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1 Introduction

A basic problem in the study of mechanisms is determining the mobility (or
the number of degrees of freedom) of the given system. For an open chain
this is a rather trivial task, but if the mechanism contains closed loops the
situation can be very complicated [1, 9]. For a long time there have been
attempts to find a formula which would give the mobility without actually
analysing the equations defining the constraints. The names of Kutzbach
and Grübler are frequently cited in the literature, but also many others have
proposed various formulas, and apparently the first to consider this problem
was Chebychev [9]. In spite of all activity it appears that no general formula
has been found, and indeed it is not even clear if such a formula can exist.

In this article we show how one can actually compute the mobility, in
other words the dimension of the configuration space. The approach is based
on computational ideal theory, and the Gröbner bases and the Buchberger
algorithm to compute them play a central role. As an example we compute
the mobility of the well-known Bricard’s mechanism [4]. This system is called
overconstrained or paradoxical which means that various formulas do not
give the correct mobility: the usual formulas give zero mobility for Bricard’s
mechanism while it is well-known that the correct mobility is one. Bricard
himself was obviously very interested in these kind of mechanisms and in
addition to the mechanism analysed here he gave several other examples of
paradoxical systems [4]. It is less clear if he thought that they are important
in the practical design of machines. Overconstrained mechanisms have been
been analyzed previously by means of differential geometry in [14] and [15].
In [15] it was shown that paradoxical mechanisms are “rare” in the space of
“all” mechanisms. However, the author still concludes that the study of such
mechanisms remains an important topic.

We said that Gröbner bases allow one to compute the mobility of the
mechanisms; of course this applies to all mechanisms, not just paradoxical
ones. Note that traditionally the jacobian of the map defining the constraints
is used in the analysis of the mobility. The idea is to determine the rank of
the jacobian and then infer the dimension of the configuration space using
the implicit function theorem. This is necessarily a local process since it is
quite conceivable, and in fact this frequently occurs in practice, that the rank
of the jacobian is not constant. In our approach the jacobian is not needed
and the computations make sense globally, not just in a neighborhood of
some point in the configuration space.

The points where the rank of the jacobian drops are singular points of
the configuration space. Our approach then shows that the singularities are
irrelevant in the computation of the mobility. This makes sense also intu-
itively: the set of singular points is necessarily of lower dimension than the
configuration space itself. Hence almost all points in the configuration space
are smooth and it is natural that the dimension is determined by them. If one
wants to analyse the singularities of the system then the jacobian is needed.
We will give below a few remarks about this but do not treat this in any
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generality because it turned out that there are no singularities in Bricard’s
mechanism. Incidentally we do not know if the absence of singularities has
been shown previously.

But Gröbner bases give even more information than the mobility. In the
present case our analysis yields the configuration space of Bricard’s mech-
anism explicitly : the essential part of it can be described very simply as a
closed curve in 3 dimensional space. Obviously we cannot expect such a
strong result in the general case. However, the analysis of the configura-
tion space with the tools presented below might well reveal properties of the
configuration space which are not easily available by other means.

To be able to use computational algebra all constraints must be expressed
in terms of polynomials. For planar mechanisms this is rather straightfor-
ward and in fact Gröbner bases have already been used to analyze planar
mechanisms [2, 3, 7]. As far as we know 3 dimensional case has not been
treated previously in this way. To be able to formulate constraints in terms
of polynomials we represent orientations of bodies in terms of Euler parame-
ters. It turns out that most constraints arising in practice can be formulated
using just 3 basic constraints and these are all low order polynomials of Euler
parameters and centers of mass.

Our analysis is also useful from the point of view of numerical simulation
of multibody systems. In fact Bricard’s mechanism has been used as a test
problem for numerical codes for multibody systems [10]. The difficulty of
solving Bricard’s mechanism is directly related to its overconstrained nature:
the standard formulation of constraints gives a map whose jacobian is every-
where rank deficient. Now whatever the numerical method used to solve the
equations of motion the rank deficient jacobian surely leads to trouble. This
is of course the reason for choosing Bricard’s system as a benchmark prob-
lem. However, our analysis gives a new set of constraints whose jacobian is
of full rank. Moreover the structure of the jacobian is very simple: it is quite
sparse, most of the nonzero terms are constant and except for a block of size
2×3 it is in a triangular form. We can expect similar results in more general
situations: the preliminary analysis of the configuration space may well lead
to a formulation of constraints which are much more suitable for numerical
computations than the standard formulation. Note finally that since we give
the configuration space of Bricard’s mechanism explicitly this can be used to
test the kinematical validity of any numerical simulation of the equations of
motion.

We think that the idea to use computational algebra and algebraic ge-
ometry to analyse configuration spaces is quite natural, yet we were unable
to find articles with similar approach in the literature. Our article is also
a direct continuation of our previous work [3, 2, 17, 16]. All computations
below were done by a publicly available freeware program Singular [12]. We
used standard PCs and laptops and none of the computations reported below
took more than few minutes, and most of them took just few seconds.

The paper is organized as follows: in Section 2 we first recall some neces-
sary algebraic and geometric notions regarding the correspondence of ideals
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and varieties. Then we briefly indicate how to algorithmically manipulate
ideals and discuss some properties of Gröbner bases. In Section 3 we intro-
duce some basic ideas of multibody systems and show how to write the rele-
vant constraint equations. In Section 4 we then define Bricard’s mechanism
and formulate the relevant equations whose zero set defines the configura-
tion space. Section 5 is the main part of the article where we decompose
the variety defined by the constraints. This decomposition is useful because
it reveals that the original equations allow spurious solutions which do not
correspond to the physical situation one tries to model. After eliminating
all the spurious components we eventually obtain the irreducible part of the
variety which is physically relevant. In Section 6 we parametrize this variety
and finally in Section 7 we give some conclusions and perspectives for future
work.

