
Helsinki University of Technology, Institute of Mathematics, Research Reports

Teknillisen korkeakoulun matematiikan laitoksen tutkimusraporttisarja

Espoo 2006 A516

TWO–SIDED A POSTERIORI ESTIMATES

FOR THE GENERALIZED STOKES PROBLEM

Sergey Repin Rolf Stenberg

AB TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D’HELSINKI





Helsinki University of Technology, Institute of Mathematics, Research Reports

Teknillisen korkeakoulun matematiikan laitoksen tutkimusraporttisarja

Espoo 2006 A516

TWO–SIDED A POSTERIORI ESTIMATES

FOR THE GENERALIZED STOKES PROBLEM

Sergey Repin Rolf Stenberg

Helsinki University of Technology

Department of Engineering Physics and Mathematics

Institute of Mathematics



Sergey Repin, Rolf Stenberg: Two–sided a posteriori estimates for the general-

ized stokes problem ; Helsinki University of Technology, Institute of Mathematics,
Research Reports A516 (2006).

Abstract: The paper is concerned with deriving computable majorants and
minorants of the difference between the exact solution of for the so–called
three–field formulation of the generalized Stokes problem and any functions
from the admissible (energy) spaces that contain velocity, pressure and stress
fields. Physical motivation of this problem is related to models of viscous
fluids with polymeric chains. For the the case of uniform Dirichlét boundary
conditions this model and respective numerical approximation methods were
analyzed in [14]. In the present paper, we consider the generalized Stokes
problem with mixed Dirichlét/Neumann boundary conditions and variable vis-
cosity in the context of a posteriori error analysis. For the velocity, pressure,
and stress fields we derive two–sided functional a posteriori error estimates.
The estimates are practically computable, sharp (i.e., have no gap between
the left– and right–hand sides), and are valid for arbitrary functions from the
respective functional classes. The estimates are derived by transformations
of the integral identity that defines the solution (this method was suggested
and used in [39, 40] for certain classes of elliptic type problems). Error ma-
jorants are given by weighted sums of the terms that present penalties for vio-
lations of all the relations of the problem considered with the weights defined
by the constants in the Friederichs–Poincáre and Ladyzhenskaja–Babuska–
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1 Introduction

A posteriori estimates present a necessary tool in the adaptive procedures
used in computer simulation. A systematic investigation of a posteriori error
estimation methods for FEM was started three decades ago (see [5, 6]) and
was first of all focused on creation of adequate error indicators able to provide
the information required for a successful improvement of a mesh (see, e.g.,
[1, 7, 8, 25, 49]).

A posteriori error estimates for finite element approximations of viscous
flow problems were investigated in numerous publications. In this concise
introduction it is impossible to give a complete overview of these results, so
that confine ourselves to a short discussion of several papers that present
main approaches. Readers will find more literature references in the papers
cited. A systematic discussion of the numerical methods, mesh adaptive
procedures, and a posteriori estimates used in computational fluid mechanics
can be found in, e.g., [19, 20, 22, 23, 26, 31, 35, 45, 47]. Residual type a
posteriori methods for finite element approximations are considered in, e.g.,
[3, 48, 49]. A posteriori analysis of approximations computed by a backward
Euler scheme is presented in [11]. Error indicators for the Navier–Stokes
equations in stream function and vorticity formulation are discussed in [2].
In [27], the authors investigate various a posteriori estimators for stabilized
mixed approximations of the Stokes problem. A posteriori error estimators
for some quasi–newtonian fluids are considered in [33] and for combined fluid–
solid systems in [10]. Error indicators based on superconvergence of finite
element approximations for Stokes and Navier–Stokes equations are studied
in [50].

In this paper, we consider a generalized formulation of the Stokes prob-
lem. A motivation of the problem comes from the theory of viscous flow
problems for fluids with polymeric chains. The problem was presented and
investigated in [14] where the respective numerical methods were also sug-
gested. The goal of the present paper is to analyze it in the context of a
posteriori error analysis and drive two–sided a posteriori error estimates of
a new type. These estimates are derived by purely functional analysis of
the boundary–value problem considered and, therefore, are applicable to any
conforming approximations that belong to the energy functional class. For
this reason, they are called functional a posteriori estimates.

For elliptic type problems of the divergent type functional a posteriori
estimates were derived in [36, 37, 38, 39, 40, 43, 44] and some other pa-
pers with the help of duality methods in the calculus of variations (see [30]
for a consequent exposition of the approach). Computable upper bounds of
approximation errors for the Stokes problem with Dirichlét boundary condi-
tions were derived by this method in [41] and for some classes of generalized
Newtonian fluids in [21, 40].

In [39, 40, 42], another method of the derivation of functional a posteriori
estimates was suggested. The method is based on certain transformations of
integral identities that define the respective generalized solution. It is easy
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to demonstrate its performance on the paradigm of the problem ∆u + f = 0
in Ω with the condition u = 0 on the boundary ∂Ω. Here, the generalized
solution u is defined by the integral identity

∫

Ω

∇u · ∇w dx =

∫

Ω

fwdx ∀w ∈
◦

H
1(Ω),

which leads to the relation
∫

Ω

∇(u − v) · ∇wdx = Fv(w),

where Fv(w) =
∫

Ω
(∇v · ∇w− fw) is the error functional associated with the

approximation v ∈
◦

H1(Ω). Let τ be a vector–valued function in the space
H(Ω, div). Then,

|Fv(w)| ≤
∣∣∣
∫

Ω

(fw + divτ w) dx +

∫

Ω

(τ −∇v) · ∇w dx
∣∣∣.

We set w = u − v and arrive at the estimate

‖∇(u − v)‖ ≤ ‖∇v − τ‖ + cF‖divτ + f‖, (1)

where cF is a constant in the Friederichs inequality. Estimate (1) is one of
the simplest a posteriori estimates of the functional type (for the equation
divA∇u + f = 0 with positive definite symmetric matrix A such estimates
are presented in [36, 37]). It is easy to observe that the right–hand side of
(1) is nonnegative and vanishes if and only if v = u and τ = ∇u. Moreover,
it is exact in the sense that τ can be taken such that the right–hand side of
(1) is equal to the left–hand one.

In the present paper, two–sided a posteriori error bounds for the general-
ized Stokes problem are derived from the respective integral identities. The
estimates are obtained for the velocity, pressure, and stress fields. It is shown
that the estimates are computable and sharp. Thus, the paper presents a
complete analysis of the considered class of problems in the framework of the
functional approach to a posteriori error estimation,

The paper is organized as follows. Section 2 presents a generalized formu-
lation of the Stokes problem and its mathematically equivalent formulations.
In Section 3, we prove some basic results necessary for the subsequent anal-
ysis. They follow from Lemma 1 that presents a fundamental fact in the
theory of functions related to the operator div. It implies a simple proof
of the existence of the generalized solution and stability estimates for the
velocity and pressure fields (for the case of homogeneous Dirichlét boundary
conditions these properties were earlier established in [14] but with the help
of a somewhat different method). Moreover, we show that Lemma 1 implies
estimates of the distance to the set of solenoidal fields (see also [40, 41]).

Two–sided a posteriori estimates for an approximation v of the velocity u

are derived in Section 4. First, they are derived for the approximations that
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satisfy the condition divv = φ. In practice, such a condition may be difficult
to exactly satisfy. Therefore, by Lemma 1 we derive two sided bounds for
the approximations that may violate it. We outline that the constant cΩ in
Lemma 1 serves as a penalty for possible violation of this condition.

In Section 5, we derive functional a posteriori estimates for approxima-
tions of the pressure and stress fields. Again, an important role in the respec-
tive analysis plays Lemma 1 and the constant cΩ appears in the estimates.

Final Section 6 is focused on the case of mixed Dirichlét-Neumann bound-
ary conditions. Here we prove Lemma 3 that present a generalization of the
estimate of the distance to the set of solenoidal functions to the case of func-
tions vanishing on a part of the boundary. With help of Lemma 3 we derive
a posteriori estimates for approximations of the velocity and pressure fields.

