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1 Introduction

Regarding a posteriori analysis for finite element methods, most of the re-
sults in the literature are addressed to source problems (for example, see [1],
[8] and [18], and the references therein). On the contrary, only few results
are known about the a posteriori error analysis for eigenvalue problems. We
mention here, in a non-exhaustive way, the work [14] for self-adjoint ellip-
tic problems, and the generalisation detailed in [13] to elliptic operators,
non necessarily self-adjoint. Moreover, a simple and elegant analysis for the
Laplace operator has been performed in [10], while a mixed method has been
considered in [9], by exploiting its equivalence with an approximation of non-
conforming type (see [2]).

In this paper we present an a posteriori error analysis for the finite element
discretization of the Stokes eigenvalue problem, introducing and studying a
suitable residual-based error indicator. An outline of the paper is as follows.
In Section 2 we briefly recall the eigenvalue problem for the Stokes operator,
as well as its finite element discretization. In particular, we focus on stable
schemes, which provide reliable approximation for both the source and the
eigenvalue problem (see [4]). In Section 3 we introduce the residual-based
error indicator. Following the guidelines of [10], we show that the error
indicator is equivalent to error, up to higher order terms. Finally, in Section 4
we present some numerical tests for the MINI element, which is a stable
element (see [5] and [6], for example), and thus it falls into the category of
methods considered. As expected, the numerical experiments confirm our
theoretical predictions.

Throughout the paper we will use standard notation for Sobolev norms
and seminorms. Moreover, we will denote with C' a generic positive constant
independent of the mesh parameter h.

2 The Stokes eigenvalue problem and its
finite element discretization

Let Q ¢ RY (N = 2,3) be a Lipschitz domain, with boundary I'. We are
interested in the eigenvalue problem for the Stokes system with homogeneous
boundary conditions, i.e.:

Find (u,p; A), with w # 0 and A € R, such that

—Au+Vp=J\u in €, 1)
divu =0 in (2,
u=20 on I

By introducing the bilinear form

B(u,p;v,q) := (Vu,Vv) — (divw, p) — (divu, q), (2)



and setting V' = [H}(Q)]Y and P = L3(f2), Problem (1) can be written in a
variational form as follows:

Find (u,p; \) € (V x P) x R, with u # 0, such that
B(u,p;v,q) = Mu,v)  V(v,q) €V x P.
We recall (see, e.g. [5]) that the bilinear form B is stable, i.e.:

e Given (v,q) € V x P, there exists (w,s) € V' x P such that

lwlly + [Isllo < C
loll +ligllo < B(v, g;w, s),

and it is continuous, i.e.:

e For every (v,q), (w,s) € V x P, it holds

B(v, ¢ w,s) < C([lvfli + llgllo) ([lwlly + s]lo) - (5)

We now turn to the discretization of Problem (3) by finite elements. Let
{Ch}n>0 be a sequence of decompositions of € into elements K, satisfying
the usual compatibility conditions (see [7]). We also assume that the family
{Ch}n>0 is regular, i.e. there exists a constant ¢ > 0 such that

hx < opk VK eC, (6)

where hg is the diameter of the element K and pg is the maximum diameter
of the circles contained in K. Associated with the mesh C;, we select finite
elements spaces V), C V and P, C P, and we consider the discrete Stokes
eigenvalue problem:

Find (wp,pr; An) € (Vi x P,) x R, with wy, # 0, such that
B(wn, pr; v, q) = Anlun,v)  V(v,q) € Vi X Pp.

We assume that the pair (V,, P,) satisfies the following properties:
e (Inf-sup condition) There exists 3 > 0 independent of h, such that

div vy, q
sup VO] S gy g e B ®)
onevy vl

e Assuming that w € [H'(Q)]Y and p € H"(2), for some r € (0,1], it

holds
Jnf = vy < O Jul, (9)
and
inf |lp — qullo < CR°|p),. (10)
qn€Py



It is well-known (see [6], for instance) that (8)—(10) imply convergence
and stability of the given finite element scheme for the Stokes source prob-
lem. It has been proved in [4] that (8)—(10) are sufficient conditions for the
convergence of the Stokes eigenvalue problem (7) as well. Indeed, by using
the regularity results detailed in, e.g., [12] and [16], and well-established tech-
niques for eigenvalue approximation (see [3], [15] and [4], for example), one
has the following result.

