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1 Introduction

We study the existence of solutions of

− divA(x,Du) = µ, (1.1)

where A is an operator with p(x)-type nonstandard structural conditions.
Our main result is that for positive, finite Radon measures µ, there exists
a p(x)-superharmonic function u which satisfies (1.1) in the sense of distri-
butions. Examples of the operators A considered here arise from variational
integrals like ∫

|∇u|p(x) dx; (1.2)

the Euler-Lagrange equation of (1.2) is the p(x)-Laplacian equation

div(p(x)|∇u|p(x)−2∇u) = 0, (1.3)

where
A(x, ξ) = p(x)|ξ|p(x)−2ξ.

There is an extensive literature on partial differential equations and calculus
of variations with various nonstandard growth conditions, see for example
[26, 27, 21, 2, 1, 3] and the references in the survey [23].

We study this problem for two reasons. First, some properties of p(x)-
superharmonic functions require an additional integrability assumption. We
would like to show the existence of p(x)-superharmonic functions for which
the integrability assumption can be verified. The need for an extra assump-
tions is due to the fact that Harnack estimates are intrinsic in the sense that
they depend on the solution itself.

Second, we would like to show the existence of solutions with nonremov-
able isolated singularities. There is a method due to Serrin [25] to construct
such solutions. Again because of the intrinsic nature of the Harnack esti-
mates, this method fails. Hence the second purpose of this work is to find
an alternative to Serrin’s method. This turns out to be quite simple, just
choosing the Dirac measure as µ in (1.1) suffices.

Our approach is an adaptation of that of Kilpeläinen and Malý [15]. First,
we obtain approximative solutions ui by approximating µ with more regular
measures. Then we prove uniform estimates for ui and use them to find a
limit u and to prove the fact that the left hand side of (1.1) makes sense as a
distribution. Finally we show that this u is indeed a solution of (1.1). This
approach is related to the works of Boccardo and Gallouët [4, 5]; see also
[6, 20].

The results we use as tools here do not hold without additional assump-
tions on the function p(·). Even the variable exponent Lebesgue and Sobolev
spaces have very few properties for general, for instance just measurable, ex-
ponents. There is a frequently used assumption, called logarithmic Hölder
continuity, that seems to be the right one for our purposes. See below for
more details.

3



2 Preliminaries

A measurable function p : R
n → (1,∞), n ≥ 2, is called a variable exponent.

We denote

p+
A = sup

x∈A
p(x), p−A = inf

x∈A
p(x), p+ = sup

x∈Rn

p(x), p− = inf
x∈Rn

p(x).

We will always assume that the exponent p(·) is logarithmically Hölder con-
tinuous, i.e. satisfies (2.1) below and that 1 < p− ≤ p+ < n.

The variable exponent Lebesgue space Lp(·)(Ω) consists of all measurable
functions u defined on Ω for which the p(·)-modular

%p(·)(u) =

∫

Ω

|u(x)|p(x) dx

is finite. The Luxemburg norm on this space is defined as

‖u‖p(·) = inf
{

λ > 0 :

∫

Ω

∣∣∣∣
u(x)

λ

∣∣∣∣
p(x)

dx ≤ 1
}

.

Equipped with this norm Lp(·)(Ω) is a Banach space. For basic results on
variable exponent spaces we refer to [17].

The dual of Lp(·)(Ω) is the space Lp′(·)(Ω) obtained by conjugating the
exponent pointwise, [17, Theorem 2.6]. It follows that Lp(·)(Ω) is reflexive.
Furthermore, a version of Hölder’s inequality,

∫

Ω

fg dx ≤ C‖f‖p(·)‖g‖p′(·),

holds for functions f ∈ Lp(·)(Ω) and g ∈ Lp′(·)(Ω).
The variable exponent Sobolev space W 1,p(·)(Ω) consists of functions u ∈

Lp(·)(Ω) whose distributional gradient ∇u exists almost everywhere and be-
longs to Lp(·)(Ω). The variable exponent Sobolev space W 1,p(·)(Ω) is a Banach
space with the norm

‖u‖1,p(·) = ‖u‖p(·) + ‖∇u‖p(·).