2 Generalized Stokes problem

Let Ω be a connected bounded domain in R
d (d = 2, 3) with Lipschitz bound-

ary ∂Ω. In this paper, we analyze a generalized formulation of the classical
Stokes problem that consists of finding (u, p, σp) such that

−Div(ηsε(u)) − Divσp = f −∇p in Ω, (2)

divu = φ in Ω, (3)

σp = ηp(ae + ε(u)) in Ω, (4)

u = u0 on ∂Ω, (5)

where div and Div denote the divergence of a vector– and tensor–valued func-
tion, respectively, ηs ≥ 0, and ηp > 0. We assume that the given functions
are such that

f ∈ L2(Ω, Rd), φ ∈ L2(Ω), ae ∈ L2(Ω, M d×d) (6)

and satisfy the compatibility relation

∫

Ω

φ dx =

∫

∂Ω

u0 · n ds , (7)

where n is the unit normal vector outward to ∂Ω Physical motivation of the
system (2)–(5), its analysis, and numerical methods are presented in [14].
This Stokes type system is based on the usual splitting of the total stress for
a polymeric liquid into three contributions: the pressure −pI, the stress due
to the Newtonian solvent ηsε(u), and the extra stress due to the polymeric
chains σp. Here, p is the pressure function, σp is the extra stress arising due to
polymer chains, v is the velocity field and u0 is a given function that satisfies
the relation divu0 = φ and defines the Dirichlét boundary conditions. In
a more general case, ηs and ηp are positive functions. We also present the
estimates applicable to such a situation.
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It is not difficult to observe that (2)–(4) can be presented in the form

Divσ + f = 0, in Ω, (8)

divu = φ in Ω, (9)

σ = −pI + µae + νε(u) in Ω, , (10)

where µ = ηp and ν = ηp+ηs. Hereafter, we assume that µ and ν are positive
functions such that µ ∈ [µª, µ⊕] and ν ∈ [νª, ν⊕].

Hereafter, we assume that ae satisfies the condition

tr (µae + νε(u)) = 0, (11)

where tr denotes the trace of a tensor. In essence, this assumption does not
lead to a loss of generality because it is always possible to ”shift”the functions
and pass to an equivalent formulation that satisfies (11).

Let uφ be a function such that divuφ = φ and uφ = u0 on ∂Ω. Introduce
the function ū := u − uφ. Then, the system can be represented in the form

Divσ + f = 0, in Ω, (12)

divū = 0 in Ω, (13)

σ = −pI + µāe + νε(ū), in Ω, (14)

ū = 0 on ∂Ω, (15)

where āe := ae + ν
µ

ε(uφ). Note that

trµāe = −νdivu + νdivuφ = 0,

so that (14) decomposes σ̄ into the spherical and deviatoric parts, respec-
tively.

In what follows, we denote scalar product of vectors by · ( i.e., u·v = uivi)
and tensors by : ( i.e., τ : σ = τijσij), where the agreement on the summation
over the repeated indexes is adopted. All tensor–valued functions whose
components are square summable in Ω form the space Σ with the norm
‖τ‖2 :=

∫
Ω

|τ |2dx. Also, we use a special notation Q for the space L2(Ω).

Since no confusion may arise we denote the norm of Q and the norm of
the space L2(Ω, Rd) (which contains all vector–valued functions with square
summable components) by ‖ · ‖. V0(Ω) is a subset of H1(Ω) formed by the
functions with zero traces on ∂1Ω and

◦

L
2(Ω) :=

{
q ∈ Q

∣∣∣ [ q ]Ω :=

∫

Ω

q dx = 0

}
.

By V (Ω) we denote the space H1(Ω, Rd). All the functions of V (Ω) that

vanishes on ∂Ω form the space
◦

V1(Ω). A subspace of
◦

V1(Ω) that consists of

solenoidal fields is denoted by
◦

J1(Ω). If ρ(x) is a positive bounded function
then the relation ‖τ‖2

(ρ) :=
∫
Ω

ρ|τ |2dx defines another (weighted) norm in Σ.
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The space H(Ω, Div) is a subspace of Σ that contains tensor–valued functions
with square–summable divergence, i.e.,

H(Ω, Div) := {τ ∈ Σ | Divτ := {τij,j} ∈ L2(Ω, Rd)}.

Generalized solution ū of the system (12)–(15) is a function in
◦

J1(Ω) that
satisfies the integral identity

∫

Ω

νε(ū) : ε(w) + µ āe : ε(w)dx =

∫

Ω

f · w dx, w ∈
◦

J
1(Ω). (16)

Existence and uniqueness of ū is easy to prove if note that this function
minimizes the functional

I(w) :=

∫

Ω

(ν

2
|ε(w)|2 + µ āe : ε(w)

)
dx −

∫

Ω

f · w dx (17)

over the space
◦

J1(Ω) and (16) is the Euler equation for the minimizer ū. The
functional I is evidently strictly convex and continuous on V0. Moreover, I

is coercive on
◦

V1(Ω). The latter fact follows from the Korn’s inequality and
obvious estimate

∣∣∣∣∣∣

∫

Ω

f · w dx

∣∣∣∣∣∣
≤ CF‖ε(w)‖(ν), (18)

where CF is a constant in the Friederichs type inequality

‖w‖ ≤ CF‖ε(w)‖(ν), ∀w ∈
◦

V
1(Ω). (19)

Therefore, existence and uniqueness of ū is easy to establish by known results
in the calculus of variations (see, e.g., [18]).

Finally, we note that if a wider set of trial functions w ∈
◦

V1(Ω) is consid-
ered, then ū can be defined by the integral identity

∫

Ω

(νε(ū) : ε(w) + µ āe : ε(w)) dx =

∫

Ω

p divw dx +

∫

Ω

f · w dx (20)

that involves the pressure field p ∈
◦

L 2(Ω).

Our goal is to derive upper and lower bounds for the energy norms of
deviations ū − v̄, p − q, where v̄, and q are approximations of ū and p,
respectively. Also, we will obtain estimates for the difference σ − τ where
τ ∈ Σ is an approximation of the true stress σ.
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3 Stability Lemma and its corollaries

3.1 Stability Lemma

We begin with one important result in the theory of functions related to the
operator div.

Lemma 1. Let Ω be a bounded domain with Lipschitz continuous boundary.
Then, a positive constant cΩ exists (which depends only on Ω) such that for

any function f ∈
◦

L 2(Ω) one can find a function w ∈
◦

V 1(Ω) satisfying the
relations divw = f and

‖∇w‖ ≤ cΩ‖f‖. (21)

Readers will find the proof in [29]. Also, Lemma 1 can be considered as
a special case of the closed range lemma (see, e.g., [16, 51]).

Lemma 1 means that the quantity inf
w∈{divw=f}

‖∇w‖ is uniformly bounded

with respect to ‖f‖. It implies several important results.
First, it leads to the key condition in the mathematical theory of in-

compressible fluids known in the literature as Inf–Sup (or Ladyzhenskaya–
Babuska–Brezzi (LBB)) condition. The latter reads: there exists a positive
constant CΩ such that

inf
q∈

◦

L2(Ω)

q 6=0

sup
w∈V0

w 6=0

∫
Ω

q divw dx

‖q‖ ‖∇w‖ ≥ CΩ. (22)

Really, by Lemma 1 we know that for any q ∈
◦

L 2(Ω) one can find a function
vq ∈ V0 satisfying the conditions

divvq = q, ‖∇vq‖ ≤ cΩ‖q‖. (23)

In this case,

sup
v∈V0(Ω),w 6=0

∫
Ω

qdivv dx

‖∇v‖ ‖q‖ ≥
∫

Ω
qdivvq dx

‖∇vq‖ ‖q‖
=

‖q‖
‖∇vq‖

≥ 1

cΩ

and, consequently, (22) holds with CΩ = (cΩ)−1. Inf-Sup condition (22)
and its discrete analogs are used for proving stability and convergence of
numerical methods in various problems related to the theory of viscous in-
compressible fluids. In [4] and [15], this condition was proved and used to
justify the convergence of the so–called mixed methods, in which a boundary–
value problem is reduced to a saddle–point problem for a certain Lagrangian.
It is worth noting, that (22) can be also derived from the Nečas inequality,
whose simple proof for domains with Lipschitz boundaries can be found in
[13]. Estimates of the value of CΩ for various domains are discussed in, e.g.,
[17, 32, 40].
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3.2 Existence of a solution and stability estimates

With help of Lemma 1 it is not difficult to prove existence of u, p, and σ

that deliver a solution to the problem (12)–(16). For this purpose, we use
general theorems in convex analysis concerning saddle points of Lagrangians.

