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level set equation. Second, that the method of gradient descent on the man-
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1 Introduction

Shape optimization can be seen as part of the field of optimal control. Typ-
ically we have a system governed by a partial differential equation whose
solution uΩ depends on some variable geometric shape Ω. The problem is
to minimize a given cost functional J(uΩ) over the set S of all admissible
geometric shapes with piecewise smooth boundary. Such problems arise for
example from the optimal design of structures such as bridges, where we
attempt to minimize compliance of the structure due to known loads given
certain material constraints.

By considering the variation of the cost functional under small transfor-
mations of the boundaries of shapes we can define derivatives with respect to
shape. This allows us to derive necessary optimality conditions for the shape
optimization problem. The most popular frameworks are the speed method
and the perturbation of identity method [4, 12, 17].

Shape optimization problems are typically solved numerically. A widely
used approach in the engineering fields has been to discretize the underlying
problem and shape using a finite element mesh, derive the sensitivities of the
cost functional to small boundary variations of the shape, and then adjust
iteratively the mesh points near the boundary of the shape. See [5] or [10]
for an introduction to practical shape optimization methods for engineering
applications using finite element approximations.

Recently more interest has been given to methods which represent the
shape Ω globally as the level set of a continuous function φ. A smooth trans-
formation of the boundary of the shape is then described with a transport
equation for φ. These are called level set methods and were made popular
by Sethian and Osher. See [2] for a survey of level set methods applied to
shape optimization problems. In this paper we briefly cover the basic frame-
work for shape optimization using implicit functions and level set methods
to represent smooth transformations of shapes.

To demonstrate numerical methods for shape optimization, we consider
a shape optimization problem to find the optimal damping set for a mem-
brane with fixed boundary, modeled by the two-dimensional wave equation.
We add a fixed damping factor which affects a subset of the membrane and
causes decay in the energy of the vibration. The objective is to find the shape
of the damping set that minimizes the energy at some given end time, given
the initial position of the membrane and the damping factor applied. This
problem was previously studied in [11] and solved using finite differences on
regular grids. In this paper we solve the problem numerically using finite
elements and irregular triangular meshes, giving some insight into shape op-
timization problems where the correct topological properties of the shape are
not known beforehand.
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2 Shape optimization

Let D ⊂ R
n be a domain of interest and S a family of open subsets of D

with piecewise smooth compact boundaries. Elements of S are called shapes.
A shape functional J : S → R is invariant with respect to homeomorphisms
that preserve the shapes i.e. for all shapes Ω ∈ S and homeomorphisms g of
D we have that

g(Ω) = Ω ⇒ J(g(Ω)) = J(Ω).

The shape optimization problem is to find an optimal shape Ω∗ ∈ S s.t.

J(Ω∗) →֒ min!.

The existence of solutions for such optimization problems depends on the
chosen family of shapes S as well as the properties of J . If the shape func-
tional J is continuous in the Lp topology of the characteristic functions χΩ

then typically a sufficient condition for the existence of an optimal solution is
that the family of shapes S fulfills the uniform cone condition or the stronger
condition that all shapes have uniformly Lipschitz boundaries. We refer the
reader to the monograph [4] for in-depth coverage of the theory of of smooth
geometric shapes as well as the classical theory of shape optimization.

To perform optimization in the family of shapes we would like to define
the concept of derivative with respect to shape. The following approach is
called the speed method for shape derivatives. Let ψs be a one-parameter
family of smooth transformations ψs : D → D, for s ≥ 0, s.t. ψ0 = I. Then
for a given Ω ∈ S we define the shape derivative of J with respect to the flow
ψ at the shape Ω as the Gâteaux-derivative

dJS(Ω;ψ) := lim
s→0+

J(ψs(Ω)) − J(Ω)

s
, (1)

provided that the limit exists. From now on we consider only flows ψ of some
Lipschitz vector field v : D → R

n s.t. the action of ψ on a point x0 ∈ D is
given by

x(0) = x0, x′(s) = v(x(s)), ψs(x0) = x(s). (2)

If the shape derivative defined by (1) is bounded and linear, we can find a
unique element ∇SJ ∈ L2(∂Ω; Rn) s.t.

dSJ(Ω;ψ) =

∫

∂Ω

v · ∇SJ dx. (3)

If the shape functional J is shape differentiable in the sense of (3), we have
the necessary optimality condition ∇SJ(Ω∗) = 0 for an optimal shape Ω∗

without the presence of constraints.

3 Level set methods and implicit functions

Inherent in the problem of shape optimization is that J encodes the repre-
sentation of the abstract shapes within itself. For theoretical analysis this is
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sufficient, but for more practical methods we need an explicit way of repre-
senting the shapes under consideration.

