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1 Introduction

Let (Ω,F , P ) be a probability space, with {Ft}t≥0 an increasing filtration
of σ-algebras satisfying Ft ⊂ F . Let P denote the predictable σ-algebra
on R+ × Ω generated by {Ft}t≥0, and assume {wkt | k = 1, 2, ....} is a fam-
ily of independent one-dimensional Ft-adapted Wiener processes defined on
(Ω,F , P ).

In this setting, we consider the stochastic parabolic integral equation

u(t, x, ω) =

∫ t

0

k(t− s)∆u(s, x, ω) ds+
∞
∑

k=1

∫ t

0

gk(s, x, ω) dwks , (1)

where the variables satisfy t ≥ 0, x ∈ R
d, ω ∈ Ω, and k(t) = cαt

−1+α, with
cα, α given constants; α ∈ ( 1

2
, 1); and gk given functions. The infinite series

of stochastic integrals on the right side of (1) converges in a weak sense made
precise below. By modifying the analytic approach of Krylov [7], developed
for stochastic parabolic partial differential equations, we obtain an existence
and uniqueness result on (1). As in [7], the setting is Lp, with p ≥ 2, thus a
Hilbert space framework is not needed.

Before outlining the paper, we make some brief comments on the range
of α-values.

With α = 1, the equation (1) is a (much studied) parabolic stochastic
partial differential equation. See, e.g., [7], for further references. Our proofs
require k ∈ L2(0, 1), thus α > 1

2
. For small α one may however formally

argue as follows.
The equation (1) can be inverted to give

Dα
t u = ∆u+ F, (2)

whereDα
t u

def
= 1

Γ(1−α)
d
dt

(t−α∗u), t > 0, is the fractional time derivative of order

α of u (with u(0) = 0), and where F = d
dt

(t−α ∗G), with G =
∑

k

∫ t

0
gk dwks .

Suppose that, in some sense, G ∈ Cδ; then F ∈ Cδ−α. Assume that δ−α > 0.
Equations of this type have been treated in Bessel potential spaces in [10],
[11], and in Hölder spaces in [3] and [4].

The case α ∈ (1, 2) will be included in future work.
Equations of type (1) have been considered in Hilbert spaces in [1] and

[2] by applying methods of [5]. In particular, certain regularity results on the
stochastic convolution associated with (1) were obtained in [1].

Stochastic integral equations of type (1) or (2) occur in models of anoma-
lous diffusion.

In Section 2, we introduce the necessary machinery and show how the
stochastic Banach spaces developed in [7] can be modified in order to apply
to the equations we consider.

In Section 3 we state and prove an existence result on (1). The fact
that α < 1 allows us to obtain additional time-regularity on the solution as
compared to the case α = 1. This we do in Section 4.

We will develop the present approach further in forthcoming work.
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2 The Stochastic Machinery

Below, everywhere, p ≥ 2.
Let n ∈ R, and let Hn

p (Rd) be the Bessel potential space of distributions

u such that (1 − ∆)
n
2 u ∈ Lp(R

d), with norm

‖u‖n,p
def
= ‖(1 − ∆)

n
2 u‖p.

Denote by l2 the set of real-valued sequences g = {gk | k = 1, 2, ....} with

norm |g|2l2 =
∑

k|g
k|2, and, for a function g : R

d → l2, ‖g‖p
def
= ‖|g|l2‖p;

‖g‖n,p
def
= ‖|(1 − ∆)

n
2 g|l2‖p.

For τ a bounded stopping time, write

(0, τ ]]
def
= {(ω, t) | 0 < t ≤ τ(ω)},

Hn
p (τ)

def
= Lp((0, τ ]],P , H

n
p ),

Hn
p (τ, l2)

def
= Lp((0, τ ]],P , H

n
p (Rd; l2)).

The stochastic solution spaces Ĥn
p (τ) of (1) are then defined as follows.

Definition 1 Let u ∈ ∩T>0H
n
p (τ ∧ T ). Then u ∈ Ĥn

p (τ) if uxx ∈ Hn−2
p (τ),

and there exist f ∈ Hn−2
p (τ), g ∈ Hn−1

p (τ, l2) such that for any φ ∈ C∞
0 (Rd),

the equality

(u(t, ·), φ(·)) =

∫ t

0

k(t− s)(f(s, ·), φ(·)) ds+
∞
∑

k=1

∫ t

0

(gk(s, ·), φ(·)) dwks , (3)

holds for all t ≤ τ , a.s. The norm in the solution space is

‖u‖
Ĥn
p (τ)

def
= ‖uxx‖Hn−2

p (τ) + ‖f‖Hn−2
p (τ) + ‖g‖Hn−1

p (τ,l2)
.

