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1 Introduction

In this article we investigate solutions of the A-Laplace equation on canonical
domains in the n-dimensional Euclidean space.

Suppose that D is a domain in R”, and let f: D — R be a function. For
s > 0, asubset A C D is called s-zone (stagnation zone with the deviation s)
of f, if there exists a constant C' such that the difference between C' and the
function f is smaller than s on A. We may, for example, consider difference
in the sense of the Euclidean distance,

1/(z) = Cllew) =suwplf@) = Cl <5,

the LP-norm

1/p
1) = Cllusa) = ( [1s@-cr dH”) <s,

A

or the Sobolev norm

1/p
1@y = ( / er<@|de”) <s,

A

where H? is the d-dimensional Hausdorff measure in R”.

For discussion about the history of the question, recent results and appli-
cations, see [SS06, SSO7].

Some estimates of stagnation zone sizes for solutions of the A-Laplace
equation on locally Lipschitz surfaces and behaviour of solutions in stagnation
zones, were given in [Mik07]. In this paper we consider solutions of the .A-
Laplace equation in subdomains of R™ of a special form. In two-dimensional
case, such domains are sectors and strips. In higher dimensions, they are
conical and cylindrical regions. The special form of domains allows us to
obtain more precise results.

Below we study stagnation zones of generalized solutions of the A-Laplace
equation

divA(z,Vf) =0

(see [HKMO93]) with boundary conditions of types (see definitions 1.7 and
1.11 below):

(A(z,Vf),m) =0, z€dD\G

and

f(A(z,Vf),n) =0, x€dD\G

on canonical domains in the Euclidean n-dimensional space, where G is a
closed subset of dD. We will prove Phragmén-Lindelof type theorems for
solutions of the A-Laplace equation with such boundary conditions.



Canonical domains

Let n > 2. Fix an integer k£, 1 < k < n, and set

di(z) = (i a:f) 2 :

We call the set
Bi(t) = {x e R" : di(z) < t}

a k-ball and
Yr(t) ={z € R" : di(x) =t}

a k-sphere in R™. In particular, the symbol 34 (0) denotes the k-sphere with
the radius 0, i.e. the set
5p0) ={z = (z1,..., Ty .., Tp)  Tpp1 = ... =2, = 0}.

For every 0 < k < n we set

o =( > )"

j=k+1
and
Yi(t) ={r e R" :pp(x) =t},  t>0.
Let 0 < a < 3 < oo be fixed, and let
Diy={z eR": o < py(x) < B}.

For £k = n — 1 we also assume that x,, > 0. Then for £ = n — 1 the DZ’_l
is the a layer between two parallel hyperplanes, and for 1 < k < n — 1 the
boundary of the domain Dl(i, 5 consists of two coaxial cylindrical surfaces. The
intersections > (t) N D’;ﬂ are precompact for all £ > 0. Thus, the functions
d(x) are exhaustion functions for DY, .

FIGURE: Dj, (left) and D}, in R®.



Structure conditions

Let D be a subdomain of R and let
A(z,6): D x R" — R"
be a vector function such that for a.e. x € D the function
Az, &): R" - R"
is defined and continuous with respect to £. We assume that the function
z— A(z,§)
is measurable in the Lebesgue sense for all £ € R™ and
Az, N = AP 2 A(r,€), AeR\ {0}, p>1. (1.1)
Suppose that for a.e. x € D and for all £ € R” the following properties hold:
v gl < (€ A@,6), A, 8§l S v ¢f (1.2)
with p > 1 and some constants v, v5 > 0. We consider the equation
divA(x,Vf)=0. (1.3)

An important special case of (1.3) is the Laplace equation

n an
=1 v

As in [HKM93, Chapter 6], we call continuous weak solutions of the equation
(1.3) A-harmonic functions. However we should note that our definition of
generalized solutions is slightly different from the definition given in [HKM93,
p.56].