2 Algebraic preliminaries

2.1 Notation

The standard orthonormal basis vectors in R3 are denoted by

e1 = (1, 0, 0) , e2 = (0, 1, 0) , e3 = (0, 0, 1) .

The euclidean inner product of two vectors x, y ∈ Rn is denoted by (x, y).
The length of a vector x is denoted by |x| and the n-dimensional unit sphere
is denoted by Sn. Let g : Rn → Rk be a smooth map. Its first differential
or jacobian is denoted by dg, and the jacobian evaluated at p is dgp. The
orthogonal and special orthogonal groups are

O(n) = {A ∈ Rn×n | AT A = I } , SO(n) = {A ∈ O(n) | det(A) = 1 } .

2.2 Ideals and varieties

For more information on basic ideal theory we refer to [5]. Let K be one
of Q, R, or C, and let A = K[x1, . . . , xn] be the ring of polynomials with
coefficients in K. A subset I ⊂ A is an ideal if it satisfies

(i) 0 ∈ I.

(ii) If f, g ∈ I, then f + g ∈ I.

(iii) If f ∈ I and h ∈ A, then hf ∈ I.

Given some polynomials g1, . . . , gk we may view them both as a map g :
Kn → Kk and as generators of an ideal

I = 〈g1, . . . , gk〉 =

{
k∑

i=1

higi | h1, . . . , hk ∈ A

}
⊂ A (1)
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A set of generators of an ideal is also called a basis of an ideal. The common
zero set of all gi is called an (affine) variety ; if I is the corresponding ideal,
its variety is denoted by V(I). The radical of I is

√
I =

{
f ∈ A | fn ∈ I for some n ≥ 1

}
.

Note that V(I) = V(
√
I). Next we will need to add ideals. Let I1 =

〈f1, . . . , fs〉 and I2 = 〈g1, . . . , gr〉; then

I1 + I2 = 〈f1, . . . , fs, g1, . . . , gr〉 .

In terms of varieties this means that V(I1 + I2) = V(I1) ∩ V(I2).
An ideal I is prime if fg ∈ I imply that either f ∈ I or g ∈ I. We

will often in the sequel use the following fact: any radical ideal is a finite
intersection of prime ideals:

√
I = I1 ∩ · · · ∩ Ir . (2)

The prime ideals Ii are called the minimal associated primes of I. This
gives the decomposition of the variety into irreducible components:

V(I) = V(
√
I) = V(I1) ∪ · · · ∪ V(Ir) .

In the analysis below theoretically the most straightforward way to pro-
ceed would be to compute this decomposition and then choose the prime
ideal/irreducible component one is interested in. However, this would be
computationally infeasible, so we find the relevant component in steps. We
will now outline the reasoning which will be used several times in the com-
putations below.

Let us consider an ideal I and let us suppose that we are interested in
finding a certain component of V(I). Let us then divide the generators of
I into 2 sets: I = J1 + J2. Suppose now that the computation of prime
decomposition of

√
J1 is possible:

√
J1 = P1 ∩ · · · ∩ Pr

Examining the ideals Pi we conclude that a certain Pℓ corresponds to the
situation we want to study and we want to discard other Pi. Hence we
continue our analysis with Ĩ = Pℓ + J2. In terms of varieties this means that

V(Ĩ) = V(Pℓ + J2) = V(Pℓ) ∩ V(J2)

⊂ V(P1 ∩ · · · ∩ Pr) ∩ V(J2) = V(
√

J1) ∩ V(J2) = V(J1) ∩ V(J2) = V(I)
(3)

Hence we have eliminated some part of the initial variety V(I) as desired.
But how to find interesting splittings I = J1 +J2? Now the main obstacle

in computations is that the complexity grows quite fast as a function of the
number of variables. Hence it would be nice to have J1 whose generators
depend only on few variables. In other words we need elimination ideals.
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Let I ⊂ K[x1, . . . , xk, . . . , xn]. Then Ik = I ∩ K[xk+1, . . . , xn] is the kth
elimination ideal of I. Of course the generators of the elimination ideal are
usually not immediately available. However, it turns out that it is in fact
possible to compute new generators for a given ideal such that the generators
of the elimination ideal are a subset of all generators. But this is precisely
the situation which we want: we write I = J1 + J2 where the generators of
J1 generate a certain elimination ideal.

2.3 Gröbner bases

An essential thing is that all the operations above, especially finding the
generators of the eliminination ideals and the prime decomposition can be
computed algorithmically using the given generators of I. We will only briefly
indicate the relevant ideas and refer to [5, 11] for more details.

First we need to introduce monomial orderings. All the algorithms han-
dling the ideals are based on some orderings among the terms of the gen-
erators of the ideal. An ordering ≻ is such that given a set of monomials
(e.g. terms of a given polynomial), ≻ puts them in order of importance:
given any two monomials xα := xα1

1 . . . xαn

n and xβ, where α 6= β are different
multi-indices, then either xα ≻ xβ or xβ ≻ xα. In addition we require that
for all γ, xγ ≻ 1 and xα ≻ xβ implies xα+γ ≻ xβ+γ.

To compute elimination ideals we need product orderings. Let us consider
the ring K[x1, . . . , xn, y1, . . . , ym] and let ≻A (resp. ≻B) be an ordering for
variables x (resp. y). Then we can define the product ordering as follows:

xαyβ ≻ xγyδ if

{
xα ≻A xγ or

xα = xγ and yβ ≻B yδ
(4)

Whenever we use product orderings we indicate it with parenthesis. For
example

K[(x4, x5, x7), (x1, x2, x3, x6)]

is the same set as K[x1, . . . , x7] but the parenthesis indicate that we will use
≻A among the variables (x4, x5, x7), and ≻B among the variables (x1, x2, x3, x6).

