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1 Introduction

For a given symmetric linear relation S in a Hilbert space H, the selfadjoint
extensions of S can be characterized as restrictions of the adjoint S∗ of S,
when S is the minimal relation associated with a formally symmetric ordinary
differential expression in: L2−function space, then the restrictions involve
linear combinations of the boundary values of the elements in the domain
D(S∗)of S∗. When the selfadjoint extensions are canonical within the space
H , the coefficients of these combinations can be taken to be constants. In
the case of selfadjoint extensions in inner product spaces larger than the
given space H, they depend analytically on a parameter, see [3], [9], [11], [18]
and [22]. We shall prove that every generalized resolvent R(ℓ) of S can be
expressed in terms of a fixed generalized resolvent G(ℓ) of S and the Weyl
coefficients Ψ(ℓ) of R(ℓ) relative to G(ℓ) which can be written as;

R(ℓ)f = G(ℓ)f + s(ℓ)Ψ(ℓ)[f, s(ℓ)] (1)

where S(ℓ) is a holomorphic basis for the null space v(S∗ − ℓ) .One of the
most important problems in the theory of operators is that of extension
of symmetric operator to a selfadjoint one on a Hilbert space H. When
we have a symmetric linear relation in Hilbert space, the spectral theorem
can be constructed. Given a symmetric linear relation S in Hilbert space
H2 with equal defect numbers n, then there exists a selfadjoint extension
for that relation in this Hilbert space. We define a minimal and maximal
relation associated to S on a Hilbert space H2. We may take this S to be:
S := Tmin ∩ C∗, where C is spanned by {σ, ζ},ζ − dimensional subspace in
H2, Tmin is the minimal relation in H2. We shall construct the extensions
of S related to the generalized resolvents and the selfadjoint extensions in
H2 ,we have mentioned above.

2 Preliminaries

Several observations in this section can be found in [5],[6]and [27]. If T , S

are single-valued, then T, S become graph of linear operators. We shall use
the following notations: D(T ) = {x | ∃y, {x, y} ∈ T }, the domain, R(T ) =
{y|∃x, {x, y} ∈ T}, the range, in particular

T (0) = {y|{0, y} ∈ T} , multivalued part,
(T ) = {x|{x, 0} ∈ T} , nullspace
T + S = {{x, y + z}|{x, y} ∈ T{x, z} ∈ S} , sum
ST = {{x, z}|{x, y} ∈ T, {y, z} ∈ S} , product
R = Set of real numbers
C = Set of complex numbers
C0 = C\R
T⊥ = orthogonal complement in H2,

TΘS = T ∩ S , see [10] and [13]
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Now consider the symmetric relation which we interested in as S :=
TminC

∗ in a Hilbert space H, where: C = {σ, ζ}, - dimensional subspace
in H2, Tmin defined as in Section 2 in [19].

Tmin = {{f, g}Tmax|f(a) = 01

k, f(b) = 01

k}.

Tmax := {{f, g} ∈ (L2(△ dt))2}

with the property that f contains an absolutely continuous function f̃ such
that from some g̃ ∈ g : j̃f ′(t) − Hf̃(t) = △(t)g̃(t), almost all t ∈ [a, b].

It is clear that S ⊂ S∗ and from von Neumann’s identity S∗ = S + Mµ,

direct sums, µ ∈ C0. As usual, there exists a selfadjoint extension A in Krein
space K for S and then we have H ⊂ A, S ⊂ A, ρ(A) 6= φ where ρ is the
resolvent set, we shall consider this special case as an example.

Consider the system J y
′

− H̃ y = ℓ△y + △f , where: H̃(t) = H̃(t)∗,
△(t) = △(t)∗ ≥ 0,

J =

(
0 −1
1 0

)
,

t ∈ [a, b), H = L2(△dt), we assume that system is regular at a limit point
at b, and we define,

Tmax := {{f, g} ∈ H2 | Jf
′

− H̃f = △g}.

We mean by

f =

(
f1

f2

)
,

S = {{f, g}Tmax|f(a) = 0} ⊂ S∗ = Tmax

and

Ỹ (ℓ) =

(
Ỹ11 Ỹ12

Ỹ21 Ỹ22

)
= (Ỹ1(ℓ), Ỹ2(ℓ)), Ỹ1(a, ℓ) = I,

the fundamental solution is

M(ℓ) = − lim
t→b

limỸ12(t, ℓ)−1Ỹ11(t, ℓ)

is Q-function of S and

Ỹ0(ℓ) + Ỹ2(ℓ)M(ℓ) = H̃(t)

span V (S∗ − ℓ), see [8], [9], [11] and [20].

3 Extension of the Perturbing Case

In this section, we considered extensions of symmetric subspaces, (Relations),
in the same Hilbert space H. If, however, the deficiency indices of S are not
equal, then there always exists a Hilbert space , such that H , and S has a
selfadjoint extension in H. Such an extension is called finite dimensional if:

dim(H̃ΘH) < ∞,

see [12], [15], [16] and [21].
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Theorem 3.1 The extension of S corresponds to the generalized boundary

value problem with Stieltjes boundary conditions
∫ b

a
f dµ∗ = 0.

Proof. For that when S := Tmin ∩ C∗, ({f, g} ∈ Tmax, {µ, 0} ∈ C), Tmax =
T ∗

min and when
DΩ(ℓ)D∗ : (n + r) × (n + r),

which describes the extension problem we need, and then we get that result.
We refer to [3], [14], [17] and [18].