Frequencies

Fix t > 0 and p > 1. Let O be an open subset of 3} (¢) (with respect to the
relative topology of ¥;(¢)), and let P be a nonempty closed subset of 0O.
We let

/ |VulPdH"
Ap.p(0) = inf &

“ / wPdH" !

o

(1.4)

where u € Lip,.(O) N C°(0) with

ulp =0, and (n, A(z, Vu)) =0, H"? -ae. in OO\ P. (1.5)



Here 7 is the unit normal vector to 0. If P = 00 we call A\,(0) = A, »(0O)
the first frequency of the order p > 1 of the set O. If P # 00 the quantity
A\pp(O) is the third frequency.

The second frequency is the following quantity:

/ VulrdH!
11,(0) = sup inf —2 : (1.6)
P orae
o)

where the supremum is taken over all constants C' and u € Lip,,.(O)NC°(0).
See also Pélya and Szegé [PS51], Lax [Lax57].

Generalized boundary conditions

Let ¢: D C R™ — R be a locally Lipschitz function. We denote by D (¢p)
the set of all points z € D at which ¢ does not have the differential. Let
U C D be a subset and let ’'U = 9U \ 9D be its boundary with respect to
D. If 9'U is (H™ ', n — 1)-rectifiable, then it has locally finite perimeter in
the sense of De Giorgi and H" !-almost everywhere on U, an unit normal
vector T exists [Fed69, Sections 3.2.14, 3.2.15].

Let D C R" be a domain and let G C 0D be a subset of the boundary of
D. Define the concept of a generalized solution of (1.3) with zero boundary
conditions on D\ G. A subset U C D is called admissible, if UNG = ) and
U has a (H" !, n — 1)-rectifiable boundary with respect to D.

Suppose that D is unbounded. Let G C 9D be a set closed in R™ U
{o0}. We denote by (G, D) the set of all subdomains U C D with oU C
(DU (0D \ G)) and (H" !, n — 1)-rectifiable boundaries &'U = oU \ dD.

1.7 Definition. We say that a locally Lipschitz function f: D — R is a
generalized solution of (1.3) with the boundary condition

(A(z,Vf),m)=0, ze€dD\G, (1.8)
if for every subdomain U € (G, D),
H' ' [oU N Dy(f)] =0, (1.9)

and for every locally Lipschitz function ¢: U\ G — R the following property
holds:

/@(A(az,Vf) n)dH" ! = /(A(x, V), Vo)dH". (1.10)
U U

Here 1 is the unit normal vector of ’U and dH" is the volume element on
R™.



1.11 Definition. We say that a locally Lipschitz function f: D — R is a
generalized solution of (1.3) with the boundary condition

FIA@, V), B) =0, 2€dD\G, (1.12)

if for every subdomain U € (G, D) with (1.9), and for every locally Lipschitz
function ¢: U \ G — R the following property holds:

[eriaw v man = [(A@ v Venar. )
o'U U

In the case of a smooth boundary dD, and f € C?(D), the relation (1.10)
implies (1.3) with (1.8) everywhere on dD \ G. This requirement (1.13)
implies (1.3) with (1.12) on 9D \ G. See [Mik06, Section 7.2.1].

The surface integrals exist by (1.9). Indeed, this assumption guarantees
that Vf(x) exists H" '-a.e. on dU. The assumption that U € (G, D)
implies existence of a normal vector m for H"!-a.e. points on d'U [Fed69,
Chapter 2 Section 3.2]. Thus, the scalar product (A(z,Vf),n) is defined
and finite a.e. on J'U.

2 Saint-Venant principle

In this section, we will prove the Saint-Venant principle for solutions of the
A-Laplace equation on canonical domains.

Let 0 < k < n. Fix a domain D = DF ;N By,(ty) with t; > 0 and 0 < o <
B < oo. We write P ={z € 0D : pi(z) = a} and Q@ = {z € 9D : pp(x) = B}
and G=PUQ. Let t,7 € (o, ), t < 7, and

AFt,ry={re D t<pylz) <7},
For s > 0 we set
o"(s) = {x € A¥(0,00) : pi(z) = s}.