Smooth functions are not be dense in W 1,p(·)(Ω) without additional as-
sumptions on the exponent p(·). This was observed by Zhikov [26, 27] in the
context of the Lavrentiev phenomenon. Zhikov introduced the logarithmic
Hölder continuity condition,

|p(x) − p(y)| ≤
C

− log(|x − y|)
(2.1)

for all x, y ∈ Ω such that |x− y| ≤ 1/2, to characterise functionals for which
the Lavrentiev phenomenon does not occur. If the exponent satisfies (2.1),
smooth functions are dense in variable exponent Sobolev spaces and we can
define the Sobolev space with zero boundary values, denoted by W

1,p(·)
0 (Ω),
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as the completion of C∞
0 (Ω) with respect to the norm ‖ · ‖1,p(·). We refer to

[9] and [14] for the details of this definition.
Let Ω ⊂ R

n be an open bounded set. Since we assume the exponent p(·)
to be continuous, the p(·)-Poincaré inequality

‖u‖p(·) ≤ C‖∇u‖p(·)

holds for every u ∈ W
1,p(·)
0 (Ω), see [11, Theorem 4.1].

We use the following compactness properties of W 1,p(·)(Ω) in our existence
proof. The first property follows from the reflexivity of Lp(·)(Ω), the second
from the fact that W 1,p(·)(Ω) embeds compactly into Lκp(·)(Ω) for some κ > 1,
[17, Theorem 3.3], and the third from Mazur’s lemma.

Theorem 2.2. Assume that the sequence (uj) is bounded in W 1,p(·)(Ω). Then
we there is a function v ∈ W 1,p(·)(Ω) and a subsequence (ujk

) with the fol-
lowing properties.

1. ∇ujk
→ ∇v weakly in Lp(·)(Ω).

2. ujk
→ v pointwise almost everywhere and in Lp(·)(Ω).

3. If uj ∈ W
1,p(·)
0 (Ω), j = 1, 2, . . ., then v ∈ W

1,p(·)
0 (Ω).

We need the following assumptions to hold for the operator A : Ω×R
n →

R
n.

1. x 7→ A(x, ξ) is measurable for all ξ ∈ R
n,

2. ξ 7→ A(x, ξ) is continuous for all x ∈ Ω,

3. A(x, ξ) · ξ ≥ α|ξ|p(x) for all x ∈ Ω and ξ ∈ R
n,

4. |A(x, ξ)| ≤ β|ξ|p(x)−1 for all x ∈ Ω and ξ ∈ R
n,

5. (A(x, η) −A(x, ξ)) · (η − ξ) > 0 for all x ∈ Ω and η 6= ξ ∈ R
n.

These are called the structure conditions of A.
We say that a function u ∈ W

1,p(·)
loc (Ω) is a subsolution of the equation

− divA(x,∇u) = 0 (2.3)

if ∫

Ω

A(x,∇u) · ∇ϕ dx ≤ 0

for all nonnegative test functions ϕ ∈ C∞
0 (Ω). Further, u is a supersolution

if −u is a subsolution and a solution if u is both a super- and a subsolution.
Since smooth functions are dense in W 1,p(·)(Ω), we are allowed to employ test

functions ϕ ∈ W
1,p(·)
0 (Ω) by the usual approximation argument.

Logarithmic Hölder continuity plays an important role in the calculus
of variations and theory of partial differential equations with p(·)-growth.
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Indeed, higher integrability [27], Hölder regularity results [1, 7], and Harnack
estimates [2, 12, 10] use condition (2.1). Harnack estimates are used to prove
the properties of supersolutions and superharmonic functions we employ here.
Hence the log-Hölder assumption is crucial to us.

We say that a function u : Ω → (−∞,∞] is p(x)-superharmonic in Ω,
denoted u ∈ S(Ω), if

1. u is lower semicontinuous,

2. u is finite almost everywhere and

3. The comparison principle holds: Let D b Ω be an open set. If h is a
solution in D, continuous in D and u ≥ h on ∂D, then u ≥ h in D.

Further, we say that u is p(x)-hyperharmonic if u is either p(x)-superhar-
monic or identically ∞.

If u is a supersolution, then the lower semicontinuous regularization of u,
defined as ũ(x) = ess liminfy→x u(y), is a p(x)-superharmonic function and
equals u(x) for almost every x, see [10, Theorem 17] and [12, Theorem 4.1]. If
(uk) is an increasing sequence of p(x)-superharmonic functions, then the limit
function is p(x)-hyperharmonic. Another consequence of the definition is that
if u is p(x)-superharmonic, so is the function min(u, λ) for all λ ∈ R. Since
bounded p(x)-superharmonic functions are supersolutions, [10, Corollary 21],
we see that the functions min(u, λ) are supersolutions. We can use this
observation about truncations to prove that p(x)-superharmonicity is a local
property in the same way as in [13, Theorem 7.27].

