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1 Introduction

The purpose of this paper is to to introduce and a analyze a simple discon-
tinuous Galerkin (DG) finite element method. The method differs from the
(by now) standard DG method in that it is based on a mixed formulation in
which the flux variable is taken as an independent unknown, fully discontin-
uous between elements. This flux is an auxiliary unknown that is condensed
at each element at a negligible cost. The advantage of this approach is that
it yields a stable method for all positive values of the stability parameter.
We recall that for the standard DG the lower bound is given by a constant
in a discrete trace inequality, cf. e.g. [7, 8]. We have been led to this for-
mulation from our perious work on Galerkin-Least-Squares methods for the
Stokes problem [5], where a similar phenomena occur.

Our method is similar to the Bassi-Rebay method [2], which has been
analyzed in [4], but appears to be more straight forward both in analyzing
and implementation. The method and its a priori analysis is probably also
covered by the general theory developed in [1, 3], but by focusing on this
particular method we are able to perform a concise and transparent analysis,
both a priori and a posteriori.

The outline of the article is as follows: in the next section we introduce the
model problem and derive the variational form of the DG method. Sections 3
and 4 are devoted to the a priori and a posteriori error analysis, respectively.
Finally, in Section 5 we give numerical results.

2 The Model problem and the variational form

Our model problem is the mixed form of the Poisson equation, which we
intend to with a discontinuous Galerkin method. The continuity in the
variational formulation is imposed weakly using the Nitsche method. For
simplicity we restrict ourselves to two dimensoins.

Let Ω ⊂ R
2 be a bounded domain with a piecewise smooth boundary

∂Ω. With Th we denote the mesh, i.e. the partitioning of Ω into triangles.
With E∂Ω we denote the edges of the triangles that lie on the boundary ∂Ω
and with Eint we denote the internal edges of the mesh. We assume that the
boundary ∂Ω is split into two non-overlapping parts ΓD and ΓN . The edges
on the boundary are grouped into those on the Dirichlet and Neumann part,
respectively, i.e. E∂Ω = ED∪EN . In addition, we denote with hT the diameter
of the element T ∈ Th and with hE the diameter of E ∈ Eint ∪ E∂Ω. For the
mesh we assume that there exists C1, C2 > 0 such that

C1hE ≤ hT ≤ C2hE ∀E ⊂ ∂T, ∀T ∈ Th.

We solve the problem

−∆u = f

u = u0

∇u · n = g

in Ω,

on ΓD,

on ΓN ,

(1)
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in which the load f ∈ L2(Ω), u0 ∈ H1/2(ΓD) and g ∈ L2(ΓN). Instead of
solving the equations (1) directly, we pose the problem in an equivalent mixed
form

σ −∇u = 0

∇ · σ + f = 0

u = u0

σ · n = g

in Ω,

in Ω,

on ΓD,

on ΓN .

(2)

Next we derive a discrete form for the equations (2). We begin with the
definition of the finite element spaces:

Vh := {v ∈ L2(Ω) | v|T ∈ Pk(T ) ∀T ∈ Th },

Wh := {v ∈ [L2(Ω)]2 | v|T ∈ [Pk−1(T )]2 ∀T ∈ Th},
(3)

in which Pk(T ) denotes the polynomials of order k on T . Multiplying the
first equation in (2) with a test function τ ∈ Wh and integrating over the
domain Ω yields

(

σ, τ
)

Ω
−
(

∇u, τ
)

Ω
= 0. (4)

Multiplying the equation in the middle of (2) with a test function v ∈ Vh
and integrating by parts we get

(

− f, v
)

Ω
=
∑

T∈Th

(

∇ · σ, v
)

T
=
∑

T∈Th

{

−
(

σ,∇v
)

T
+
〈

σ · n, v
〉

∂T

}

=
∑

T∈Th

−
(

σ,∇v
)

T
+
∑

E∈Eint

〈

{σ · n}, [[v]]
〉

E

+
∑

E∈ED

〈

σ · n, v
〉

E
+
∑

E∈EN

〈

g, v
〉

E
,

(5)

in which we have employed the continuity of the normal component of the
flux and denoted

{σ · n} :=
1

2
(σ1 + σ2) · n1,

[[v]] := v1 − v2.