2.1 Theorem. Let a < 7' < 7" < (. If f: D — R is a generalized solution
of (1.3) with the generalized boundary condition (1.8) on 0D \ G, then the
imequality

1%

Lt 7"+ Ci(t) /v < (LIi(t, 7") 4+ C1(t) /1) exp [— y_l /up(ak(T)) dT‘| :

holds for all t € (a, T'].
If f: D — R is a generalized solution of (1.3) with the generalized bound-
ary condition (1.12) then

Lt 7+ Ca(t) /v < (L T") + Ca(t) /1) exp {— Z—; /A;{pr(T)(ak(T)) dT:|



holds for allt € (a, 7']. Here

L(t,7) = / VP dH",

AF(t,7)

and
Z5(r) = { € S(7) N Sulto) - lim () = 0}. (2.4

y—

The inequalities of the form (2.3), (2.2) are called the Saint-Venant prin-
ciple (see, for example, [OI77]).

Proof. The case A. At first we consider the case in which f is a generalized
solution of (1.3) with the generalized boundary condition (1.12) on 0D \ G.
It is easy to see that a.e. on D’géﬁ,

[Vpe()| = 1.

The domain A*(t,7) belongs to (G, D). Let ¢: U\ G — R be a locally
Lipschitz function. By (1.13) we have

/ o f (A(z, V), @) dH"™" = /(A(:z:,Vf),V(gpf))dH”.

&' Ak (t,T) Ak (t,7)

But
IN*(t,7) = oF(t)ua®(r).

For ¢ = 1, we have by (1.2) and (1.13)

wh(tT) < / (A(z, V),V f) dH"
Ak(t,T)
= [ FA@ ). Vo) an
ok (r)
- [ HAGV. o e
o (1)
since m = Vpy(z) for z € o%(7) and m = —Vpy(x) for z € o%(t). We obtain

L (E7) + Colt) < / FA V), Vpe(@) dH™ (25)

o (7)

where

Co(t) = / F LA Y f), V() dH™"

ok (t)



Note that writing

Colr) = — / f (A, V), Vpy(a)) dH

ak(r)
we have
v Li(t,7) + Oalr) < — / J(A@. V), V() dH L (2.6)
ok (t)

Next we will estimate the right side of (2.5). By (1.2) and the Holder
inequality

|

f(A(z, V), Vpr(z)) dH™ T
k(1)

< [ UlAG D v [
ok (1) ak ()

1/p (»—1)/p
gw( / |f\de"1) </|Vf]de"1) |
ok (r) ok (r)

We note that the surfaces o*(7) are parallel to 9D, ;. By using (1.4) we may
write

[lsrant<ay @@ [viraet @)
o¥(7) ok(7)

and

‘ / Az, Vf), Vpi(z)) dH" §VQA;12§ﬁT)(ak(T)) / IVfIPdH" .

o (7) o (7)

By (2.5) and the Fubini theorem

n Lt 7) + Cot) < ma, J1 (0% (7)) =

and

Dl < e [ (e + E0)).

By integrating this differential inequality we have

T”

no ek gr| < DT+ )/
exp [W /)\p’zf(T)< (7)) d } < L) & CalD)

T

!



for arbitrary 7/, 7" € («, 8) with 7" < 7. We have shown that

,7_//

n
[1(t, 7J> + Cg(t)/l/l S (Il<t, 7'//) + Cg(t)/Vl) exp |:— V_2 /A;{gf(T)(UI;(T)) dT .
(2.8)
The case B. Now we assume that f is a generalized solution of (1.3) with
the boundary condition (1.8) on 9D \ G. Fix t < 7. By choosing ¢ = 1 in
(1.10) we see that

/ (A(z,Vf),n)dH" =0.

ok (t)uck(r)

For an arbitrary constant C, we get from this and (1.10)

/ (f = C)(A(z, Vf),n)ydH" " = / (A(z, V),V f)YdH". (2.9)

ok (t)uck(T) Ak(t,7)

Thus
/ (A, Vf) . V) dH" < Ci(t) + / 1 = O | Az, Vpu(a))| dH",

Ak(t,T) o‘k(‘r)

where
Cu(t) = / f — O] | Az, Vpi(a))| dH™,
ok(t)
or
141 Il(t,T) —I—Cl(t) S vy / |f—0| |Vf|p_1 dHn_l. (210)

ok (7)
As above, we obtain

/ |V APt dr

ak(r)
1/p (p—1)/p
(/|f PP dH 1) </|Vf|de”‘1> (@211)

ok(r) ak(r)