For a p(x)-superharmonic function u we define a derivative Du pointwise
as

Du = lim
k→∞

∇min(u, k).

Note that Du is not necessarily the gradient of u in any sense.
We recall the following integrability lemma [15, Lemma 1.11]. The proof

can also be found in [13].

Lemma 2.4. Let Ω be bounded, 1 < p < ∞ and let u be a nonnegative
function which is finite almost everywhere. Suppose that for all k ∈ N

min(u, k) ∈ W 1,p
0 (Ω)

and ∫

Ω

|∇min(u, k)|p dx ≤ Mk

for a constant M independent of k. If 1 ≤ q ≤ n/(n − 1), then

∫

Ω

|∇min(u, k)|q(p−1) dx ≤ C,

where C = C(n, p, q,M, diam Ω).
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The previous lemma is used to prove the following result; see [10, The-
orem 26] and [19, Theorem 4.6]. The extra assumption mentioned in the
introduction is the requirement that u ∈ Lt

loc(Ω).

Theorem 2.5. Assume that u is p(x)-superharmonic in Ω. If u ∈ Lt
loc(Ω)

for some t > 0, there is a number q > 1 such that |u|q(p(x)−1) and |Du|q(p(x)−1)

are locally integrable.

3 Compactness of p(x)-superharmonic func-

tions

In this section we prove a weak compactness property of p(x)-superharmonic
functions, Theorem 3.4. It is our main tool for the next section.

Lemma 3.1. Assume that u is a nonnegative subsolution and η ∈ C∞
0 (Ω) is

such that 0 ≤ η ≤ 1. Then
∫

Ω

|∇u|p(x)ηp+

dx ≤ C

∫

Ω

up(x)|∇η|p(x) dx.

Proof. We use uηp+
as a test function and obtain

0 ≥

∫

Ω

A(x,∇u) · ∇uηp+

dx +

∫

Ω

A(x,∇u) · ∇ηηp+−1u dx.

From this we obtain that∫

Ω

A(x,∇u) · ∇uηp+

dx ≤

∫

Ω

|A(x,∇u)||∇η|ηp+−1u dx. (3.2)

Next we use structure, (3.2) and Young’s inequality and conclude that
∫

Ω

ηp+

|∇u|p(x) dx ≤C

∫

Ω

A(x,∇u) · ∇uηp+

dx

≤C

∫

Ω

|A(x,∇u)||∇η|ηp+−1u dx

≤C

∫

Ω

|∇u|p(x)−1|∇η|ηp+−1u dx

≤
1

2

∫

Ω

|∇u|p(x)η
p+

p′(x)
p′(x)

dx

+ C

∫

Ω

up(x)|∇η|p(x)η
(p+−1− p+

p′(x)
)p(x)

dx,

from which the claim follows.

It follows from the inequalities between the Luxemburg norm and the
modular [8, Theorem 1.3] that there is an exponent s > 0 such that

‖|u|p(·)−1‖p′(·) ≤ ‖u‖s
p(·). (3.3)

We preserve the letter s for this exponent. The exact value of s is not
important to us.
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Theorem 3.4. Let (uj) be a sequence of positive p(x)-superharmonic func-
tions. Then there exist a subsequence (ujk

) and a hyperharmonic function u
such that ujk

→ u almost everywhere in Ω and Dujk
→ Du almost everywhere

in the set {u < ∞}.

Proof. Assume first that uj ≤ M < ∞. Then the functions uj are superso-
lutions, [10, Corollary 21]. Let U b U ′

b Ω′
b Ω be open sets and choose

ϕ ∈ C∞
0 (Ω′) such that 0 ≤ ϕ ≤ 1 and ϕ = 1 in U ′. Since M − uj is a non-

negative subsolution, by the Caccioppoli estimate (Lemma 3.1) we obtain
∫

U ′

|∇uj|
p(x) dx ≤

∫

Ω′

|∇uj|
p(x)ϕp+

dx

=

∫

Ω′

|∇(M − uj)|
p(x)ϕp+

dx

≤

∫

Ω′

|uj − M |p(x)|∇ϕ|p(x)

≤CMp+

∫

Ω′

|∇ϕ|p(x) dx.