Theorem 2.1. Given an eigenpair (u,p; \) € (V' x P) xR, solution of (3),
there exists v € (0,1] such that w € [H™(Q)|N, p € H"(Q)). Furthermore,
for every positive h < ho(\), there ezists a discrete eigenpair (wp, pn; An) €
(Vi x Py) xR, solution of (7), such that

A=l < C (llu = unlls + [l — pallo)” (11)
lw =l + lp = pallo < CR"(lwllisr + llpll). (12)
le —wllo < CH*" ([l + [Ip]l-)- (13)

Throughout the rest of the paper, we will denote with

e(u) = u — uy, e(p) =p—pan (14)

the eigenfunction errors, where u, u;, p and p, are as in Theorem 2.1.

3 A posteriori error analysis

The aim of this section is to introduce a suitable residual-based error estima-
tor for the Stokes eigenvalue problems. To begin, for each element K € Cj,
we introduce the residuals (cf. (1))

Ry 1(un, pn) = Aup — Vpp + Ayup, (1)
RK72<’U,h) = div up, (2)
Row (un, pr) = [(Vun — ppd) - nx] o - (3)

Accordingly, we define the local error estimator as

hk

Ny = hic|| R (wn, pn) |13k + | Ric2(wn)||3 ¢ + 7”R3K(uhvph>|‘g,8l(' (4)

Finally, the global error estimator is given by

"= i (5)

Kecy,



3.1 Upper bounds
We now provide an upper bound for our error estimator.

Theorem 3.1. Let (u,p;A) € (V x P) x R be a solution of (3), and let
(up, pr; An) € (Vi X Pp) X R be a solution of (7), as in Theorem 2.1. For
every positive h < ho(\), it holds

le(w)lly + lle()llo < €1+ [A = Al + Allw — unlo). (6)

Proof. Choose a generic pair (v, q) € V), x P, as a test function for (3). By
subtracting (7) from (3), we get the following error equation

B(e(u),e(p);v,q) = (Au — Nup,v)  V(v,q) € Vi, X Py, (7)

where e(u) and e(p) are defined as in (14). By the stability of the continuous
Stokes problem (cf. (4)), there exists (w,s) € V' x P, with

[wll +llsllo < €, (8)

such that

le(w)]lx + [le(@)llo < Ble(u), e(p); w, s) . (9)
Let w! € V, be the Clément interpolant of w (cf. e.g. [5, 17]), and let s’ €
Py, be the L?-projection of s. By using the error equation (7), estimate (9)
gives

le(w)]l + [le@)llo < Ble(u), e(p);w — w', s — s") + (Au — Ayup, w')
= Ble(u),e(p);w — w!, s — ') — (\u — A\upy, w — w’)
+ (Au — Mup, w) .
(10)
Integrating by parts, using the continuous Stokes equations (1), and recall-
ing (1)-(3) we obtain

Ble(u),e(p);w —w!, s — s) — Mu — Myup, w — w’) (11)
= Z {(RK,I(uhaph>7 w—w')g + (Ria(un),s —s')g
Kecy,

1
+§<R8K(Uh,,’0h)> w — ’wI>aK} ,

where the brackets (-, -)sx denote the L? inner product on the boundary 0K .
Applying the Cauchy-Schwarz inequality to Eq. (11), we obtain

Ble(u),e(p);w —w', s — ) — (Au — Ayuy)

S C{ Z (hK lw — w5« + A [lw—w|[§ox + lIs—s ”OK)} X
KecCy,
2 2 9 hx ) 1/2
{2 (Bl Buca Can )l + | Ruco(wn) 1 o + 5| Borc (s pi) o ) }
o (12)



Since for the Clément interpolation it holds
-2 )2 -1 2 1/2
{32 (hdllw —w' I + bt llw = w'lEx ) | < Cllwl, (13)
KeCy,
and for the L? projection we have
Isllo < lIsllo , (14)

the estimates (12), (8) and (5) give

Ble(u),e(p);w — w', s — ) — Au — \uy, w —w') < Cn . (15)
It remains to estimate the term (Au — Apup, w), see (10). We may write