By using (1.6) we get

1/p 1/p
([ u-cban) " <o ( / wipane) L

ok (1)

where C5 = C3(f) is the constant from (1.6). Then by (2.11) and (2.12),

/|f Col VAP~ dH < 1 (o /|Vf|de“
ok(7) ok (7)

10



and by (2.10) we have

v () +Ci(t) < 1 M;l(Ok(T)) |V FIP dH™ !
oh(7)

or
dr
v L(t, )+ Ci(t) < 1y ,u;l(ak(T))d—tl(t, 7).

By integrating this inequality we have shown that

Li(t, 7))+ Ci(t) Jvn < (Li(t, 7") + C1(t) /1) exp [— Z—; /,up(ak(T)) dT:| :

3 Stagnation zones

Next we apply the Saint-Venant principle to obtain information about stag-
nation zones of generalized solutions of the equation (1.3). We first consider
zones with respect to the Sobolev norm. Other results of this type follow
immediately from well-known imbedding theorems.

Stagnation zones with respect to the Wpl—norm

We rewrite (2.2) and (2.3) in another form. Fix Df ;. Let

a+ 3

pr(x) = pr(z) — 5

For € Df ; and

we have
3" < pi(x) < 6",
and we denote
D;;k ={reR": -3 < pi(x) < 3}.

Let tg > 0 and —3* < 7/ < 7" < 5*. We write
AR ") = {x € Bi(ty) : 7' < pi(z) < 7" (3.2)

and
L, 7" = / |V fIPdH™.

A*’k(T/,TI/)

11



Let 0 < 7" < 7”7 < *. By (2.3) we have for t € (—7,7)

7_/l

L(t, )+ Cu(t) /v < (La(t, 7")+Cu(t)/1n) exp {—Z—; /A;{Zp;(T)<O*’k(T))dT ,

,T/

where
Z3(1) ={z € Ey(to) : pp(z) = 7 A lim f(y) = 0}. (3.3)

y—z

By choosing the estimate as in (2.6) we also have

L(—7',t) + Cu(t)/1n

77—/

1" ~ v *
< (L(=7",t) 4+ Cu(t) /1) exp [— 1/_: / A;{Zp;m(g ) dr|

i

where
0"k (s) = {x € A**(—o0,00) : pj(x) = s}. (3.4)

By adding these inequalities and noting that C4(t) + C4(t) = 0 we obtain

L(=7',t) + I(t,7) < (L2(=7",1) + I2(t, "))

/ 1"
T

v % v *
xmax{exp [—V; / A;{Zp;(ﬂ(g ’k(T))dT:|,eXp [—V; / A;fzp;m(g vk(T))dT]}.

—T T

Thus we have the estimate

L(—7',7) < L(-7",7")

—7! T

¢! 1/p .k n 1/p *,k
Xmax { exp [—1/2 / )\p’Z;(T)(O' (1)) dT:| , €Xp [ . /)‘p,Z;(T) (a™"(1)) dT:| } .
(3.5)
Similarly, from (2.2) we obtain
L(—7",7") < L(-7",7")
n *,k 1 *,k
xmaxq exp | — — [ pp(a™"(7))dr|,exp | — — [ pp(c™"(7))dr| ;.
V2 V2
(3.6)

From this we obtain the following theorem on stagnation Wpl—zones:

3.7 Theorem. Letty >0, > a > 0, and let —0* < 7" < 7" < 3* where
B* is as in (3.1). If f is a solution of (1.3) on D = D;’f N By(ty) with

12



the generalized boundary condition (1.8) on 0D \ G, where G = {x € 0D :
pi(z) = £06*} and

. -

max { exp {— :_/ Mp(a*v’f(T))dr} exp [— 5 /up(a*vk(f))ch] } < 5P,

or a solution of (1.3) on D with the generalized boundary condition (1.12) on
0D\ G and

4 7

141 1 * V1 1 *
max { exp [_Vz / )\p,/Zp;(q—)(U ee) dT:| , €Xp [_ug /)\Pg}(ﬂ (™ (1)) dT:| } < sl/P,

then the subdomain A*F(—7' 7') is a s-zone with respect to the Wl}—norm
1.e.,

/ IVfPdH" < s,
A*,k(i.[.lﬂ_/)

where A** is as in (3.2).