We combine this with the p(·)-Poincaré inequality and conclude that the

sequence (ϕuj) is bounded in W
1,p(·)
0 (Ω′). Thus by Theorem 2.2 there is a

function u ∈ W
1,p(·)
0 (Ω′) and a subsequence, still denoted by (uj), such that

uj → u in Lp(·)(U) and pointwise almost everywhere, and finally ∇uj → ∇u
weakly in Lp(·)(U).

Next we claim that u has a representative which is p(x)-superharmonic
in U . To prove this, set vi = inf i≤j uj and for a fixed i, wk = mini≤j≤k uj.
Then wk is a supersolution by [10, Theorem 2] and the sequence (wk) is de-
creasing and bounded below. By [10, Theorem 12] this implies that vi =
limk→∞ wk is a supersolution. Thus the function ṽi(x) = ess liminfy→x vi

is p(x)-superharmonic in U ′. Let ṽ = limi→∞ ṽi. Now ṽ is the desired
representative since it is p(x)-superharmonic as an increasing limit of p(x)-
superharmonic functions and

u(x) = lim
j→∞

uj(x) = lim
i→∞

vi(x) = ṽ(x)

for almost every x ∈ U .
The next step is to prove that we can assume ∇uj → ∇u almost every-

where in U by passing to a subsequence. To this end, fix a number ε > 0
and let

Ej ={x ∈ U : A(x,∇u) −A(x,∇uj) · (∇u −∇uj) ≥ ε},

E1
j ={x ∈ Ej : |u − uj| ≥ ε2}

and E2
j = Ej \E1

j . |E
1
j | → 0 as j → ∞ since uj → u in Lp(·)(U). To estimate

|E2
j |, we note that

|E2
j | ≤

1

ε

∫

E2
j

(A(x,∇u) −A(x,∇uj)) · (∇u −∇uj) dx,
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pick a function η ∈ C∞
0 (U ′) such that 0 ≤ η ≤ 1, η = 1 in U and set

vj = min((uj − u + ε2)+, 2ε2).

We use ηvj as a test function and obtain

0 ≤

∫

U ′

A(x,∇u) ·vj∇η dx+

∫

U ′∩{|u−uj |<ε2}

A(x,∇u) ·η(∇uj−∇u) dx. (3.5)

Since ∇uj → ∇u weakly, we conclude that

‖∇u‖p(·),U ′ ≤ lim inf
j→∞

‖∇uj‖p(·),U ′ ≤ C (3.6)

by the Caccioppoli estimate. We use (3.5), structure of A, the Hölder in-
equality, (3.3) and (3.6) and get that

∫

U ′∩{|u−uj |<ε2}

A(x,∇u) · η(∇u −∇uj) dx ≤

∫

U ′

A(x,∇u) · vj∇η dx

≤Cε2

∫

U ′

|∇u|p(x)−1|∇η| dx

≤Cε2‖∇u‖s
p(·),U ′‖∇η‖p(·),U ′

≤Cε2.

Replacing vj with ṽj = min((uj − u + ε2)+, 2ε2) allows us to reverse the roles
of uj and u in the above computation. Thus we conclude that

|E2
j | ≤

1

ε

∫

E2
j

(A(x,∇u) −A(x,∇uj)) · (∇u −∇uj) dx ≤ Cε.

It follows that
|Ej| = |E1

j | + |E2
j | ≤ (C + 1)ε (3.7)

for j ≥ jε.
Estimate (3.7) implies that ∇uj → ∇u in measure; this allows us to

pick the desired pointwise almost everywhere convergent subsequence. To
prove the convergence in measure, we assume the opposite and find positive
numbers δ and a such that

|{x ∈ U : |∇uj −∇u| ≥ δ| ≥ a > 0.

Pick any sequence (εk) such that εk → 0 as k → ∞. We note that

|{x ∈ U : (A(x,∇u) −A(x,∇uj)) · (∇u −∇uj) ≥ εk}|

≥ |{x ∈ U : (A(x,∇u) −A(x,∇uj)) · (∇u −∇uj) ≥ εk,

|∇uj −∇u| ≥ δ}|.