Recently an approach to describe shapes using implicit functions and their
level sets has gained popularity. Let Ω be a given subset of R

n with piecewise
Ck boundary for k ≥ 1. Then there exist continuous functions φ : R

n → R

s.t.
Ω = {x : φ(x) < 0}, ∂Ω = {x : φ(x) = 0}.

Such functions are called implicit functions or level set functions. We can
choose φ in such a way that apart from the corners of ∂Ω it is everywhere
Lipschitz and at least Ck in some small neighborhood of ∂Ω (the latter claim
follows from the implicit function theorem). An example of such an implicit
function is easy to exhibit, namely we consider the signed distance function

φd(x) =

{
−dist(x, ∂Ω), x ∈ Ω
+dist(x, ∂Ω), x ∈ Ωc . (4)

From now on we identify every piecewise Ck shape Ω by some representative
implicit function φ that is Ck smooth near the boundary ∂Ω. It turns out
that the existence of a locally Ck implicit function is an equivalent definition
of a Ck smooth shape for sets with compact boundary. This allows us to
consider the shape functional as a function of the implicit function J(φ) and
not the actual set J(Ω).

Consider a given piecewise Ck shape Ω and its image under the flow of ψ
of some velocity field v with flow ψ. Denote the image of the shape by the
flow as ψs(Ω) = Ωs and let φ(x, s) be an implicit function for Ωs. We get for
each x0 ∈ ∂Ω0

φ(ψs(x0), s) = 0,

and differentiating with respect to s gives together with (2)

φs(x, s) + v(x) · ∇φ(x, s) = 0. (5)

Equation (5) is called a level set equation. It transports the level sets of φ
advectively along the flow ψ.

Signed distance functions (4) are a subclass of implicit functions that
have the special property that |∇φ| = 1 everywhere. Such functions have
nice computational properties thanks to the unit scaling of the gradient.
Usually the level set equation (5) does not preserve signed distance functions
so possible numerical issues might arise as the gradient ∇φ grows during
the evolution of the equation. These problems can be rectified by regularly
rescaling φ so that it becomes a signed distance function without moving the
zero-level set. A common idea [18] is to let φ0 be the unscaled version of our
implicit function φ and regularly solve the equation

φs(x, s) + sgn(φ0(x))(|∇φ(x, s)| − 1) = 0, φ(x, 0) = φ0(x) (6)

for a short interval. This equation quickly rescales φ to be closer to a signed
distance function while leaving the zero-level set intact. We shall see that
this reinitialization not only makes things numerically more robust, but has
also other effects when dealing with topology changes in shape optimization.
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D

a(x) = a

Ω

a(x) = 0

utt + a(x)ut = △u

Figure 1: Geometry for the damped membrane.

4 Optimal wave damping problem

The following problem was studied in [11], where the author used finite differ-
ence methods based on rectangular meshes to solve both the wave equations
and the level set equation. We refer the reader to that work for some of the
details such as the derivation of the shape gradient.

Let D ⊂ R
2 be a plane domain with piecewise smooth boundary and con-

sider the two-dimensional wave equation with Dirichlet boundary conditions.
This equation models the vibrations of an ideal membrane that is fixed at
the edges. Consider additionally that in some subset Ω ⊂ D we apply a fixed
damping factor a > 0. The geometry of the problem is shown in Figure 1.
The resulting equation for the displacement of the membrane is then





utt − ∆u + a(x)ut = 0, (x, t) ∈ D × (0, T )
u = 0, (x, t) ∈ ∂D × [0, T ]

u(x, 0) = u0(x), ut(x, 0) = u1(x)
(7)

with initial data (u0, u1) for the membrane. The damping coefficient is de-
fined here to be piecewise constant:

a(x) :=

{
a, x ∈ Ω
0, x /∈ Ω.

.

We refer to Ω as the damping set of the membrane. The energy of the
membrane is known to be

J(Ω, a, t) = 1

2

∫

D

[
|ut(x, t)|2 + |∇u(x, t)|2

]
dx. (8)

The objective is to minimize the total energy of the membrane at some fixed
end time T :

min
Ω∈S

J(Ω, a, T ).