Stagnation zones with respect to the L’-norm

Let tg > 0, 6> a >0, and let —3* < 7/ < 7" < 3* where £* is as in (3.1).
Denote by Cs(k,p,a, 3,tg) the best constant of the imbedding theorem
from W;(D;’f) to LP (D;;k), i.e. in the inequality

Hg - CHLP(D;’*"') S 05(k7p7057ﬁ7t0) HgHWI}(D;’f) :

The domains D;;k N Bg(to) are convex and such a constant Cs exists (see
Maz’ya [Maz85] or [AF03, p.85]).
In this case we obtain from (3.5), (3.6)

Hf - C”ip(A*,k(_Tlﬂ—/)) < Cg(kapa ﬂ* - T”, ﬁ* + 7—”7 tO) 12(_7_Na 7—”)

/ 1"

141 1 * 141 1 *
X max { exp [—VQ / /\p,/Zp;(r)(U k(1) dT:| , €XP [—VQ /Ap{zp;(ﬂ(g F(1)) dT:| } ,

v T/

(3.8)

and

Hf - C”ip(A*’k S Cg(kapuﬁ* - 7—//75* + T/,7t0)12(_7-”77—//)

)

X max { exp {— % 7%(0*%(7)) dT}  exp [— % ]/Mp(a*vk(f)) dT] } . (3.9)

These relations can be used to obtain information about stagnation zones
with respect to the LP-norm. Namely, we have:

13



3.10 Theorem. If f is a solution of (1.3) on D = D;’f N By(ty) with the
generalized boundary condition (1.8) (or (1.12)) on 0D\ G, where G = {z €
0D : pi(x) = £6*}, and the right side of (3.8) (or (3.9)) is smaller than
s > 0, then the domain A**(—7',7') is a stagnation zone with the deviation
sP in the sense of the LP-norm on D.

Stagnation zones for bounded, uniformly continuous func-
tions
Let tg > 0, 6> a >0, and let —3* < 7/ < 77 < * where $* is as in (3.1).

As above, denote by Cs(k, p, o, 3, to) the best constant of the imbedding
theorem from W;(Dg;k) to C (D;;k), i.e. in the inequality

Hg - CHC(D;’*’C) < 06(k7p7a767 to) HgHWI}(D;f) . (311>

A domain D;’f is convex and hence (3.11) holds for p > n (see Maz'ya [Maz85]
or [AF03, p.85]).
In this case from (3.5), (3.6) we obtain

||f - O‘|C(A*’k(—’7’/,7',)) < Cg(kupu 6* - T/)ﬁ* + 7—,7t0) IZ(_T”a 7-”)

77_/ 1"

121 % n *
Xmax { exp [_u_g / /\11),/2233:(7)(0 k(1)) dT:| , exp [—V—2 //\113,/Zp;(7—)<0- k(1)) dT:| } ,

—T! T

(3.12)
and
|f = Clloask(r ) < C(k,p, 8 = 7', 5" + 7' to) (7", 7")
4 .k 8! *,k
X max{exp {— — / pp (o™ (T))dT},exp [— — /up(a , (T))d’]':| } .
Vs Vo
(3.13)

These relations can be used to obtain theorems about stagnation zones for
bounded uniformly continuous functions.

3.14 Theorem. If f is a solution of (1.3), p > n, on D = D;’f N By(to)
with the generalized boundary condition (1.8) (or (1.12)) on 0D \ G where
G = {x € 0D : pi(x) = £6*}, and the right side of (3.12) (or (3.13)) is
smaller than s > 0, then the domain A**(—7',7') is a stagnation zone with
the deviation s in the sense of the norm || - [|co(asr(—r 7))

4 Other applications

Next we prove Phragmén-Lindelof type theorems for the solutions of the
A-Laplace equation with boundary conditions (1.8) and (1.12).

