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Geometric properties of metric measure spaces

and Sobolev-type inequalities

Riikka Korte

1 Introduction

This dissertation is about the analysis on metric measure spaces with the
standard setting, where the measure is doubling and some sort of a Sobolev–
Poincaré inequality is valid. More precisely, we discuss the geometry of spaces
supporting a Poincaré inequality and we present equivalent characterisations
of Sobolev–Poincaré inequalities. We also discuss regularity of Sobolev func-
tions and the relationship between several conditions describing thickness of
the boundary of a set in a metric space.

In this section, we give a short overview of the theory of metric spaces with a
doubling measure and a Poincaré inequality, and we discuss how the theory
of Sobolev functions can be extended to these kind of spaces. Sections 2–5
include an overview of papers [I]–[IV].

1.1 Doubling measure

Requiring that the measure is doubling is a common way to ensure that the
space has a finite dimensional nature. The doubling condition is not strong
enough to guarantee an unambiguous dimension for the space. Neverthe-
less, it is enough to provide many classical results of zeroth order calculus.
These results include, for example, the Vitali covering theorem, Lebesgue
differentiation theorem and Hardy–Littlewood maximal theorem.

Definition 1.1. We say that µ is a doubling measure if there exists a constant
cD ≥ 1, called the doubling constant of µ, such that for all x ∈ X and r > 0,

µ(B(x, 2r)) ≤ cDµ(B(x, r)).

Here B(x, r) = {y ∈ X : d(x, y) < r}.

The quasimetric spaces with a doubling measure are also sometimes called
spaces of homogeneous type. Roughly speaking, the doubling condition gives
an upper bound for the dimension of the metric space. Indeed, if 0 < r <
R < ∞ and x ∈ B(y,R), then

µ(B(x, r))

µ(B(y,R))
≥ c

( r

R

)s

,
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where s = log2 cD and c is a constant that depends only on cD. By rather
straightforward calculations, we can show that the Hausdorff dimension of
the space cannot exceed s.

A metric space is doubling if there exists a constant N < ∞ such that every
ball of radius r may be covered by N balls of radii r/2. Note that, if a metric
space X has a doubling measure, then X is doubling, but the converse does
not hold in general. However, it is possible to construct a doubling measure to
every complete doubling space, see Luukkainen–Saksman [39] and Vol′berg–
Konyagin [55].

The doubling condition is general enough to allow for a wide number of
spaces. However, every doubling metric space can be quasisymmetrically
embedded into some finite dimensional Euclidean space. The argument is
attributable to Assouad [5].

Sometimes we need stronger growth restrictions than the doubling condition.
For example, we may assume that there exist 0 < Q1 ≤ Q2 < ∞ and C > 1
such that

1

C

( r

R

)Q2

≤
µ(B(x, r))

µ(B(y,R))
≤ C

( r

R

)Q1

(1.1)

for every y ∈ X, 0 < r < R < ∞ and x ∈ B(y,R). Here the lower bound
is equivalent to the doubling condition. The upper bound in (1.1) gives a
lower bound for the dimension of the space. By rather simple calculations,
we can show that, if the space is connected, or even uniformly perfect, and
the measure is doubling, then the measure satisfies (1.1) with some positive
constants. However, some phenomena occur only when Q1 > 1. If Q1 = Q2 =
Q, we say that the space is Ahlfors Q–regular. Only the Ahlfors regularity
condition is strong enough to allow global estimates for the size of balls. If
Q1 < Q2, we only gain information about the relative size of balls that are
near each other. Consider, for example, R

n equipped with Euclidean metric
and the measure

µ(E) =

∫

E

w(x) dx =

∫

E

|x|δ−n dx

with 0 < δ < 1. Since w(x) is a Muckenhoupt A1–weight, the measure µ
is doubling and the space supports a (1, 1)–Poincaré inequality. However,
it satisfies the condition (1.1) only with Q1 ≤ δ and Q2 ≥ n, because the
measure of balls depends not only on their radius but also on their distance
to the origin.