This is a shape optimization problem whose solution depends additionally
on the chosen constants a and T . In this work we choose a moderate so
as to avoid any problems relating to the phenomena of overdamping, and T
large enough so that observability problems relating to the finite propagation
speed of waves do not occur.
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Without any kind of constraint on the damping set we will obtain the
trivial solution Ω∗ = D, so in addition we introduce the area constraint

A(Ω) = A0 (fixed). (9)

This constraint was handled by Munch in [11] by using a penalty coefficient
λ > 0 and augmenting a quadratic penalty term in the energy. We proceed
in the same fashion. The augmented shape functional of energy is therefore

J̃(Ω, a, T ) := λ
2

[
A(Ω) − A0

]2
+ 1

2

∫

D

[
|ut(x, T )|2 + |∇u(x, T )|2

]
dx. (10)

The shape optimization problem we consider is

min
Ω∈S

J̃(Ω, a, T ). (11)

It was shown in [11] that the shape functional (10) is shape differentiable
in the sense (3) and has the shape gradient defined on ∂Ω

∇SJ̃(x) · n =
[
A(Ω) − A0

]
+

∫ T

0

ut(x, t)p(x, t) dt, (12)

where n is the outward pointing unit normal of ∂Ω, u(x, t) is the solution of
equation (7) and p(x, t) is the solution of the adjoint equation





ptt − ∆p − a(x)pt = 0, (x, t) ∈ D × (0, T )
p = 0, (x, t) ∈ ∂D × [0, T ]

p(x, T ) = −ut(x, T ),
pt(x, T ) = −a(x)ut(x, T ) −△u(x, T )

. (13)

In practice, finding an optimal damping set Ω∗ requires numerical methods.

5 Iterative method for shape optimization

The simplest derivative based method for shape optimization is the gradient
descent method. Let Ω0 be a given initial guess of the optimal shape and φ0

its implicit function. If the shape gradient ∇SJ is known at Ω0, we can let
v = −∇SJ on the boundary of ∂Ω and extend v smoothly to the rest of D.
For (12) with smooth initial data this is straightforward. Substituting into
(5) we get the level set equation for gradient descent

φs(x, s) −∇SJ̃(x) · ∇φ(x, s) = 0, φ(x, 0) = φ0(x). (14)

For small enough s we have J(Ω0) > J(Ωs). Iterated steps of equation (14)
are equivalent to gradient descent on an infinite-dimensional manifold.

As previously noted, equation (14) is a hyperbolic advection equation.
Based on this, numerical methods for its resolution have been devised using
upwind discretization. The most popular discretization methods are those of
Lax-Friedrichs, and Godunov. We refer the reader to [7] and [13] for in depth
treatment of numerical methods for hyperbolic conservation laws in general
as well as the special case of level set equations. In this work the level set
equation was solved using the method of Godunov.
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6 Implementation

Evaluation of the shape gradient (12) requires first the solution of the two
wave equations (7) and (13). We performed this using an unstructured tri-
angular mesh with piecewise linear elements and the Elmer [8] FEM pack-
age. The time integration was performed using the Newmark-Bossak scheme.
From the solutions of the wave equations a first-order approximation for the
shape gradient (12) was computed. The level-set equation (14) for gradient
descent was then solved on a rectangular grid using the Level Set Toolkit [9]
for Matlab.

Optimization methods based on descent directions usually require that we
perform a line search to find a step size s ≥ 0 that solves the one-dimensional
optimization problem

min
s≥0

J̃(ψs(Ω)),

where ψ is the flow in the direction of the negative shape gradient −∇SJ̃ .
These line searches can be performed either exactly or approximately, some-
times even heuristically. In the level set based gradient descent method it
suffices to find a step size such that the energy J̃ decreases on each iteration.

In practice it becomes quickly clear that accurate evaluation of the energy
(10) requires a very fine mesh with elements of good quality to be used when
solving for u. We attribute this problem to the term |∇u|, which is known
to converge only like O(h) for piecewise linear basis functions on triangular
meshes [6]. In addition, poor quality elements with malformed simplices can
cause the error of the term |∇u| to increase without bound [14], which sets
stringent quality requirements for the mesh generator used.

The aforementioned issues might have been rectified by moving to higher
order elements or using methods specifically designed for hyperbolic prob-
lems. However, the former would have increased the computational effort
while the latter methods are usually restricted to working on structured
rectangular meshes. Our objective was to improve on the computational
results in [11] by using unstructured finite element meshes, which capture
the shape of the damping set as accurately as possible near its boundary
without spending too much computational effort away from the boundary.

The key observation we used is that the for large enough penalty terms λ
the area constraint (9) gives our iteration an oscillating nature, i.e. the area
A(Ωk) is alternatively smaller and larger than A0. The idea is then to use
the area constraint to decide a suitable step size as follows:

1. Let µ̄ be some default step size and ε > 0 some tolerance for the area
constraint.

2. Find smallest nonnegative integer j s.t. the solution of (14) for Ωk →
Ωk+1 with step size

µ = 2−jµ̄
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Figure 2: Evolution of the damping set in a unit square with the initial data
(15) for the membrane. As in [11] the damping set converges to a symmetric
optimal solution.

gives a new damping set Ωk+1 s.t. the area constraint is violated at
most

|A(Ωk+1) − A0| < ε.