Now a Gröbner basis of a given ideal is a special kind of generating set,
with respect to some ordering. An important fact is that given some ordering
and some set of generators of an ideal, the corresponding Gröbner basis exists
and can be computed. The relevant algorithm for computing Gröbner bases
is usually called the Buchberger algorithm. The Gröbner bases have many
special properties which are important in the analysis of the ideal and the
corresponding variety. For us the essential property is the following.

Lemma 2.1. Let I ⊂ K[x, y] be an ideal and In = I ∩K[y] the nth elimina-
tion ideal. If G is a Gröbner basis for I with respect to a product ordering
(4), then G ∩ K[y] is a Gröbner basis for In.

Hence if the Gröbner basis is available, the generators of the relevant
elimination ideal are immediately available.
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The drawback of Buchberger algorithm is that it has a very high com-
plexity in the worst case, and in practice the complexity depends quite much
on the chosen ordering. Anyway Gröbner bases have proved to be very useful
in many different applications. Nowadays there exist many different imple-
mentations and improvements of the Buchberger algorithm. We chose to use
the program Singular [11, 12] in all the computations in this paper.

2.4 Dimension of a variety

There are many different ways to define the dimension of a variety, and it is a
priori not at all obvious that these different approaches are in fact equivalent.
We will only here explain some basic matters and refer to [5, 8, 13] for precise
definitions.

Now a variety is in general composed of many pieces of different sizes.
One approach is first to define the dimension for irreducible varieties and then
say that the dimension of a general variety is the maximum of dimensions
of its irreducible components. However, an important point is that one can
compute the dimension without computing the prime decomposition. In
fact once the Gröbner basis of an ideal is available, the computation of the
dimension is relatively easy. In Singular this algortihm is implemented and
we have used it in the computations below.

Note that the dimension refers to complex varieties. For example the
dimension of the variety corresponding to polynomial x2

1 + x2
2 + 1 is one

although the real variety is empty. In applications one is mostly interested
in real varities, hence one must check separately that the results apply also
in the real case. Fortunately this is quite obvious in the computations of the
present paper so we will not comment on this further.

2.5 Singular points of a variety

To study singular points we need Fitting ideals. Let M be a matrix of
size k × n with entries in A. The ℓth Fitting ideal of M , Iℓ(M), is the ideal
generated by the ℓ×ℓ minors of M . Let us consider the ideal I = 〈g1, . . . , gk〉
and the corresponding variety V(I). To define singular and regular points in
full generality would require some lengthy explanations which are finally not
needed below. Hence we will simply state a special case which we actually
use and refer to [6, 13] for more details.

Let V(I) be an irreducible variety of dimension n − k. Then p ∈ V(I) is
regular, if dgp is of full rank and singular otherwise. The singular locus in
this case is the variety

V
(
I + Ik(dg)

)
= V

(
I
)
∩ V

(
Ik(dg)

)

Intuitively, V(I) is defined by k equations over n variables, these equations
are the generators of I, and singularity means the maximal (size k×k) minors
of the jacobian of these equations are zero. In particular if the Gröbner basis
of I + Ik(dg) is {1}, then all points of V(I) are regular.
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Example 2.1. In this example we will use the mathematical tools presented
above and analyze rotations in R2 using polynomial equations. Writing

A =

(
a11 a12

a21 a22

)
≃ (a11, a12, a21, a22) ∈ R4

we can make identification

O(2) ≃
{
(a11, a12, a21, a22) ∈ R4 | a2

11 + a2

21 − 1 = 0 ,

a11a12 + a21a22 = 0 , a2

12 + a2

22 − 1 = 0
}

.

Hence the ideal I = 〈a2
11 + a2

21 − 1, a11a12 + a21a22, a
2
12 + a2

22 − 1〉 and the
corresponding variety V(I) fully describes the structure of the orthogonal
group O(2). We then inspect the ideal I in the ring Q[a11, a12, a21, a22] and
compute the prime decomposition

√
I = P1 ∩ P2

P1 = 〈a2

21 + a2

22 − 1, a12 − a21, a11 + a22〉
P2 = 〈a2

21 + a2

22 − 1, a12 + a21, a11 − a22〉

Hence O(2) ≃ V(
√
I) = V(I) has two irreducible one dimensional compo-

nents V(P1) and V(P2). Moreover the intersection of these components is
empty. One way to see this is to note that the Gröbner basis of the ideal
P1 + P2 is {1}. Another way is to check that

det(A) = −1, (a11, a12, a21, a22) ∈ V(P1)

det(A) = 1, (a11, a12, a21, a22) ∈ V(P2)

We can thus make the identification SO(2) ≃ V(P2). Let us then consider
the map g whose components are the generators of P2. Now computing the
Gröbner basis of P2 + I3(dg) we obtain {1}. Hence SO(2) is a smooth variety.
Below is the Singular script containing the computations.

