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Jarkko Niiranen: A priori and a posteriori error analysis of finite element meth-

ods for plate models; Helsinki University of Technology, Institute of Mathematics,
Research Reports A534 (2007); Article Dissertation (summary with separate ar-
ticles).

Abstract: The focus of this dissertation is in the theoretical and computa-

tional analysis of the discretization error indused by finite element methods

for plate problems. For the Reissner–Mindlin plate model, regularity results

with respect to the loading and a priori convergence estimates for the MITC

finite elements are presented. The convergence results are valid uniformly

with respect to the thickness parameter. In addition, we prove a local super-

convergence result for the deflection approximation of MITC elements, and

introduce a postprocessing method improving the accuracy of the approxima-

tion. The convergence results are confirmed by numerical computations. For

the Kirchhoff–Love plate model, a new family of C0-continuous, optimally

convergent finite elements is introduced. Furthermore, we derive a reliable

and efficient a posteriori error indicator and verify the results by benchmark

computations. Another a posteriori error analysis is performed for the Mor-

ley plate element.

AMS subject classifications: 65N30, 74S05, 74K20

Keywords: finite elements, a priori error analysis, a posteriori error analysis,
plate models, MITC-elements, adaptivity

Jarkko Niiranen: A priori- ja a posteriori -virheanalyysi laattamallien element-

timenetelmille; Teknillisen korkeakoulun matematiikan laitoksen tutkimusraport-
tisarja A534 (2007); Yhdistelmäväitöskirja (yhteenveto ja erillisartikkelit).

Tiivistelmä: Väitöskirjassa analysoidaan sekä teoreettisesti että laskennal-

lisesti laattamalleille kehiteltyjen elementtimenetelmien diskretointivirhettä.

Reissner–Mindlin-laattamallille esitetään kuormituksen suhteen lausuttuja

säännöllisyystuloksia ja MITC-laattaelementtien a priori -virhearvioita. Sup-

penemistulokset ovat voimassa laatan paksuusparametrin suhteen tasaisesti.

Lisäksi MITC-elementtien taipuma-approksimaatiolle todistetaan lokaali su-

perkonvergenssitulos ja esitetään approksimaation tarkkuutta parantava jälki-

käsittelymenetelmä. Suppenemistulokset vahvistetaan numeerisilla esimerkeil-

lä. Kirchhoff–Love-laattamallille esitetään uusi C0-jatkuva, optimaalisesti

suppeneva elementtiperhe. Näille elementeille johdetaan luotettava ja tehokas

a posteriori -virheindikaattori ja tulokset verifioidaan numeerisesti. Lisäksi

suoritetaan a posteriori -virheanalyysi Morleyn laattaelementille.

Asiasanat: elementtimenetelmä, a priori -virheanalyysi, a posteriori -virheanalyysi,

laattamallit, MITC-elementit, adaptiivisuus
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1 Introduction

The main targets in engineering design are safety and durability – although
the importance of cost and environmental aspects in design has significantly
grown during the last decade. Even if cars, bridges, aircraft and nuclear
power plants, for instance, have to fullfil the expectations of global markets,
they still have to meet certain carefylly prescribed minimum requirements in
resisting mechanical loadings. For this twofold challenge, a variety of efficient
instruments are provided by modern computer-aided design methods.

Computational methods of mathematical modeling can be seen as the
hard core of an engineering decision-making process. In the following, we
briefly describe such a process for which a schematic representation is shown
in Table 1, cf. [6][Ch. 1]. In the beginning of a process, the physical problem
and the design criteria are prescribed. Next, the problem is formulated as
a general mathematical model, an idealized – possibly strongly imperfect –
representation of reality. In general, problems described by complex mathe-
matical models can not be solved exactly, and thus computational methods
and approximate solutions become necessary. Depending on the availability
and cost of computational resources, the general mathematical model can
be simplified by utilizing engineering experience and intuition. Finally, the
problem based on the simplified mathematical model is solved approximately
by numerical methods and the solution obtained is then used for engineering
decisions: the geometry or the material of the model can be changed, the
simplified mathematical model can be refined etc. In principle, the whole
process from the first beginning to the final approval should be an adaptive
feedback process [6].

The key issue in each step of the process is error. In particular, in this
work, we mainly consider the discretization error, i.e., the difference between
the exact solution of the simplified mathematical model and its numerical
approximation. In addition, we slightly touch the gap between the general
and simplified mathematical models, the modeling error. In the following,
we do not discuss the gap between the general mathematical model and
the real physical problem, the idealization error, nor other possible error
components present in the process, i.e., errors in manufacturing stages or
errors in interpretating the results of the analysis, for example.