1.2 Poincaré inequality

The Poincaré inequality creates a link between the metric, the measure and
the gradient, and it provides a way to pass from the infinitesimal information
of the gradient to larger scales. If the integral of the gradient is small, then the
function does not oscillate too much. The Poincaré inequality also guarantees
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the existence of a number of rectifiable paths connecting any two points in
the space. The doubling condition is enough to allow zeroth order calculus,
but the Poincaré inequality lets us proceed to first order calculus.

It is not obvious to generalise the concept of the gradient to general metric
measure spaces, because it involves directions. Therefore, the gradient is of-
ten replaced by an upper gradient. A nonnegative Borel–measurable function
g is an upper gradient of a function u : X → [−∞,∞] if for all rectifiable
paths γ : [a, b] → X,

|u(γ(b)) − u(γ(a))| ≤

∫

γ

g ds.

In Euclidean spaces, the minimal upper gradient corresponds to the norm of
the gradient. However, the upper gradient is not unique. Namely, if g is an
upper gradient and h is any nonnegative Borel–measureable function, then
also g+h is an upper gradient. Upper gradient is a local concept in the sense
that the minimal upper gradient is zero almost everywhere in the set where
the function is constant. The upper gradient also has some linear nature, but
is not linear itself. This can be seen by considering upper gradients of two
functions. The sum of the upper gradients is an upper gradient of the sum
of the functions, but the analogous result does not hold for their difference.

Definition 1.2. We say that X supports a weak (1, p)–Poincaré inequality
if there exist constants cP > 0 and λ ≥ 1 such that, for all x ∈ X and r > 0,
for all measurable functions u on X and for all upper gradients g of u,

∫

B(x,r)

|u − uB(x,r)| dµ ≤ cP r

(
∫

B(x,λr)

gp dµ

)1/p

. (1.2)

Here we used the notation

fB =

∫

B

f dµ =
1

µ(B)

∫

B

f dµ.

The word weak in the definition above refers to the possibility that λ may
be strictly greater than 1. In R

n we obtain λ = 1.

There are several possible definitions for the Poincaré inequality. We can
vary the class of functions for which the Poincaré inequality is required to
hold, and replace the upper gradient by other substitutes for the gradient.
Most of the reasonable definitions coincide when the measure is doubling and
the space is complete, see Keith [30, 31] and Keith–Rajala [32]. For example,
instead of all measurable functions, it is enough to require inequality (1.2)
for compactly supported Lipschitz functions with Lipschitz upper gradients.
Or we may replace the upper gradient by the local Lipschitz constant.

It is common to all of these definitions that they are invariant under changes
of coordinates in bi–Lipschitz mappings. This is a characteristic of all analysis
in metric spaces, since, in general, we do not have any linear structure and
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thus the concepts should not depend on such a structure even if it exists in
some special cases.

By Hölder inequality, it is clear that, if X supports a weak (1, p)–Poincaré
inequality, then it supports also a weak (1, q)–Poincaré inequality for all
q > p. Both sides of the Poincaré inequality also enjoy a self–improving
property: if the space supports a (1, p)–Poincaré inequality, then it sup-
ports also an (s, p)–Poincaré inequality and, if p > 1, a (1, p − ε)–Poincaré
inequality for some s > p and ε > 0. The first one is attributable to
Haj lasz–Koskela [22] and Bakry–Coulhon–Ledoux–Saloff-Coste [6], see also
Heinonen [24] and Franchi–Pérez–Wheeden [15]. The latter is a recent result
by Keith–Zhong [33].

There is a wide variety of spaces equipped with a doubling measure and
satisfying a weak Poincaré inequality. These include Euclidean spaces with
Lebesgue measure and weighted Euclidean spaces with Muckenhoupt weights,
as well as graphs, complete Riemannian manifolds with nonnegative Ricci
curvature, Heisenberg groups and more general Carnot–Carathéodory spaces,
see [25], [52], [47] and [24].