In (3), for v ∈ Hn
p , φ ∈ C∞

0 ,

(v, φ)
def
=
(

(1−∆)
n
2 v, (1−∆)−

n
2 φ
)

=

∫

Rd

(

(1−∆)
n
2 v(x)

)(

(1−∆)−
n
2 φ(x)

)

dx.

By the assumption on g, the series of stochastic integrals in (3) does converge
(uniformly in t) in probability on [0, τ ∧ T ], T <∞.

Thus, if u ∈ Ĥn
p (τ), then u can be represented as the sum (in the weak

sense (3)), of a Lebesgue convolution integral and a series of stochastic inte-
grals. (For simplicity, we take u(t = 0) = 0).

An obvious question is whether this representation is unique. For α = 1
the wellknown answer is yes. Below, in Lemma 2, we show that uniqueness
holds also for α ∈ ( 1

2
, 1).
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Lemma 2 Take T > 0, α ∈ ( 1
2
, 1). Let f , {gk} satisfy

f ∈ L2((0, T ) × Ω), {gk} ∈ L2((0, T ) × Ω, l2),

and let both be adapted to {Ft}t≥0. Suppose that for t ∈ [0, T ],

∫ t

0

(t− s)α−1f(s, ω) ds =
∑

k

∫ t

0

gk(s, ω) dwks ,

a.s. Then f = gk = 0 a.s.

Proof of Lemma 2. Both ‖f(t, ·)‖2
L2(Ω) and ‖g(t, ·)‖2

L2(Ω;l2) are integrable

over (0, T ). Let t0 be a Lebesgue point of both functions. Consider the
orthogonal projection P in L2(Ω) :

Pu = u− E(u | Ft0).

If f1(s, ·)
def
= Pf(s, ·), then

P
(

∫ t

0

(t− s)α−1f(s) ds
)

=

∫ t

0

(t− s)α−1f1(s) ds =

∫ t

t0

(t− s)α−1f1(s) ds,

where we used the fact that since f is adapted to Ft,

f(t) = E
(

f(t) | Ft0

)

, t ≤ t0.

The series
∑

k

∫ t

0
gk(s) dwks has the martingale property:

E
(

∑

k

∫ t

0

g(s) dwks | Ft0

)

=
∑

k

∫ t0

0

gk(s) dwks , t ≥ t0.

We conclude that

P
(

∑

k

∫ t

0

gk(s) dwks
)

=
∑

k

∫ t

t0

gk(s) dwks , t ≥ t0,

and therefore, a.s.,

∫ t

t0

(t− s)α−1f1(s) ds =
∑

k

∫ t

t0

gk(s) dwks , t ∈ [t0, T ]. (4)

Use Hölder and the fact that P is an orthogonal projection in L2(Ω), to
estimate the L2-norms:

‖

∫ t

t0

(t− s)α−1f1(s) ds‖
2
L2(Ω) ≤

(

∫ t

t0

(t− s)2α−2 ds
)(

∫ t

t0

‖f1(s)‖
2
L2(Ω) ds

)

≤M(t− t0)
2α−1

∫ t

t0

‖f(s)‖2
L2(Ω) ds ≤M(t− t0)

2α,

(5)
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where the last inequality follows from t0 being a Lebesgue point. By Itos
identity,

‖
∑

k

∫ t

t0

gk(s) dwks‖L2(Ω) =

∫ t

t0

∑

k

‖gk(s)‖2
L2(Ω) ds. (6)

Combine (4), (5) and (6), and use the fact that t0 is a Lebesgue point of
∑

k‖g
k(s)‖2

L2(Ω), to get

‖g(t0)‖
2
L2(Ω;l2) = lim

t→t0
(t− t0)

−1

∫ t

t0

‖g(s)‖2
L2(Ω;l2) ds

≤ lim
t→t0

(t− t0)
−1M(t− t0)

2α = 0,

where 2α > 1 was used. Lemma 2 follows.