By measure theory, the structure of A and the counterassumption, the right
hand side tends to a limit L ≥ a as k → ∞. Thus there is a number ε0 > 0
such that

|{x ∈ U : (A(x,∇u) −A(x,∇uj)) · (∇u −∇uj) ≥ ε}| ≥ a/2 > 0
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whenever ε ≤ ε0, and this contradicts (3.7).
We have proved that if the original sequence (uj) is bounded and U b Ω

we can find a subsequence that converges to a function u which is p(x)-
superharmonic in U . To find a limit which is p(x)-superharmonic in Ω, choose
open sets Uk, k = 1, 2, . . ., such that Uk b Uk+1 and Ω = ∪kUk. Then we can
pick a subsequence (u1

j) and a limit function u1 which is p(x)-superharmonic

in U1. We proceed inductively and pick a subsequence (uk+1
j ) of (uk

j ) that

converges to a function uk+1 ∈ S(Uk+1). Then uk = uk+1 almost everywhere
in Uk, and by p(x)-superharmonicity this holds everywhere. Thus we can
define the desired limit function as u = uk in Uk. u is p(x)-superharmonic
in Ω since being p(x)-superharmonic is a local property. Finally, we note
that by construction for the diagonal sequence (uk

k) it holds that uk
k → u and

∇uk
k → ∇u almost everywhere in Ω.
As the final step we remove the boundedness assumption by another di-

agonalization argument. By the first part of the theorem, we can find a
subsequence (u1

j) and a p(x)-superharmonic function u1 such that

min(u1
j , 1) → u1 and ∇min(u1

j , 1) → ∇u1

almost everywhere in Ω. Again we proceed inductively and pick a subse-
quence (uk

j ) of (uk−1
j ) such that

min(uk
j , k) → uk and ∇min(uk

j , k) → ∇uk

almost everywhere in Ω. We observe that if l ≥ k and uk(x) < k, we
have ul(x) = uk(x). Thus the sequence (uk) is increasing, and we conclude
that the limit u = limk→∞ uk exists and defines the desired hyperharmonic
function in Ω. We note that by construction min(u, k) = uk, so that for the
diagonal sequence (uk

k) it holds that ∇uk
k → Du almost everywhere in the

set {u < ∞}.

4 Existence of p(x)-superharmonic solutions

In this section we prove our main existence result, Theorem 4.7. Throughout,
we use T to denote the map defined by

(Tu, ϕ) =

∫

Ω

A(x,Du) · ∇ϕ dx, (4.1)

where ϕ ∈ C∞
0 (Ω). By Theorem 2.5 and the structure of A, Tu defines a dis-

tribution for integrable p(x)-superharmonic functions u and Tu ∈ (W 1,p(·)(Ω))∗

if u ∈ W 1,p(·)(Ω).

Theorem 4.2. Let u be an integrable p(x)-superharmonic function. Then
there is a positive Radon measure µ such that

− divA(x,Du) = µ

in the sense of distributions.
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Proof. Since u is integrable, |Du|p(x)−1 ∈ L1
loc(Ω) by Theorem 2.5. Pick any

ϕ ∈ C∞
0 (Ω) and denote uk = min(u, k). Then

A(x,∇uk) · ∇ϕ → A(x,Du) · ∇ϕ

pointwise almost everywhere by the continuity of ξ 7→ A(x, ξ).
Using the structure of A, we have

|A(x,∇uk) · ∇ϕ| ≤ C|∇uk|
p(x)−1|∇ϕ| ≤ C|Du|p(x)−1|∇ϕ|.

Using the dominated convergence theorem and the fact that the functions uk

are supersolutions, we conclude that

(Tu, ϕ) =

∫

Ω

A(x,Du) · ∇ϕ dx

= lim
k→∞

∫

Ω

A(x,∇uk) · ∇ϕ dx ≥ 0.

The claim now follows from the Riesz representation theorem, see for example
[24, Theorem 2.14].

Lemma 4.3. Let u, v ∈ W
1,p(·)
0 (Ω) be supersolutions such that

Tu = µ ≤ ν = Tv.

Then u ≤ v almost everywhere in Ω.

Proof. Let η = min(v − u, 0). Since µ ≤ ν, we obtain that

0 ≥

∫

Ω

η dν −

∫

Ω

η dµ

=

∫

Ω

A(x,∇v) · ∇η dx −

∫

Ω

A(x,∇u) · ∇η dx

=

∫

{u>v}

(A(x,∇v) −A(x,∇u)) · (∇v −∇u) dx.

By the monotonicity of A, it follows that ∇v = ∇u almost everywhere in
{u > v}. Hence ∇η = 0 and it follows that η = 0 almost everywhere, which
means that v ≥ u almost everywhere.