Consider the Lagrangian L :
◦

V1(Ω) ×
◦

L 2(Ω) → R of the form

L(w, q) :=

∫

Ω

(ν

2
|ε(w)|2 + µāe : ε(w) + qdivw

)
dx −

∫

Ω

f · w dx.

and the saddle point problem

L(ū, q) ≤ L(ū, p) ≤ L(w, p) ∀w ∈
◦

V
1(Ω), q ∈

◦

L
2(Ω). (24)

It is not difficult to verify that the saddle point (ū, p) is formed by the velocity
field ū and the pressure function p satisfying (12)–(16). Indeed, the left hand
side of (24) means that divū = 0, while the right hand one leads to (20).
Problem (24) is equivalent to two variational problems

(Pu) inf
w∈

◦

V1(Ω)

sup
q∈

◦

L2(Ω)

L(w, q) and (Pp) sup
q∈

◦

L2(Ω)

inf
w∈

◦

V1(Ω)

L(w, q).

Since

inf
w∈

◦

V1(Ω)

sup
q∈

◦

L2(Ω)

L(w, q) = inf
w∈

◦

J1(Ω)

I(w) = I(ū),

we observe that Problem Pu defines the velocity field ū. Problem Pp defines
the pressure field, however the functional of this problem cannot be presented
in an explicit form.

Existence of ū and p follow from Lemma 1 and known theorems in the
theory of saddle points. Evidently, L is convex and continuous with respect
to the first variable and linear and continuous with respect to the second one.
Therefore (see, e.g., [18] Chapter 4, §2) it suffices to show that

∃q̃ ∈
◦

L
2(Ω) such that lim

‖w‖◦

V1(Ω)
→+∞

L(w, q̃) = +∞ (25)

and

lim
‖q‖→+∞

inf
w∈

◦

V1(Ω)

L(w, q) = −∞. (26)

Set q̃ = 0, then (25) is satisfied. To prove (26) we select vq such that divvq = q

and ‖∇vq‖ ≤ cΩ‖q‖. Then

inf
w∈

◦

V1(Ω)

L(w, q) ≤ L(λvq, q) =

=

∫

Ω

(ν

2
λ2|ε(vq)|2 + µλāe : ε(vq) + λ|q|2

)
dx − λ

∫

Ω

f · vqdx ≤

≤
(

ν⊕λ2

2
c2
Ω + λ

)
‖q‖2 + λ

∫

Ω

µāe : ε(vq) dx − λ

∫

Ω

f · vqdx.
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Since

‖ε(vq)‖ ≤ ‖∇vq‖ ≤ cΩ‖q‖ and

∣∣∣∣∣∣

∫

Ω

f · vqdx

∣∣∣∣∣∣
≤ CF cΩ‖q‖‖f‖,

we set λ = − 1

ν⊕c2
Ω

and observe that

inf
w∈

◦

V1(Ω)

L(w, q)≤ − ‖q‖2

2ν⊕c2
Ω

+ λ(µ⊕‖ae‖cΩ+ CFcΩ‖f‖)‖q‖ → −∞ as ‖q‖ → +∞.

Thus, (26) holds and the saddle point (ū, p) exists.
From (16) we deduce the energy estimate for the velocity field

‖ε(ū)‖(ν) ≤ ‖µ

ν
āe‖(ν) + CF‖f‖. (27)

Let vp ∈
◦

V1(Ω) be the function defined as a counterpart of p in Lemma 1.
Then,
∫

Ω

(νε(ū) : ε(vp) + µāe : ε(vp))dx −
∫

Ω

f · vp dx =

∫

Ω

p divvpdx = ‖p ‖2

and we obtain

‖p ‖ ≤ cΩ

(
‖ε(ū)‖(ν)+ ‖µ

ν
āe‖(ν) + CF‖f‖

)
≤ 2cΩ

(
‖µ

ν
āe‖(ν)+ CF‖f‖

)
, (28)

which is the energy estimate for p. Estimate (27) and (28) show that the
solution continuously depends on the external data and is stable.

3.3 Estimates of the distance to the set
◦
J1(Ω)

Approximations computed by numerical procedures may not belong to the

space
◦

J1(Ω). With help of Lemma 1 we can estimate the distance between
such an approximation and the set of solenoidal fields. Subsequently, we will
use such estimates and derive functional type a posteriori estimates valid for
non-solenoidal approximations.

Lemma 2. For any function v̂ ∈
◦

V 1(Ω) there exists a function v0 ∈
◦

J1(Ω)
such that

‖∇(v̂ − v0)‖ ≤ cΩ‖divv̂‖. (29)

Proof. Let f = divv̂, where v̂ is a given function in
◦

V1(Ω). Then, by Lemma 1

these exists a function wf ∈
◦

V1(Ω) such that

div(v̂ − wf ) = 0, ‖∇wf‖ ≤ cΩ‖divv̂‖.

Hence, the function v0 := v̂ − wf ∈
◦

J1(Ω) satisfies the estimate (29).
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In other words, the distance between v̂ ∈
◦

V1(Ω) and the set of solenoidal

fields
◦

J1(Ω) is estimated from above by the quantity ‖divv̂‖ with the multi-
plier cΩ that comes from Lemma 1.

We note that Lemma 2 can be equivalently derived from the LBB condi-
tion (22) (see [41]).

Remark 1. From Lemma 2 it follows that for any

v̂ ∈
◦

V
1(Ω) + uφ := {v ∈

◦

V
1(Ω) | v = v0 + uφ, v0 ∈

◦

V
1(Ω)}

there exists

vφ ∈
◦

J
1(Ω) + uφ := {v ∈

◦

V
1(Ω) | v = v0 + uφ, v0 ∈

◦

J
1(Ω), }

such that

‖∇(v̂ − vφ)‖ ≤ cΩ‖divv̂ − φ‖. (30)

Indeed, for v̂ − uφ ∈
◦

V1(Ω) we can find a function v0 ∈
◦

J1(Ω) such that

‖∇(v̂ − uφ − v0)‖ ≤ cΩ‖div(v̂ − uφ)‖ = cΩ‖divv̂ − φ‖.

Hence, vφ = v0 + uφ is the function required.

Remark 2. Sometimes, it is also required to estimate the distance between
v̂ and the space of solenoidal H1–functions in L2–norm. Such an estimate
follows from the solvability of the Dirichlét problem for the Lapalce operator.

Indeed, the problem ∆wg = g, has a solution wg ∈
◦

H1(Ω) for any g ∈ L2(Ω)
and meets the energy estimate ‖∇wg‖ ≤ cF‖g‖. Therefore, there exists a
vector–valued function vg = ∇wg such that divvg = g and ‖vg‖ ≤ cF‖g‖.
Let g = divv̂. Then, v0 = v̂ − vg is a solenoidal function and

‖v̂ − v0‖ ≤ cF‖divv̂‖, (31)

where cF is a constant in the Friederichs inequality.

4 A posteriori estimates

First, we derive functional a posteriori estimates for the approximations
which are conforming in the sense that they exactly satisfy the relation (3).

Let v ∈
◦

V 1(Ω) + uφ. Then, the function v̄ = v − uφ can be viewed as an
approximation of ū defined by the system (12)-(15). We will derive a com-
putable upper bound for the quantity ‖ε(ū− v̄)‖(ν) from the integral identity
(16). After that it is easy to obtain a similar estimate for ‖ε(u − v)‖(ν).
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4.1 Upper bound of the error for v ∈
◦
J1(Ω) + uφ

Let τ be a tensor function in Σ. Introduce a linear continuous functional
Lτ,f :

◦

V1(Ω) → R by the relation

Lτ,f (w) :=

∫

Ω

f · w dx −
∫

Ω

τ : ε(w) dx.