Not only the topological structure, but also the choice of the metric, is es-
sential for the validity of the Poincaré inequality. For example, consider the
snowflaking identity map (X, d) → (X, dα) with 0 < α < 1. It is a quasisym-
metric map, but snowflaked metric spaces (X, dα) have no rectifiable paths
and consequently cannot support a Poincaré inequality.

Although a Poincaré inequality is a widely used assumption, in many cases
it is hard to check whether a certain space supports a Poincaré inequality.
Some of the few results concerning sufficient conditions are by Semmes. He
studied this problem first in Ahlfors regular spaces in [48] and then in more
general metric spaces in [49]. The conditions restrict the behaviour of the
Hausdorff measure of the space and the behaviour of its topology. Separately
these assumptions permit fractal phenomena, which are incompatible with
analytical results like Sobolev embedding theorems. On Riemannian mani-
folds, Grigor’yan and Saloff-Coste observed that the doubling condition and
the Poincaré inequality are not only sufficient, but also necessary, conditions
for a scale-invariant parabolic Harnack principle for the heat equation, see
[46], [47] and [17].

1.3 Sobolev functions

Sobolev spaces are classically defined in R
n and its subsets as pth power

integrable functions whose distributional derivatives are integrable to power
p, 1 ≤ p < ∞. For more details about classical Sobolev spaces, see, for
example, Adams [1], Evans–Gariepy [11], Maz′ya [43] and Ziemer [56]. Since
distributional derivatives are defined via integration by parts, another means
is needed to define Sobolev functions for general metric spaces.

There are several alternative definitions available for the generalisation of
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Sobolev spaces to the metric measure space setting. We use a geometric def-
inition based on upper gradients (see [26]), which gives the standard Sobolev
space in the Euclidean case with Lebesgue measure also for p = 1. The
theory of these function spaces has been developed in Shanmugalingam [51].

Definition 1.3. Let 1 ≤ p < ∞. If u is a function that is integrable to
power p in X, let

‖u‖N1,p(X) =

(
∫

X

|u|p dµ + inf
g

∫

X

gp dµ

)
1

p

,

where the infimum is taken over all upper gradients of u. The Newtonian
space on X is the quotient space

N1,p(x) = {u : ‖u‖N1,p(X) < ∞}/∼,

where u ∼ v if and only if ‖u − v‖N1,p(X) = 0.

If X does not contain any rectifiable paths, then N1,p(X) is just the set of
Lp–integrable functions. For example, the Poincaré inequality is enough to
guarantee the existence of a plenitude of rectifiable paths that is enough to
guarantee the development of an interesting theory of Sobolev spaces.

Note that it follows from the definition that Newtonian functions are defined
a priori quasieverywhere while Sobolev functions are defined only almost
everywhere. Thus the spaces N1,p(Rn) and W 1,p(Rn) are the same in the
sense that every function in N1,p(Rn) is a quasicontinuous representative of
a Sobolev function and vice versa, see [7].

Another candidate for Sobolev spaces in metric measure spaces is the Ha-
j lasz space M1,p(X), which is defined via a pointwise definition and whose
upper gradient corresponds to the maximal function of the gradient. When
p > 1, both M1,p(Rn) and N1,p(Rn) coincide with the standard Sobolev
space W 1,p(Rn). In general, the space M1,p(X) may be strictly smaller than
N1,p(X). This is the case when p = 1, or when the space X does not contain
any rectifiable paths. For more information about various Sobolev spaces on
metric spaces, see also [9], [14], [21], [27], [37] and the references therein.

2 Geometry of metric spaces supporting a

Poincaré inequality

If a complete doubling metric measure space supports a weak (1, p)–Poincaré
inequality, then the space is quasiconvex ; that is, there exists a constant such
that every pair of points can be connected with a path whose length is at
most the constant times the distance between the points, see Semmes [50],
Cheeger [9], Keith [30] and [I]. Since the Poincaré inequality is invariant
under bi–Lipschitz mappings, it follows that every complete doubling metric
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measure space supporting a (1, p)–Poincaré inequality can be turned into a
geodesic space by a bi–Lipschitz change of the metric, i.e.

dNEW (x, y) = inf length(γxy),

where the infimum is taken over all rectifiable paths γxy joining x and y.