This dissertation consists of an overview and five publications, referred as
[A]–[E], which can be considered as a collection of building blocks for engi-
neering design in structural mechanics. These blocks comprise of theoretical
results and methods for computer implementation as well as numerical evalu-
ations benchmarking the methods proposed. In order to link the concepts of
design processes to the present work, we give the following identification: the
theory of three-dimensional elasticity is our mathematical model; our sim-
plified models are the Reissner–Mindlin and Kirchhoff–Love (or Kirchhoff–
Germain) plate models; the numerical methods in our case are finite element
methods; the discretization error we analyze by deriving a priori and a pos-
teriori error estimates for the finite element methods.
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Table 1: Error sources in engineering decision-making processes.

General level Error component
(Structural mechanics level)

Physical problem and Design criteria
(Structural design)
l ⇒ Idealization error
General mathematical model
(Three-dimensional elasticity)
l ⇒ Modeling error
Simplified mathematical model
(Elastic plate model)
l ⇒ Discretization error
Numerical method
(Plate finite element method)
�

�

Engineering decisions and Feedback
(Changes in the structure, model, element)
l
Review and Approval

In the next Section, we briefly discuss the framework of the classical plate
models of Reissner–Mindlin and Kirchhoff–Love in the sense of modeling
error. Then, in Section 3, we focus on the mathematical error analysis, the
a priori and a posteriori analysis for the finite element methods considered.
Finally, in Section 4, we summarize the main results of the publications.

2 On the accuracy of plate models

As described above, estimating the modeling error should be a part of a design
process, while the error depends on the level of idealization. In particular, a
structural model based on the theory of three-dimensional elasticity can be
simplified and remodeled by using dimensionally reduced structure models
of different levels: one-dimensional rods and beams, two-dimensional mem-
branes and plates [48, 22], or shallow shells and general shells [48, 22, 23]. All
these models are closely related to each other, in particular, the shell problem
decouples into the plate and membrane problems when the curvature of the
shell approaches zero [19][Ch. 4].

In the following two subsections, we shortly derive and discuss the di-
mensionally reduced plate models of Reissner–Mindlin and Kirchhoff–Love.
Our aim is to collect here the main principles and assumptions behind the
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models in order to describe the physical backround of the mathematical finite
element error analysis for plates.

2.1 Dimension reduction

For plate structures, the most commonly used models are the Reissner–
Mindlin and Kirchhoff–Love plates [22, 48, 30], the former being the lowest-
order member of a more general class, the hierarchical plate models [6, 1, 53,
51]. In the following, we briefly describe the physical setting of these two
plate models and define the physical quantities and material parameters of
the problems. We first shortly recall the path of the dimension reduction
from the three-dimensional continuum model to the two-dimensional plate
models – from the kinematical assumptions to the equilibrium equations and
boundary conditions in terms of the stress resultants. Finally, the constitu-
tive assumptions of linear elasticity give us the formulations applied in the
finite element error analysis.

A plate structure is assumed to occupy a three-dimensional set

P = Ω × (−
t

2
,
t

2
) , (2.1)

where Ω ⊂ R
2 denotes the midsurface of the plate and t � diam(Ω) denotes

the thickness of the plate.
The displacement field of the plate is denoted by u = (ux, uy, uz), with

the global Cartesian coordinates x, y, z and ui = ui(x, y, z), i = x, y, z. In
the Reissner–Mindlin plate theory, the following kinematical assumptions are
imposed:

(K1) The fibres normal to the midsurface remain straight during the defor-
mation.

(K2) The fibres normal to the midsurface do not stretch.

(K3) The points in the midsurface deform only in the z-direction.

Under these conditions, the Kantorovič’s method [48][Ch. 10] gives the dis-
placement field in the form

ux = −zβx(x, y) , uy = −zβy(x, y) , uz = w(x, y) , (2.2)

where w denotes the deflection of the midsurface, while βx and βy, respec-
tively, denote the rotations around the y and x axis, with orientations fol-
lowing the slope of the deflection. Regarding the kinematical assumptions, it
should be pointed out that additional terms giving the z2 and t2-dependence
for the displacement component uz will be discussed further below in Section
2.2.

The corresponding deformation is defined by the linear strain tensor

e(u) =
1

2

(

∇u + (∇u)T
)

, (2.3)
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where the tensor gradient ∇ is defined as usual, cf. the Appendix of [E]. In
the component form, we have

exx = −z
∂βx

∂x
, eyy = −z

∂βy

∂y
, ezz = 0 , (2.4)

exy = −
z

2
(
∂βx

∂y
+

∂βy

∂x
) , exz =

1

2
(
∂w

∂x
− βx) , eyz =

1

2
(
∂w

∂y
− βy) . (2.5)

In the Kirchhoff–Love plate theory, an additional kinematical assumption
is imposed:

(K4) The fibres normal to the midsurface remain normals during the defor-
mation.