(Au — Apup, w) = (A — Ap)up, w) + (v — up), w) (16)
< A= Anlllunloflwllo + Allw = wallol[wllo
< C(IX = Ml + Allu — unllo) ,

where we have used (8). Collecting (15) and (16), from (10) we get
le(w)ll + lle()llo < C(n+ A = Al + Al — uallo) . (17)
i.e. estimate (6). O
Corollary 3.1. For the eigenvalue approximation, it holds
X=Xl SC° + 1A = Nl + 22w — w 7). (18)

Proof. The assertion immediately follows by squaring estimate (6), and using
the a priori bound (11) of Theorem 2.1. O

Remark 3.1. In view of Theorem 2.1 the quantities |\ — Ap| + A||w — wpl|o
in (6) and |A — My|? + A2||lw — up||2 in (18) are both higher-order terms.

3.2 Lower bounds

Next, we show a local lower bound on the estimator. We denote with w(K)
the union of all elements having at least one edge (for N = 2) — or one face
(for N = 3) — in common with K. Similarly, for a given edge (for N = 2)
E — or face (for N = 3) — the set w(FE) is the union of the elements which
contain K.

Theorem 3.2. Let (u,p;\) € (V x P) X R be a solution of (3), and let
(wp, pr; An) € (Vi x Py) x R be a solution of (7), as in Theorem 2.1. For
every positive h < ho(\), it holds

e < C(I1Ve(@) o) + le(®)llowi)

+ P2 (10 = Ml + Al = wnllo,r) ).
K'Cw(K)

(19)



Proof. We set
Vg = h%(bKRK,l(uhaph) ) (20)

where by denotes the standard bubble function of the element K. By recall-
ing (1) and by usual scaling arguments, we get

Chicl|Rre1 (wn, pr) |5 s < (Aup — Vpp + Ayun, v ) (21)
= (A(up —u) — V(pr — p) + Ay — A, vk
—(Ae(u) — Ve(p) + Auy, — A, vk)

K
K’

where we have used —Au + V p — Au = 0. We have

—(Ae(u) — Ve(p),vk) . = (Ve(u), Vog) . — (e(p), divog) (22)
IVe(w)llox + lle@)llox) [Vorllox,

<C
< C(IVe(w)llox + le@)lo.x) hic | Rrca (wn; pr)llo.x-

Furthermore, it holds

(AMup — A, v ) i

((An = MNun, vi) + A((un — ), vk) (23)
(IX = Mnlllunllox + Mlw = wnllox) K llox

C(IA = An] + Allw = wnllo.x ) [lvxflo.x

C(IA = An] + Allw — wnllo,x ) || Ric.1 (v, pr)llo.xc -

VANRVANRVAN

From (21)-(23) we get
hicl| R, (wn, pa)llo.e < C([IVe(w)llox + lle(®)llo.x (24)
+ hi|A = An| + B AJu — wpo,x)-
To continue, we trivially have
1Ric o (wn)[lo,sc = [[divan ok = [[dive(w)ox < VN[ Ve(u)|ox.  (25)
Fix now an edge (for N = 2) or a face (for N =3) E C 0K. Consider
¢p = hpbpRe(un, pp), (26)

where hg is the diameter of FE, the function by € H}(w(E)) is the usual
bubble function for E (see [18], for example), and the residual Rg(wup,pp) is
defined by (cf. also (3))

Rp(un,pn) = [(Vuy, — pul) - ng] 5 - (27)
By standard scaling arguments, using [(Vu — pI) - nE]]|E = 0, and integrat-
ing by parts, we get
ChE”RE<uh7ph)”0E (I(Vup —puI) - mg], op)s (28)
—([(Ve(u) —e(p)I) - ng], @p)e
_(ve(u)v VSOE)W(E) + (e(p 7diV SOE)W(E)
- Z (Ae(u) - Ve(p), (PE)K

KCw(E)



We also have, using again scaling arguments and (26):

—(Ve(u), Vv ‘PE)w(E) + (e(p), div ‘PE)w(E) 29
< C(IVe(w)llow + le®)lowm) IVerllows
< C(|IVe(@)lowim + lep)llowm) b [ Re(wn, pr) oz