14



Estimates for Wpl-norms

Let tg > 0, B > a > 0, and let be 5* is as in (3.1). First we will prove some
estimates of the ¥ -norm of a solution. Let f be a solution of (1.3) on D;’f
with the generalized boundary condition (1.8) on 9D\ G. Fix 0 <7’ < 7" <
B* and estimate || f|lw1a=k(—r 1))

Let ¢ : [7',7"] — (0,00) be a Lipschitz function such that

P(r)y=1, (") =0. (4.1)
We choose

1 for |t] < 7/,

olt) = { Bt for 7 < |t < 7. (4.2)

The function ¢(z) = ¢(p;(x)) is admissible in Definition 1.7 for
U= A*’k(—T”, 7_//) )

As in (2.9) we may by (1.10) write

o* k(=1 Uo* k(1"
- / (A, Vf) V(P Ea)(f — C)) ) dH".

A*,k(_TNﬂ.//)

By construction of ¢, (4.1) and (4.2), the surface integral is equal to zero,
and we have

/ & () (A, V),V f) dH

A**k(—T”,T”)

S / &L pi()) (f — O) (Al V), Vo(pi(x)) ) dH".

A*’k(—T//,T”)
Thus by (1.2)

" / & (1 (2)) |V PP "

A*J“(f‘r”,‘r”)

< pre / ¢ pk(@) If = CHV P Vo (pi(x)) [ dH™ . (4.3)

A*vk(—’r”,r”)

Now we note that

IVo(pi(2))] = |¢'(pi())]

15



and by the Holder inequality

[ o aseny - e wose o

A**k(—T”,T”)

- / ¢ k(@) VP e (i ()] | f — CldH"

Axik( ot ir)
(»—1)/p
g( / ¢p(p2(x))|Vf|de”)
Ak (7! 111
1/p
( / |¢’(p}’;(fv))\”|f—0l”dH”)
A*Ek (7! 711

From this inequality and (4.3) we obtain

A [ ew@rar <t [ 18Pl - crare.

A**k(—T’,T’) A*vk(—’r”,r”)

Because ¢(p;(z)) =1 on A%F(—7' 7') we have the following inequality:

o / VP AR < i / W (o1 ()P | f —CP dH™
A*’k(fT’,T’) A*’k(7T”,T”)\A*’k(7TI,T,)
(4.4)
Next we will find
min / W @) f — O anr,

A*’k(—T”,T”)\A*vk(—7”,7")
where the minimum is taken over all ¥ in (4.2). We have

[ Wi -orae

A*,k(_7.//77.//)\A*,k(_7./77_/)

- / ()P dr / f(x) — P dr?

o*k(r)

+ / W ()P dr / (@) — Cp dr?

o*:k(r)

16



and

win [ WGP ) - op e
A*’k(—T”,’T”)\A*’k(—’TlﬂJ)
< H}liin / | (7)|P dr / |f(x) — C|P dH™ !

o*:k(T)

+m¢%n/W(T)|pdT / [f(z) = CIPdH"™ = Ay + Ay (4.5)

o*k(T)

Because by the Hélder inequality

1< (]/\w’(f)ldf)p < []HW(TWT / |f(z) —C|de”‘1}

G

§ 1/(1-p)] P!
x [/dT( / |f(x)—C’|de”_1) ] ,
7 ok (r)
we have
N 1/(1-p) 1P
[/dT( / \f(a:)—C!denl) ]
™ o (r)
< [ [ 1@ -cpan
T/ o’*vk(T)
and hence
T" 1/(1-p)] 1P
Ay > /d7< / |f(x)—O!7’dH”‘1) ] :

T/ o*:k(T)

It is easy to see that here the equality holds for a special choice of ). Thus

1"

y 1/(-p)] 1P
Ay = /dT( / |f(m)—C’|de"_1> ] :
7 ok (r)
Similarly,
s 1/(1-p)] P
Ay = /dT( / |f(x)—(]|de”‘1) ]
e %k (1)

17



From (4.5) we obtain

min / W (L)1 — CPP dH"
A*7k(_TII7T//)\A*’k(_7—/77—l)