In [I], we improve the quasiconvexity result. We show that, if the space
supports a weak (1, p)–Poincaré inequality with p smaller than the lower
bound of the dimension, then annuli are almost quasiconvex; that is, there
exists a constant C ≥ 1 such that, if x, y ∈ B(x0, r0)\B(x0, r0/2), then there
exists a path γ whose length is at most the constant C times the distance
between the points and γ ⊂ B(x0, Cr0) \ B(x0, r0/C). This means that the
paths connecting any pair of points include a set of paths that are fairly short
and broadly distributed. For example, the space cannot become disconnected
by removing one point.

This condition is related to a weaker condition, which is called local linear
connectivity (LLC), see, for example, Heinonen–Koskela [26]. A space satis-
fies the LLC–condition, if any two points in an annulus can be joined with
a path that does not intersect a small neighbourhood of the centre and with
a path that does not go too far from the annulus. For example, Björn–
MacManus–Shanmugalingam [8] and Holopainen–Shanmugalingam [29] as-
sume that the space is locally linearly connected and that it supports a
(1, p)–Poincaré inequality. It follows from our results that the assumption of
local linear connectivity can be removed in many cases.

Our result is of a quantitative nature. It is based on estimating the modulus
of path families joining small neighbourhoods of a pair of points. The p–
modulus of a family of paths Γ is defined as

modp Γ = inf

∫

X

ρp dµ,

where the infimum is taken over all nonnegative Borel functions ρ : X →
[0,∞] satisfying

∫

γ

ρ ds ≥ 1

for all rectifiable paths γ ∈ Γ. The Poincaré inequality gives a lower bound
for the modulus of a path family of all paths joining neighbourhoods of a pair
of points. Using appropriate test functions, we are able to get upper bounds
for the modulus of paths that are very long compared with r0 or that intersect
B(x0, r0/C). A combination of these estimates gives a quantitative estimate
for the modulus of relatively short paths that do not leave the annulus. The
classical proof of quasiconvexity gives only one path joining any pair of points.

Using similar methods, we also obtain lower bounds for the Hausdorff content
and the diameter of spheres. If p is greater than the dimension, then even
a path family going through one point may have positive p–modulus. This
shows that our results are optimal in the sense that any weaker Poincaré
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inequality is not enough to guarantee quasiconvexity of annuli or positive
Hausdorff s–content for any s > 0.

3 Boxing inequality and Lebesgue points

Paper [II] has been written jointly with Juha Kinnunen, Nageswari Shanmu-
galingam and Heli Tuominen. The purpose of the paper is to study regularity
of Newtonian functions N1,1(X) and different characterisations of 1–capacity.

Our proofs are based on the theory of functions of bounded variation. The
functions of bounded variation are studied in Miranda [45] and Ambrosio–
Miranda–Pallara [3] in the setting of doubling metric measure spaces sup-
porting a weak (1, 1)–Poincaré inequality. See also Giusti [16], Ambrosio–
Franchi–Pallara [2] and Evans–Gariepy [11] for the classical theory of func-
tions of bounded variation. Following [45], for u ∈ L1

loc(X), we define the
total variation of u in X

‖Du‖(X) = inf

{

lim inf
i→∞

∫

X

Lip ui dµ

}

,

where the infimum is taken over all sequences {ui} of locally Lipschitz func-
tions such that ui → u in L1

loc(X) and

Lip u(x) = lim sup
y→x

|u(x) − u(y)|

d(x, y)

is the local Lipschitz constant of u. We say that a function u ∈ L1(X) is of
bounded variation, u ∈ BV (X), if ‖Du‖(X) < ∞. From Theorem 3.4 in [45],
we have that ‖Du‖ is a Borel regular measure restricted to the open sets of
X with finite mass whenever u ∈ BV (X). We also have the coarea formula,
i.e.