Its norm is defined as follows:

|||Lτ,f ||| := sup
w∈

◦

V1(Ω)

|Lτ,f (w)|
‖ε(w)‖(ν)

(32)

In view of (18), the functional is bounded and |||Lτ,f ||| ≤ CF + ‖τ‖(ν−1). The
kernel of Lτ,f contains all the tensor–valued functions that satisfy (in a gen-
eralized sense) the equilibrium equation

Divτ + f = 0, in Ω. (33)

Theorem 1. For any v ∈
◦

J1(Ω) + uφ, q ∈
◦

L 2(Ω), and τ ∈ Σ the following
estimate holds

‖ε(u − v)‖(ν) ≤ ‖τ + qI − µ ae − νε(v)‖(ν−1) + ||| Lτ,f |||. (34)

If τ belongs to a narrower set H(Ω, Div) then the upper bound is expressed
in terms of integrals, namely

‖ε(u−v)‖(ν) ≤ (35)

≤ M
(1)
⊕ (v, τ, q) :=‖τ + qI− µae− νε(v)‖(ν−1) +CF‖Divτ +f‖.

Proof. First we derive estimates for the problem (16). Let v̄ be a certain

function in
◦

J1(Ω). Insert it into both parts of (16). Then, for any w ∈
◦

J1(Ω),
we have

∫

Ω

νε(ū − v̄) : ε(w)dx = −
∫

Ω

(µ āe : ε(w) + νε(v̄) : ε(w))dx +

∫

Ω

f · w dx.

Let τ ∈ Σ. Then,
∫

Ω

νε(u − v̄) : ε(w)dx =

=

∫

Ω

(τ − µ āe − νε(v̄)) : ε(w)dx +

∫

Ω

f · w dx −
∫

Ω

τ : ε(w)dx. (36)

It is easy to observe that
∣∣∣∣∣∣

∫

Ω

(τ − µāe − νε(v̄)) : ε(w)dx

∣∣∣∣∣∣
≤ (37)

≤ ‖τ + qI − µāe − νε(v̄)‖(ν−1) ‖ε(w)‖(ν),

12



where q is an arbitrary function in
◦

L 2(Ω). The second part of the right–hand
side of (36) is formed by the functional Lτ,f whose value is estimated from
above by the quantity ||| Lτ,f |||‖ε(w)‖.

From (36), (36), and (37) it follows that
∫

Ω

νε(ū − v̄) : ε(w)dx ≤ (38)

≤
(
‖τ + qI − µ āe − νε(v̄)‖(ν−1) + ||| Lτ,f |||

)
‖ε(w)‖(ν).

Now, we set w = ū − v̄ and arrive at the estimate

‖ε(ū − v̄)‖(ν) ≤ ‖τ + qI − µ āe − νε(v̄)‖(ν−1) + ||| Lτ,f |||. (39)

Assume that τ ∈ H(Ω, Div). Then,

Lτ,f (w) =

∫

Ω

(Divτ + f) · w dx ≤

≤ ‖Divτ + f‖‖w‖ ≤ CF‖Divτ + f‖‖ε(w)‖(ν)

and we find that

||| Lτ,f (w) ||| ≤ CF‖Divτ + f‖. (40)

By (39) we conclude that

‖ε(ū − v̄)‖(ν) ≤ ‖τ + qI − µ āe − νε(v̄)‖(ν−1) + CF‖Divτ + f‖. (41)

To obtain estimates for the original problem we note that for v̄ = v − uφ

‖ε(u − v)‖(ν) = ‖ε(ū − v̄)‖(ν).

Since µāe = µae − νε(uφ) we use (39) and (41) and arrive at the estimates
(34) and (35).

Estimates (34) and (35) have a clear meaning. Estimate (34) shows that
the upper bound of the error consists of two parts. The first part vanishes if
the functions (v̄, τ, q) satisfy (14) in a strong (L2) sense and the second one
equals zero if τ satisfies (33) in a weak sense. In (35), the condition (33) is
also considered in a strong sense. The majorant vanishes if and only if

τ = −qI + µ ae + νε(v)

and the relation Divτ + f = 0 holds almost everywhere in Ω. By the as-
sumption v meets the Dirichlét boundary condition and satisfies the relation
divv = φ, we conclude that in such a case v = u and τ and q coincide with
the exact stress and pressure fields, respectively.

M
(1)
⊕ (v, τ, q) is evidently continuous with respect to all the arguments.

Therefore, it is not difficult to prove that

M
(1)
⊕ (vk, τk, qk) → 0

as vk → u in
◦

V1(Ω) + u0, τk → σ in H(Ω, Div), and qk → p in L2(Ω).

13



Remark 3. If ae = 0 then the estimate (41) comes in the form

‖ε(u − v)‖(ν) ≤ ‖τ + qI − νε(v)‖(ν−1) + CF‖Divτ + f ‖. (42)

If q ∈ H1(Ω), then it can be rewritten in another form

‖ε(u − v)‖(ν) ≤ ‖τ − νε(v)‖(ν−1) + CF‖Divτ + f −∇q ‖. (43)

We note that (42) and (43) are the functional a posteriori estimates for the
Stokes problem. They has been earlier derived in [40, 41].

Remark 4. By (11) we observe that

‖τ + qI− µae− νε(v)‖2
(ν−1) =

=

∫

Ω

1

ν

(
d

(
1

d
trτ + q

)2

+ |τD − µaeD − νεD(v)|2
)

dx.

If τ is selected such that [ trτ ]Ω = 0 then we set q = − 1
d
trτ and obtain

‖ε(u − v)‖(ν) = ‖τD − µaeD − νεD(v)‖(ν−1) + CF‖Divτ + f‖. (44)

Note that the right–hand side of (44) does not contain q. The right–hand
side of (44) vanishes if

τD − µ aeD − νεD(v) = 0, in Ω,

Divτ + f = 0, in Ω.

Since v ∈
◦

J 1(Ω) + uφ, we know that divv = φ and satisfies the boundary
condition. Besides, for the above tensor τ there exists a scalar function q

with zero mean such that trτ = −dq. This means that v = u, τ = σ, and
q = p.

4.2 Lower bound of the error for v ∈
◦
J1(Ω) + uφ

Theorem 2. For any v ∈
◦

J1(Ω) + uφ

‖ε(u − v)‖2
(ν) ≥ M

(1)
ª (v, w) (45)

where

M
(1)
ª (v, w) :=


2

∫

Ω

(f · w − (νε(v) + µae) : ε(w)) dx − ‖ε(w)‖2
(ν)




1/2

,

and w is an arbitrary function in
◦

J1(Ω).

14



Proof. The proof is based upon the variational formulation of the problem

(12)–(15). Let v̄ ∈
◦

J1(Ω). Then

I(v̄) − I(ū) =

∫

Ω

ν

2
‖ε(ū − v̄)‖2dx +

+

∫

Ω

(νε(ū) : ε(ū − v̄) + µāe : ε(ū − v̄)) dx −
∫

Ω

f · (v̄ − ū) dx.

Since ū − v̄ ∈
◦

J1(Ω) we arrive at the relation

I(v̄) − I(ū) =
1

2
‖ε(ū − v̄)‖2

(ν). (46)

Therefore, for any w ∈
◦

J1(Ω), we have

‖ε(ū − v̄)‖2
(ν) ≥ 2(I(v̄) − I(v̄ + w)) =

=

∫

Ω

(
−ν|ε(w)|2 − 2(νε(v̄) + µāe) : ε(w)

)
dx + 2

∫

Ω

f · w dx.

We obtain (45) if set v̄ = v−uφ and recall that νε(v̄)+µāe = νε(v)+µae.

4.3 Computability and efficiency of two–sided estimates

The majorant M
(1)
⊕ (v, τ, q) contains only known functions and the constant

CF (Ω). The latter can be estimated from above by the value ν−1
ª cF (Ω̂), where

Ω̂ is a square (cube) that contains Ω. Therefore, it is completely computable.
In the simplest case, we can set

τ = G (νε(v) − µae − qI),

where q is a computed pressure and G a certain smoothing operator whose
action is required to guarantee that τ ∈ H(Ω, Div). Then, the upper bound
is directly computable but in general may be rather coarse. If it is desirable
to obtain a better bound, then it is necessary to adjust the functions τ and
q with the help of the procedure discussed below.