This condition couples the deflection w and the rotation β = (βx, βy) as

∇w − β = 0 , (2.6)

and implies that the displacement field takes the form

ux = −z
∂w(x, y)

∂x
, uy = −z

∂w(x, y)

∂y
, uz = w(x, y) . (2.7)

In this case as well, the z2-dependence for the displacement component uz

will be discussed further below. The corresponding deformations may now
be written as

exx = −z
∂2w

∂x2
, eyy = −z

∂2w

∂y2
, ezz = 0 , (2.8)

exy = −z
∂2w

∂x∂y
, exz = 0 , eyz = 0 . (2.9)

Here we note that the transverse shear deformations exz and eyz vanish due
to the assumption (2.6).

Next, we define the stress resultants, i.e., respectively, the moments and
the shear forces:

M =

(

Mxx Mxy

Myx Myy

)

with Mij = −

∫ t/2

−t/2

z σij dz , i, j = x, y , (2.10)

Q =

(

Qx

Qy

)

with Qi =

∫ t/2

−t/2

σiz dz , i = x, y , (2.11)

where the stress tensor is assumed to be symmetric, σij = σji, i, j = x, y, z.
In order to apply the principle of virtual work, we define the linear strain

tensor

ε(β) =
1

2

(

∇β + (∇β)T
)

, (2.12)

which is usually referred as the curvature tensor. When comparing the def-
initions (2.3) and (2.12) we note that it holds eij = −zεij, i, j = x, y. With

12



the virtual deflection δw and the virtual rotation δβ, this relation gives the
energy balance in the form

∫

Ω

M : ε(δβ) dx dy +

∫

Ω

Q · (∇δw − δβ) dx dy =

∫

Ω

F δw dx dy , (2.13)

where we have assumed that no given boundary stress resultants are present
nor any nonzero boundary diplacements are prescribed. The load resultant
F includes the surface loads in the z-direction as well as a possible body force
resultant in the z-direction defined as

Fb =

∫ t/2

−t/2

Fz dz , (2.14)

where the body force density Fz = Fz(x, y, z) is usually assumed to be inde-
pendent of z, or at least even in z [57]. The effect of possible surface loadings
in the x and y-directions will be discussed below in Section 2.2.

Now, we see that the plate problems have been reduced into a two-
dimensional formalism such that the unknowns depend on (x, y) ∈ Ω only,
not on z explicitly. Furthermore, integration by parts gives for (2.13) the
following equilibrium equations in Ω. For the Reissner–Mindlin model, it
holds that

−div Q = F , (2.15)

div M + Q = 0 , (2.16)

where div stands for the tensor divergence defined in the Appendix of [E].
For the Kirchhoff–Love model, we simply get

div div M = F . (2.17)

In this case as well, in order to satisfy the force equilibrium (2.15), the shear
force is defined by the moment equilibrium equation (2.16).

Regarding the boundary conditions of the Reissner–Mindlin model, the
plate is considered to be hard clamped on the part ΓCH

of its boundary ∂Ω,
soft clamped on the part ΓCS

⊂ ∂Ω, hard simply supported on the part
ΓSH

⊂ ∂Ω, soft simply supported on ΓSS
⊂ ∂Ω and free on ΓF ⊂ ∂Ω. Then

the boundary conditions are of the form

w = 0 , β = 0 on ΓCH
,

w = 0 , β · n = 0 , s · Mn = 0 on ΓCS
,

w = 0 , β · s = 0 , n · Mn = 0 on ΓSH
,

w = 0 , n · Mn = 0 , s · Mn = 0 on ΓSS
,

n · Mn = 0 , s · Mn = 0 , Q · n = 0 on ΓF ,

(2.18)

where n and s, respectively, denote the unit outward normal and the unit
counterclockwise tangent to the boundary, respectively, while n·Mn denotes
the bending moment and the twisting moment is denoted by s · Mn.
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The Kirchhoff–Love model distinguishes neither between the hard and
soft clamped nor between the hard and soft simply supported boundaries:

w = 0 , ∇w · n = 0 on ΓC ,

w = 0 , n · Mn = 0 on ΓS ,

n · Mn = 0 , ∂
∂s

(s · Mn) + n · div M = 0 on ΓF ,

(s1 · Mn1)(c) = (s2 · Mn2)(c) ∀c ∈ V ,

(2.19)

where the indices 1 and 2 refer to the sides of the boundary angle at a corner
point c on the free boundary ΓF.