Above the subindexes denote the functions on triangles T1 and T2 sharing an
edge E and n1 denotes the outward pointing normal vector of T1. Neither the
Dirichlet boundary condition nor the continuity is imposed in the solution
spaces. Therefore, we have need to enforce them in the variational form.
Since the correct solution u is continuous and fulfils u|ΓD

= u0, it holds

∑

E∈Eint

−
γ

hE

〈

[[u]], [[v]]
〉

E
= 0 and (6)

∑

E∈ED

−
γ

hE

〈

u, v
〉

E
=

∑

E∈ED

−
γ

hE

〈

u0, v
〉

E
, (7)
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in which we have introduced the positive stability parameter γ > 0. Equa-
tion (6) enforces the continuity and equation (7) the Dirichlet boundary con-
dition. The model problem is symmetric, and thus it is logical to maintain
this also in the variational form. Once again due to the continuity and the
Dirichlet boundary conditions we have

∑

E∈Eint

〈

{τ · n}, [[u]]
〉

E
= 0 and (8)

∑

E∈ED

〈

τ · n, u
〉

E
=

∑

E∈ED

〈

τ · n, u0

〉

E
. (9)

Combining the equations (5)–(9) yields the variational form of the problem.
Method. Find (uh,σh) ∈ Vh ×Wh such that

a(u,σ; v, τ ) = L(v, τ ) ∀(v, τ ) ∈ Vh ×Wh, (10)

in which

a(u,σ; v, τ ) :=
∑

T∈Th

[(

σ, τ
)

T
−
(

∇u, τ
)

T
−
(

σ,∇v
)

T

]

+
∑

E∈Eint

[〈

{σ · n}, [[v]]
〉

E
+
〈

{τ · n}, [[u]]
〉

E

]

+
∑

E∈ED

[〈

σ · n, v
〉

E
+
〈

τ · n, u
〉

E

]

−
∑

E∈ED

γ

hE

〈

u, v
〉

E
−
∑

E∈Eint

γ

hE

〈

[[u]], [[v]]
〉

E

(11)

and

L(v, τ ) :=
(

− f, v
)

Ω
−
(

g, v
)

ΓN

+
∑

E∈ED

〈

τ ·n, u0

〉

E
−
∑

E∈ED

γ

hE

〈

u0, v
〉

E
. (12)

By the derivation of the variational form it is clear that the proposed method
is consistent, i.e. solution to the equations (2) is also the solution to the
variational equation (10).

The energy norm of the variational problem is

‖|v, τ |‖2 :=
∑

T∈Th

[

‖τ‖2
L2(T ) + ‖∇v‖2

L2(T )

]

+
∑

E∈Eint

1

hE
‖[[v]]‖2

L2(E) +
∑

E∈ED

1

hE
‖v‖2

L2(E).
(13)

Note that the energy norm is mesh dependent. In order to prove the method
to be continuous and elliptic in the energy norm we need the following esti-
mate (which is easily proved by scaling).

Lemma 2.1. These exists a positive constant CI such that

hE‖τ‖
2
L2(∂T ) ≤ CI‖τ‖

2
L2(T ) ∀τ ∈W and ∀T ∈ Th. (14)

With Lemma 2.1 it is straightforward to show that the proposed bilinear
form a(·, ·; ·, ·) and the linear functional L(·, ·) are continuous in the energy
norm ‖|·, ·|‖.
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3 The stability and the a priori error esti-

mates

In this section we show that the method is stable for all positive values of
the stability parameter γ.