The results presented in this section were given by Codington [6], but we
give here an independent and much simpler proof of the results.

Let S be the graph of a Hermitian operator in H, i.e.,

[Sf, g] = [f, Sg] ∀ f, g ∈ D(S),

such that D(S) is not necessarily dense in H but such that R(S) ⊆ D(S).
Suppose that an extension of S, A say, exists. Then A is the graph of an
operator selfadjoint in D(AS) . All the selfadjoint extensions of S in H can
be described in this way, then we have the following, see [5], [24] and [27].

Lemma 3.1 Let K be a closed subspace of H, and let A be the graph of

an operator such thatD(A) = Kand A is selfadjoint in K. In particular

R(A) ⊆ K. Let:

B := AΘ{(0, g)H2 : gK⊥}, (2)

Then B is a selfadjoint subspace in H2.

Proof. First note that since K is closed, we can write H = KΘK⊥ so that
any element f ∈ H can be written as f = f1 + f2,where f1 ∈ K, f2 ∈ K⊥

and [f1, f2] = 0.
Now let {f, g} ∈ B, {f, g} be of the form {h,Ah + g}, where h ∈ D(A)

and g ∈ K⊥. From any element {h
′

, Ah′ + g} ∈ B, we have:

[Ah′ + g′

1, h] = [Ah′, h] + [g′

1, h] = [h′, Ah] = [h′, Ah + g1].

since
[Ah

′

, h] = [h′, Ah], {h, Ah} ∈ A

which is selfadjoint. Hence {f, g} ∈ B∗, so that B ⊂ B∗.
Conversely, let {f, g} ∈ B∗ so that

[Ah + g1, f ] = [h, g] forall {h,Ah + g1} ∈ B (3)

where {h,Ah} ∈ A, g1 ∈ K⊥. also B∗ ⊆ A∗ implies that

[Ah, f ] = [h, g] forall h ∈ D(A) (4)

so that using (4) we get from (3)

[g1, f ] = 0 forall g1 ∈ K (5)
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fD ∈ (A) if f |= 0, so that {f,Af} ∈ A. Suppose that g′

1 = g−Af . To show
that g′

1 ∈ K⊥ for h ∈ D(A), [g′

1, h] = [g − Af, h] = [g, h] − [Af, h] implies
[g, h] = [f,Ah + g1] so that: [g′

1, h] = [f,Ah + g1] − [Af, h] = [f, g] = 0.
Hence, g′

1 ∈ K. So any {f, g} ∈ B∗ is of the form {f, g} = {f,Af +
g′

1},where g′

1 ∈ K, so that {f, g} ∈ B. Hence , B∗ ⊆ B. This proves the
lemma.

To find connection between possible extensions of S in and the extensions in
the Hilbert space H, we denote the adjoint of S in D(S) by S∗. Let D+, D−be
the spaces defined by

D± := {(g1, S
∗g1) ∈ S∗, g1 = ±ig1}. (6)

Then according to the extension theorem, S has a selfadjoint extension in
D(S) if and only if : dimD+ = dimD−. Let

X± = {{h,±ih} : h ∈ HΘD(S)}. (7)

Then we have the following results

M+ = D+ΘX+

M− = D − X − . (8)

We show first of these, whereas the second follows on exactly similar lines.
(i )D+, X+: are orthogonal: for any {g1, ig1} ∈ D+, g1 ∈ D(S∗) and any

[h, ih} ∈ X+, h ∈ HΘD(S), we have [{h, ih}, {g, ig1}] = [h, g1] + [h, g1] = 0
since [h, g1] = 0.

(ii) For any {h, ih}X+, h ∈ HΘD(S), and {f, g} ∈ S, [g, h] = [f, ih] = 0
for all: {f, g} ∈ S. This is because R(S) ⊆ D(S) and h ⊥ D(S) ; so that
X+ ⊆ M+. The fact that D+ ⊆ M+ is clear.

(iii) Let {f, if} ⊆ M+ where f1 ∈ H, and so:

f1 = g1 + h, g1 ∈ D(S), h ∈ HΘD(S) (9)

so that {f, if} ∈ S implies [g, f1] = [f, if1] for {f, g} ∈ S or [g, g1 + h] =
[f, i(g1 + h)]. But [g, h] = [f, h] = 0. since g, f ∈ D(S) and h ∈ HΘD(S)
hence [g, g1] = [f, ig1] for all {f, g} ∈ S, and so {g1, ig1} ∈ S∗. This shows
that every element {f1, if1} of M+ can be written as sum of an element of
D+ and an clement of X+.

From (i), (ii), and (iii) follows that

M+ = X+ΘD+ . (10)

From the above discussion we deduce the coming theorem, see [25], [26]
and [30].

Theorem 3.2 Let S be a densely defined closed symmetric operator in H

with finite but unequal deficiency indices, and let H1 be a Hilbert space such

that H ∈ H1and such that S has a selfadjoint extension in H1.

Then this extension is not finite.
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Proof. We have dimX+ = dimX− = dim(HΘD(S∗)). Thus if dim D+ =
dim D− , both being finite, we see that dim M+ = dim M− is not possible
unless dim(HΘD(S∗)) is infinite, see [4], [7], [28], and [30].
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