For linearly elastic plates, in addition to the kinematical assumptions
above, the following standard constitutive assumptions are possessed: the
material of the plate is assumed to be

(C1) linearly elastic, i.e., defined by the generalized Hooke’s law,

(C2) homogeneous, i.e., independent of the coordinates x, y, z,

(C3) isotropic, i.e., independent of the coordinate system.

Furthermore, it is assumed that

(C4) the transverse normal stress vanishes, i.e., σzz = 0.

We remark that the assumption (C4), which implies a plane stress state
for the Kirchhoff–Love model, contradicts with the condition εzz = 0 which
would rather imply the plane strain state. However, the asymptotical analysis
for the modeling error referred below in the next subsection justifies the last
assumption.

Under these assumptions, the constitutive equations are now of the fol-
lowing form:

σxx =
E

1 − ν2
(exx + νeyy) , (2.20)

σyy =
E

1 − ν2
(eyy + νexx) , (2.21)

σxy = 2Gexy , σxz = 2Gexz , σyz = 2Geyz , (2.22)

with the material constants, Young modulus E, the Poisson ratio ν and the
shear modulus

G =
E

2(1 + ν)
. (2.23)

With I denoting the identity tensor, the moment tensor is now of the form

M = D
(

(1 − ν)ε(β) + ν tr ε(β)I
)

with D =
Et3

12(1 − ν2)
. (2.24)
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For the Reissner–Mindlin model, we get the nonzero transverse shear stresses
and the shear force is defined as

Q = Gt(∇w − β) . (2.25)

For the Kirchhoff–Love model, the constitutive relations imply the formula-
tion of the well known biharmonic problem,

D∆2w = F . (2.26)

Finally, we note that for mathematical analysis, in order to get a non-
trivial solution to the Reissner–Mindlin problem in the limit t → 0, i.e., the
Kirchhoff–Love solution, the loading is scaled such that F = Ctrf with a
constant C, a proper exponent r and a loading f independent of t [22, 5, 57].
As usual, we adopt the scaling

f =
F

Gt3
, (2.27)

see [14][Th. 3.1] as well. The corresponding scaled moment and shear force,
respectively, are then defined as

m(β) =
M(β)

Gt3
and q(w, β) =

Q(w, β)

Gt3
. (2.28)

This notation will be applied in the papers [A]–[E] below when defining the
bilinear forms of the variational formulations for the plate problems.

2.2 Mathematical justification

It has been generally agreed that the Reissner–Mindlin theory is more ac-
curate than the Kirchhoff–Love theory, especially for moderately thin plates
[22, 5]. However, this claim is rarely argued with mathematical analysis. Here
we briefly consider this issue by refering to some recent studies [5, 57, 27] on
the modeling of plate structures. The results are mainly based on asymptotic
analysis: the accuracy of a plate model is measured in an asymptotic sense,
i.e., the model is justified if the solution converges to the solution of the
three-dimensional elasticity theory when the thickness of the plate converges
to zero.

The range of applicability of the plate models has been analyzed by
Arnold, Madureira and Zhang [5] for a clamped plate under a quite gen-
eral loading; in addition to a body force fz constant in the z-direction, there
exist possible surface tractions gi, i = x, y, z, on the upper and lower sur-
faces of the plate, in the x, y and z-directions, respectively. For these surface
tractions, the following assumptions are made:

gz(x, y,−
t

2
) = gz(x, y,

t

2
) = gz(x, y) , (2.29)

gi(x, y,−
t

2
) = −gi(x, y,

t

2
) = gi(x, y) , i = x, y . (2.30)
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In physical terms, these symmetry and antisymmetry conditions imply that
the plate is rather under bending type than streching type loadings.

Next, we only briefly recall the main results of the analysis in [5]. First,
the total loading, with proper regularity assumptions, classifies the problem
as follows: either the condition

div g +
1

t
gz + fz 6= 0 , (2.31)

holds or, in contrast,

div g +
1

t
gz + fz = 0 , (2.32)

where we have used the notation g = (gx, gy). The left-hand side in the
two conditions above follows from the loading functional in the right-hand
side of (2.13) written in its general form for the Kirchhoff–Love model, with
all the components of the surface load included, cf. [57] and the references
therein. We note that a plate under a transverse loading only, i.e., with
g = 0, gz + tfz 6= 0, as assumed in (2.13), clearly satisfies the condition
(2.31).