Theorem 3.1. There exists a positive constant C such that

sup
(v,τ)∈Vh×Wh

a(u,σ; v, τ )

‖|v, τ |‖
≥ C‖|u,σ|‖ ∀(u,σ) ∈ Vh ×Wh. (15)

Proof. First, we note that

a(u,σ;−u,σ) =
∑

T∈Th

‖σ‖2
L2(T )+

∑

E∈Eint

γ

hE
‖[[u]]‖2

L2(E)+
∑

E∈ED

γ

hE
‖u‖2

L2(E). (16)

Next, we choose κ ∈ Wh such that κ = ∇u, which yields
(

κ,∇u
)

T
= ‖∇u‖2

L2(T ) and ‖κ‖L2(T ) ≤ ‖∇u‖L2(T ). (17)

Then by the Schwarz inequality we get

a(u,σ; 0,−κ) =
∑

T∈Th

[

−
(

σ,κ
)

T
+
(

∇u,κ
)

T

]

−
∑

E∈Eint

〈

{κ · n}, [[u]]
〉

E

−
∑

E∈ED

〈

κ · n, u
〉

E

≥
∑

T∈Th

[

‖∇u‖2
L2(T ) − ‖σ‖L2(T )‖κ‖L2(T )

]

−
∑

E∈Eint

1

2

[

h
1/2
E ‖κ1 · n1‖L2(E)h

−1/2
E ‖[[u]]‖L2(E)

+h
1/2
E ‖κ2 · n1‖L2(E)h

−1/2
E ‖[[u]]‖L2(E)

]

−
∑

E∈ED

h
1/2
E ‖κ · n‖L2(E)h

−1/2
E ‖[[u]]‖L2(E).

(18)

For δ > 0 Lemma 2.1, (17) and the Young’s inequality give

a(u,σ; 0,−κ) ≥
∑

T∈Th

‖∇u‖2
L2(T ) −

1

2δ
‖σ‖2

L2(Ω) −
δ

2

∑

T∈Th

‖∇u‖2
L2(T )

−
CIδ

2

∑

T∈Th

‖∇u‖2
L2(T ) −

1

2δ

∑

E∈Eint

1

hE
‖[[u]]‖2

L2(E)

−
CIδ

2

∑

T∈Th

‖∇u‖2
L2(T ) −

1

2δ

∑

E∈ED

1

hE
‖u‖2

L2(E)

=
(

1 − δ
(1

2
+ CI)

)

∑

T∈Th

‖∇u‖2
L2(T ) −−

1

2δ

∑

E∈Eint

1

hE
‖[[u]]‖2

L2(E)

−
1

2δ

∑

E∈ED

1

hE
‖u‖2

L2(E).

(19)
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Choosing δ < 2/(1 + 2CI) yields

a(u,σ; 0,−κ) ≥ −C1‖σ‖2
L2(Ω) + C2

∑

T∈Th

‖∇u‖2
L2(T )

− C3

∑

E∈Eint

1

hE
‖[[u]]‖2

L2(E) − C4

∑

E∈ED

1

hE
‖u‖2

L2(E),
(20)

with positive constants C1, C2, C3, and C4 independent of the stability pa-
rameter γ. Using the linearity and combining the equations (16) and (20) we
get

a(u,σ,−u,σ − ǫκ) ≥ (1 − ǫC1)‖σ‖2
L2(Ω) + ǫC2

∑

T∈Th

‖∇u‖2
L2(T )

+ (γ − ǫC3)
∑

E∈Eint

1

hE
‖[[u]]‖2

L2(E) + (γ − ǫC4)
∑

E∈ED

1

hE
‖u‖2

L2(E).
(21)

Choosing the parameter ǫ such that

ǫ > 0, ǫ <
1

C1

, ǫ <
γ

C3

and ǫ <
γ

C4

, (22)

the inequality (21) gives

a(u,σ,−u,σ − ǫκ) ≥ C5‖|u,σ|‖2, (23)

with a constant C5 > 0. By the definition of κ it is clear that

‖|−u,σ − ǫκ|‖ ≤ C6‖|u,σ|‖. (24)

Substituting the equations (23) and (24) into the left hand side of the equa-
tion (15) proves the claim.

