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1 Introduction

1.1 Geometric fractional Brownian motion

In the classical Black-Scholes pricing model the stock price S is modelled by a
geometric Brownian motion: St = eWt−

1
2
t; here W is the standard Brownian

motion. This model implies that the one dimensional distributions of the
stock prices are log-normal, and the log-returns of the stocks are independent
normal random variables. But empirical studies show that log-returns often
have so-called long-range dependency property (see [18, Chapter IV]). One
way to model this observed long-range dependency is to replace the driving
standard Brownian motion by fractional Brownian motion. Then one obtains
fractional Black-Scholes model, or geometric fractional Brownian motion,
given by the price process St = eBH

t ; here BH is a fractional Brownian motion.
Fractional Brownian motion (fBm) BH is a continuous centered Gaussian
process. Here H ∈ (0, 1) is the self-similarity index and the covariance of the
process BH is given by

E
(

BH
s BH

t

)

=
1

2

(

t2H + s2H − |t − s|2H
)

.

A Lévy type of characterization theorem for fBm was recently proved in
[15]. The paratemeter H allows to include the standard Brownian motion

W to the fBm family: the process B
1
2 is a standard Brownian motion. The

standard Brownian motion is a martingale, but it is well-known that when
the parameter H 6= 1

2
, then fBm process BH is not a semi-martingale.

The parameter H allows us to model dependency in the data, since for H ∈
(1

2
, 1) the increments of the process BH are positively correlated. However,

the fact that the process BH is not a semimartingale, makes it difficult to use
fBm as the source of randomness in Stochastic Finance at least theoretically:
the reason is the fact that in the pricing models based on geometric fBm one
can also give explicit arbitrage strategies, see [18, p. 659]
However, the possibility to model dependency in the data is an attractive
feature of the fBm process BH , also for the market models in Stochastic
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Finance. In spite of the theoretical difficulties related to the arbitrage, there
have been several proposals to use it as a model in stochastic finance. One
of them is based on the fact that the arbitrage possibilities depend how one
defines continuous trading, i.e. stochastic integrals. One can show that the
arbitrage possibilities in the fractional Black-Scholes model disappear, if one
uses Skorohod integrals to model trading strategies (Hu and Øksendal [9],
Elliot and van der Hoek [5]). But a new problem appears: the continuous
trading based on Skorohod integrals is difficult to interpret economically (see
Sottinen and Valkeila [20], Björk and Hult [2] for more information on this
point). On the other hand, if one goes to more realistic market models,
and for example includes transaction costs in the market models, then the
ideal continuous time trading strategies turn out to be of bounded variation.
In this case one can show that geometric fBm models can be economically
meaningful (Guasoni [7], Guasoni et.al [8]). It is also well known, that in the
case where one cannot use continuous time trading, the pricing models with
geometric fBm are to some extent arbitrage free.

1.2 Motivation

The purpose of this note is to study the approximation of geometric fBm
SH

t = eBH
t . The approximation is understood in the sense of weak con-

vergence, more precisely the distributions of the approximating prelimit se-
quence converge weakly to the distribution of the geometric fBm in the Sko-
rohod space D.

This note has two different motivations. First comes from the fact that there
are at least two ’financially’ motivated approximations to geometric fBm.
The approximation given by Sottinen [19] is based on complicated ’fractional’
binomial tree, and as a binary tree this approximation is complete. Surpris-
ingly, this approximation is not arbitrage-free, if the step size in the fractional
binomial tree is big enough. Hence there are arbitrage opportunities already
in the pre-limit model. Klüppelberg and Kühn [13] proposed an alternative
approximation, based on Poisson shot noise processes, to geometric fBm.
Their approximation is arbitrage free, but not complete. So one can ask, if
there is an approximation to geometric fBm, where the pre-limit sequence is
arbitrage-free and complete? In this note we show how to construct such an
approximation. As mentioned, the limit has arbitrage opportunities, and our
approximation might give some new insight on the arbitrage in the limit.