To show the existence of solutions in the case µ ∈ (W 1,p(·)(Ω))∗, we use
the following theorem. See [18, Théorème 2.1, p. 171] for the proof.

Theorem 4.4. Let X be a reflexive, separable Banach space, and assume
that T : X → X∗ is

1. monotone, i.e. 〈Tu − Tv, u − v〉 ≥ 0 for all u, v ∈ X,

2. bounded, i.e. if E ⊂ X is bounded, so is T (E);
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3. demicountinuous, i.e. xj → x implies (Txj, y) → (Tx, y) for all y ∈ X
and

4. coercive, i.e. for a sequence (xj) ⊂ X such that ‖xj‖X → ∞ it holds
that

(Txj, xj)

‖xj‖X

→ ∞ as j → ∞.

Then T is surjective, i.e. the equation Tx = f has a solution x ∈ X for each
f ∈ X∗.

Theorem 4.5. Let Ω be a bounded domain and µ ∈ (W
1,p(·)
0 (Ω))∗ be a

positive Radon measure. Then there is a unique nonnegative supersolution
u ∈ W

1,p(·)
0 (Ω) such that

− divA(x,∇u) = µ

in the sense of distributions.

Proof. We prove the existence part by verifying the assumptions of Theorem
4.4 for the map T : W

1,p(·)
0 (Ω) → (W

1,p(·)
0 (Ω))∗ given by (4.1). First, the

monotonicity of T is an immediate consequence of the monotonicity assump-
tion on A.

Using the structure of A, the Hölder inequality and (3.3), we infer that

|(Tu, v)| ≤C

∫

Ω

|∇u|p(x)−1|∇v| dx

≤C‖|∇u|p(x)−1‖p′(·)‖∇v‖p(·)

≤C‖u‖s
1,p(·)‖v‖1,p(·).

This implies that ‖Tu‖
(W

1,p(·)
0 (Ω))∗

≤ C‖u‖1,p(·), so that T is bounded.

Let (uj) ⊂ W
1,p(·)
0 (Ω) be such that uj → u in W

1,p(·)
0 (Ω). We pass

to a subsequence and assume that uj → u and ∇uj → ∇u pointwise al-
most everywhere. By continuity of the map ξ 7→ A(x, ξ), it follows that
A(x,∇uj) → A(x,∇u) almost everywhere. Since

∫

Ω

|A(x,∇uj)|
p(x)/(p(x)−1) dx ≤ C

∫

Ω

|∇uj|
p(x) dx ≤ M < ∞

by the convergence of the sequence (uj), (A(x,∇uj)) is bounded in Lp′(·)(Ω).
Thus we may pass to a further subsequence and assume that A(x,∇uj) →
A(x,∇u) weakly in Lp′(·)(Ω).

This implies that the whole sequence converges weakly; indeed, assuming
the opposite, we find a weak neighbourhood U of A(x,∇u) and a subse-
quence such that (A(x,∇ujk

)) ⊂ Lp′(·)(Ω) \ U . We may assume pointwise
convergence by passing to a further subsequence, and this sub-subsequence
converges weakly in Lp′(·)(Ω) to A(x,∇u) by the earlier argument, which is
a contradiction. It follows that

(Tuj, v) =

∫

Ω

A(x,∇uj) · ∇v dx →

∫

Ω

A(x,∇u) · ∇v dx = (Tu, v).
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Let (uj) be a sequence such that ‖uj‖1,p(·) → ∞. We may assume that

‖uj‖1,p(·) ≥ 1, so that %p(·)(∇uj) ≥ ‖∇uj‖
p−

p(·), by [8, Theorem 1.2]. We use

the structure of A, and the p(·)-Poincaré inequality and obtain that

(Tuj, uj)

‖uj‖1,p(·)

≥ C

∫
Ω
|∇uj|

p(x) dx

‖uj‖1,p(·)

≥ C
‖∇uj‖

p−

p(·)

‖uj‖1,p(·)

≥ C‖uj‖
p−−1
1,p(·) → ∞

as j → ∞.
Finally, we note that the uniqueness and positivity claims follow from

Lemma 4.3.

We say that a sequence of measures (µj) converges weakly to a measure
µ if

lim
j→∞

∫

Ω

ϕ dµj =

∫

Ω

ϕ dµ

for all ϕ ∈ C∞
0 (Ω). Approximation using convolution is tricky in our setting,

since the spaces Lp(·)(Ω) are usually not translation invariant. We use the
following technique from Mikkonen’s thesis [22] to overcome this difficulty.