> ring r=0,(a11,a12,a21,a22),dp;

> matrix A[2][2]=a11,a12,a21,a22;

> matrix I[2][2]=1,0,0,1;

> matrix M=transpose(A)*A-I;ideal J=M;

> LIB "all.lib";

> list L=minAssGTZ(J);

> ideal P1=L[1];ideal P2=L[2];

> dim(P1);dim(P2);

> ideal P=P1,P2;

> ideal G=groebner(P);matrix dg=jacob(P2);

> ideal F=fitting(dg,0);ideal K=P2,F;

> ideal G2=groebner(K);
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3 Multibody systems

3.1 Configuration space

Usually one describes a rigid body by giving its center of mass and orienta-
tion. Hence the configuration space of one rigid body is Q = R3×SO(3) and
its mobility (or the number of degrees of freedom) is 6, i.e. dim

(
Q
)

= 6.
We represent rotations with Euler parameters. Let a = (a0, a1, a3, a4) ∈

S3 ⊂ R4. Any R ∈ SO(3) can be represented by such an a as

R = H̃HT =



−a1 a0 −a3 a2

−a2 a3 a0 −a1

−a3 −a2 a1 a0





−a1 a0 a3 −a2

−a2 −a3 a0 −a2

−a3 a2 −a1 a0




T

= 2




a2
0 + a2

1 − 1

2
a1a2 − a0a3 a1a3 + a0a2

a1a2 + a0a3 a2
0 + a2

2 − 1

2
a2a3 − a0a1

a1a3 − a0a2 a2a3 + a0a1 a2
0 + a2

3 − 1

2


 .

Note that a and −a correspond to the same R.1 We thus work with the
configuration space R3 ×S3 with the understanding that the opposite points
of S3 correspond to the same physical situation. This is a minor inconvenience
compared to the advantages of this representation. From the point of view
of the present paper the essential fact is that all constraints are formulated
using polynomial equations which allows us to use the tools introduced above.
There are other advantages which are important in numerical computations,
see [16] for more details.

3.2 Constraints

Let r denote the position of the center of mass of a given rigid body in global
coordinates. Then given any point χ in local coordinates, it can be written
in global coordinates as

x = r + Rχ , R ∈ SO(3).

From now on we will always place the origin of the local coordinate system of
the rigid body to its center of mass. We then introduce two basic constraints.
In the following definitions χ, η and κ will be vectors or points in local
coordinate systems.

Definition 3.1 (Symmetric orthogonality constraint). Let B1 and B2 be
rigid bodies. The symmetric orthogonality constraint requires that

(R1χ1, R2χ2) = 0

where χi (resp Ri) is a vector (resp. rotation matrix) in local coordinate
system of Bi.

1Topologically this says that S3 is a 2-sheeted covering space of SO(3).
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Hence vectors χ1 and χ2 are orthogonal in the global coordinate system.

Definition 3.2 (Coincidence constraint). Let ri (resp. χi) be the center of
mass (resp. a point in the local coordinates) of the body Bi. The coincidence

constraint requires that

r1 + R1χ1 − r2 − R2χ2 = 0 .

Hence χ1 and χ2 coincide in the global coordinate system. We can now
represent the revolute joint with these two conditions. Let χi, ηi, κi be vectors
in the local coordinate system of Bi and let us assume that vectors χ1 and
η1 are linearly independent.

Definition 3.3 (Revolute joint). Let ri be the center of mass of Bi. Bodies
B1 and B2 are connected to each other by a revolute joint if

(R1χ1, R2χ2) = 0

(R1η1, R2χ2) = 0

r2 + R2κ2 − r1 − R1κ1 = 0.

Thus the revolute joint is defined by 5 equations. Hence the mobility of a
system consisting of 2 rods joined together by a revolute joint is 2 ·6−5 = 7.

For completeness let us also mention the third basic constraint.

Definition 3.4 (Orthogonality constraint). Let B1 and B2 be rigid bodies.
The orthogonality constraint requires that

(R1η, r1 + R1χ1 − r2 − R2χ2) = 0

where η is a given vector in local coordinate system of B1 and r1 + R1χ1 −
r2 − R2χ2 gives the difference of χ1 and χ2 in global coordinates.

With these basic constraints most joints occurring in practice can be
specified. All constraints are low order polynomials and thus very suitable
for the analysis by the methods described above.

4 Bricard’s mechanism

4.1 Initial system of equations

We are now ready to analyze the Bricard’s system shown in Figure 1. It
consists of 5 rods which are connected to each other with revolute joints and
in addition the first and the last rod are connected permanently with respect
to the global coordinate system. Bricard himself viewed the mechanism a
bit differently: he considered a closed loop of 6 rods and 6 joints [4]. How-
ever, from the point of view of kinematic analysis the two formulations are
equivalent.
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Figure 1: Bricard’s system: Cylinders represent the revolute joints 1, 2, 3, 4, 5
and 6.

Now a straightforward count says that the mobility of Bricard’s system
should be zero since the mobility of 5 rods is 5 · 6 = 30, and 6 revolute joints
give 6 · 5 = 30 constraints. However, it is well-known that the mobility is
one, and that is why Bricard called this and similar systems paradoxical.
Our purpose below is to provide an explicit description of the configuration
space of Bricard’s system.

The origin of the global coordinate system coincides with the first joint
and is shown in the Figure 1. In each local coordinate system the vector e1 is
parallel to the rod. Then for example the rod B is connected to rod A, joint
2 allows rod B to move on the plane which is perpendicular to e2 and joint 3
allows rod B to move on the plane which is perpendicular to e1. Analysing
similarly other rods we finally arrive at the following system of constraint
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equations.