From the stability and consistency we directly get the a priori estimate.
The lower bound s > 3/2 is needed in order that σ · n ∈ L2(E) for all
E ∈ Eint ∪ E∂Ω.

Theorem 3.2. For u ∈ Hs(Ω), with 3/2 < s ≤ k + 1 it holds

‖|u− uh,σ − σh|‖ ≤ Chs−1‖u‖Hs(Ω). (25)

From above see that the the difference of this method compared to the
standard discontinuous Galerkin method is that the lower bound (i.e. zero)
is readily available. Let us discuss the implementation of the method a lttle
further. The form of the discrete equations is the following

[

A B

BT C

] [

Σ

U

]

=

[

0

F

]

, (26)

where Σ and U are the degrees of freedom for σh and uh, respectively. Elim-
inating Σ, yields the system of equations for U:

(

C − BTA−1B
)

U = F. (27)
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Since the matrix A corresponds to the part
∑

T∈Th

(

σ, τ
)

T
in the bilinear

form it is inverted element by element (i.e. condensed) and the cost of this is
negligible. For triangular elements the situation is even simpler. An orthog-
onalization of the basis functions on the reference element gives orthogonal
functions on the real element and in this case A is diagonal. Further, it
should be noted that the stability of the method implies that the matrix in
(27) is positively definite. The conclusion is hence, that this method is imple-
mented very similarly to the standard discontinuous Galerkin method, but
with the advantage that the stability is ensured for all values of the stability
parameter.

4 The a posteriori error estimate

In this section we introduce and prove the following a posteriori error estimate
for the method.

Theorem 4.1. There exists a positive constant C such that

‖|u− uh,σ − σh|‖ ≤ C

(

∑

T∈Th

η2
T

)1/2

, (28)

in which

η2
T := h2

T‖∇ · σh + f‖2
L2(T ) + ‖σh −∇uh‖

2
L2(T )

+ hE ‖[[σh · n]]‖2
L2(∂T∩Eint)

+
1

hE
‖[[uh]]‖

2
L2(∂T∩Eint)

+ hE‖σ · n − g‖L2(∂T∩EN ) +
1

hE
‖uh − u0‖

2
L2(∂T∩ED).

(29)

In the proof of Theorem 4.1 we need the following Helmholtz decomposi-
tion, cf. [6].

Theorem 4.2. For every vector τ ∈ [L2(Ω)]2, with τ · n = g on ΓN , there
exists ψ ∈ H1(Ω), with ψ|ΓD

= 0, and q ∈ H1(Ω)/R, with curl q · n|ΓN
= 0,

such that

τ = ∇ψ + curl q and ‖τ‖2
L2(Ω) = ‖∇ψ‖2

L2(Ω) + ‖curl q‖2
L2(Ω) . (30)

The curl operator, used in the Theorem 4.2, is defined as

curl v :=

(

− ∂v
∂x2

∂v
∂x1

)

, (31)

when v ∈ H1(Ω) and Ω ⊂ R
2. We define the tangent to an edge E ∈ Eint∪E∂Ω

by

t :=

(

t1
t2

)

=

(

−n2

n1

)

, (32)
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in which n = (n1, n2) denotes the outer normal vector of the edge E. The
operator ∇× is defined by

∇×

(

v1

v2

)

:=
∂v2

∂x1

−
∂v1

∂x2

. (33)

Proof. (of Theorem 4.1) Since the exact solution is continuous and fulfils the
boundary conditions, we get

‖|u− uh,σ − σh|‖
2 = ‖σ − σh‖

2
L2(Ω) +

∑

T∈Th

‖∇u−∇uh‖
2
L2(T )

+
∑

E∈Eint

1

hE
‖[[uh]]‖

2
L2(E) +

∑

E∈ED

1

hE
‖u0 − uh‖

2
L2(E).

(34)

The two last terms of the equation (34) already belong to the indicator ηT ,
therefore we only need to estimate the first two terms. We begin with the
first term. The definition of the norm and Theorem 4.2 yield

‖σ − σh‖L2(Ω) = sup
τ∈[L2(Ω)]2

(

σ − σh, τ
)

Ω

‖τ‖L2(Ω)

≤ sup
ψ

(

σ − σh,∇ψ
)

Ω

‖∇ψ‖L2(Ω)

+ sup
q

(

σ − σh, curl q
)

Ω

‖∇q‖L2(Ω)

.