It is easily seen that if τ = σ and q = p, then the value of M
(1)
⊕ (v, σ, p)

coincides with ‖ε(u− v)‖(ν), i.e., the estimate (35) is sharp in the sense that
there is no gap between its left and right hand sides. Therefore, in principle,
for any v the respective upper bound can be computed with any desirable
accuracy. The minorant M

(1)
ª (v, w) possesses similar properties: it is directly

computable and for w = u − v coincides with the true error.

Let {Vh, Σh, Qh} be finite dimensional subspaces of
◦

J1(Ω), H(Ω, Div), and
◦

L 2(Ω) respectively. From the above analysis it follows that the numbers

mkª := sup
wh∈Vh

M
(1)
ª (v, wh) and mk⊕ := inf

τh∈Σh,qh∈Qh

M
(1)
⊕ (v, τh, qh) (47)
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provide two–sided bounds for the quantity ‖ε(u−v)‖(ν). Note that the quan-
tities mkª and mk⊕ are defined with the help of finite dimensional problems
and are indeed computable. The theorem below shows that two–sided esti-
mates can be computed as close to the true error as it is required.

Theorem 3. Let {Vhk, Σhk, Qhk}+∞
k=1 be a sequence of finite dimensional spaces

which be limit dense in the respective functional spaces. Then, for any

v ∈
◦

J1(Ω) + uφ

mkª ≤ ‖ε(u − v)‖(ν) ≤ mk⊕ and mkª → mk⊕ as k → +∞.

Proof. The result immediately follows from the limit density property and
above discussed sharpness of the estimates.

For the classical Stokes problem, practical efficiency of the functional a
posteriori estimates was studied and confirmed in [24].

4.4 Upper bound of the error for v ∈
◦
V1(Ω) + uφ

Let us now assume that approximate solution v̂ may not satisfy the relation
divv̂ = φ.

Theorem 4. For any v̂ ∈ V such that v̂ = u0 on ∂Ω, q ∈
◦

L 2(Ω), and τ ∈ Σ
the following estimate holds

‖ε(u − v̂)‖(ν) ≤ ‖τ + qI − µ ae − νε(v̂)‖(ν−1) + (48)

+ ||| Lτ,f ||| + 2ν
1/2
⊕ cΩ‖divv̂ − φ‖.

If τ ∈ H(Ω, Div) then

‖ε(u−v̂)‖(ν) ≤M
(2)
⊕ (v̂, τ, q) := (49)

= ‖τ + qI− µae− νε(v̂)‖(ν−1) +CF‖Divτ +f‖ + 2ν
1/2
⊕ cΩ‖divv̂ − φ‖.

Proof. By Lemma 1, for the function v̄ := (v̂ − uφ) ∈
◦

V1(Ω) one can find a

function w0 ∈
◦

J1(Ω) such that

‖ε(v̄ − w0)‖(ν) ≤ ν
1/2
⊕ ‖ε(v̄ − w0)‖ ≤ cΩν

1/2
⊕ ‖divv̄‖ = cΩν

1/2
⊕ ‖divv̂ − φ‖. (50)

Then,

‖ε(u − v̂)‖(ν) = ‖ε(u − v̄ − uφ)‖(ν) ≤ ‖ε(u − w0 − uφ)‖(ν) + ‖ε(v̄ − w0)‖(ν).(51)

Note that div(w0+uφ) = φ, so that we can use (34) to estimate the first norm
in the right–hand side of this inequality. Then, we arrive at the estimate

‖ε(u − v̂)‖(ν) ≤ ‖τ + qI − µae − νε(w0 + uφ)‖(ν−1) + ||| Lτ,f ||| + ‖ε(v̄ − w0)‖(ν).
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Since

‖τ + qI − µae − νε(w0 + uφ)‖(ν−1) ≤
≤ ‖τ + qI − µae − νε(v̂)‖(ν−1) + ‖ε(v̄ − w0)‖(ν)

we apply (50) and arrive at (48).
Estimate (49) is derived from (35) by means of similar arguments.

It is easy to see that the majorant M
(2)
⊕ (v̂, τ, q) has the same principal

structure as M
(1)
⊕ (v, τ, q). The only difference is that it contains a new term.

The latter can be thought of as a penalty for possible violation of the condi-
tion divu = φ.

Remark 5. In view of the relation

‖τ + qI− µae− νε(v)‖2
(ν−1) =

=

∫

Ω

1

ν

(
1

d
(trτ + dq − µtrae − νdivv̂)2 + |τD − µaeD − νεD(v)|2

)
dx.

If we assume that [ trτ ]Ω = 0 and select q = − 1
d
trτ then the estimate has

the form

‖ε(u − v̂)‖(ν) ≤
√

‖τD − µaeD − νεD(v̂)‖2
(ν−1) +

1

d
‖divv̂ − φ‖2

(ν−1) +

+CF‖Divτ + f‖ + 2ν
1/2
⊕ cΩ‖divv̂ − φ‖. (52)

Remark 6. The majorants M
(1)
⊕ (v, τ, q) and M

(2)
⊕ (v̂, τ, q) generate new vari-

ational formulations of the generalized Stokes problem: minimize M
(1)
⊕ or

M
(2)
⊕ on admissible velocity, pressure and stress fields. Both problems have

the exact lower bound equal to zero. It is attained if and only if the above
fields coincide with the exact ones.

4.5 Lower bound of the error for v ∈
◦
V1(Ω) + uφ

If v̂ − uφ 6∈
◦

J1(Ω) then derivation of a computable lower bound of the energy
norm of the error presents a more complicated task. However, it can be also
derived.

Theorem 5. For any v̂ ∈
◦

V1(Ω) + uφ

‖ε(u − v̂)‖2
(ν) ≥ M

(2)
ª (v̂, ŵ) :=

1

1 + γ
(M(v̂, ŵ) − ρ(v̂, ŵ, η, γ)) , (53)

where

M(v̂, ŵ) :=

∫

Ω

(
2f · ŵ − ν|ε(ŵ)|2 − 2(νε(v̂) + µae) : ε(ŵ)

)
dx,
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ŵ is an arbitrary function in
◦

V1(Ω), η ∈ H(Ω, Div), γ > 0,

ρ(v̂, ŵ, η, γ) = m2(v̂, ŵ, η) + m3(v̂, ŵ) + c2
Ων⊕

(
1 +

1

γ

)
‖divv̂ − φ‖2

and the terms m2 and m3 are defined by the relations (55) and (56).

Proof. Let ŵ ∈
◦

V 1(Ω). Then, for v ∈
◦

J 1(Ω) + uφ and w ∈
◦

J 1(Ω) we can

represent M
(1)
ª (v, w) as follows:

M
(1)
ª (v, w) =

= 2

∫

Ω

(
−ν

2
|ε(w − ŵ)|2 − ν

2
|ε(ŵ)|2 − νε(v) : ε(w − ŵ) − νε(v) : ε(ŵ) +

+µae : ε(ŵ − w) − µae : ε(ŵ) + f · (w − ŵ) + f · ŵ − νε(w − ŵ) : ε(ŵ)
)

dx =

=

∫

Ω

(
−ν|ε(ŵ)|2 − 2(νε(v) + µae) : ε(ŵ) + 2f · ŵ

)
dx − ν⊕‖ε(ŵ − w)‖2 +

+2

∫

Ω

(
(νε(v) + µae) : ε(ŵ − w) − f · (ŵ − w)

)
dx = J1 + J2 + J3,

where

J1 =

∫

Ω

(
2f · ŵ − ν|ε(ŵ)|2 − 2(νε(v̂) + µae) : ε(ŵ)

)
dx,

J2 = 2

∫

Ω

(
(νε(v̂) + µae) : ε(ŵ − w) − f · (ŵ − w)

)
dx,

J3 = 2

∫

Ω

(νε(v̂ − v) : ε(ŵ) + νε(ŵ − w) : ε(ŵ))dx +

+2

∫

Ω

νε(v̂ − v) : ε(w − ŵ) dx − ν⊕‖ε(ŵ − w)‖2.

Now, we apply the estimate

‖ε(u − v̂)‖2
(ν) ≥

1

1 + γ
‖ε(u − v)‖2

(ν) −
1

γ
‖ε(v − v̂)‖2

(ν) ≥

≥ 1

1 + γ

(
J1 + J2 + J3 −

(
1 +

1

γ

)
ν⊕‖ε(v − v̂)‖2

)
.