p1 = (e1, R1e3) = 0 p13...15 = r1 − 1

2
R1e1 = 0

p2 = (e2, R1e3) = 0 p16...18 = r1 + 1

2
R1e1 − r2 + 1

2
R2e1 = 0

p3 = (R1e1, R2e3) = 0 p19...21 = r2 + 1

2
R2e1 − r3 + 1

2
R3e1 = 0

p4 = (R1e3, R2e3) = 0 p22...24 = r3 + 1

2
R3e1 − r4 + 1

2
R4e1 = 0

p5 = (R2e1, R3e3) = 0 p25...27 = r4 + 1

2
R4e1 − r5 + 1

2
R5e1 = 0

p6 = (R2e3, R3e3) = 0 p28...30 = r5 + 1

2
R5e1 = x = −e2

p7 = (R3e1, R4e3) = 0 p31 = |a|2 − 1 = 0

p8 = (R3e3, R4e3) = 0 p32 = |b|2 − 1 = 0

p9 = (R4e1, R5e3) = 0 p33 = |c|2 − 1 = 0

p10 = (R4e3, R5e3) = 0 p34 = |d|2 − 1 = 0

p11 = (R5e1, e1) = 0 p35 = |e|2 − 1 = 0

p12 = (R5e3, e1) = 0

(5)

The rotation matrices are parametrized as R1(a), R2(b), . . . , R5(e) where
a = (a0, a1, a2, a3) ∈ S3 ⊂ R4, and so on. The five last equations follow from
the fact that a, b, c, d, e ∈ S3. Hence we have 35 equations depending on 35
variables.

4.2 Preliminary simplification

Note that ri appear linearly in (5), and p13, . . . , p30 are easily rearranged into

r1 − 1

2
R1e1 = 0

r2 − R1e1 − 1

2
R2e1 = 0

r3 − R1e1 − R2e1 − 1

2
R3e1 = 0

r4 − R1e1 − R2e1 − R3e1 − 1

2
R4e1 = 0

r5 − R1e1 − R2e1 − R3e1 − R4e1 − 1

2
R5e1 = 0

(
R1 + R2 + R3 + R4 + R5

)
e1 + e2 = 0,

(6)

so we can consider the ri solved and formulate the constraints in terms of
orientations alone as follows. The last equation of (6) gives 3 polynomials
which we denote by p36, p37, and p38. Hence the ideal which is generated by
polynomials containing only orientations and which we are going to analyze
is

I = 〈p1, . . . , p12, p31, . . . , p38〉 ⊂ Q[a, b, c, d, e] . (7)

Hence there are 20 polynomials and 20 variables.

4.3 Initial configuration

Our aim is to decompose the variety V(I) into irreducible components. It
turns out that there are a lot of components, and some of them are not

13



physically relevant. In other words the equations admit “spurious” solutions
which are not compatible with the configuration shown in Figure 1. Hence
we need a test if the initial configuration actually belongs to a particular
component of V(I).

We construct an ideal which specifies the initial configuration. The po-
sition of the joint 2 in the initial configuration satisfies R1e1 − e1 = 0 which
gives an ideal Ia = 〈R1

11 − 1, R1
21, R

1
31〉. Similarly if we look at the position of

the joint 3 we get R2e1+e3 = 0 which yields the ideal Ib = 〈R2
11, R

2
21, R

2
31+1〉.

Continuing in this manner for joints 4, 5 and 6 we get

Ic = 〈R3

11, R
3

21 + 1, R3

31〉,
Id = 〈R4

11 + 1, R4

21, R
4

31〉,
Ie = 〈R5

11, R
5

21, R
5

31 − 1〉.

Now defining
Iinit = Ia + Ib + Ic + Id + Ie

it is seen that the initial configuration belongs to the variety V(Iinit). Now
suppose that a particular component Vcomp ⊂ V(I) is given by an ideal Icomp:
Vcomp = V(Icomp). We can discard V(Icomp) if V(Icomp) ∩ V(Iinit) = ∅. This
is certainly the case if Icomp + Iinit = Q[a, b, c, d, e] because

V(Icomp) ∩ V(Iinit) = V(Icomp + Iinit)

Now Singular computes a minimal Gröbner basis and one can show that if
the ideal is the whole ring the minimal Gröbner basis is {1}. Hence if the
Gröbner basis of Icomp + Iinit is {1} we can discard V(Icomp).

5 Decomposition of the configuration space

of Bricard’s mechanism

Let us consider the ideal I given in (7) and start implementing the strategy
in (3). Let us write I = S1 + S̃1 where S1 = 〈p1, p2, p31〉 and S̃1 is generated
by other generators of I. Calculating the prime decomposition of

√
S1 we

get
√

S1 = S1,1 ∩ S1,2

S1,1 = 〈a2

1 + a2

2 − 1, a3, a0〉
S1,2 = 〈a2

0 + a2

3 − 1, a2, a1〉.

Hence either a3 = a0 = 0 or a2 = a1 = 0. Similarly writing I = S2 + S̃2

where S2 = 〈p11, p12, p35〉 we get the prime decomposition of
√

S2,

√
S2 = S2,1 ∩ S2,2

S2,1 = 〈2e2

2 + 2e2

3 − 1, e1 − e2, e0 + e3〉
S2,2 = 〈2e2

2 + 2e2

3 − 1, e1 + e2, e0 − e3〉.
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In this case either e2 = e1, e3 = −e0 or e2 = −e1, e3 = e0. Now we have four
different possibilities from which to continue.

1. (a1, a2, e2, e3) = (0, 0, e1,−e0)

2. (a1, a2, e2, e3) = (0, 0,−e1, e0)

3. (a0, a3, e2, e3) = (0, 0, e1,−e0)

4. (a0, a3, e2, e3) = (0, 0,−e1, e0)

We will investigate the case 1. further, i.e. consider the ideal I2 = I + S1,1 +
S2,1. There is no loss of generality in choosing just one of the above cases.
Recall that Euler parameters a and −a correspond to the same physical
situation. Hence the first and second cases are equivalent, as well as the
third and fourth. Moreover choosing between a1 = a2 = 0 and a0 = a3 = 0
corresponds to choosing different local coordinates for the first rod, and this
has obviously no effect on what happens physically in global coordinates.