In practice the gradient descent method is known to be rather forgiving with
regards to step size selection rules, and in the cases studied we have nice
convergence of the shapes to (at least) local optimums.

To prevent numerical instability due to the increasing or decreasing gra-
dient ∇φ we regularly solve the reinitialization equation (6) to reset φ into a
signed distance function.

7 Results

We verified our solver by first comparing it to the results obtained by Munch
in [11] by solving a simple problem on the unit square D = [0, 1]× [0, 1] with
smooth initial data:

{
u(x, 0) = 100 sin(πx1) sin(πx2)
ut(x, 0) = 0

. (15)

The results for the initial guess of one disc that is slightly off-center are
shown in Figure 2. We verify that the solution is the same as found by
Munch and supported by theoretical analysis in [11]. Due to the different
approaches taken to discretizing the wave equations (finite elements vs. finite
differences), our solver used only the mesh parameter h = 0.05 compared to
Munch’s h ≈ 0.006, but obtained the same accuracy of solution. This shows
that numerical shape optimization methods based on boundary perturba-
tions clearly benefit from unstructured meshes that are locally refined near
the boundary of the shape where we wish to compute accurately the shape
gradient.

To demonstrate that level set methods allow topology changes in numeri-
cal shape optimization we studied equation (7) in an L-shaped domain, where
the initial position of the membrane corresponds to the second eigenmode of
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Figure 3: Initial position of the membrane in an L-shaped domain.

the undamped problem

{
u(x, 0) = 100 sin(2πx1) sin(2πx2)
ut(x, 0) = 0

and the membrane is initially motionless.
The geometry of the membrane, its initial value, and a mesh used in actual

computations are presented in Figure 3. Physical intuition says that the
optimal damping set consists of three separate components, located around
the extremal points of the initial position of the membrane u(x, 0). To test
this hypothesis we solved the problem numerically using two distinct initial
guesses for the damping set Ω:

• CASE A: Initial guess Ω0 is two discs.

• CASE B: Initial guess Ω0 is one disc.

Neither initial guess for the damping set possesses the correct number of con-
nected components that we would expect from the true solution. Therefore,
any numerical shape optimization method must be able to handle changes in
topology in order to find the optimal damping set.

It is known that with level set methods we can observe certain types
of topological changes in the deformed shapes. Consider CASE A, where
the initial guess is two discs located roughly symmetrically. Figure 5 shows
the evolution of the damping set. We observe that the flow given by the
negative shape gradient tears the other disc into two, and the resulting three
components converge towards the extremal points of the initial position of
the membrane. In this case the initial guess was close enough for the level
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set method to find the correct solution. The final energy of the solution was
J̃ = 2457.

Closer study of CASE A reveals that the gradient descent iteration stalls
near iteration 15. One component is near bifurcation, but the shape gradient
vanishes at the bifurcation point and thus no progress or change in topology is
made. Before iteration 20 we performed the reinitialization process given by
equation (6). Immediately afterwards the component underwent bifurcation,
changing the topology, and allowing the iteration proceeded. This effect can
be explained and is not related to the reinitialization as such, but rather the
specific equation used to perform the reinitialization. The reinitialization
equation can be written as

φs(x, s) + sgn(φ0(x))|∇φ(x, s)| = sgn(φ0(x))

so that in addition to the advection term we have a force term of magnitude
sgn(φ0). Near the bifurcation point at iteration 20 (middle panel in Figure 5)
the gradient |∇φ| is very small, so that the reinitialization equation is locally

φs(x, s) = sgn(φ0(x)). (16)

In the vicinity of the bifurcation point we have φ0 ≥ 0 and so equation (16)
tends to increase the values of φ, causing the component to finally bifurcate
into two. The idea is shown in Figure 4. In fact, any positive force term
would suffice to push the boundary of the shape over the threshold so that
the change of topology is realized.

φ0 ≥ 0

φs = sgn(φ0)

φ > 0

Figure 4: Bifurcation of a shape under equation (16).

In CASE B, we had only one disc in the initial guess. The resulting
evolution is given in Figure 6. This time the disc is elongated to cover two
extremal points but remains as one piece. No new component is created near
the third extremal point. This solution is only a local optimum, which we
observe by noting that the final energy of the solution was J̃ = 20267.
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Figure 5: Evolution of the damping set for CASE A with an initial guess of
two discs. One disc undergoes a bifurcation into two and the correct optimal
damping set is found.