Furthermore, it holds
— > (Ae(u) = Ve(p), p) (30)
KCw(E)

Z {(Ri1(wn, pn), SOE)K + (A — Ay, SOE)K} :

KCw(E)

On the one hand we get

Z (Ric1(wn, pn), P5) (31)

KCw(E)

< (Y huclRicawn, pa)lo )i | RisCuan, )l

KCw(E)

Similar computations as in (23) show that

S =My, @p) < C(IA= Ml + Mlw—wnllowe) b3l Re(wn, p)lo.p-

KCw(E)

(32)
Therefore, from (30), (31) and (32), we obtain
= D0 (Be(u) = Vep). o)
KCw(E)
<O maclRacalun, p)lo + AL (10 = Ml + Nl = wallos) ) %
KCw(E)
hle/QHRE(uhaph)HO,E-

(33)

Taking into account estimates (29) and (33), from (28) we infer

hif” || Ree(an ) o,
1/2
<C( Y huclRicaluns p)loc + P10 = Ml + Al = wallo.ce)) ).

KCw(E)
(34)
Summing over the element edges (for N = 2), or faces (for N = 3), (34) and
the regularity of the mesh C;, give

h1/2
L”RaK(uh,ph)”oaK
\/_ )

<O Y (bl B oo+ AN Mol 4 M — o))
K'Cw(K)

(35)



By recalling (4), from (24), (25) and (35), we get

e < C(I1Ve(@) o) + lle(®) o)
S BN Ml Al - o) ),

K'Cw(K)

(36)

which completes the proof. O

4 Numerical results

Our  numerical  examples will be given for the  two-
dimensional problem with the linear triangular MINI-element (see [6], for
instance) for which the velocity and pressure spaces are defined as

Vi={veV |vge[P(K) & [PK)NH)(K)*VK €C} (1)

and

P={ge PNH Q) | qx € P(K) ¥ K €C,} (2)

where Py(K) is the space of polynomials of degree k defined on K € C;. All
the computations have been performed with the open-source finite element
software Elmer [11].

4.1 Square domain

In our first example we will consider the square Q@ = (—1,1) x (—1,1) with
homogenous Dirichlet boundary conditions imposed on the velocity. The
finite element mesh is obtained by dividing the domain into 2N x N triangles
as shown in Figure 1.

In Table 1 we have tabulated the 10 smallest eigenvalues of the Stokes
operator as a function of N € {4,8,...,128}. Our reference solution is given
in the last column of the table. The reference has been extrapolated from
the numerical results by assuming that the error |\ — A,| behaves as Ch" for
some constants C' and 7 independent of h = y/2/N.

The relative error [A—\p,| /A with respect to the reference solution is shown
in Table 2. In Table 3 we have tabulated the values our a posteriori error
estimator 7. Note that in both cases, the convergence rate is approximately
r & 2, as suggested by Theorem 2.1 and Corollary 3.1.

4.2 L-shaped domain

In our second example we remove the bottom left quadrant of the square, and
consider the L-shaped domain (—1,1) x (—1,1)\[—1,0] x [—1, 0], again with
homogenous Dirichlet conditions for the velocity, see Figure 1. The results
from the calculations are shown in Tables 4— 6.

For the L-shaped domain, the convergence rates of the exact and esti-
mated errors vary in the range 1.7 < r < 2, depending on the regularity of

10



Mode/N 4 8 16 32 64 128 ref

18.403 | 14.377 | 13.400 | 13.164 | 13.105 | 13.091 | 13.086
33.716 | 25.879 | 23.730 | 23.204 | 23.074 | 23.042 | 23.031
41.929 | 27.676 | 24.143 | 23.304 | 23.099 | 23.048 | 23.031
53.024 | 39.937 | 34.078 | 32.555 | 32.177 | 32.084 | 32.053
79.801 | 47.721 | 40.783 | 39.087 | 38.669 | 38.566 | 38.532
91.089 | 52.290 | 44.193 | 42.351 | 41.905 | 41.794 | 41.759
125.123 | 59.801 | 50.673 | 48.214 | 47.597 | 47.444 | 47.393
128.224 | 67.366 | 52.419 | 48.626 | 47.698 | 47.469 | 47.393
152.065 | 81.101 | 66.333 | 62.742 | 61.869 | 61.652 | 61.583
155.823 | 83.846 | 67.104 | 62.928 | 61.915 | 61.664 | 61.583

—_

© 00 ~J O T = W

—_
=}

Table 1: Numerical eigenvalues A, for h = /2/N and the extrapolated
reference solution A for the unit square.