The second motivation comes from our recent work with Bender and Sottinen
[1]. In this work we consider a class of models, where the randomness of the
risky asset comes from mixed Brownian - fractional Brownian motion. Take
this process to be ǫW + BH , where W is a standard Brownian motion, BH

is a fBm with index H ∈ (1
2
, 1), and independent of W . If we take the model

of the risky asset Sǫ to be

Sǫ
t = exp{ǫWt + BH

t − 1

2
ǫ2t},
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then there is a unique hedging price for the standard European type of op-
tions, provided that one uses so-called allowed (in the terminology [1]) strate-
gies only. But in this model one can let ǫ → 0, and ask weather the limiting
prices make sense? It turns out that we have to following price with an Eu-
ropean call with strike K: (S0 − K)+. We get the same limiting price from
our approximation, and we give two different explanations for this. One is
based on the path-wise approach given in Dzhaparidze [4], and the other one
is based on computing the limit price using the martingale measure of the
approximating sequence.

1.3 The structure of the note

First we introduce the ’teletraffic’ approximation from [6], discuss its prop-
erties from the point of view semimartingale weak limit theorems (see [11]),
and prove that the corresponding geometric processes also converge weakly.
We then argue that the prelimit sequence defines a sequence of pricing mod-
els, which are complete and have the no-arbitrage property. We conclude
with a discussion.

2 Approximation of fBm

2.1 Construction of the approximation

We will not prove any new approximation to fBm. Instead, we will the use
the ’teletraffic’ approximation to fBm, interpret this weak limit theorem as a
semimartingale limit theorem of a special kind: the approximating sequence
is based on semimartingales, but the limit is not a semimartingale.
We start with an approximation given by Gaigalas and Kaj [6]. This goes as
follows: let G be a continuous distribution function of interarrival times for
a renewal counting process N . Let µ = Eη2. Assume that this distribution
has heavy tails:

1 − G(t) ∼ t−(1+β) (1)

as t → ∞ with β ∈ (0, 1). If ηi are the interarrival times we assume that ηi

have the distribution function G for i ≥ 2; for the first interarrival time η1

we assume that it has the distribution

G0(t) =
1

µ

∫ t

0

(1 − Gs)ds, (2)

so that the renewal counting process

Nt =
∞
∑

k=1

1{τk≤t}

is stationary, where τ1 = η1 and τk := η1 + · · · + ηk. Take now independent
copies N (i) of N , numbers am > 0, am → ∞ such that

m

a
β
m

→ ∞; (3)
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in the terminology of Gaigalas and Kaj [6] this is the case of fast connection
rate. Define the workload process Wm

t by

Wm
t =

m
∑

k=1

N
(k)
t .

Note that the process Wm
t is again a counting process, since the interarrival

distribution is continuous and the components N (k) are independent, and
these facts imply that there are no simultaneous jumps of the components
N (k). We have that EWm

t = mt
µ

, since Wm
t is a stationary process. For the

following proposition see Gaigalas and Kaj [6]:

Proposition 2.1 Assume (1) and (3). Let

Y m(t) := µ
3
2

√

β(1 − β)(2 − β)

2

Wm
amt − mµ−1amt

m
1
2 a

1−β
2

m

. (4)

Then Y m converges weakly in the Skorohod space D to a fBm BH , where
H = 1 − β

2
.

2.2 Further properties of the approximation

In order to discuss the application to finance, and to construct an approxi-
mation to geometric fBm SH

t = eBH
t , we will have a look to Proposition 2.1

from the viewpoint of semimartingale limit theorems. We can write the ex-
plicit semimartingale decomposition, but only with respect to a big filtration,
where we can keep track of the jumps of individual components N (k).
First we recall how one obtains the compensator of a renewal counting process
by keeping track on the jump times and using the interarrival distributions;
this is due to Jacod (see [14, Theorem 18.2, p.270]). Assume that N is a
renewal counting process with interarrival times ηj such that Gj(t) = P (ηj ≤
t) has the form

Gj(t) =

∫ t

0

gj(s)ds, where gj(s) > 0 ∀s ≥ 0. (5)

Let τj be the jump times and define bj(t) = τj ∧ t − τj−1 ∧ t, j ≥ 1. Let Hj

be the integrated hazard function of Gj :

Hj(t) =

∫ t

0

gj(s)

1 − Gj(s)
ds.