To show that Ĥn
p (τ) is a Banach space, proceed as in [7], Theorem 3.7,

and use k ∈ L2(0, 1). We also recall the density result proved in [7], Theorem
3.10: If g ∈ Hn

p (l2), then there exist gj ∈ Hn
p (l2); j = 1, 2, ....; such that

‖g − gj‖Hn
p (l2) → 0, as j → ∞, and such that

gkj =

j
∑

i=1

I(τ ji−1
,τ
j
i ]g

ik
j (x), k ≤ j, (7)

and gkj = 0, for k > j. Here gikj ∈ C∞
0 (Rd).

3 Existence of Solutions

Our goal is now to prove the existence result Theorem 4, formulated at the
end of this Section.

Take n = 1 in the definition of Ĥn
p (τ). Thus g ∈ Lp = H0

p(τ, l2). Consider
(1) with finitely many stochastic terms, each gk being of the simple structure
(7):

u(t, x, ω) =

∫ t

0

k(t− s)∆u(s, x, ω) ds+
m
∑

k=1

∫ t

0

gk(s, x, ω) dwks . (8)

Define

u(t, x, ω)
def
=

m
∑

k=1

∫ t

0

S(t− s)gk(s, x, ω) dwks . (9)

The resolvent S(t) ⊂ B(X) (take, e.g., X = Lp(R
d)) satisfies

S(t)y = y +

∫ t

0

k(t− s)∆S(s)y ds, y ∈ D(∆), t ≥ 0. (10)

In fact, see [9], one has a kernel representation for S, such that S(t −
s)gk(x) is bounded in x ∈ R

d, t ∈ [0, T ]. Hence u is welldefined. By the

6



stochastic Fubini theorem, see, e.g., p. 159 of [8], and by (10), it follows that
u as defined in (9) satisfies (8) a.s., t ≥ 0.

Our next purpose is to obtain apriori bounds on u. In the case α = 1,
these are implied by the key result of [6]. This result is not immediately
applicable in the case α < 1, and so, to prove the needed estimates, we
proceed differently.

Lemma 3 Let α ∈ (1
2
, 1), g ∈ Lp([0, T ] × R

d; l2). Then

∫

Rd

∫ T

0

(

∫ t

0

|∇S(t− s)g(s, x)|2l2 ds
)
p

2

dt dx ≤ c

∫

Rd

∫ T

0

|g(t, x)|pl2 dt dx, (11)

where c = c(d, p, α, T ).

.
Proof of Lemma 3. Take the subadditive map

g 7→
(

∫ t

0

|∇S(t− s)g(s, x)|2l2 ds
)

1

2

.

If this is shown to map

L∞((0, T ) × R
d; l2) → L∞((0, T ) × R

d; R), (12)

and
L2((0, T ) × R

d; l2) → L2((0, T ) × R
d; R); (13)

then, by the Marcinkiewicz interpolation theorem, (11) follows.
To prove (12), one argues as follows.
Suppose we can show that for any hk ∈ L∞(Rd; l2), and for i = 1, ...d;

sup
x∈Rd

∣

∣

∂

∂xi
S(t)hk(x)

∣

∣

2

l2
≤ ct−α sup

x∈Rd

|hk(x)|2l2 , (14)

with c = c(α, d). Replace t by t − s in (14), and integrate in s over [0, t].
This gives

sup
x∈Rd,0≤t≤T

∫ t

0

|∇S(t− s)g(s, x)|2l2 ds ≤ c sup
x∈Rd,0≤t≤T

|g(t, x)|2l2 , (15)

which is (12).
To prove (14), take Laplace transforms in t in the resolvent equation,

solve for the transform of S(t)hk(x), and invert. This results in

S(t)hk(x) = (2πi)−1

∫

Γ1,ψ

eλt[I − λ−α∆]−1λ−1hk(x) dλ, (16)

where

Γ1,ψ = {eit | |t| ≤ ψ} ∪ {ρeiψ | 1 < ρ <∞} ∪ {ρe−iψ | 1 < ρ <∞},
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and ψ ∈ (π
2
, π). In (16), use analyticity, change variables and apply ∂