Mode/N 4 8 16 32 64 128 | rate

1 0.4063 | 0.0986 | 0.0240 | 0.0059 | 0.0015 | 0.0004 | 2.020
0.4639 | 0.1236 | 0.0303 | 0.0075 | 0.0018 | 0.0005 | 2.018
0.8205 | 0.2017 | 0.0482 | 0.0118 | 0.0029 | 0.0007 | 2.026
0.6543 | 0.2460 | 0.0632 | 0.0157 | 0.0039 | 0.0010 | 2.012
1.0710 | 0.2385 | 0.0584 | 0.0144 | 0.0036 | 0.0009 | 2.019
1.1813 | 0.2522 | 0.0583 | 0.0142 | 0.0035 | 0.0008 | 2.036
1.6401 | 0.2618 | 0.0692 | 0.0173 | 0.0043 | 0.0011 | 2.000
1.7055 | 0.4214 | 0.1060 | 0.0260 | 0.0064 | 0.0016 | 2.026
1.4693 | 0.3169 | 0.0771 | 0.0188 | 0.0046 | 0.0011 | 2.032
1.5303 | 0.3615 | 0.0896 | 0.0218 | 0.0054 | 0.0013 | 2.034

© 00 ~J O UL i W N

—_
e}

Table 2: Errors |A — Ay|/A and the convergence rate r for the unit square.

Mode/N 4 8 16 32 64 128 | rate

1 1.7204 | 0.1325 | 0.0996 | 0.0255 | 0.0065 | 0.0016 | 1.976
3.2066 | 0.1360 | 0.1542 | 0.0394 | 0.0100 | 0.0025 | 1.979
4.7796 | 0.1581 | 0.1821 | 0.0462 | 0.0117 | 0.0030 | 1.982
5.7537 | 0.1498 | 0.2569 | 0.0657 | 0.0167 | 0.0042 | 1.977
9.9275 | 0.1535 | 0.2652 | 0.0668 | 0.0169 | 0.0043 | 1.986
13.1493 | 0.1669 | 0.2806 | 0.0694 | 0.0175 | 0.0044 | 1.998
18.3303 | 0.1443 | 0.3406 | 0.0868 | 0.0220 | 0.0056 | 1.979
18.3590 | 0.1632 | 0.4001 | 0.1002 | 0.0253 | 0.0064 | 1.990
22.9004 | 0.1686 | 0.3991 | 0.0975 | 0.0245 | 0.0062 | 2.005
5.3907 | 0.1446 | 0.4223 | 0.1028 | 0.0258 | 0.0065 | 2.006

© 00 ~J O T = W N

—_
e}

Table 3: Estimated errors n and the convergence rate r for the unit square.
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Mode/N 4 8 16 32 64 128 ref

61.122 | 43.131 | 35.216 | 33.086 | 32.461 | 32.257 | 32.1734
89.147 | 46.312 | 39.322 | 37.608 | 37.172 | 37.058 | 37.0199
127.47 | 53.878 | 44.962 | 42.704 | 42.137 | 41.993 | 41.9443
139.01 | 65.379 | 53.182 | 50.024 | 49.242 | 49.048 | 48.9844
189.86 | 79.876 | 62.313 | 57.198 | 55.895 | 55.553 | 55.4365
195.10 | 100.55 | 78.836 | 72.010 | 70.223 | 69.733 | 69.5600
205.99 | 108.18 | 79.029 | 72.682 | 71.143 | 70.760 | 70.6382
213.28 | 124.04 | 93.381 | 85.350 | 83.245 | 82.683 | 82.4832
213.85 | 127.10 | 93.951 | 86.028 | 84.086 | 83.599 | 83.4450
215.09 | 143.23 | 103.93 | 92.914 | 90.176 | 89.490 | 89.2902

© 00 O Ui W N

—_
=}

Table 4: Numerical eigenvalues A, for h = /2/N and the extrapolated
reference solution A for the L-shaped domain.