Work with the history IFN of the process N . Then the (P, IFN)- compensator
A of N can be written as

At =
∞
∑

j=1

Hj(bj(t)).
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(see [14, 16]). Note that we have the relation

t =
∞
∑

j=1

bj(t).

Next, consider the workload process Wm
t . Assume that we can keep track of

the jumps of the processes N (k), i.e. we work with the filtration ĪF, where
F̄m

t = σ{N (k)
s : s ≤ t, k = 1, . . . ,m}. Define b

(k)
j (t) = τ

(k)
j ∧ t − τ

(k)
j−1 ∧ t, and

then by the independence of the processes N (k) the (ĪF, P )- compensator of
N (k) is

A
(k)
t =

∞
∑

j=1

Hj(b
(k)
j (t)).

Hence we obtain that the (ĪF
m

, P )- compensator Am of the workload process
Wm is

Am
t =

m
∑

k=1

A
(k)
t ;

note also that

mt =
m
∑

k=1

∞
∑

j=1

b
(k)
j (t).

The process Y m given by (4) is a semimartingale, since it has bounded vari-
ation on compacts. Let us now write the semimartingale decomposition of
the process Y m with respect to the big filtration IFm, where Fm

t = F̄amt and
probability measure P , associated to the interarrival times given by (1) and
(2). To simplify notation put

c(µ, β) := µ
3
2

√

β(1 − β)(2 − β)

2
,

cm := m
1
2 a

1−β
2

m and Λm
t := mµ−1amt

cm
.

Since the process Y m is a semimartingale, it has a semimartingale decompo-
sition

Y m = Mm + Lm; (6)

here Lm
t = c(µ, β)

Am
amt

cm
− Λm

t .
The martingale part of the semimartingale Y m is

Mm
t := c(µ, β)

Wm
amt − Am

amt

cm

.

Note that the compensator of Wm with respect to the big filtration ĪF is
continuous, and hence the process Lm is a continuous process with bounded
variation.
The square bracket of the martingale part Mm of the semimartingale Y m is

[Mm,Mm]t = (c (µ, β))2 Wm
amt

c2
m

.
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But our assumption (3) implies

E[Mm,Mm]t = (c (µ, β))2
µtaβ−1

m → 0,

as m → ∞. With the Doob inequality we obtain that sups≤t |Mm
s | P→ 0.

Denote uniform on compacts convergence in probability by
ucp→.

We obtain the following semimartingale interpretation of the Proposition 2.1:

Proposition 2.2 Assume (1) and (3). Let

Y m = Mm + Lm

be the semimartingale decomposition of the process Y m given by (3). Then
the sequence Lm of continuous bounded variation processes converges weakly
in the Skorohod space D to the fBm BH with H = 1 − β

2
, and Mm ucp→ 0, as

m → ∞.

Remark 2.1 We gave the semimartingale decomposition of the process Y m

with respect to the filtration IF. Since the process Y m is adapted to its own
filtration IFY m

= IFW m

, it has a different semimartingale decomposition with
respect to (IFY m

, P ), and the new compensator is L̃m. The process L̃m is
the (IFY m

, P ) dual predictable projection of the process Y m. To compute the
process L̃m explicitly is apparently difficult, because the interarrival times are
not identically distributed.

2.3 Approximation to geometric fBm

Consider the solution to the equation

dSm
t = Sm

t−dY m
s , with Sm

0 = S0, (7)

where Y m = c(µ, β)W m

cm
− Λm, and

∆Y m
t = c(µ, β)

∆Wm
t

cm

= ∆Mm
t .