‖Du‖(A) =

∫ ∞

−∞

‖Dχ{u>λ}‖(A) dλ

for every u ∈ BV (X) and open subset A of X.

One other important tool for us is a metric space version of a so-called box-
ing inequality. The boxing inequality originates with Gustin [18]. In the
Euclidean case, it states that every compact set K ⊂ R

n can be covered by
balls (or boxes) B(xi, ri), i = 1, 2, . . ., in such a way that

∞
∑

i=1

rn−1
i ≤ cHn−1(∂K)

where the constant c depends only on the dimension n. Here Hn−1 refers to
the (n− 1)–dimensional Hausdorff measure. Because doubling metric spaces
do not usually have an unambiguous dimension, we need to have a version of
the boxing inequality that does not depend on the dimension of the space. It
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is obtained by replacing rn−1
i by µ(B(xi, ri))/ri and the Hausdorff measure

of ∂K by the perimeter measure of K. We prove this metric space version
of boxing inequality by using a Calderón–Zygmund-type covering and the
relative isoperimetric inequality.

Then we use the metric space version of the boxing inequality and the theory
of BV –functions to prove that the Hausdorff content of codimension one and
1–capacity are quantitatively equivalent. The coarea formula and the fact
that the BV norm defines a measure are essential in our arguments.

Exceptional sets for Sobolev functions are measured in terms of the p–
capacity, since Sobolev functions have a pointwise representative that has
Lebesgue points outside a set of p–capacity zero. In [II], we extend this re-
sult to cover the case p = 1 in metric spaces. The classical proof is based on
the Besicovitch covering theorem, extension results or representation formu-
las, see Evans–Gariepy [11] and Federer–Ziemer [13]. However, we have none
of these tools available. For p > 1, the result was extended to cover metric
measure spaces by Kinnunen–Latvala [35], but the same method does not
work when p = 1, because it requires that the Hardy–Littlewood maximal
operator is bounded in Lp(X), which is not true for p = 1. Our proof is
based on a capacitary weak-type estimate

cap1({x ∈ X : Mu(x) > λ}) ≤
c

λ
‖Du‖(X).

The estimate is proved by first using a standard 5–covering theorem for the
balls B with uB > λ and then considering separately the balls where u is
approximately λ in a large part of the ball and the balls where u is small
compared to λ in a large part of the ball. Boxing inequality and the coarea
formula give an upper bound for the capacity of the union of the first type
of balls, and Poincaré inequality implies that the capacity of the second kind
of balls is bounded by the total variation of u from above.

The fact that the 1–capacity and the Hausdorff content of codimension one
are quantitatively equivalent plays an essential role in [II], but there are also
other equivalent ways to define 1–capacity. One purpose of our paper is to
study these characterisations in the spirit of Federer–Ziemer [13].

One characterisation of 1–capacity is through Frostman’s lemma, which states
that, for every open set U ⊂ X, there exists a Radon measure νU such that
the restricted fractional maximal operator

MRνU(x) = sup
0<r<R

r
νU(B(x, r))

µ(B(x, r))

is bounded by 1 from above and Hh
10R(U) ≤ c νU(U). It follows that

sup {ν(U) : ‖M∞ν‖L∞(X) ≤ 1}

is quantitatively equivalent to cap1(U) for all open sets U ⊂ X. More infor-
mation about Frostman’s lemma can be found in Mattila [41] and a metric
space version is proved in Malý [40].
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For compact sets, a characterisation via BV –functions and continuous BV –
functions are also equivalent to the standard variational 1–capacity. We
define

capBV (K) = inf ‖Du‖(X),

where the infimum is taken over all compactly supported functions u ∈
BV (X) such that u ≥ 1 in a neighbourhood of K. The definition of capCBV (K)
with continuous BV –functions is analogous. From the coarea formula, it fol-
lows that the infimum of perimeters of sets containing K,

inf{P (U,X) : K ⊂ U, U is open, µ(U) < ∞},

also gives essentially the same quantity.