Lemma 4.6. Let Ω be a bounded open set and assume that µ is a finite Radon
measure on Ω. Then there is a sequence (µj) of finite Radon measures such

that µj ∈ (W
1,p(·)
0 (Ω))∗, µj → µ weakly and µj(Ω) ≤ µ(Ω).

Proof. Let Qi,j , i = 1, . . . , Nj, be the dyadic cubes with side length 2−j

contained in Ω. For E ⊂ Ω we define

µj(E) =

Nj∑

i=1

µ(Qi,j)

|Qi,j|
|E ∩ Qi,j|,

and the proof will be completed by showing that the sequence (µj) has the
desired properties.

First we observe that

µj(Ω) =

Nj∑

i=1

µ(Qi,j) ≤ µ(Ω),

since the cubes Qi,j do not completely cover the set Ω.
Given a function ϕ ∈ C∞

0 (Ω) we obtain

|

∫

Ω

ϕ dµj| =|

Nj∑

i=1

µ(Qi,j)

|Qi,j|

∫

Qi,j

ϕ dx|

≤
µ(Ω)

min |Qi,j|

∫

Ω

|ϕ| dx

≤C
µ(Ω)

|Ω|
‖ϕ‖p(·)‖1‖p′(·)

≤C‖ϕ‖1,p(·),
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so that µj ∈ (W
1,p(·)
0 (Ω))∗.

To establish the weak convergence, let ε > 0 and pick any function ϕ ∈
C∞

0 (Ω). For sufficiently large j, spt ϕ ⊂ ∪
Nj

i=1Qi,j and |ϕ(xi,j)−ϕ(x)| ≤ ε for
xi,j, x ∈ Qi,j. Now we have

∫

Ω

ϕ dµ −

∫

Ω

ϕ dµj =

Nj∑

i=1

(

∫

Qi,j

ϕ dµ −
µ(Qi,j)

|Qi,j|

∫

Qi,j

ϕ dx)

≤

Nj∑

i=1

[(ϕ(xi,j) + ε)µ(Qi,j)) − (ϕ(xi,j) − ε)µ(Qi,j)]

≤2µ(Ω)ε.

By a similar computation, we obtain that

|

∫

Ω

ϕ dµ −

∫

Ω

ϕ dµj| ≤ 2µ(Ω)ε,

and conclude that µj → µ weakly.

Theorem 4.7. Let Ω be bounded and µ a finite Radon measure. Then there is
an integrable p(x)-superharmonic function u such that min(u, k) ∈ W

1,p(·)
0 (Ω)

for all k > 0 and
− divA(x,Du) = µ

in the sense of distributions.

Proof. Let (µj) be the sequence of measures belonging to (W
1,p(·)
0 (Ω))∗ ob-

tained from Lemma 4.6 and denote by (uj) the sequence of supersolutions
satisfying

− divA(x,∇uj) = µj (4.8)

in the sense of distributions; such uj exist by Theorem 4.5.
By Theorem 3.4, there is a hyperharmonic function u such that we can

assume uj → u and ∇min(uj, k) → ∇min(u, k) almost everywhere by pass-
ing to a subsequence. As the first step, we prove that u is integrable. To this
end, using structure of A and (4.8), we infer that

∫

Ω

|∇min(uj, k)|p(x) dx ≤C

∫

Ω

A(x,∇uj) · ∇min(uj, k) dx

=C

∫

Ω

min(uj, k) dµj

≤Cµj(Ω)k ≤ Cµ(Ω)k. (4.9)

From (4.9) and the p−-Poincaré inequality, we obtain that
∫

Ω

|min(uj, k)|p
−

dx ≤C

∫

Ω

|∇min(uj, k)|p
−

dx

≤

∫

Ω

|1 + ∇min(uj, k)|p(x) dx

≤C|Ω| + Cµ(Ω)k ≤ C(|Ω| + µ(Ω))k. (4.10)
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Since uj → u almost everywhere, it follows from Fatou’s lemma and (4.10)
that ∫

Ω

|min(u, k)|p
−

dx ≤ Mk,

with the constant M independent of k. This estimate implies that u is finite
almost everywhere. Indeed, denoting E = {x ∈ Ω : u(x) = ∞}, we get

|E| =
1

kp−

∫

E

kp− dx ≤
1

kp−

∫

Ω

|min(u, k)|p
−

dx ≤ Mk1−p− → 0

as k → ∞. Estimate (4.9) and the p(·)-Poicaré inequality imply that (min(uj, k))

is bounded in W
1,p(·)
0 (Ω). It follows that min(u, k) ∈ W

1,p(·)
0 (Ω) since weak

limits must coincide with pointwise limits. We use (4.10), pointwise conver-
gence of the gradients and Fatou’s lemma and obtain the estimate