It is known that the equation (7) has a unique solution of the form

Sm
t = S0e

−Λm
t

∏

s≤t

(1 + ∆Y m (s)) =: E(Y m)t. (8)

Proposition 2.3 Assume (1) and (3) and let Y m be as in (4). Then the
solution to (7), given by (8), converges weakly to the geometric fBm St =
S0e

BH
t in the Skorohod space D.

Proof We have that

S0e
Y m(t)− 1

2

Wm
amt

c2m ≤ Sm
t ≤ S0e

Y m(t);

but we already know that
W m

amt

c2m
→ 0 in L1(P ), as m → ∞. Hence the claim

follows by the continuous mapping theorem. �

With the notation of proposition 2.2 we have

Corollary 2.1 The sequence of continuous bounded variation processes eLn

converges weakly to the geometric fBm eBH

in the Skorohod space D.
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3 Some properties of the approximation

3.1 Set-up

Assume that we have (1) and (2), the process Y m is defined by (4), and Sm

is defined by (7). We interpret the prelimit approximation Sm as a stock
price. To simplify the discussion we assume that the interest rate for the
bank account is equal to 0, and that there is no drift on the stock price. So
we have a sequence of pricing models

(Sm, IFm, Pm)
w(P m)−→ (S0e

BH

, IFBH

, P ), (9)

where BH is a fBm with H = 1 − β

2
∈ (1

2
, 1).

We will show that the prelimit market model with Sm and bank account is
complete and arbitrage-free model.

3.2 Prelimit market models are complete

We consider the following market model, so-called Poisson market according
to the terminology of Dzhaparidze [4]. We follow the arguments of Dzha-
paridze and show that the prelimit market is complete. Note that the argu-
ment given below is pathwise.
Let N be a counting process, α > 0 and γ > 0 are constants, and consider
the pathwise solution S to the following linear equation

dSt = St− (αdNt − γdt) with S0 = s;

then the unique solution to this is

St = se−γt
∏

s≤t

(1 + α∆Ns) = se−γt (1 + α)Nt .

Denote the jump times N by τk, k = 1, 2, . . . . Fix T > 0 and assume that
there is no jump at time T . Let M ≥ 0 be such that τM < T < τM+1. Define
sk(t) by

sk(t) = s(1 + α)ke−γt1[τk,τk+1)(t) = s(1 + α)ke−αλt1[τk,τk+1)(t);

with λ = γ

α
. The functions sk describe the states of the price process St.

Obviously

St =
M
∑

k=0

sk(t)1[τk,τk+1)(t).

We can write the left-hand limit process St− as follows

St− = s0(t)1[0,τ1](t) +
M
∑

k=1

sk(t)1(τk,τk+1](t).

9



Let St− be in the state sk(t). Then, at time t the stock price either stays in
this state or jumps to the state sk+1(t). Define the difference operator D in
the state space of S as follows: if St− is in state sk(t) then DSt is in the state

Dk+1(St) = sk+1(t) − sk(t). (10)

We have then the following

Proposition 3.1 The states of the stock price process satisfy the following
differential equations

dsk(t)

dt
= −λDk+1(St), when t ∈ (τk, τk+1]. (11)

Proof See [4, Proposition 4.4.1.] �

The Poisson probabilities pj(λ) are defined by pj(λ) = λj

j!
e−λ for λ > 0. One

can include the value λ = 0 by defining pj(0) = δj0, where

δj0 =

{

1, if j = 0

0, if otherwise

is the Kronecker delta.
Consider the following system of differential-difference equations

dxk(t)

dt
= −λ (xk+1(t) − xk(t)) , k = 0, 1, . . . (12)

subject to boundary conditions

xk(T ) = wk(T ) k = 0, 1, . . . (13)

Proposition 3.2 A solution to the system (12) with boundary conditions
(13) is given by

xk(t) =
∞
∑

j=0

pj(λ(T − t))wk+j(T ), (14)

if the numbers allow wk(T ) allow differentiation under the summation sign.