In order to proceed, we introduce the following notation: U ∗ with the
superscript ∗, with U ∗ = (u∗

x, u
∗
y) as an example, refers to the solution of the

three-dimensional problem of elasticity, whereas UM denotes the correspond-
ing solution of the plate model. Here M refers either to the Reissner–Mindlin
model or to the Kirchhoff–Love model. The former model corresponds to the
displacement field (2.2), with UM = (ux, uy) as an example, and the latter
one, respectively, follows the equation (2.7).

Now, if the condition (2.31) holds, the both models converge with identical
rates of convergence as follows:

||U∗ − UM ||

||U∗||
≤ Ctp , (2.33)

where the variable U , the corresponding norm || · || and the convergence rate
are listed in Table 2. The norm ‖u‖E(P) denotes the energy norm corre-
sponding to the energy equilibrium (2.13).

It is worth noting that for the Kirchhoff–Love model the z2-dependence
for the displacement component uz is needed for the last two rows in Table
2. For the Reissner–Mindlin model, additional z2- and t2-dependent terms
are required. In this situation, the Reissner–Mindlin model would represent
the hierarchic (1, 1, 2)-model rather than the (1, 1, 0)-model presented above
in (2.2). Here the first two hierarch indices 1 refer to the z-dependence of
the displacement components ux and uy, respectively, while the last index (2
or 0) refers to the z-dependence of uz.

If, in contrast, the condition (2.32) holds, the Reissner–Mindlin solution
converges in the relative energy norm with the order O(t1/2), whereas the
Kirchhoff–Love solution is simply zero. For a more detailed discussion, we
refer to [5] and the references therein.
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Table 2: Convergence rates for the relative errors of the form (2.33) for the
Reissner–Mindlin and Kirchhoff–Love plate models satisfying (2.31) [5].

Variable and Norm Convergence rate
‖U‖

‖(ux, uy)‖L2(P) O(t)

‖uz‖L2(P) O(t)

‖∇(ux, uy)‖L2(P) O(t1/2)

‖∂(ux,uy)
∂z

‖L2(P) O(t)

‖∇uz‖L2(P) O(t)

‖∂uz

∂z
‖L2(P) O(t1/2)

‖u‖E(P) O(t1/2)

Zhang [57] has accomplished a similar analysis for the case including stress
boundary conditions. First, the conditions (2.31) and (2.32) are augmented
with certain conditions in terms of given boundary stress resultants. Then
the problem is classified as a bending-dominated, shear-dominated or inter-
mediate case. The condition (2.31) corresponds to the bending-dominated
case, while the condition (2.32) corresponds to the shear-dominated case. It
has been remarked that the intermediate case is excluded if the boundary is
free from given boundary stress resultants.

Altogether, as noted above, a plate under a transverse loading only falls
into the bending-dominated category. This implies that the asymptotic be-
haviour of the Reissner–Mindlin model for transversal loadings is qualita-
tively identical with the asymptotic behaviour of the Kirchhoff–Love model.
However, for a clamped plate, Destuynder [27] provides for both models a
different constant C in (2.33) bounding the asymptotical convergence of the
relative error in a strain energy norm. Finally, we note that quantitative
differences between the plate models, with respect to boundary conditions
and the shear force distribution, for instance, have been analyzed in [6][Ch.
17] by Szabó and Babuška.
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3 Finite element error analysis for plates

In this section, we list and briefly describe some paths of the mathematical
error analysis for finite element methods of Reissner–Mindlin and Kirchhoff–
Love plates. Our aim is not to provide a complete, comprehensive or chrono-
logical literature review, we rather point out the main routes leading to our
contributions and consider the methods parallel to our approach.

3.1 A priori and a posteriori error analysis

The mathematical error analysis of finite element methods falls into two
main categories [2, 12, 14, 21, 6, 56]: A priori error estimates can be seen
mainly as qualitative measures, whereas a posteriori error estimates provide
both qualitative and quantitative information. Moreover, the a priori error
analysis is usually global in nature; the a posteriori error analysis, instead,
frequently gives both local and global information.

The main difference between these two branches is the data needed for
the error estimation. In a priori estimates, the error is measured in terms of
the loading given for the problem or in terms of the mathematical regularity
of the exact solution which is unknown, in general. Therefore, the analysis
mainly theoretically qualifies the method considered. In a posteriori error
estimates, only the approximate solution itself is needed for measuring the
error. Furthermore, the residual based a posteriori estimates considered in
this work, in particular, are composed of local error indicators which give
enough information to adaptively refine the finite element mesh and thus to
efficiently decrease the error. Altogether, the a posteriori error analysis serves
practical purposes, while the a priori error analysis is mainly oriented for
theoretical qualification. Together these approaches provide a broad view on
the reliability of the approximation method considered as well as a practical
tool box for powerful computations.