By Lemma 2 we can find the functions vφ and w0 such that

‖ε(ŵ − w0)‖ ≤ cΩ‖divŵ‖, ‖ε(v̂ − vφ)‖ ≤ cΩ‖divv̂ − φ‖. (54)

Then,

|J3| ≤ m3(v̂, ŵ) := 2ν⊕cΩ

(
(‖divv̂ − φ‖ + ‖divŵ‖)‖ε(ŵ)‖ + (55)

+cΩ‖divv̂ − φ‖‖divŵ‖ +
cΩ

2
‖divŵ‖2

)
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To estimate J2 we introduce a tensor–valued function η ∈ H(Ω, Div). We
have

|J2| = (56)

= 2
∣∣∣
∫

Ω

((f + Divη) · (w − ŵ) + ((νε(v̂) + µae) − η) : ε(ŵ − w)) dx
∣∣∣ ≤

≤ m2(v̂, ŵ, η) := 2cΩ‖divŵ‖
(
CF‖f + Divη‖ + ‖η − νε(v̂) − µae‖

)
.

Therefore

(1 + γ)‖ε(u − v̂)‖2
(ν) ≥

≥ J1 − m2(v̂, ŵ, η) − m3(v̂, ŵ) − c2
Ων⊕

(
1 +

1

γ

)
‖divv̂ − φ‖2

and we arrive at (53).

Remark 7. If divv̂ = φ and ŵ ∈
◦

J1(Ω), then ρ(v̂, ŵ, η, γ) = 0 and

M(v̂, ŵ) = M
(1)
ª (v̂, ŵ).

Thus, we set γ = 0 and observe that on this narrow class of functions (53) is
equivalent to (45).

Remark 8. Let us evaluate the quality of the lower bound computed by the
estimate (53) for an approximation v̂. Set ŵ = u − vφ. Then divŵ = 0,
m2(v̂, ŵ, η) = 0 and

m3(v̂, ŵ) = 2ν⊕cΩ‖divv̂ − φ‖‖ε(u − vφ)‖ ≤
≤ 2ν⊕cΩ‖divv̂ − φ‖(‖ε(u − v̂)‖ + cΩ‖divv̂ − φ‖).

For the term M(v̂, ŵ) we have

M(v̂, ŵ) :=

∫

Ω

(
2f · ŵ − ν|ε(ŵ)|2 − 2(νε(v̂) + µae) : ε(ŵ)

)
dx.

Recall (16). We have
∫

Ω

νε(u − uφ) : ε(u − vφ)dx = (57)

=

∫

Ω

(
f · (u − vφ) − (µ ae + µε(uφ)) : ε(u − vφ)

)
dx.

Since the choice of uφ is restricted only by the boundary condition and the
condition divuφ = φ, we can set uφ = vφ. Then,

M(v̂, ŵ) :=

∫

Ω

ν|ε(u − vφ)|2dx ≥ 1

1 + δ
‖ε(u − v̂)‖2

(ν) −
1

δ
‖ε(v̂ − vφ)‖2

(ν) ≥

≥ 1

1 + δ
‖ε(u − v̂)‖2

(ν) −
1

δ
ν⊕cΩ‖divv̂ − φ‖2
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and we obtain

M
(2)
ª (v̂, ŵ) ≥ 1

1 + γ

( 1

1 + δ
‖ε(u − v̂)‖2

(ν) −
(

1 +
1

δ
+

1

γ

)
ν⊕cΩ‖divv̂ − φ‖2 −

−2ν⊕cΩ‖divv̂ − φ‖(‖ε(u − v̂)‖ + cΩ‖divv̂ − φ‖)
)
. (58)

If divv̂ = φ then we set δ = γ = 0 and find that M
(2)
ª (v̂, ŵ) is equal to the

error. Also, by (58) we conclude that the lower bound is good if divv̂ is close
to φ. If an approximate solution essentially violates this condition, then the
quality of the lower bound deteriorates.

5 A posteriori estimates for approximations

of pressure and stress fields

5.1 Estimates for the pressure

Estimates of ‖p − q‖ can be also derived with the help of Lemma 1.

Theorem 6. Let q ∈
◦

L 2(Ω) be an approximation of the pressure field p.
Then

1

2cΩν
1/2
⊕

‖p − q‖ ≤ ‖νε(v̂) + µae − τ − qI‖(ν−1) + CF‖Divτ + f‖ +

+ν
1/2
⊕ cΩ‖divv̂ − φ‖, (59)

where v̂ and τ are arbitrary functions in
◦

V1(Ω) and H(Ω, Div), respectively.

Proof. Since (p−q) ∈
◦

L 2(Ω), by Lemma 1 we know that a function w̃ ∈
◦

V1(Ω)
exists such that

divw̃ = p − q, and ‖ε(w̃)‖ ≤ cΩ‖p − q‖.

Hence,

‖p − q‖2 =

∫

Ω

divw̃(p − q) dx =

=

∫

Ω

(νε(u) : ε(w̃) + µ ae : ε(w̃) − f · w̃ − qdivw̃) dx =

=

∫

Ω

νε(u − v̂) : ε(w̃)dx +

+

∫

Ω

(νε(v̂) : ε(w̃) + µ ae : ε(w̃) − f · w̃ − qdivw̃) dx.
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Note that
∫

Ω

νε(u − v̂) : ε(w̃) dx ≤ cΩν
1/2
⊕ ‖ε(u − v̂)‖(ν) ‖p − q‖

and
∫

Ω

(νε(v̂) : ε(w̃) + µ ae : ε(w̃) − f · w̃ − qdivw̃) dx =

=

∫

Ω

(νε(v̂) + µae − τ − qI) : ε(w̃)dx −
∫

Ω

(Divτ + f) · w̃dx ≤

≤
(
‖νε(v̂) + µae − τ − qI‖ + CFν

1/2
⊕ ‖Divτ + f‖

)
cΩ‖p − q‖.

Therefore,

‖p − q‖ ≤ cΩ

(
ν

1/2
⊕ ‖νε(v̂) + µae − τ − qI‖(ν−1) + CFν

1/2
⊕ ‖Divτ + f‖ +

+ν
1/2
⊕ (‖τ + qI− µae− νε(v̂)‖(ν−1) +

+CFν
1/2
⊕ ‖Divτ +f‖ + 2ν⊕cΩ‖divv̂ − φ‖)

)

and we arrive at the estimate (59).

It is easy to see that the right–hand side of (59) consists of the same terms
as the right–hand side of (57) and vanishes if and only if,

v̂ = u, τ = σ, and p = q.

However, in this case, the dependence of the penalty multipliers on the con-
stant cΩ is stronger.

Remark 9. If τ is subject to the condition [ trτ ]Ω = 0 then the pressure can
be excluded and instead of (59) we obtain

‖p − q‖ ≤ 2cΩν
1/2
⊕

(√
‖τD − µaeD − νεD(v)‖2

(ν−1) +
1

d
‖divv̂ − φ‖2

(ν−1) +

+CF‖Divτ + f‖ + ν
1/2
⊕ cΩ‖divv − φ‖

)
. (60)

5.2 Estimates for stresses

Assume that v̂ ∈
◦

V 1(Ω), τ ∈ Σ, and q ∈
◦

L 2(Ω) approximate u, σ, and p,
respectively. We have

‖τ − σ‖ = ‖τ + pI − µae − νε(u)‖ ≤ (61)

≤ ‖τ + qI − µae − νε(v̂)‖ + ‖νε(v̂ − u)‖ +
√

d‖p − q‖ ≤
≤ ν

1/2
⊕ ‖τ + qI − µae − νε(v̂)‖(ν−1) + ν

1/2
⊕ ‖ε(v̂ − u)‖(ν) +

√
d‖p − q‖.
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By (49) and (59) we obtain

‖τ − σ‖ ≤ ν
1/2
⊕

(
2(1 +

√
dcΩ)‖τ + qI − µae − νε(v̂)‖(ν−1) + (62)

+CF (1 + 2
√

dcΩ)‖Divτ + f‖ + 2ν
1/2
⊕ cΩ(1 +

√
dcΩ)‖divv̂ − φ‖

)
.