(35)

Next we turn our attention to the first term in equation (35). Since
ψ ∈ H1(Ω) and ψ|ΓD

= 0, there exists a continuous and piecewise linear
Clément interpolation Ihψ that vanishes on the boundary ΓD and fulfils
∑

T∈Th

h−1
T ‖ψ−Ihψ‖L2(T )+

∑

E∈Eint∪EN

h
−1/2
E ‖ψ−Ihψ‖L2(E) ≤ C‖∇ψ‖L2(Ω). (36)

From equation
a(0,σh; Ihψ, 0) = L(Ihψ, 0) (37)

we get, using integration by parts,
∑

T∈Th

(

σ − σh,∇Ihψ
)

T
= 0. (38)

The orthogonality above yields

(

σ − σh,∇ψ
)

Ω
=
∑

T∈Th

(

σ − σh,∇(ψ − Ihψ)
)

T

=
∑

T∈Th

[

−
(

∇ · (σ − σh), ψ − Ihψ
)

T
+
(

(σ − σh) · n, ψ − Ihψ
)

∂T

]

=
∑

T∈Th

(

∇ · σh + f, ψ − Ihψ
)

T
+
∑

E∈Eint

(

[[(σ − σh) · n]], ψ − Ihψ
)

E

+
∑

E∈EN

〈

g − σh · n, ψ − Ihψ
〉

E
.

(39)
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Applying the Schwarz inequality and (36) gives
(

σ − σh,∇ψ
)

Ω

≤
∑

T∈Th

hT ‖∇ · σh + f‖L2(T ) h
−1
T ‖ψ − Ihψ‖L2(T )

+
∑

E∈Eint

h
1/2
E ‖[[σh · n]]‖L2(E) h

−1/2
E ‖ψ − Ihψ‖L2(E)

+
∑

E∈EN

h
1/2
E ‖g − σh · n‖L2(E) h

−1/2
E ‖ψ − Ihψ‖L2(E)

≤ C

{

∑

T∈Th

h2
T ‖∇ · σh + f‖2

L2(T ) +
∑

E∈Eint

hE ‖[[σh · n]]‖2
L2(E)

+
∑

E∈EN

hE ‖g − σh · n‖2
L2(E)

}1/2

‖∇ψ‖L2(Ω).

(40)

Now, the first term in the equation (35) is bounded by the indicator ηT .
Next, we consider the second term. For the function q ∈ H1(Ω)/R we

construct a piecewise linear interpolate πhq in the following way. Since curl q·
n|ΓN

= 0, it follows that q|ΓN
is a constant. On ΓN we thus assign this

constant value to πhq. For all other vertices we use the Clément construction.
The following interpolation estimate holds.

∑

T∈Th
h−1
T ‖q − πhq‖L2(T ) +

∑

E∈Eint∪ED
h
−1/2
E ‖q − πhq‖L2(E)

+‖curl(q − πhq)‖L2(Ω) ≤ C‖curl q‖L2(Ω). (41)

From the definition of the variational form yields
∑

T∈Th

(

σ − σh, curl πhq
)

T
= a(0,σ − σh; 0, curl πhq) = 0, (42)

which leads to
(

σ − σh, curl q
)

Ω
=
∑

T∈Th

(

∇u− σh, curl(q − πhq)
)

T

=
∑

T∈Th

[(

∇u−∇uh, curl(q − πhq)
)

T
+
(

∇uh − σh, curl(q − πhq)
)

T

]

:= R1 +R2.