We now write I2 = S3 + S̃3 where

S3 = S1,1 + 〈p1, p2, p3.p4, p31, p32〉

Computing the prime decomposition of
√

S3 in Q[(a1, a2), (b0, b3), (b1, b2), (a0, a3)]
we get √

S3 = S3,1 ∩ S3,2

S3,1 = 〈2b2
1 + 2b2

2 − 1, a2
0 + a2

3 − 1,
b3 − 2a0a3b1 − 2a2

3b2 + b2,
b0 + 2a2

3b1 − 2a0a3b2 − b1〉
S3,2 = 〈2b2

1 + 2b2
2 − 1, a2

0 + a2
3 − 1,

b3 + 2a0a3b1 + 2a2
3b2 − b2,

b0 − 2a2
3b1 + 2a0a3b2 + b1〉 .

Similarly we write I2 = S4 + S̃4 where

S4 = S2,1 + 〈p9, p10, p11, p12, p34, p35〉.

Computing the prime decomposition of
√

S4 in Q[(e3, e2), (d0, d1), (d2, d3), (e0, e1)]
we get √

S4 = S4,1 ∩ S4,2

where for example

S4,1 = 〈 2e2
0 + 2e2

1 − 1, 4d2e
2
1 − d2 − 4d3e0e1 + d3,

d2e0 + d2e1 − d3e0 + d3e1, 2d2
1 + 2d2

3 − 4e0e1 − 1,
4d0e

2
1 − d0 − 4d1e0e1 + d1, d0e0 + d0e1 − d1e0 + d1e1,

d0d3 − d1d2, 2d0d1 + 2d2d3 + 4e2
1 − 1,

2d2
0 + 2d2

2 + 4e0e1 − 1 〉 .

Again we have four choices from which to continue and again we can without
loss of generality to choose just one of them. Let us choose the ideals S3,1

15



and S4,1 and define I3 = I2 + S3,1 + S4,1. We then write I3 = S5 + S̃5 where
the generators of S5 depend only on the variables a, b and c:

S5 = S3,1 + 〈p1, . . . , p6, p31, p32, p33〉.

We investigate S5 in the ring

Q[(c1, c2, a1, a2), (b0, b3), (c3, c0), (b1, b2), (a0, a3)] (8)

in order to eliminate some variables. First we compute the Gröbner basis G5

of S5. It turns out that G5 has 33 generators, but only first three of these
contain variables a0, a3, b1, b2, c0, c3. Hence we can write

S5 = 〈G5〉 = E5 + Ẽ5

where the generators of E5 are

E5(1) =a2

0 + a2

3 − 1

E5(2) =2b2

1 + 2b2

2 − 1

E5(3) =((−32b3

2 + 8b2)b1a
3

3 + (16b3

2 − 4b2)b1a3)a0 + (16b2

2 − 32b4

2 − 1)a4

3

+ (−16b2

2 + 32b4

2 + 1)a2

3 − 4b4

2 + 2b2

2 + c4

0 + (2c2

3 − 1)c2

0 + c4

3 − c2

3.

We now compute the prime decomposition of
√

E5 using the ordering
Q[(b1, b2), (a0, a3), (c3, c0)]. This gives 2 prime ideals whose Gröbner bases,
in the ordering (8), are

√
E5 = E5,1 ∩ E5,2

E5,1 = 〈 a2
0 + a2

3 − 1, 2b2
1 + 2b2

2 − 1,
c2
0 + c2

3 + 4b1b2a0a3 + 4b2
2a

2
3 − 2b2

2 − a2
3 〉

E5,2 = 〈 a2
0 + a2

3 − 1, 2b2
1 + 2b2

2 − 1,
c2
0 + c2

3 − 4b1b2a0a3 − 4b2
2a

2
3 + 2b2

2 + a2
3 − 1 〉 .

Again we have two choices from which to continue, and we will choose the
ideal corresponding to E5,1 for further analysis and define I4 = I3 +E5,1. We
then compute the Gröbner basis of I4, denoted G4, which has 918 generators.
The generators G4(32) and G4(34) are particularly interesting:

G4(32) = e1(c3 + c0)(b1 + b3)

G4(34) = (d0 − d1)(c3 + c0)(b1 + b3) .

Hence there are 3 essentially different cases

1. c0 + c3 = 0

2. b1 + b3 = 0

3. d0 − d1 = e1 = 0.
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Now computing the Gröbner basis of Iinit + I4 + 〈d0 − d1, e1〉 we get {1}.
Hence the initial configuration does not belong to the variety corresponding
to this case. However, the Gröbner bases of

Iinit + I4 + 〈b1 + b3〉 and Iinit + I4 + 〈c0 + c3〉
are not {1}, so these cases must be examined further. It turns out that the
case b1 +b3 = 0 can be discarded. To show this let us define Ĩ = I4 +〈b1 +b3〉
and let us use the factorizing Gröbner basis algorithm.2 This gives a list of
ideals F̃i such that

√
Ĩ =

√
F̃1 ∩ · · · ∩ F̃ℓ =

√
F̃1 ∩ · · · ∩

√
F̃ℓ

but the factors F̃i are not necessarily prime ideals. In the present case we
obtain 150 factors for Ĩ. Now only 5 factors are positive dimensional and none
of them contain the initial configuration. Hence the initial configuration is
contained only in a zero dimensional component of V(Ĩ) and we need not
analyse this case any further.