∫

Ω

|∇min(u, k)|p
−

dx ≤ Mk,

and the integrability of u follows, see Lemma 2.4 and Theorem 2.5.
By Theorem 4.2, there is a measure ν such that

− divA(x,Du) = ν (4.11)

in the sense of distributions. We will complete the proof by showing that
µ = ν. Since weak limits of measures are unique, this follows by proving that
µj → ν weakly. If q > 1 is an exponent allowed in Theorem 2.5, using the
structure of A we get that

∫

Ω

|A(x,∇uj)|
q dx ≤ C

∫

Ω

|∇uj|
q(p(x)−1) dx ≤ C.

Thus A(·,∇uj) → A(·, Du) weakly in Lq
loc(Ω). We use (4.8), the weak con-

vergence in Lq and (4.11) and conclude that

lim
j→∞

∫

Ω

ϕ dµj = lim
j→∞

∫

Ω

A(x,∇uj) · ∇ϕ dx

=

∫

Ω

A(x,Du) · ∇ϕ dx

=

∫

Ω

ϕ dν,

and the proof is complete.

5 Solutions with isolated singularities

In this section we show the existence of solutions with nonremovable isolated
singularities. We assume without loss of generality that the origin belongs
to Ω and use δ to denote the unit mass at the origin.
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Theorem 5.1. If u is a solution of

− divA(x,Du) = δ (5.2)

obtained from Theorem 4.7, then u is a solution of

− divA(x,∇u) = 0 (5.3)

in Ω \ {0}.

Proof. Let (µj) be the sequence approximating δ we obtain from Lemma 4.6.
From the proof the lemma we see that the support of µj is contained in a
ball Bj = B(0, c 2−j), where the constant c is independent of j. Thus the
corresponding supersolution uj is a solution of (5.3) in Ω\Bj. Note also that
the subsequence of Theorem 3.4 is increasing. Thus for each ball B b Ω\{0}
we can find an increasing sequence (uk) of solutions such that u = limk→∞ uk.
It follows from the integrability of u and Harnack’s principle [10, Theorem
16] that u is a solution in B, and hence also in Ω \ {0} since being a solution
is a local property.

The above proof can be easily modified to show that a solution of

− divA(x,Du) = µ

constructed by the present method is a solution of (5.3) in Ω \ spt(µ). How-
ever, solutions of equations involving measures are not necessarily unique
without some additional assumptions, even when the exponent is constant;
see [16] for an example. Hence our present tools are insufficient to obtain the
conclusion of Theorem 5.1 for an arbitrary solution of (5.2).

A solution of (5.2) cannot be a supersolution of (5.3). This follows from
the growth estimate

u(x) ≥ Cr
−(n−p−

BR
)/(p+

BR
−1)

(5.4)

where |x| = r < 2R [19, Corollary 4.15]. Indeed, denoting q = (n −
p−BR

)/(p+
BR

− 1) and using (5.4) we have

|∇u| ≥ |
∂u

∂r
| ≥ Crq−1.

A computation shows that |∇u| is not integrable to the power p−
BR

, if p−BR
/n <

1 − oscBR
p. The left hand side tends to a limit smaller than one while the

right hand tends to one as R → 0 since p(·) is continuous. Thus by choosing

a sufficiently small R we see that |∇u| does not belong to L
p(·)
loc (Ω).
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[11] P. Harjulehto, P. Hästö, M. Koskenoja, and S. Varonen. The Dirichlet
energy integral and variable exponent Sobolev spaces with zero boundary
values. Potential Anal. To appear.

[12] P. Harjulehto, J. Kinnunen, and T. Lukkari. Unbounded supersolu-
tions of nonlinear equations with nonstandard growth. Bound. Value
Probl., 2007:Article ID 48348, 20 pages, 2007. Available at http:

//www.hindawi.com/GetArticle.aspx?doi=10.1155/2007/48348.

[13] J. Heinonen, T. Kilpeläinen, and O. Martio. Nonlinear potential theory
of degenerate elliptic equations. Oxford University Press, 1993.
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