(43)

Integrating by parts and using the result ∇×∇v = 0 in T we get

R1 =
∑

T∈Th

[

−
(

∇×∇(u− uh), q − πhq
)

T
+
(

∇(u− uh) · t, q − πhq
)

∂T

]

=
∑

E∈Eint

〈

[[∇(u− uh) · t]], q − πhq
〉

E
+
∑

E∈E∂Ω

〈

∇(u− uh) · t, q − πhq
〉

E

=
∑

E∈Eint

〈

[[∇uh · t]], q − πhq
〉

E
+
∑

E∈E∂Ω

〈

∇(u− uh) · t, q − πhq
〉

E

:= S1 + S2.

(44)
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The Schwarz inequality for sums and the equation (36) lead to

S1 ≤

(

∑

E∈Eint

hE ‖[[∇uh · t]]‖
2
L2(E)

)1/2(
∑

E∈Eint

1

hE
‖q − πhq‖

2
L2(E)

)1/2

≤ C

(

∑

E∈Eint

1

hE
‖[[u− uh]]‖

2
L2(E)

)1/2

‖curl q‖L2(Ω).

(45)

Above, we have also used the estimate

‖[[∇u · t]]‖L2(E) ≤ C
1

hE
‖[[u]]‖L2(E). (46)

By the equation (45) the term S1 is bounded by the indicator ηT . Since
q − πq = 0 on ΓN , the estimate (41) gives

S2 ≤ C

(

∑

E∈ED

1

hE
‖uh − u0‖

2
L2(E)

)

‖curl q‖L2(Ω), (47)

since both q and πhq vanish on ΓN . Combining the equation (45) and (47)
shows that the term R1 is bounded by the indicator ηT . The Schwarz in-
equality for sums yields

R2 ≤ C

(

∑

T∈Th

‖∇uh − σh‖
2
L2(T )

)1/2(
∑

T∈Th

‖curl(q − πhq)‖
2
L2(T )

)1/2

≤ C

(

∑

T∈Th

‖∇uh − σh‖
2
L2(T )

)1/2

‖curl q‖2
L2(Ω).

(48)

Now, we have proved that

‖σ − σh‖
2
L2(Ω) ≤ C

∑

T∈Th

η2
T , (49)

and we still need to bound the second term in equation (34). The equa-
tion (49) and the definition of ηT lead to

∑

T∈Th

‖∇(u− uh)‖
2
L2(T ) =

∑

T∈Th

‖σ −∇uh‖
2
L2(T )

≤
∑

T∈Th

[

‖σ − σh‖
2
L2(T ) + ‖σh −∇uh‖

2
L2(T )

]

≤ C
∑

T∈Th

η2
T .

(50)

Combining the equations (34), (49), and (50) completes the proof.

Next we give the lower bound estimate. The claim follows from standard
techniques, see [9], and the proof is omitted here.

11



Theorem 4.3. There exist a positive constant C such that

η2
T ≤ C

(

|u− uh|
2
H1(ωT ) + ‖σ − σh‖

2
L2(ωT ) + h2

T‖f − fh‖
2
L2(ωT ) +

1

hT
‖u− uh‖

2
L2(∂T )

+hT‖g − gh‖
2
L2(∂T∩EN ) +

1

hT
‖u0 − u0,h‖

2
L2(∂T∩ED)

)

.

(51)

Above we denote with ωT the union of T and all the elements sharing an edge
with T . With fh, gh and u0,h we denote the projections of the given data to
the discrete space.

5 Numerical results

In this section we investigate the numerical performance of the Nitsche method.
We show that the Nitsche method has the optimal convergence rate with re-
spect to the mesh size h. After that we test the adaptive refinement based
on the a posteriori error estimate. In all the computations, if not otherwise
stated, the stability parameter is set to γ = 1. A choice which would produce
unstable Nitsche method for the non-mixed problem.