This leaves us with the case c0 +c3 = 0 and we continue our analysis with
I5 = I4+〈c0+c3〉. Computing the Gröbner basis for I5 we can then determine
the dimension of V(I5). Somewhat surprisingly this gives dim(V(I5)) = 2.
This is because V(I5) still contains spurious components. In fact just by
looking at Figure 1 one can convince oneself that there must be 2 dimensional
components in V(I5). Namely the equations allow solutions where rods B
and E are identified as well as C and D. Clearly the mobility of the system
now is 2 because B and E can rotate independently of C and D. Another 2
dimensional component is obtained by identifying A and D, and B and C.
Obviously these solutions do not contain the initial configuration.

To get rid of the spurious components we again use factorizing Gröbner
basis algorithm. This time we get a list of ideals F1, . . . , F93. Only one of
them, F65 (whose Gröbner basis contains 182 elements), is both one dimen-
sional and contains the initial configuration. Hence we set I6 = F65. Now
I6 is not necessarily a prime ideal so that the variety V(I6) might still have
zero dimensional components. Also it may still have several one dimensional
components which describe the same physical configuration. Consequently
we investigate this ideal further in the ring

Q[(e2, e3, a1, a2, c3, c2, c1, e1), (b0, b3), (d0, d1, d2, d3, b1, b2), (e0, c0, a0, a3)]

Computing the Gröbner basis of I6 we find that the second generator is
e2
0 − c2

0. Again we have 2 choices which correspond to the same physical
situation. We choose I7 = I6 + 〈e0 − c0〉 and inspect I7 in the ring

Q[(d3, d2, d1, d0, b3, b2, b1, b0, e3, e2), (e1, e0, c3, c2, c1, a2, a1c0, a0, a3)].

The first 19 generators give the relevant elimination ideal

E7 = I7 ∩ Q[e1, e0, c3, c2, c1, a2, a1, c0, a0, a3].

2This is implemented as the command facstd in Singular.
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The prime decomposition of
√

E7 has 12 components

√
E7 = E7,1 ∩ . . . ∩ E7,12

Only 2 of the prime ideals combined with ideal I7 contain the initial position
and are one dimensional. Again these 2 correspond to same physical situa-
tion and we choose one of them, say E7,1, and continue with I8 = I7 + E7,1.
Now computing the prime decomposition of

√I8 we find that it has 4 com-
ponents

√I8 = I8,1 ∩ I8,2 ∩ I8,3 ∩ I8,4. But all cases lead to same physical
situation because of the reflection invariance of Euler parameters. In fact
the symmetries to change I8,1 to other ideals I8,i are b → −b, d → −d and
(b, d) → (−b,−d). The ideal I9 = I8,1 is given by the generators

q̃1 = a2
0 + a2

3 − 1 q̃2 = 8c2
0a0a3 + 4c2

0 − 4a0a3 − 1

q̃3 = 8c2
0a

3
3 − 4c2

0a0 − 8c2
0a3 − 4a3

3 + a0 + 4a3

q̃4 = a1 q̃5 = a2

q̃6 = c1 + 2c2
0a0 + 2c2

0a3 − a3 q̃7 = c2 + 2c2
0a0 + 2c2

0a3 − a0

q̃8 = c3 + c0 q̃9 = e0 − c0

q̃10 = e1 + 2c2
0a0 + 2c2

0a3 − a0 − a3

q̃11 = e2 + 2c2
0a0 + 2c2

0a3 − a0 − a3

q̃12 = e3 + e0

q̃13 = 4b0 − 8c2
0a

2
3 + 4c2

0 + 4c0a3 + 4a2
3 − 3

q̃14 = 4b1 − 8c2
0a

2
3 + 4c2

0 − 4c0a3 + 4a2
3 − 3

q̃15 = 4b2 + 8c2
0a

2
3 − 4c2

0 + 4c0a0 − 4a2
3 + 1

q̃16 = 4b3 + 8c2
0a

2
3 − 4c2

0 − 4c0a0 − 4a2
3 + 1

q̃17 = 4d0 − 8c2
0a

2
3 + 4c2

0 − 4c0a3 + 4a2
3 − 1

q̃18 = 4d1 + 8c2
0a

2
3 − 4c2

0 − 4c0a3 − 4a2
3 + 1

q̃19 = 4d2 − 8c2
0a

2
3 + 4c2

0 + 4c0a0 + 4a2
3 − 3

q̃20 = 4d3 + 8c2
0a

2
3 − 4c2

0 + 4c0a0 − 4a2
3 + 3

Ideal I9 = 〈q̃1, . . . , q̃20〉 still has 20 polynomials for 20 unknowns. However,
〈q̃1, q̃2, q̃3〉 = 〈q̃1, q̃2〉 so q̃3 can be dropped. Then simplifying we get the
following system of polynomials which fully describes the configuration space
of Bricard’s system with Euler parameters.

q1 = a2
0 + a2

3 − 1 q2 = 4c2
0(2a0a3 + 1) − 4a0a3 − 1

q3 = a1 q4 = a2

q5 = c1 + 2c2
0(a0 + a3) − a3 q6 = c2 − c1 + a3 − a0

q7 = c3 + c0 q8 = e0 − c0

q9 = e1 − c1 − a0 q10 = e2 − e1

q11 = e3 + e0

q12 = 4b0 + 4c2
0(1 − 2a2

3) + 4a3(c0 + a3) − 3
q13 = b1 − b0 − 2c0a3

q14 = 2b2 + 2b0 + 2c0(a3 + a0) − 1
q15 = b3 − b2 − 2c0a0

q16 = 2d0 − 2b1 + 1 q17 = 2d1 + 2b0 − 1
q18 = 2d2 + 2b3 − 1 q19 = 2d3 − 2b2 + 1 .