∂xi
. This

gives

∂

∂xi
S(t)hk(x) = (2πi)−1t−α

∫

Γ1,ψ

essα−1 ∂

∂xi
(µ− ∆)−1hk(x) ds, (17)

where µ = ( s
t
)α is complex-valued. Consequently, ∂

∂xi
(µ − ∆)−1hk(x) needs

to be evaluated. One obtains, after some calculations,

(µ− ∆)−1hk(x) = c(d)
(µ

ν
2

rν
Kν(µ

1

2 r) ∗ hk
)

(x), (18)

where ν = d
2
− 1, r2 =

∑d

i=1 x
2
i , and where Kν(z) is the modified Bessel

function of second kind of order ν.
For infinite rays Γτ originating at the origin one has

|τ |νKν(τ) ∈ L1(Γτ ); |τ |ν+1K ′
ν(τ) ∈ L1(Γτ ), (19)

uniformly in |arg Γτ | ≤ θ < π
2
.

Now use (18) and (19) in (17), recall Hölders inequality, estimate, and
sum in k. The relation (14) follows - hence also (12).

To obtain (13) one argues in much the same way. Lemma 3 is proved.

To proceed, observe that Burkholder-Davis-Gundys inequality can be ap-
plied to the martingale

∇u =
m
∑

k=1

∫ t

0

∇S(t− s)gk(s, x, ω) dwks .

This yields, when combined with (11),

E

∫

Rd

∫ T

0

sup
0≤s≤t

|∇u|p(t, x) dt dx ≤ c(p, α, d, T )E

∫

Rd

∫ T

0

|g(s, x, ω)|pl2 ds dx.

The solution u can be estimated in an analogous fashion, using modified
Bessel functions, to obtain

E

∫

Rd

sup
0≤s≤t

|u|p dx ≤ c(p, α, d, t)E

∫

Rd

∫ t

0

|g(s, x, ω)|pl2 ds dx. (20)

In addition, observe that ‖uxx‖
p

H
−1
p

≤ c‖ux‖
p
Lp

, and so the right side (20)

dominates ‖uxx‖
p

H
−1
p

.

Finally take an arbitrary g ∈ H1
p(l2), and approximate this g in the man-

ner above by simpler functions gj. Each gj gives a solution uj, and by the
convergence of {gj} in Lp(Ω× (0, T )×R

d, l2), one has that {uj} is a Cauchy-

sequence in Ĥ1
p. By completeness, there exists u to which {uj} converges.

Some additional analysis yields that u solves (1) in the sense (3). One has
proved:
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Theorem 4 Let α ∈ ( 1
2
, 1); p ≥ 2. Assume that

g ∈ Lp
(

(0, T ) × Ω,P , Lp(R
d; l2)

)

.

Then there exists a unique u ∈ Ĥ1
p such that

E

∫

Rd

sup
0≤s≤T

|u|p dx+ E

∫ T

0

∫

Rd

sup
0≤s≤t

|∇u|p dx dt

+‖uxx‖
p

H
−1
p

≤ cE

∫ T

0

∫

Rd

|g(t, x, ω)|pl2 dx dt,

and such that, for φ ∈ C∞
0 (Rd),

(

u(t, ·), φ(·)
)

=

∫ t

0

k(t− s)
(

∆u(s, ·), φ(·)
)

ds+
∞
∑

k=1

∫ t

0

(

gk(s, ·), φ(·)
)

dwks ,

a.s. for all t ∈ [0, T ].

4 Additional Time-regularity

It is not difficult to observe that some time-regularity is lacking in Theorem
4 above. To see this, argue as follows. In (1), a time-derivative of order α
corresponds to a second order derivative in space. The stochastic series in (1)

is, roughly, C
1

2 (Lp). But, by Theorem 4, ∆u ∈ H−1
p and the smoothing out (in

time) by the kernel t−1+α is not enough to give the deterministic integral the
same degree of smoothness as the stochastic series. One therefore conjectures
that ∆u has some additional time-regularity. This is, in fact, the case:

Theorem 5 Let p, α, g be as in the assumptions of Theorem 4. Let u be the
solution given by Theorem 4. Take ε > 0 arbitrary, but such that 1

2
− ε 6= 1

p
,

1
2
− α

2
− ε 6= 1

p
. Then

(i) u ∈ Lp

(

Ω;H
1

2
−ε

p

(

[0, T ];Lp(R
d)
)

)

,

(ii) u ∈ Lp

(

Ω;H
1

2
−α

2
−ε

p

(

[0, T ];H1
p (R

d)
)

)

,

(iii) u ∈ Lp

(

Ω;H
1

2
−α−ε

p

(

[0, T ];H2
p (R

d)
)

)

.