For simplicity we choose the unit square as the computational domain;
Ω = (0, 1) × (0, 1). To have a problem with typical corner singularities we
choose our exact solution to be, in polar coordinates,

u(r, θ) = rβ sin(βθ),

with the parameter β > 0. With β we can control the regularity of the
solution, namely

u ∈ Hβ+1−δ(Ω),

for all δ > 0. The chosen exact solution u is harmonic (f = 0) and we
compute the boundary conditions from it, i.e. we define

u0 = u(r, θ) and g =
∂u(r, θ)

∂n
on ∂Ω.

Our model problem is:

ΩΓD

ΓD

ΓN

ΓN
(0, 0) (1, 0)

(1, 1)(0, 1)

σ −∇u = 0

∇ · σ = 0

u = u0

σ · n = g

on ∂Ω

on ∂Ω

on ΓD

on ΓN

The convergence results are computed with parameter values β = 0.7, 1.3
and 2.3. With this choice the solution belongs to u ∈ H1.7−δ(Ω), H2.3−δ(Ω)
and H3.3−δ(Ω), respectively. Figure 1 shows the solutions for the chosen
values of β with both linear and parabolic elements on a mesh of size h = 0.25.

12



In Figure 2 we show the convergence of the error in the energy norm
‖|·, ·|‖ for both linear and parabolic elements, with different values of β and
using a uniform mesh refinement. Both methods perform as expected by the
analytical results. Note that the linear elements cannot take advantage of
the regularity beyond u ∈ H2(Ω). The numerical values of the slopes are
given in the legends of the figure.

Next we test the adaptive mesh refinement based on the a posteriori
error distribution. On each step we refine the elements that have larger error
than the average elementwise error. The elementwise errors and the average
elementwise error are given by the a posteriori error estimator. Figure 3 shows
the first three adaptive mesh refinement for linear elements with β = 0.7. The
first mesh has the size h = 0.25. We see that the error indicator notices the
singularity at the origin and refines there, but that the error at the origin is
still dominant after two refinements. In Figure 4 is the same computation
with parabolic elements. Again the error singularity at the origin dominates
the error.

Figure 5 shows the three adaptive refinement for linear elements and
β = 2.3. We see that the origin is not the dominant part here, instead the
error indicator notices the large changes at the boundaries and refines there.
In Figure 6 we show the mesh refinements for parabolic elements. Now the
origin is again the dominant part of the error since the parabolic elements are
able to capture the large but smooth changes at the boundaries with larger
elements. Notice also the scales of the error when comparing to Figure 5.

In Figures 3–6 we also have the estimated error and the exact error in the
energy norm. We see that both diminish at the same speed, as predicted by
the theory.
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Figure 1: Solutions to the model problem with different values of the param-
eter β. On the left are the solutions with linear elements and on the right
with parabolic elements. From top to bottom β has values 0.7, 1.3 and 2.3.
The mesh is of size h = 0.25.
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rates of Ch0.7, Ch, Ch1.3 and Ch2. The numerical values of the slopes are in
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Figure 3: The first three meshes in the adaptive refinement with linear ele-
ments and β = 0.7. On the left the mesh and on the right the distribution
of the a posteriori error. In the titles on the right we give the estimated and
the exact error in the energy norm. Here the non-regularity at the origin
dominates the error.
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Figure 4: The first three meshes in the adaptive refinement with parabolic
elements and β = 0.7. On the left the mesh and on the right the distribution
of the a posteriori error. In the titles on the right we give the estimated and
the exact error in the energy norm. Here the non-regularity at the origin
dominates the error.
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Figure 5: The first three meshes in the adaptive refinement with linear ele-
ments and β = 2.3. On the left the mesh and on the right the distribution of
the a posteriori error. In the titles on the right we give the estimated and the
exact error in the energy norm. Now, the large changes at the boundaries
dominate the error.
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Figure 6: The first three meshes in the adaptive refinement with parabolic
elements and β = 2.3. On the left the mesh and on the right the distribution
of the a posteriori error. In the titles on the right we give the estimated and
the exact error in the energy norm. Parabolic elements capture the large but
smooth changes at the boundaries and the singularity at the origin dominates
the error.
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