The mathematical regularity of the exact solution is the key issue both in
theoretical error analysis and in numerical computations. Namely, the error
of the approximation mainly concentrates in the same regions as the low
regularity. Particularly, singularities in the solution imply high peaks in the
error. In theory, this phenomenon is addressed by the a priori error analysis,
while, in practice, it can be handled by adaptive solution algorithms based
on a posteriori error indicators. A priori error analysis is able to predict that
in order to decrease the error the mesh size h should be diminished in those
parts of the domain in which the exact solution is irregular. In practice,
however, the behaviour of the solution is unknown. In an adaptive solution
algorithm, a posteriori error indicators utilize the approximate solution for
assigning and quantizing the distribution of the error, especially the error
peaks. In h-adaptivity treated in this work, remeshing is accomplished such
that mesh refinements are directed towards the error peaks. On the contrary,
in those areas in which the solution is regular and the error concentration
is low, the mesh can be coarsened. In a more general methodology, the hp-

18



adaptivity [6, 52], coarsening goes along with raising the polynomial order p,
whereas refining follows lowering the order of elements.

3.2 Error analysis for Reissner–Mindlin plates

For Reissner–Mindlin plates, the numerical locking is the main difficulty
in developing and analyzing the finite element methods. The locking phe-
nomenon can be seen as an inability of the numerical approximation to cap-
ture the asymptotical behaviour of the parameter dependent plate model. In
other words, the finite element spaces are not rich enough for an approximate
solution to satisfy the so called Kirchhoff constraint (2.6) which is satisfied by
the exact solution of the problem when the thickness parameter approaches
zero.

In the famous MITC family [7, 15], and in other reduced constraint el-
ements as well, instead of the exact fullfilment of (2.6) in the limit for the
approximative solution (wh, βh), a reduction operator Rh is introduced and
a modified limit condition is applied,

Rh(∇wh − βh) = 0 . (3.1)

Furthermore, in order to achieve the stability for the method, the MITC finite
element spaces for the rotation need to be augmented by bubble degrees of
freedom.

Mathematical error analysis for locking-free Reissner–Mindlin plate ele-
ments has been accomplished for several single elements and finite element
families. For MITC type elements, the a priori error analysis is usually based
on the stability theory of saddle point problems [13], and it was first carried
out for the limiting case t = 0 by Bathe, Brezzi and Fortin [7], and then, for
the general case, by Brezzi, Fortin and Stenberg [15] as well as Peisker and
Braess [49]. The error estimates obtained are valid for all variables uniformly
with respect to the thickness parameter t. Similar results for other elements
can be found in [4, 32], for instance. In the saddle point approach, the prob-
lem is written in mixed form with the shear force as a new unknown which
can be interpreted as a Lagrange multiplier associated to the modified Kirch-
hoff constraint. Then, by means of a Helmholtz decomposition, the mixed
formulation is shown to be equivalent to a system of two Poisson problems
and a Stokes-like system. Finally, a set of conditions is given involving the
reduction operator and the finite element spaces for the deflection, rotation
and the shear force. This route has been utilized for analyzing hp-methods
in [55, 3].

A different approach has been proposed by Pitkäranta and Suri [50]. In-
stead of resting on the stability theory of saddle point problems, they split
the error into the consistency error and the approximation error, both parts
including boundary layer terms. A set of conditions is given in this method
as well involving the reduction operator and the finite element spaces for the
deflection and the rotation. A drawback of this approach is that it does not
directly yield uniform estimates for the shear force. However, it provides
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optimal convergence for curved elements. Moreover, it explicitly takes into
account boundary layers – analysis of [50] has been accomplished for free
boundaries. This approach has been later used for shell problems in [35, 36].
In [A], we have analyzed MITC elements by mixing this approach with the
previous one and taking into account the boundary effects for clamped, con-
vex, polygonal plates. However, our analysis still rests on the Helmholtz
decomposition and the mixed theory of [49] and [15]. In [B], we have applied
the convergence results of [A] for the superconvergence and postprocessing
estimates in the clamped case.

Stabilized formulations form another class of elements in which the con-
ditions originating from Brezzi’s theory can be mainly avoided. A general
formulation and analysis for these methods have been proposed by Hughes
and Franca [37]. Stabilized versions of the well-known nonconforming Arnold-
Falk element [4] have been proposed by Durán and Ghioldi [31] and by Franca
and Stenberg [34]. Two families of stabilized plate elements have been in-
troduced later by Lyly and Stenberg: the first one with the unequal order
interpolated deflection and rotation together with standard finite elements
spaces [54, 43]; the second one with equal order interpolated variables com-
bined with a reduced bilinear form [43]. Our new family of C0-continuous
Kirchhoff elements in [C, D] originates from the former family of unequal
interpolation.

