∇φj need not be negative resp. nonpositive on each element, see [14, Remark
6] for details.

3.3 Geometric conditions on the mesh

The conditions in the preceding subsection that guarantee the DMP have
apparent geometric interpretations for our simplicial meshes. This relies on
the fact that the values ∇φi · ∇φj are constant on each simplicial element,
hence conditions (36) and (54) are not very difficult to check. Indeed, it is
shown in [3] that

∇φi · ∇φj|T = −
measd−1(Si) · measd−1(Sj)

d2(measd(T ))2
cos(Si, Sj) for i 6= j, (55)

where T is a d-dimensional simplex with vertices P1, . . . , Pd+1, Si is the face
of T opposite to Pi, and cos(Si, Sj) is the cosine of the interior angle between
faces Si and Sj.

Thus, in order to satisfy condition (36) or (54), it is sufficient if the em-
ployed simplicial mesh is acute or nonobtuse, respectively (see [17, 18, 22],
where also mesh refinement procedures preserving the above-mentioned geo-
metrical properties are presented). We note that the conditions of acuteness
or nonobtuseness are sufficient but not necessary: as referred to in Remark 4,
the DMP may still hold if some obtuse interior angles occur in the simplices
of the meshes. This is analogous to the case of linear problems [19, 28].

We note that the results can be easily extended to the case of meshes
consisting of block elements, treated as in [15, Sect. 5.2].

3.4 Some applications to model problems

We quote two examples of problems where suitable discrete nonnegativity or
nonpositivity properties are valid.
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3.4.1 Semilinear equations: reaction-diffusion problems with lo-

calized autocatalytic chemical reactions

The problem


























−∆u = f(x) in Ω \ Γ,

[ u]Γ = 0 on Γ,
[

∂u
∂ν

]

Γ
+ s(x, u) = 0 on Γ,

u = 0 on ∂Ω,

(56)

in a planar domain Ω ⊂ R2 describes a chemical reaction-diffusion process
where the reaction is localized at the curve Γ, further, the reaction is auto-
catalytic, i.e., the growth of the concentration u ≥ 0 speeds up the rate of
the reaction, that is ∂s(x,u)

∂u
≥ 0 (see, e.g., [12, 13]). The reaction function s

grows at most polynomially in u, hence Assumptions 2.1 hold. The fact that
there is no reaction without material is expressed by s(x, 0) = 0, further, we
may assume that the source term f is nonnegative. These conditions imply
that the requirement u ≥ 0 is satisfied, see subsection 2.3, moreover, the
boundary conditions yield minΩ u = 0. As a special case of Theorem 8, we
obtain the corresponding discrete minimum principle:

Corollary 1. Let uh be the FEM solution to problem (56) under a FEM
discretization with the acuteness property (36). If h is sufficiently small then

min
Ω

uh = 0.

3.4.2 Linear equations

The following linear interface model arises in many applications such as bio-
chemistry or multiphase flow, see, e.g., [26]:































− div
(

k(x)∇u
)

= f(x) in Ω \ Γ,

[ u]Γ = 0 on Γ,
[

k(x)∂u
∂ν

]

Γ
= γ(x) on Γ,

u = 0 on ∂Ω,

(57)

where the bounded measurable function k is discontinuous on Γ. In addition,
it suffices to assume that k has a positive lower bound and f ∈ L2(Ω),
γ ∈ L2(Γ). Then, as a special case of Theorem 9, we obtain the corresponding
discrete maximum and minimum principles:

Corollary 2. Let uh be the FEM solution to problem (57) under a FEM
discretization with the nonobtuseness property (54).

If f ≤ 0 and γ ≤ 0 then maxΩ uh = 0, and if f ≥ 0 and γ ≥ 0 then
min

Ω
uh = 0.
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