The norm of u in the respective space is bounded by (a constant times) the
norm of g in Lp

(

(0, T ) × Ω × R
d; l2

)

.

An interpolation between (ii) and (iii) yields

u ∈ Lp
(

Ω;Lp([0, T ];H
1

α
−ε

p )
)

,
1

2
< α < 1.
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For α = 1 (the stochastic heat equation) the result obtained in [7] is u ∈
Lp
(

Ω;Lp([0, T ];H1
p )
)

. In forthcoming work we will analyze the apparent loss
of regularity when moving from the stochastic heat equation to the stochastic
integral equation.

Outline of proof of Theorem 5 (ii). Let ε > 0 be such that 1
2
− α

2
− ε > 0.

We claim that, for fixed ω, ux ∈ H
1

2
−α

2
−ε

p

(

[0, T ];Lp(R
d)
)

. By [10], p.29, this
amounts to showing that

v
def
=
( d

dt

)
1

2
−α

2
−ε
ux =

d

dt

(

t−
1

2
+α

2
+ε ∗ S ∗ gx

)

∈ Lp
(

(0, T ) × R
d
)

with ‖v‖Lp((0,T )×Rd) being equivalent to ‖ux‖
H

1

2
−
α
2
−ε

p ([0,T ];Lp(Rd))
.

Write v = F ∗ gx, where F (t)
def
= d

dt

(

t−
1

2
+α

2
+ε ∗ S

)

. The convolution

F ∗ gx is welldefined as an Ito integral, since E
{ ∫ t

0
|F (t− s)gx(s)|

2
l2
ds
}

<∞.
Computing the Laplace transform of F (t) gives

F̃ (t) = λ− 1

2
−α

2
−ε
(

I − λ−α∆
)−1

,

and so

F (t)hk(x) = (2πi)−1

∫

Γ1,ψ

exp s
(

st−1
)− 1

2
+α

2
−ε

(µ− ∆)−1hk(x)t−1 ds,

where, as in the proof of Theorem 4, µ =
(

st−1
)α

. Representing (µ − ∆)−1

with Bessel functions, and estimating, results in

∑

k

|
∂

∂xi
F (t)hk(x)|2 ≤ ct−1+2ε sup

x

∑

k

|hk(x)|2,

and so

sup
x∈Rd

(

∫ t

0

|
∂

∂xi
F (t− s)g(s, x)|2l2 ds

)
1

2 ≤ ctε‖g(s, x)‖L∞((0,t)×Rd;l2).

L2-estimates are obtained in an analogous way.
Hence, by the Burkholder-Davis-Gundy inequality and after applying the

Marcinkiewicz interpolation theorem,

E‖ux‖
p

H
1

2
−
α
2
−ε

p ([0,T ];Lp(Rd))
≤ cE

∫

Rd

∫ T

0

|v|p dt dx

= c

∫

Rd

∫ T

0

E
(

∑

k

∫ t

0

∇F (t− s)gk(s, x, ω) dwks
)p
dt dx

≤c

∫

Rd

∫ T

0

E
(

∫ t

0

|∇F (t− s)g(s, x, ω)|2l2 ds
)
p

2 dt dx

=cE

∫

Rd

∫ T

0

(

∫ t

0

|∇F (t− s)g(s, x, ω)|2l2 ds
)
p

2 dt dx

≤cE

∫

Rd

∫ T

0

|g(t, x, ω)|pl2 dt dx,
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which is (ii).
The relations (i), (iii) are proved in much the same fashion. Theorem 5

follows.

We finally remark that the statements (i)-(iii) of Theorem 5 can be slightly
strengthened as follows. Take, e.g., (i), which states that

D
1

2
−ε

t S ∗ g ∈ Lp
(

(0, T ) × Ω × R
d
)

.

An examination of the proof reveals that one in fact has somewhat more,
namely

(

M(t)
)−1

D
1

2

t S ∗ g ∈ Lp((0, T ) × Ω × R
d),

where M(t) > 0 is any function such that
∫ 1

0
(tM 2(t))−1 dt <∞.
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