(9)
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Note that this is in triangular form. If we look at the map q : R20 7→ R19

the Jacobian of q is a 19 × 20 matrix and has 380 elements but only 49 of
these are nonzero and only 17 are nonconstant. From the equations we see
that the subsystem

q1 = a2

0 + a2

3 − 1 = 0

q2 = 4c2

0(2a0a3 + 1) − 4a0a3 − 1 = 0,
(10)

is the one of essential importance because after solving this system every
other variable can be solved immediately. Therefore let us inspect the ideal
Iess = 〈q1, q2〉 ⊂ Q[c0, a0, a3]. We define the map q̂ : R3 7→ R2, q̂ = (q1, q2)
and find that the Gröbner basis of Iess + I2(dq̂) is {1}. Hence the variety
V(Iess) is smooth and one dimensional. We have proven

Theorem 1. The configuration space of the Bricard’s system is a one-
dimensional smooth variety. Moreover, the polynomials (10) give an essential
description of the configuration space in terms of 3 variables a0, a3, and c0.
Every other Euler parameter is then explicitly given by the triangular system
(9).

6 Parametrization of the configuration space

We want to parametrize the variety V(Iess) in order to present the variety of
the whole system with this parameter. We make substitutions

a0 = cos(α/2) , a3 = sin(α/2).

With this choice the equation q1 = 0 is identically satisfied. Note that α
gives the rotation angle of the first joint. Substituting the expressions of a0

and a3 to q2 = 0 we get

c2

0 =
1

4

(1 + 4a0a3

1 + 2a0a3

)
=

1

4

(1 + 2 sin(α)

1 + sin(α)

)
.

Because c2
0 ≥ 0 we see that α ∈ [−π/6, 7π/6]. From this it easily follows that

topologically the variety V(Iess) is a union of two smooth Jordan curves, see
Figure 2. One of the curves is given by

γ±(α) =

(
cos(α/2) , sin(α/2) , ±1

2

√
1 + 2 sin(α)

1 + sin(α)

)
α ∈ [−π/6, 7π/6],

and the other is −γ±. Note that both curves represent the same physical
situation.

In [10] the position of joint 3 was chosen to compare the performance of
different numerical solvers, so let us give an explicit description of the set of
possible positions. The position of joint 3 is given by R1e1 + R2e1. We first
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Figure 2: On the left the variety V(Iess) ⊂ R3. On the right the possible
positions of joint 3 in global coordinates. The dot marks the initial position
(1, 0,−1) of the joint 3 shown in Figure 1.

express the rotation matrices R1 and R2 in terms of parameters a0, a3 and
c0 using the system (9). This gives

R1 =




1 − 2a2
3 −2a0a3 0

2a0a3 1 − 2a2
3 0

0 0 1




R2 =




(4c2
0 − 1)(2a2

3 − 1) 2c0(a3 − a0) 2a0a3

4c2
0 − 2a0a3 − 1 2c0(1 − 4c2

0)(a0 + a3) 2a2
3 − 1

4c0(1 − 2c2
0)(a0 + a3) 1 − 4c2

0 0


 .

Hence the position of joint 3 is given by

x = 8c2

0a
2

3 − 4c2

0 − 4a2

3 + 2 , y = 4c2

0 − 1

z = −8c3

0a0 − 8c3

0a3 + 4c0a0 + 4c0a3.
(11)

Now consider the ideal

J = 〈 − x + 8c2

0a
2

3 − 4c2

0 − 4a2

3 + 2, −y + 4c2

0 − 1,

− z − 8c3

0a0 − 8c3

0a3 + 4c0a0 + 4c0a3, q1, q2 〉.

Computing the Gröbner basis of J in Q[(c0, a0, a3), (x, y, z)] yields the elimi-
nation ideal

EJ = 〈y2 + z2 − 1, x2 + 2y − 1〉 .

Hence V(EJ) gives the possible positions of the joint 3. It is easy to check that
this is again a smooth Jordan curve in R3. Substituting the parametrizations
of a0, a3 and c0 into (11) it is seen that the curve V(EJ) can be parametrized
by β± : [−π/6, 7π/6] 7→ R3

β±(α) =

(
1 − sin(α)

cos(α)
,

sin(α)

1 + sin(α)
,
±
√

1 + 2 sin(α)

1 + sin(α)

)
.
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Figure 3: From upper left to lower right: Bricard’s system when α = 0, π/9,
−π/6 and 7π/6. Dots represent the joints 1, 2, 3, 4, 5, 6.
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Similarly we can plot the whole Bricard’s system, see Figure 3.

As one can expect the end points α = −π/6 and α = 7π/6 are points
where the Bricard’s system is in the plane z = 0. In these configurations the
Bricard’s system is in the form of an equilateral triangle.

7 Conclusions

We have shown using the tools of modern algebraic geometry and computa-
tional algebra that the mobility of Bricard’s mechanism is indeed one, and
moreover we have explicitly parametrized the configuration space. The key
parameter is the anticlokwise angle α between the vector representing rod A
and the global basis vector e1. In the process we have seen that the variety
defined by the initial equations contains many spurious components. This is
probably the case also more generally: the ideal defined by constraints may
be “far from being prime”. This suggests that the analysis performed above
for Bricard’s system will be useful for general multibody systems because it is
likely to lead to a better understanding of the structure of the configuration
space. Indeed we can argue that the “real” configuration space is the relevant
irreducible component and not the whole variety defined by the constraints.

In addition our analysis gave a formulation for constraints which is more
suitable for numerical computations. In fact the reason for choosing Bricard’s
mechanism as a benchmark problem disappears because using our final sys-
tem based on the generators of the relevant prime ideal the numerical problem
becomes a standard well-posed problem in multibody dynamics.
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