If the measure of balls grows too slowly, then the capacity of all compact
sets is zero. We say that the space is p–hyperbolic if there exists a compact
set K ⊂ X so that capp(K) is positive, see Holopainen [28] for more details.
If the space is not p–hyperbolic, it is said to be p–parabolic. It turns out
that X is 1–hyperbolic if and only if the volume µ(B(x0, R)) grows at least
as fast as R. In this case, the Hausdorff content and Hausdorff measure of
codimension one as well as the 1–capacity have the same null sets.

4 Size of the boundary

Paper [III] has been written jointly with Nageswari Shanmugalingam, and it
is about the relationship between uniform p–fatness, Hardy’s inequality and
uniform perfectness, and self–improving phenomena related to them. Rather
surprisingly, these analytic, metric and geometric conditions turn out to be
equivalent in certain situations.

A set E ⊂ X is said to be uniformly p–fat if there exists a constant c0 > 0
so that, for every point x ∈ E and for all 0 < r < ∞,

capp(B(x, r) ∩ E,B(x, 2r))

capp(B(x, r), B(x, 2r))
≥ c0. (4.1)

Uniform p–fatness is a self–improving phenomenon: if a set is uniformly p–
fat, then there exists q < p such that it is also uniformly q–fat. For the
proof, we refer to Björn–MacManus–Shanmugalingam [8]. This condition is
stronger than the Wiener criterion and it is a capacitary version of a well–
known uniform measure thickness condition that has been studied in the
metric space setting in, for example, [34].

The set Ω ⊂ X satisfies p–Hardy’s inequality, 1 < p < ∞, if there exists
0 < cH < ∞ such that for all u ∈ N1,p

0 (Ω),

∫

Ω

(

|u(x)|

dist(x,X \ Ω)

)p

dµ(x) ≤ cH

∫

Ω

gu(x)p dµ(x). (4.2)
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For more information about Hardy’s inequality, see, for example, Davies [10],
Haj lasz [19], Lewis [38], and Tidblom [54]. Hardy’s inequality provides one
way to characterise Sobolev functions with zero boundary values in open sets
Ω whose complement is uniformly p–fat. More precisely, Hardy’s inequality
holds for a function u ∈ N1,p(X) if and only if u ∈ N1,p

0 (Ω), see Kinnunen–
Martio [36].

Uniform p–fatness of the complement implies p–Hardy’s inequality for all 1 ≤
p ≤ Q, see Björn–MacManus–Shanmugalingam [8]. Considering a punctured
ball

Ω = B(0, 1) \ {0}

in R
n shows that the converse does not hold in general, because Ω satisfies

p–Hardy’s inequality both when p > n and when p < n, but the complement
is uniformly p–fat only for p > n.

However, when p equals the dimension of the space, p–Hardy’s inequality
implies uniform p–fatness of the complement. This was first proved by An-
cona [4] in the Euclidean plane and later generalised to higher dimensional
Euclidean spaces by Lewis [38]. We present in [III] a rather transparent proof
for the fact that this result holds also in Ahlfors regular metric spaces.

The proof consists of the following steps. We first observe that p–Hardy’s
inequality implies uniform perfectness of the complement. A set E ⊂ X is
uniformly perfect with constant cUP ≥ 1, if, for every x ∈ X and r > 0, the
set

E ∩ (B(x, cUP r) \ B(x, r))

is nonempty whenever E \ B(x, r) is nonempty. This can be shown by a
construction of a suitable test function and it follows that cUP depends only
on cH and the constants related to Ahlfors regularity. Then we show that
uniform perfectness of the complement implies a quantitative estimate for
the Hausdorff s–content of the complement when s > 0 is sufficiently small.
This is achieved by a covering argument and then iteratively replacing balls
that are sufficiently near each other by a single ball in such a way that the
Hausdorff content does not increase. Using uniform perfectness, we are able
to get a lower bound for the diameter of the central ball in the final cover.
Finally, the Poincaré inequality implies uniform p–fatness of the complement
for every p > Q− s. This connection to uniform perfectness was first studied
by Sugawa [53] in the Euclidean plane. It thus follows that uniform p–fatness,
p–Hardy’s inequality and uniform perfectness are all equivalent in Ahlfors Q–
regular spaces when p = Q.