Mode/N 4 8 16 32 64 128 rate
1 0.8998 | 0.3406 | 0.0946 | 0.0284 | 0.0089 | 0.0026 | 1.7214
1.4081 | 0.2510 | 0.0622 | 0.0159 | 0.0041 | 0.0010 | 1.9650
2.0390 | 0.2845 | 0.0719 | 0.0181 | 0.0046 | 0.0012 | 1.9864
1.8378 | 0.3347 | 0.0857 | 0.0212 | 0.0053 | 0.0013 | 2.0130
2.4248 | 0.4409 | 0.1240 | 0.0318 | 0.0083 | 0.0021 | 1.9596
1.8048 | 0.4455 | 0.1334 | 0.0352 | 0.0095 | 0.0025 | 1.9525
1.9161 | 0.5315 | 0.1188 | 0.0289 | 0.0071 | 0.0017 | 2.0329
1.5857 | 0.5038 | 0.1321 | 0.0348 | 0.0092 | 0.0024 | 1.9228
1.5628 | 0.5232 | 0.1259 | 0.0310 | 0.0077 | 0.0018 | 2.0182
1.4089 | 0.6041 | 0.1640 | 0.0406 | 0.0099 | 0.0022 | 2.0612

© 00 O U = W I

—_
e}

Table 5: Errors |A — Az|/A and the convergence rate r for the L-shaped
domain.

the corresponding eigenfunction (see Theorem 2.1 and the analysis of MINI
element [6] for more details). Nevertheless, the tables show that estimator n
is optimal in the sense that it always has approximately the same convergence
rate as the true error with respect to the reference solution.

4.3 Adaptive refinement for the L-shaped domain

The software Elmer [11] uses a error balancing strategy. First, a a coarse
starting mesh is prescribed. Then, after computing the approximate solution
and the corresponding error estimators, a complete remeshing is done by
using a Delaunay triangulation. The refining—coarsening strategy is based
on the local error indicators and on the assumption that the local error is of
the form

nx = Crhis, (3)

12



Mode/N 4 8 16 32 64 128 rate

2.3135 | 0.2992 | 0.0606 | 0.0200 | 0.0067 | 0.0023 | 1.7058
3.4751 | 0.2133 | 0.0164 | 0.0095 | 0.0026 | 0.0007 | 1.9496
5.9479 | 0.2334 | 0.0136 | 0.0077 | 0.0020 | 0.0006 | 1.9413
7.0110 | 0.2472 | 0.0126 | 0.0055 | 0.0009 | 0.0003 | 1.9805
13.152 | 0.3049 | 0.0175 | 0.0129 | 0.0041 | 0.0015 | 1.9007
15.547 | 0.3969 | 0.0139 | 0.0226 | 0.0072 | 0.0024 | 1.8516
24.925 | 0.7347 | 0.0248 | 0.0075 | 0.0014 | 0.0004 | 1.9822
25.973 | 0.6432 | 0.0155 | 0.0172 | 0.0050 | 0.0018 | 1.8920
28.716 | 0.7081 | 0.0167 | 0.0120 | 0.0031 | 0.0008 | 1.9752
35.779 | 0.6366 | 0.0157 | 0.0127 | 0.0038 | 0.0012 | 1.9608

© 00 O Ol W N+

—_
@)

Table 6: Estimated errors n and the convergence rate r for the L-shaped
domain.

for some constants C'x and pg. The new mesh is then built with the aim of
having the error uniformly distributed over the elements.

The stopping criteria for the adaptive process is either a given tolerance
for the maximum local estimator or the number of refinement steps. Between
two subsequent adaptive steps we have used the value 2 for the change of the
relative local mesh density ratio. For the element size, neither a maximum
nor a minimum have been prescribed.

The sequence of meshes is shown in Figure 2. In Figure 3 the error
estimator is plotted as a function of the number of degrees of freedom for the
adaptive scheme and the uniform refinement.
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Figure 1: Uniform finite element partitioning of the unit square and L-shaped
domain for N = 8.
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Figure 2: The sequence of adaptive mesh refinement for the smallest eigen-
value of the Stokes operator in the L-shaped domain.
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Figure 3: Error estimate for adaptive and uniform mesh refinement.
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