The first steps in a posteriori error analysis for Reissner–Mindlin plate
elements have been taken by Liberman [38], Carstensen and Weinberg [18,
16] and recently by Carstensen and Schöberl [17] as well as Lovadina and
Stenberg [39].

3.3 Error analysis for Kirchhoff–Love plates

For designing finite element methods for Kirchhoff–Love plates, the funda-
mental difficulty originates from the corresponding variational formulation:
the natural variational space for the biharmonic problem is the second-order
Sobolev space H2. Thus, a conforming finite element approximation of the
Kirchhoff problem requires globally C1-continuous elements which imply a
high polynomial order. However, the error analysis for these methods follows
the classical finite element theory [21].

In order to avoid using high-order polynomial spaces – for example the
fifth order polynomials of the well known Argyris triangle [21, 12] – there
exists a variety of non-standard finite elements as the Hsieh–Clough–Tocher
triangle, [8, 21] Discrete Kirchhoff Triangle [8, 9] and the Morley triangle
[45, 21, 44] which does not even satisfy the conditions of C0-continuity.

One modern approach of using C0-continuous approximations is based
on continuous–discontinuous Galerkin methods and stabilization techniques
[33]. Another natural alternative is to write the Kirchhoff–Love problem
as a limit of the Reissner–Mindlin problem written in mixed form. In the
presence of free boundary conditions, however, this leads to a method which
is not consistent, which deteriorates the convergence rate of the method.
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Destuynder and Nevers [29, 28] have obtained a remedy to the boundary
inconsistency by adding a term penalizing the Kirchhoff condition along the
free boundaries, cf. [10, 11] as well. In [C, D], we use a similar approach and
present a stabilized family of C0-continuous elements which does not suffer
from the boundary inconsistency.

The variety of a posteriori error analysis for Kirchhoff–Love plate ele-
ments is still quite limited. Charbonneau, Dossou and Pierre [20] have an-
alyzed the Ciarlet–Raviart formulation for clamped boundaries while Neit-
taanmäki and Repin [46] have considered problems related to the biharmonic
operator by deriving functional a posteriori error estimates [47] for any con-
forming approximations with clamped boundaries. In addition to these two
papers, there seems to occur no other contributions than our analysis in [E]
for the Morley element in the clamped case and the one in [C, D] for our
C0-continuous family with clamped, simply supported or free boundaries.

4 Conclusions

We have now briefly described the framework of the work from both the
physical and mathematical point of views. The focus of this dissertation is in
the theoretical and computational analysis of the discretization error indused
by finite element methods for plate problems. In addition, the mathematical
regularity of the exact solution, which is the key issue in the analysis, has a
role in the work as well. Furthermore, the comparison of the plate models
has naturally raised some questions on the modeling error, and this issue we
have lightened above as well.

Finally, the main results of the publications we summarize as follows: In
[A], the interior and boundary regularity of a hard clamped Reissner–Mindlin
plate with a convex, polygonal domain is analyzed in Theorem 2.1. The reg-
ularity of the solution is given with respect to the loading. This regularity
result is utilized in Theorem 3.1. and Remark 3.1 in which a priori conver-
gence estimates for the MITC finite elements are presented. The results are
valid uniformly with respect to the thickness parameter.

In [B], a local superconvergence result in the H1-(semi)norm for the de-
flection approximation of the MITC finite elements is proved in Theorem 4.1.
This result gives an indication that the vertex values obtained by the MITC
methods are superconvergent, which is confirmed by the numerical computa-
tions of Section 6.2. By utilizing the superconvergence property, Postprocess-
ing scheme 5.1 improves the accuracy of the deflection approximation. This
is proved in Theorem 5.1 for the local H1-seminorm, and in Theorem 5.2 for
a hard clamped, convex, polygonal plate in the H1-norm. These convergence
estimates are verified by numerical computations in Section 6 for plates with
hard clamped, hard simply supported and free boundaries discretized with
uniform and non-uniform meshes.