Proof See [4, Proposition 4.2.3.] �.
Next we indicate how to apply the above results a hedging problem in finance.
Let WT be a functional of the price process path St, 0 ≤ t ≤ T . If the price
process S has a state sk(T ), then the value functional WT has a state wk(T ).
Recall that a market model is complete, if we can find a self-financing strategy
π such that

WT = V π
T = v +

∫ T

0

πsdSs.

It follows from [4, Proposition 4.4.5.] that if we define a value process V π by
the formula

V π
t = v +

∫ t

0

πsdSs, (15)

10



where

v =
∞
∑

j=0

pj(λT )wj(T ) (16)

and when s ∈ (τk, τk+1] we define

πs =
∞
∑

j=0

pj (λ (T − s))
(1 + α) wj+k(T ) − wj+k+1(T )

α
, (17)

then we obtain self-financing strategy π, which replicates the claim W (T ).

Remark 3.1 The probabilistic interpretation of the equations (15), (16) and
(17) that the process N is a Poisson process with intensity λ. Note that
the results were obtained in a pathwise way, without any probability. In the
subsection 3.3 we discuss the probabilistic interpretation of this result.

We end this subsection by giving an option pricing formula [for European
call only, but of course all is valid for a more much bigger class of options].
Recall some properties of Poisson probabilities. Put

F (j0; λ) =
∑

j>j0

pj(λ). (18)

We have the following connection between F (j0; λ) in Gamma integrals

Γ(c, x) =

∫ ∞

x

e−ttc−1dt, where c, x > 0 :

F (j0; λ) = 1 − Γ(j0 + 1, λ)

j0!
. (19)

Proposition 3.3 Consider the pricing of an European option (ST −K)+ in
the Poisson market model. Then the fair price CE of this option is given by

CE = S0F (j0; (1 + α)λT ) − KF (j0; λT ), (20)

where

j0 = ⌊
log
(

K
S0

+ γT
)

log(1 + α)
⌋ (21)

We can now apply the above to the approximating model Sm. Now from (4)
we obtain

α = αm = c(µ, β)
a

β
2
m

m
1
2

,

γ = γm = c(µ, β)µ
a

β
2
m

m
1
2

and

λ = λm =
γm

αm
= µ.

From (3) we obtain that αm → 0, γm → 0, and if K > S0, then j0 → ∞, and
if K < S0, then j0 → −∞. Put this in (20) and we obtain that the limiting
price is (S0 − K)+.
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3.3 Prelimit market models are arbitrage-free

The basic randomness of the approximating pricing model sequence Sm comes
from the workload process Wm. We shall show that there exists a probability
measure Qm such that Wm is a Poisson process with intensity m

µ
. We work

first with the single component of the workload process.
Assume that N is a renewal counting process with first interarrival time
distribution given by (2) and all the rest interarrival times have distribution
given by (1). We assume that with respect to the measure our counting
process N is a renewal counting process. Fix T > 0. First we shall show that
there exists a probability measure Q such that QT ∼ PT , where QT = Q|FN

T ,
PT = P |FN

T , and with respect to the measure Q the counting process N is a
Poisson process with intensity µ−1. Put Gi = G when i ≥ 1 and define

κ(s,N) :=
gNs−

(s)

1 − GNs−
(s)

.

Define the density between the measures Q and P by

dQ

dP
|FN

t = e
R t

0(κ(s,N)− 1
µ)ds+

R t

0 log 1
µκ(s,N)

dNs (22)

Obviously we have

dP

dQ
|FN

t = e
R t

0(
1
µ
−κ(s,N))ds+

R t

0 log(µκ(s,N))dNs (23)

The Hellinger process between the measures P and Q is then given by

h(P,Q)t =
1

2

∫ t

0

(

√

h(s,N) −
√

1

µ

)2

ds.