We also show in [III] that Hardy’s inequality holds if and only if

∫

K

1

dist(x,X \ Ω)p
dµ ≤ c capp(K, Ω)

for every compact K ⊂ Ω. This characterisation is a special case of results
in [IV], which are discussed more in the next section.
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5 Sobolev inequalities

Important inequalities in Sobolev space theory include Sobolev embedding
theorems. In R

n, for every u ∈ W 1,p(Rn), we have

‖u‖ np

n−p

≤ C(n, p)‖∇u‖p, (5.1)

when 1 ≤ p < n, and

|u(x) − u(y)| ≤ C(n, p)|x − y|1−n/p‖∇u‖p,

for every x, y ∈ Rn, when p > n. Moreover, for u ∈ W 1,n
0 (Ω), we have

Trudinger’s inequality

∫

Ω

exp

(

ε

(

|u|

‖∇u‖n

)n/(n−1)
)

dx ≤ C|Ω|,

for some ε > 0 and C > 0 depending only on n. The Poincaré inequality is
a strong enough condition to guarantee Sobolev-type embeddings also in the
metric space setting.

In article [IV], which has been written jointly with Juha Kinnunen, we study
the Sobolev inequality

(
∫

Ω

|u|q dν

)
1

q

≤ cS

(
∫

Ω

gp
u dµ

)
1

p

, (5.2)

in the metric space setting. It is well known that the Sobolev inequality (5.1)
with p = 1 can be deduced by the coarea formula from the isoperimetric
inequality

|E|(n−1)/n ≤ c(n)Hn−1(∂E),

where E is a smooth enough subset of R
n, |E| is the Lebesgue measure of E,

and Hn−1 is the (n−1)–dimensional Hausdorff measure, and vice versa. This
observation originates with Federer–Fleming [12] and Maz′ya [42]. When
p > 1, the isoperimetric inequality needs to be replaced by isocapacitary
inequalities, but, also in this situation, weak-type estimates imply strong es-
timates. This approach to Sobolev inequalities was first proposed by Maz′ya,
see [44] and the references therein. In [IV], we extend these results to a
general metric space context. We consider two ranges of indices separately.
When 1 ≤ q ≤ p, the isocapacitary condition takes the form

ν(K)p/q ≤ c capp(K, Ω), (5.3)

and the condition is required to hold for every compact subset K of Ω. When
q > p, the isocapacitary characterisation assumes a more complicated form
involving sums or an integral representation. The key estimates in the proofs
include a Cavalieri-type inequality and the following strong-type inequality
for the capacity

∫ ∞

0

λp−1 capp({u > λ}) dλ ≤ 22p−1

∫

Ω

gp
u dµ,
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whose proof is based on a general truncation argument attributable to Maz′ya.
These estimates lead to the observation that some weak-type inequalities im-
ply strong-type inequalities. See also [6], [20] and [23].

Taking dν(x) = dist(x,X \Ω)−p dµ(x) and p = q, we observe that (5.3) gives
also a characterisation of p–Hardy’s inequality and it is thus a generalisation
of results in [III].

When p = 1 and Ω = X, we are able to use results from [II] concerning the
equivalence of 1–capacity and Hausdorff content of codimension one to show
that the condition

ν(B)p/q ≤ c capp(B, Ω), (5.4)

with all balls B ⋐ Ω instead of all compact sets K ⋐ Ω is enough to guarantee
the Sobolev inequality.
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Jyväskylä, Jyväskylä, 2001, pp. 109–126.
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Sci. Paris Sér. I Math., 320 (1995), pp. 1211–1215.

[23] P. Haj lasz and P. Koskela, Sobolev met Poincaré, Mem. Amer.
Math. Soc., 145 (2000), pp. x+101.

[24] J. Heinonen, Lectures on Analysis on Metric Spaces, Springer, 2001.

13
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