It should be stated that in the case of Lipschitz-continuous velocity fields
v acting on a given shape Ω, the deformations Ω(0) → Ω(s) given by equa-
tion (5) are diffeomorphisms. This means that the speed method of shape
optimization does not allow for topological changes of the shape such as bi-
furcation of one component into two or the merging of two components into
one. Furthermore, the advective nature of equation (5) prevents new com-
ponents of ∂Ω from emerging away from the existing boundary. As we have
seen, the first limitation is not present in numerical methods based on level
sets, but the second limitation remains.

8 Topological changes in shape optimization

The speed method of shape optimization works with diffeomorphic maps of
Ω0, the initial guess of the damping set. In the problem we studied the
optimal damping set consists of three connected components while the initial
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Figure 6: Evolution of the damping set for CASE B with an initial guess
of only one disc. The method is unable to discover the correct topological
properties of the optimal damping set and gets stuck in a local optimum.
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guesses we tried had fewer components. While level set methods are known
to allow for certain changes in topology, we found that in the case studied,
the bifurcation of shapes was only possible in the presence of a force term
which occurred in the reinitialization equation.

For shape optimization problems such as (11) where the optimal shape can
consist of more than one component it has been thought that in order to find
the optimal shape it is either necessary to know beforehand the topological
properties of the optimal shape, or to use a special class of methods that fall
under the so called topological optimization. The topological derivative of a
shape functional J(Ω) can be defined [15] as the limit of

dT J(Ω;x0) = lim
ρ→0+

J(Ω ∪ B(x0, ρ)) − J(Ω)

µ(B(x0, ρ))
,

where B(x, ρ) is an open ball of radius ρ centered at x /∈ ∂Ω and µ(B(x, ρ))
its measure. This derivative, when it exists, gives us an idea where in D we
should add new components of Ω.

An interesting recent development is the attempt to combine the methods
of shape and topological optimization. A theoretical approach was given in
[16] where a so-called domain differential was defined as

DJ(Ω;ψ,x0)(ρ, s) = µ(B(x0, ρ)) · dT J(Ω;x0) + s · dSJ(Ω;ψ). (17)

In [3] the authors derive topological gradients as a subset of shape gradients,
but the algorithm given was more akin to the typical bubble method where
an initial guess is obtained using topological derivatives and then a pure
shape optimization method is used. In [1] the authors derived a shape-
topological optimization method based on level set methods. In practice this
method gave better topological convergence than was achieved using pure
shape optimization when the optimal shape contained a hole. However, their
approach simply combined the two methodologies into one equation in an ad
hoc manner, with no attempt to combine the analytical frameworks that lie
underneath. The topological derivative appeared as a force term F (x) in the
level set equation:

φs(x, s) + v(x) · ∇φ(x, s) + F (x) = 0.

The equation derived by Burger et al in [1] resembles the additive form of
the domain differential (17). In the problem we have studied the force term
appeared not in the level set equation but the reinitialization equation. How-
ever, both cases seem to indicate that in order for level set methods for shape
optimization to allow efficient discovery of the correct topology, the presence
of a force term related to a topological derivative is required. It remains to
refine the theory in such a way as to unify the concepts of shape and topolog-
ical derivatives and explain entirely satisfactorily the results obtained using
numerical level set methods.
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9 Conclusions

We have studied a problem in numerical shape optimization related to finding
the optimal damping set for a two-dimensional membrane. The membrane
was L-shaped and the initial data was chosen such that the optimal damp-
ing set Ω∗ consists of three separate components. Depending on the initial
guess of the damping set the method either converged or got stuck in a local
optimum.

Using unstructured triangular meshes that are refined near the boundaries
of the damping set Ω we were able to obtain similar results to those presented
in [11] with fewer mesh points. The problem with unstructured meshes is
related to the accurate evaluation of the energy functional J(Ω, a, T ). We
discovered a lack of monotonicity of the discrete energy during the course
of the gradient descent iteration. Subsequently, we chose to use a heuristic
step size selection rule for the descent step that did not directly evaluate the
value of the energy functional being minimized. The results were good in the
cases studied.

Level set methods are known to allow certain changes of topology in
the shapes being optimized. However, in our problem it was noticed that
the iteration stalled near a bifurcation point until an otherwise unrelated
reinitialization procedure was able to effect the change in topology due to
the presence of an implicit force term. The requirement for a force term
to be present in the level set equation in order to obtain efficient topology
discovering shape optimization methods has been previously documented in
literature. Our results verify this phenomenon.
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