Under our assumptions h(P,Q)t ≤ At + νt < ∞ (P + Q)-a.s.; we can now
use [11, Theorem IV.2.1] and conclude that the measures PT and QT are
equivalent. We have shown the following:

Lemma 3.1 Assume that X is a counting process. With respect to measure
Q it is a Poisson process with intensity 1

µ
and with respect to a measure

P is it a renewal counting process with first interarrival time distribution
given by (2) and all the rest interarrival times have distribution given by (1).
Moreover, the laws PT and QT are equivalent.

The next step is to show that the law of the process

Wm
t =

m
∑

k=1

N
(k)
t

is equivalent to the law of Poisson process with intensity m
µ
. Note that the

process Wm
t is not any more a renewal counting process. We show that the

prelimit pricing models driven by the processes Y m have the no-arbitrage

12



property. For this it is sufficient to show that the original probability measure
is equivalent to a probability measure Q such that the process Wm

t is a
Poisson process with intensity m

µ
. The proof is not very difficult, and will

follow from the Lemmas 3.1 and 3.2.

Lemma 3.2 Let Xk, k = 1, . . . ,m we a sequence of counting processes.
Assume that with respect to the measure Q they are independent Poisson
processes with intensity 1

µ
, and with respect to the measure P they are inde-

pendent renewal counting processes, and their interarrival times satisfy (5).
Then the sum process Wm =

∑m

k=1 Xk is a counting process with respect to
the measures P and Q, with respect to the measure Q it is a Poisson process
with intensity m

µ
, and the Q-law of Wm, Qm is equivalent to the P - law, Pm

of Wm on [0, T ]. Here the filtration is the big filtration Fm
t := ∨m

k=1F
Xk

t .

Proof Since the processes Xk are stochastically continuous and independent
with respect to the measures Q and P , we have that P (∆Xk

s = 1, ∆X l
s =

1) = 0 for k 6= l for all s ≥ 0, and similarly with respect to the measure Q.
Hence the aggregated process Wm is a counting process.
Obviously the sum of independent Poisson processes is again a Poisson pro-
cess, not only in the big filtration IFm, but in the filtration IFW m

, too. If
the (P, IFXk

) compensator of Xk is Ak, and because the sum on independent
martingales is a martingale again, we have that the (P, IFm) compensator of
Wm is

∑m

k=1 Ak. We can now repeat the argument given to obtain Lemma 3.1
and conclude that the measures Qm

T and Pm
T are equivalent in the filtration

IFm. �

Remark 3.2 If we consider the measures Pm and Qm restricted to the fil-
tration IFW m

they are also equivalent on [0, T ], since IFW m ⊂ IFm. But it is
difficult to write the (Pm, IFW m

)- compensator of Wm explicitly (see Remark
2.1).

Let us now return to the model driven by (4). We have that the aggregated
process Wm is a Poisson process with intensity m

µ
. We can interpret that it

has the law Qm described in the Lemma 3.1 and the Lemma 3.2. With respect
to the original measure P , which corresponds to the renewal counting process
model with interarrival times given (1) for interarrivals after the first jump
and by (2) for the first interarrival. We have that the measures are equivalent
on the interval [0, amT ]. This means that the approximation process Y m is
a martingale with respect to (Qm, IFm), or with respect to (Qm, IFY m

), too.
What happens with the approximation? Recall that Sm = E(Y m). But Y m =
Mm + Lm, where Lm is a continuous process, and hence [Mm, Lm] = 0. So
using Yor’s formula for stochastic exponents we can write the approximating
sequence as

Sm
t = S0e

Lm
t E(Mm)t,

where E(Mm)
ucp→ 1 with respect to the measure Pm. We know that the

approximation (Sm, IFm, Pm) weakly converges to the geometric fBm. On

13



the other hand, with respect to the martingale measure Qm the sequence Y m

is a martingale sequence, Y m ucp−→ 0 with respect to Qm, and Sm ucp−→ S0 with
respect to Qm. So in the price (S0 − K)+ has a limit

(S0 − K)+ = lim
m

EQm(Sm
T − K)+

for the European call.