In [C], a family of C0-continuous finite elements for the Kirchhoff–Love
plate model is introduced as Method 3.1. The consistency and stability of the
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method are proved, respectively, in Theorems 3.2 and 4.3. The corresponding
a priori convergence results are given in Theorem 4.4 and Lemma 4.6. The
convergence is optimal with respect to both the polynomial degree and the
regularity of the solution. Furthermore, a local a posteriori error indicator is
introduced, and in Theorems 5.4 and 5.6, respectively, it is shown to be both
reliable and efficient. A special feature of this family is that it adopts the
same approach as typically used for Reissner–Mindlin plates: the variables
are the scalar deflection and the rotation vector. On the one hand, compared
to a typical Kirchhoff element, the number of degrees of freedom increases
due to the additional rotation components. On the other hand, however, the
presence of rotation gives an option for naturally mixing these elements with
other elements having the rotation degrees of freedom.

In [D], the computational part of the analysis for the family of [C] is ac-
complished. First, a constructive motivation of the method is presented in
Section 3. Second, in Section 6, some computational aspects of the method
are discussed and results from a wide range of benchmark computations are
presented. The a priori error estimate of the method, particularly for a free
boundary case, is verified by the numerical results of Section 6.2. The a pos-
teriori error estimates are confirmed in Section 6.3 with tests including both
convex and non-convex domains – the latter implying corner singularities of
different orders.

In [E], an a posteriori error analysis is performed for the Morley plate
element, a classical nonconforming finite element for the Kirchhoff–Love plate
problem. A local a posteriori error indicator is first introduced and then, in
Theorems 1 and 2, respectively, it is shown to be both reliable and efficient.
In particular, the reliability proof relies on the Helmholtz decomposition of
Lemma 1.
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[36] V. Havu and J. Pitkäranta. Analysis of a bilinear finite element for
shallow shells. II. Consistency error. Math. Comp., 72:1635–1653, 2003.

[37] T. J. R. Hughes and L. P. Franca. A mixed finite element formulation for
Reissner–Mindlin plate theory: Uniform convergence of all higher-order
spaces. Comp. Meths. Appl. Mech. Engrg., 67:223–240, 1988.

[38] E. Liberman. A posteriori error estimator for a mixed finite element
method for Reissner–Mindlin plate. Math. Comp., 70:1383–1396, 2001.

[39] C. Lovadina and R. Stenberg. A posteriori error analysis of the linked in-
terpolation technique for plate bending problems. SIAM J. Num. Anal.,
43:2227–2249, 2005.

[40] M. Lyly, J. Niiranen, and R. Stenberg. Computational results for
the superconvergence and postprocessing of MITC plate elements. In
J. Paavola and J. Freund, editors, Journal of Structural Mechanics, 38,

Special Issue for the Proceedings of the 18th Nordic Seminar on Com-

putational Mechanics, pages 75–78, 2005.

[41] M. Lyly, J. Niiranen, and R. Stenberg. A postprocessing method for the
MITC plate elements. In A. Bermudez de Castro, D. Gomez, P. Quintela,
and P. Salgado, editors, Numerical Mathematics and Advanced Applica-

tions, Proceedings of ENUMATH 2005, the 6th European Conference on

Numerical Mathematics and Advanced Applications, pages 1051–1058.
Springer-Verlag, Berlin, Heidelberg, 2006.

[42] M. Lyly, J. Niiranen, and R. Stenberg. Some new results on MITC plate
elements. In Proceedings of ECCM 2006, III European Conference on

Computational Solid and Structural Mechanics, 2006.

25



[43] M. Lyly and R. Stenberg. Stabilized finite element meth-
ods for Reissner–Mindlin plates. Forschungsbericht 4, Univer-
sität Innsbruck, Institut für Mathematik und Geometrie, Juli 1999.
http://www.math.tkk.fi/∼rstenber.

[44] W. Ming and J. Xu. The Morley element for fourth order elliptic equa-
tions in any dimensions. Numer. Math., 103:155–169, 2006.

[45] L. S. D. Morley. The triangular equilibrium element in the solution of
plate bending problems. Aero. Quart., 19:149–169, 1968.
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Errata

The following misprints and errors have been noticed in the publications.

Paper A

Page 972, equation (3.1): w|K should be v|K.
Page 975, equation (3.36): Πh should be Πh, as defined in the right hand
side of the equation (3.18).

Paper C

Page 4, equation (3.1): w should be v and w|K should be v|K .

Paper D

Page 14, in the beginning of the second paragraph: For the error analysis

should be replaced by For the proof of the upper bound.
Page 14, before Theorem 5.2: reliability result should be efficiency result.
Page 24: Figure 3 should be replaced by Figure 1 below. This replacement
does not imply any qualitative revision to the corresponding comments on
the effectivity index on page 19.
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Figure 1: Effectivity index for the adaptive refinements: Clamped (squares),
simply supported (circles), simply supported and free (triangles) boundaries.
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