Now it is not difficult to estimate the deviation τ−σ in the norm of H(Ω, Div).
However, it has a more symmetric form if the deviation is expressed in terms
of the norm ‖η‖Div,CF

:= ‖η‖ + CF‖Divη‖. In this case,

‖τ − σ‖Div,CF
≤ 2(1 +

√
dcΩ)ν

1/2
⊕

(
‖τ + qI − µae − νε(v̂)‖(ν−1) + (63)

+‖Divτ + f‖ + ν
1/2
⊕ ‖divv̂ − φ‖

)
.

If τ is subject to the condition [ trτ ]Ω = 0 then the pressure field can be
excluded from (63) and we arrive at the estimate

‖τ − σ‖Div,CF
≤ (64)

≤ 2(1 +
√

dcΩ)ν
1/2
⊕

(√
‖τD − µaeD − νεD(v̂)‖2

(ν−1) +
1

d
‖divv̂ − φ‖2

(ν−1) +

+‖Divτ + f‖ + ν
1/2
⊕ ‖divv̂ − φ‖

)
.

6 Mixed boundary conditions

6.1 Preliminaries

Consider the generalized Stokes equation with mixed Dirichlét–Neumann
boundary conditions defined on two measurable nonintersecting parts ∂1Ω
and ∂2Ω of ∂Ω such that ∂Ω = ∂1Ω ∪ ∂2Ω and |∂1Ω| > 0. We assume that

u = u0 on ∂1Ω, σ n = F on ∂2Ω, (65)

where divu0 = φ, (49) holds, and F ∈ L2(∂2Ω, Rd).

Now we define the space
◦

V1(Ω) as follows

◦

V
1(Ω) :=

{
v ∈ H1(Ω, Rd) | v = 0 on ∂1Ω

}

and by
◦

J1(Ω) mean the subspace of
◦

V1(Ω) that consists of solenoidal fields.
Generalized solution of the system (8)–(10), (65) we define as u = ū−uφ,

where uφ = u0 on ∂1Ω, divuφ = φ, and ū is a function in
◦

J1(Ω) that satisfies
the integral identity

∫

Ω

(νε(ū) : ε(w) + µ āe : ε(w)) dx = `(w) ∀w ∈
◦

J
1(Ω). (66)
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Here, ` :
◦

V 1(Ω)0 → R is the linear continuous functional defined by the
relation

`(w) :=

∫

Ω

f · wdx +

∫

∂2Ω

F · wds.

Existence and uniqueness of ū is easy to prove by variational arguments if
note that the problem is related to minimization of the functional

I(w) :=

∫

Ω

(ν

2
|ε(w)|2 + µ āe : ε(w)

)
dx − `(w) (67)

over the space
◦

J1(Ω). Since I(w) is strictly convex, continuous, and coercive
on V0 existence of a minimizer is proved by standard arguments.

It is easy to see that

|`(w)| ≤ C` ‖ε(w)‖(ν) ∀w ∈
◦

V
1(Ω). (68)

Note that C` depends on Ω and ∂2Ω and C` ≤ CF‖f‖+CT‖F‖∂2Ω, where CF

and CT comes from the Friederichs and trace inequalities for the functions
vanishing at ∂1Ω:

‖w‖ ≤ CF‖ε(w)‖(ν), ‖w‖∂2Ω ≤ CT‖ε(w)‖(ν) ∀w ∈
◦

V
1(Ω).

For any τ ∈ Σ

Lτ,` (w) := `(w) −
∫

Ω

τ : ε(w) dx

is a linear continuous functional on
◦

V1(Ω), whose norm is

|||Lτ,` ||| := sup
w∈

◦

V1(Ω)

|Lτ,` (w)|
‖ε(w)‖(ν)

≤ C` + ‖τ‖(ν−1). (69)

The set Kτ,` = KerLτ,` contains the tensor–valued functions that satisfy (in
a generalized sense) the equilibrium equation

Divτ + f = 0 in Ω (70)

and the boundary condition

τ n = F on ∂2Ω. (71)
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6.2 Estimates for approximations in
◦
J1(Ω) + uφ

Theorem 7. For any v ∈
◦

J1(Ω)+uφ, q ∈ Q, and τ ∈ Σ the following estimate
holds

‖ε(u − v)‖(ν) ≤ ‖τ + qI − µ ae − νε(v)‖(ν−1) + ||| Lτ,` |||. (72)

If τ ∈ ΣDiv :=
{
τ ∈ Σ, | Divτ ∈ L2(Ω, Rd), τ n ∈ L2(∂2Ω, Rd)

}
then

‖ε(u−v)‖(ν) ≤ M
(1)
⊕ (v, τ, q) :=‖τ + qI− µae− νε(v)‖(ν−1) + (73)

+CF‖Divτ + f‖ + CT‖F − τ n‖∂2Ω.

Proof. From (66) we observe that

∫

Ω

νε(ū − v̄) : ε(w)dx = −
∫

Ω

(µ āe : ε(w) + νε(v̄) : ε(w))dx + `(w).

Let τ ∈ Σ. Then, for any w ∈
◦

J1(Ω)

∫

Ω

νε(ū − v̄) : ε(w)dx =

=

∫

Ω

(τ − µ āe − νε(v̄)) : ε(w)dx + `(w) −
∫

Ω

τ : ε(w)dx ≤

≤ (‖τ + qI − µāe − νε(v̄)‖(ν−1) + ||| Lτ,` |||)‖ε(w)‖(ν),

where q is an arbitrary function in Q. Set w = ū − v̄. Then we arrive at the
estimate

‖ε(ū − v̄)‖(ν) ≤ ‖τ + qI − µ āe − νε(v̄)‖(ν−1) + ||| Lτ,` |||. (74)

Since

‖ε(u − v)‖(ν) = ‖ε(ū − v̄)‖(ν) ≤ ‖τ + qI − µ āe − νε(v) − νε(uφ)‖ + ||| Lτ,` |||

and µāe = µae − νε(uφ), we arrive at (72).
Assume that τ ∈ ΣDiv Then,

Lτ,` (w) =

∫

Ω

(Divτ + f) · w +

∫

∂2Ω

(F − τ n) · wds ≤

≤ (CF‖Divτ + f‖ + CT‖F − τ n‖∂2Ω) ‖ε(w)‖(ν)

and, therefore,

|||Lτ,` (w) ||| ≤ CF‖Divτ + f‖ + CT‖F − τ n‖∂2Ω. (75)

Now (73) follows from (74) and (75).
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The functional M
(1)
⊕ (v, τ, q) is directly computable provided that the con-

stants CF and CT (or their upper bounds) are known. It vanishes if and only
if

τ = −qI + µ ae + νε(v)

and the relations Divτ + f = 0 in Ω and τ n = F on ∂2Ω hold almost
everywhere. Since v meets the Dirichlét boundary condition on ∂1Ω and
satisfies the relation divv = φ, we conclude that in such a case v = u and τ

and q coincide with the exact stress and pressure fields, respectively.

Remark 10. For the stationary Stokes problem we have the following estimate

‖ε(u − v)‖(ν) ≤ ‖τ + qI − νε(v)‖(ν−1) + CF‖Divτ + f‖ + (76)

+CT‖F − τ n‖∂2Ω.

Remark 11. A modification of the above a posteriori estimate is obtained if
set q = − 1

d
trτ . Then we obtain an estimate that does not contain q:

‖ε(u − v)‖(ν) ≤ ‖τD − µaeD − νεD(v)‖ + CF‖Divτ + f‖ + (77)

+CT‖F− τn‖∂2Ω.

Lower bound of the error can be derived by the arguments similar to those
used in 4.2. It has the form

‖ε(u − v)‖2
(ν) ≥ 2`(w) −

∫

Ω

(
|ε(w)|2 + 2(ε(v) + āe) : ε(w)

)
dx,

where w ∈
◦

J1(Ω).

6.3 Estimates for approximations in
◦
V1(Ω) + uφ

First, we obtain an upper bound for ‖ε(v̄ − ū)‖(ν) where v̄ ∈
◦

V 1(Ω) and
divv̄ may be not equal to zero. The assertion below is important for the
subsequent analysis.