4 Discussion and conclusion

Consider the market model of the following type. The stock price S is driven
by a process X = ǫW + BH ; here W is a standard Brownian motion, BH

is a fBm with Hurst index H > 1
2
, independent of W ; the linear stochastic

differential equation defining the stock price is

dSǫ
t = Sǫ

tdXt, with S0 (24)

as the initial value. One can show that the solution to (24) is

Sǫ
t = S0e

ǫWt+BH
t − 1

2
ǫ2t.

It was shown in [17] that the hedging price for standard European type of
options is the same as in the model, where we do not have the fBm component
BH at all. Recently we in Bender et. al. [1] have extended this argument
to a bigger class of options, and also discussed arbitrage possibilities in this
kind of models. So the price of an European call (Sǫ

T − K)+ is given by the
classical Black & Scholes pricing formula

S0Φ

(

log S0

K
+ 1

2
ǫ2T

ǫ
√

T

)

− KΦ

(

log S0

K
− 1

2
ǫ2T

ǫ
√

T

)

. (25)

Take now ǫn → 0 and define Sǫn by

Sǫn

t = S0e
ǫnWt+BH

t − 1
2
ǫ2nt.

We have that Sǫn
t

w→ S0e
BH

t , as n → ∞, and we have again an approximation
to geometric fBm. It is easy to check that the limit, as ǫn → 0, of the price
in (25) is given by

(S0 − K)+
. (26)

Recall that se obtained the same limit for European call as a limit of hedging
prices in subsection 3.2 and as a limit risk neutral prices in subsection 3.3.
Note that if a price process S is continuous and has bounded variation, then
we have the following

(ST − K)+ = (S0 − K)+ +

∫ T

0

1{Ss≥K}dSs; (27)

hence a candidate for the hedging price would be (ST −K)+. But this makes
no sense, since this kind of pricing model has arbitrage opportunities, unless
St = S0 for all t ≤ T .
We have shown that in our approximation:

14



• The prelimit sequence Sm = E(Y m) is a Pm semimartingale and Qm

martingale.

• The weak limit along Pm is geometric fBm, which is not a semimartin-
gale, and along Qm is the constant S0, which is a martingale.

We can formulate yet another property of our approximation:

• The sequence of measures Pm and Q are entirely separated: there exists
events Cm such that Pm(Cm) → 1 and Qm(Cm) → 0, as m → ∞.

In [12] Kabanov and Kramkov discuss so-called asymptotic arbitrage, which
is related to the notions of contiguity and entire separation.
This means the following: let πm be a sequence of self-financing strategies
and Sm a vector valued price process such that

(πm · Sm)t :=
m
∑

k=1

∫ t

0

πm,k
s dSm,k

s ≥ −1. (28)

They defined the following three types of asymptotic arbitrage, but we men-
tion only one:

• If in addition to (28), we have lim supm Pm ((πm · Sm) ≥ C) = 1 as
m → ∞ for any C > 0, then πm realizes strong asymptotic arbitrage.

We refer to Kabanov and Kramkov [12] for more information how asymptotic
arbitrage is related to contiguity and entire separation. We mention only that
entire separation implies some kind of asymptotic arbitrage.
We end our discussion by reformulating our approximation in the spirit of

large financial markets. Define the price process of the ith asset S(i) by

dS
(i)
t = S

(i)
t−c(µ, β)

1

cm

d
(

N
(i)
t − A

(i)
t

)

, (29)

where N (i) is the renewal counting process, A(i) is the compensator of N (i)

with respect to the filtration IFN(i)

, and where c(µ, β) := µ
3
2

√

β(1−β)(2−β)
2

, and

cm := m
1
2 a

1−β
2

m , as before. Let S
(i)
0 = S0

m
. Then the model in (4) can be con-

sidered as the sum Sm =
∑m

i=1 S(i), and as we know already, the martingale
measures Qm and the ’historical’ measures Pm are entire separated and the
market model (S̃m, IFm, Pm) with S̃m = (S(1), . . . , S(m)) admits asymptotic
arbitrage.
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