Lemma 3. Assume that

v ∈
◦◦

V
1(Ω) := {v ∈

◦

V
1(Ω) | [ divv ]Ω = 0}.

Then, there exists v0 ∈
◦

J1(Ω) such that

‖∇(v − v0)‖ ≤ cΩ‖divv‖. (78)

Proof. For any a ∈ H1/2(∂Ω, Rd) satisfying the condition
∫

∂Ω

a · nds = 0 there

exists a solution wa of the Stokes problem

−∆wa + ∇p = 0 in Ω,

wa + a = 0 on ∂Ω,

divwa = 0 in Ω.
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Let a be the trace of v ∈
◦◦

V1(Ω) on ∂Ω. Then, wa + v = 0 on ∂Ω and by

Lemma 1 we know that there exists w0 ∈
◦

J1(Ω) such that

‖∇(wa + v) −∇w0‖ ≤ cΩ‖div(wa + v)‖ = cΩ‖divv‖.
This estimate means that

‖∇v −∇(w0 − wa)‖ ≤ cΩ‖divv‖,
where the function v0 = w0 − wa is solenoidal and v0 = 0 on ∂1Ω.

Theorem 8. For any v̂ ∈ V such that

v̂ = u0 on ∂1Ω and [ divv̂ − φ ]Ω = 0, (79)

q ∈ Q, and τ ∈ Σ the following estimate holds:

‖ε(u − v̂)‖(ν) ≤ ‖τ + qI − µ ae − νε(v̂)‖(ν−1) + (80)

+ ||| Lτ,` ||| + 2ν
1/2
⊕ cΩ‖divv̂ − φ‖.

If τ ∈ ΣDiv then

‖ε(u−v̂)‖(ν) ≤M
(2)
⊕ (v̂, τ, q) := ‖τ + qI− µae− νε(v̂)‖(ν−1) + (81)

+CF‖Divτ +f‖ + CT‖τn − F‖∂2Ω + 2ν
1/2
⊕ cΩ‖divv̂ − φ‖.

Proof. Let ŵ := (v̂ − uφ). This function belongs to
◦

V1(Ω). In view of (79)

[ divŵ ]Ω = [ divv̂ − φ ]Ω = 0,

so that ŵ ∈
◦◦

V1(Ω). By Lemma 3 there exists a function v0 ∈
◦

J1(Ω) such that

‖ε(ŵ − v0)‖(ν) ≤ cΩν
1/2
⊕ ‖divv̂ − φ‖. (82)

We have

‖ε(u − v̂)‖(ν) = ‖ε(u − ŵ − uφ)‖(ν) ≤ (83)

≤ ‖ε(u − v0 − uφ)‖(ν) + ‖ε(ŵ − v0)‖(ν).

Since div(v0 + uφ) = φ, we estimate the first norm by (72) and find that

‖ε(u − v̂)‖(ν) ≤ ‖τ + qI − µae − νε(v0 + uφ)‖(ν−1) +

+ ||| Lτ,` ||| + ‖ε(ŵ − v0)‖(ν) ≤ ‖τ + qI − µae − νε(v̂)‖(ν−1) +

+ ||| Lτ,` ||| + 2‖ε(ŵ − v0)‖(ν).

By (82) we obtain (80).
Estimate (81) follows from (75) and (80).

Estimates (80)and (81) have the same principal structure as (48) and
(49). The only difference consists in the new term CT‖τn−F‖∂2Ω that serves
as a penalty for possible violation of the Neumann boundary condition.

Remark 12. By the same arguments as was used in Remark 5 the pressure
can be excluded from the upper bound and we obtain

‖ε(u − v̂)‖(ν) ≤
√
‖τD − µaeD − νεD(v̂)‖2

(ν−1) +
1

d
‖divv̂ − φ‖2

(ν−1) + (84)

+CF‖Divτ + f‖ + CT‖τn − F‖∂2Ω + 2ν
1/2
⊕ cΩ‖divv̂ − φ‖.

26



6.4 Estimates for the pressure

Theorem 9. Let q ∈ Q be an approximation of the pressure field p. Then

1

2c†Ω
‖p − q‖ ≤ ‖νε(v̂) + µae − τ − qI‖(ν−1) + CF‖Divτ + f‖ +

+CT‖τn − F‖∂2Ω + ν
1/2
⊕ cΩ‖divv̂ − φ‖, (85)

where v̂ and τ are arbitrary functions in
◦◦

V1(Ω) and ΣDiv, respectively.

Proof. Since (p− q− [ p − q ]Ω) ∈
◦

L 2(Ω), we have a function w0 ∈ V (Ω) such
that w0 = 0 on ∂Ω,

divw0 = p − q − [ p − q ]Ω, and ‖ε(w0)‖ ≤ cΩ‖p − q − [ p − q ]Ω‖.

Let v† ∈
◦

V1(Ω) be a vector–valued function such that divv† = 1 in Ω. We note
that many functions with such a property exist. Indeed, the nonhomogeneous
Stokes problem

−∆v + ∇p̃ = 0 in Ω,

divv = 1 in Ω,

v = 0 on ∂1Ω,

v = a on ∂2Ω,

∫

∂2Ω

a · nds = |Ω|

has a solution (see, e.g., [46]). The latter can be taken as v†.

It is easy to observe that w
†
0 := w0 + [ p − q ]Ωv† ∈

◦

V1(Ω),
∫

Ω

divw
†
0(p − q)dx = ‖p − q‖2,

and

‖ε(w†
0)‖(ν) ≤ ‖ε(w0)‖(ν) + [ p − q ]Ω‖ε(v†)‖(ν) ≤ (86)

≤ cΩν
1/2
⊕ ‖p − q − [ p − q ]Ω‖ + [ p − q ]Ω‖ε(v†)‖(ν) ≤

≤ c†Ω‖p − q‖,
where c†Ω = cΩν

1/2
⊕ + |Ω|−1/2‖ε(v†)‖(ν). By the integral identity

∫

Ω

(
νε(u) : ε(w†

0) + µ ae : ε(w†
0)
)

dx = `(w†
0) +

∫

Ω

pdivw
†
0dx (87)

we find that

‖p − q‖2 =

∫

Ω

(
νε(u) : ε(w†

0) + µ ae : ε(w†
0) − qdivw

†
0

)
dx − `(w†

0) =

=

∫

Ω

νε(u − v̂) : ε(w†
0)dx +

+

∫

Ω

(
νε(v̂) : ε(w†

0) + µ ae : ε(w†
0) − qdivw

†
0

)
dx − `(w†

0).
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Note that
∫

Ω

νε(u − v̂) : ε(w†
0) dx ≤ c†Ω‖ε(u − v̂)‖(ν)‖p − q‖

and
∫

Ω

(
νε(v̂) : ε(w†

0) + µ ae : ε(w†
0) − qdivw

†
0

)
dx − `(w†

0) =

=

∫

Ω

(νε(v̂) + µae − τ − qI) : ε(w†
0)dx −

∫

Ω

(Divτ + f) · w†
0dx +

+

∫

∂2Ω

(τn − F ) · w†
0ds ≤

(
‖νε(v̂) + µae − τ − qI‖(ν−1) +

+CF‖Divτ + f‖ + CT‖F − τ n‖∂2Ω

)
‖ε(w†

0)‖(ν).

Therefore,

‖p − q‖ ≤ c†Ω

(
‖ε(u − v̂)‖(ν−1) + ‖νε(v̂) + µae − τ − qI‖(ν−1) +

+CF‖Divτ + f‖ + CT‖F − τ n‖∂2Ω

)
.

Now, we apply (81) and obtain the estimate

‖p − q‖ ≤ 2c†Ω

(
‖τ + qI− µae− νε(v̂)‖(ν−1) +

+CF‖Divτ +f‖ + CT‖τn − F‖∂2Ω + ν
1/2
⊕ cΩ‖divv̂ − φ‖

)
,

which is equivalent to (85).

Remark 13. The constant c†Ω contains a subsidiary function v† that must
satisfy the condition divv† = 1 and v† = 0 on ∂1Ω. Usually, such a function
is not difficult to construct. For example, for polygonal domains v† can be
constructed with the help of Raviart–Thomas elements of the lowest order.
It is desirable to have a function v† such that ‖ε(v†)‖ be as small as it is
possible.
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