- 1_p

< [/ dr < / |f(z) — CP d’]—[”-l)l/(l_p)]
—!! o.*,k(‘[_)
]dT ( / |f(x) — C]P d’H”—I) 1/(1—p)] 1p'

7! o*k(r)

1"

+

By using (4.4) we obtain the inequality:

by [ e

A*’k(—T’,T’)
- 1/(1-p) L7P
< [/m( / |f(x)—C]de"1) ]
! o*k (1)
T" 1/(1-p)] 1P
+ /dr( / |f(m)—O|de”_1) ] ,
7_/ o’*’k(‘r)

where C' is an arbitrary constant. From this we obtain

/

N 1/a-p] P
/ VP dH" < Cq Inax{ [ / dr ( / |f(z)—CP dH”—1> P] |

A*’k(—T/,TI) — 7! O'*’k(T)

dT< / |f(:c)—C’|PdH"—1>1/(1_p)rp} (4.6)

a*k(T)

1

J

7-/

where 07 = 2pp(l/2/1/1)p.
Similarly, for solutions of the A-Laplace equation with the boundary con-
dition (1.12) we may prove that

!

BV 07 o\ Ve
P <V2> / VP dH" < /dT( / |f(z)[P dH > ]
A*Vk(—T’,T’) - a’*'k(T)
r 1/(1-p)] 1P
+ /dr( f(x)]de”1> ]
-/ ok (7)
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It follows that

_7-/

/ |Vf|de”§C7max{[/dT( / |f(x)|pd7-{"_1)1/(1p)] 1p,

A*,k(i.,./ﬂ./) — ! U*,k(T)
1/(1-p)] P
[/dT( / |f(x)|P dH"_l) ] } (4.7)
T/ o’*’k(T)

Phragmén-Lindel6f type theorems I

We prove Phragmén-Lindeldf type theorems for cylindrical domains. Let
k=n—1 and fix t; > 0. Consider the domain

D = By(to) = {ZL‘ = (T1,.. ., Tp_1,2Tpn) ER" 1 d,_1(x) < to}.

Let fo: D — R be a generalized solution of (1.3) with (1.1) and (1.2) satis-
fying the boundary condition (1.8) on X,,_1(to).

Fix f > a > 0, and let §* be as in (3.1). Let f(x) = fo(x — B*e,), where
€, is the n:th unit coordinate vector, and let 0 < 7/ < 77 < * < c©. By

(4.6)
e .
Wﬂpd%ng@m&x{[ / dT( |f(fv)—C|de”1>1/(1p)] ;
A=) —r—1 o n=1(r)
T+1 17
[L/dT( [ i -cran) ] }.
T” gt n=1(r)

By using (3.6) we obtain from this the inequality:

1

7 1/1-p)] 1P
L(—7,7") < C; max{ [ / dr ( / |f(z) —C|P dHN—1> P ] |

SV o*m=1(7)
e 1/(-p)] P
[ / dr < / |f(z) —CP dH”‘1> ] }
T/ o*n—1(7)
151 ) *n—1 V1 *n—1
X max { exp {— P / pp (0™ (1)) dT:| , XP [— P /up(a HT) dT:| } .

We observe that in this case

(07 (7)) = (07 (0)). (48)

and hence
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It follows that

iy 1/(1-p)] 1P
L(-7,7) < C; max{ [ / dr < / |f(x) —C]P d?‘(”_1> ] ,

11 o*mn=1(r)
s 1/(1-p)] 1P
[/ dT< / ]f(x)—C|de"1) ] }
T o*n—1(r)
v — " /
XeXp[——l,up(Un L0))(r —7)}. (4.9)
Vg

By letting 3, 7" — 400 we obtain the following statement:

4.10 Theorem. Let tg > 0, f: B,_1(tg) — R be a generalized solution of
(1.3) with (1.1) and (1.2) satisfying the boundary condition (1.8) on X,_1(to).
If for a constant C' the right side of (4.9) goes to 0 as 7" — oo, then f = const
on the cylinder B,_1(to).

Similarly for a solution f of (1.3) with (1.1) and (1.2), satisfying the
boundary condition (1.12) we may write

1

L(-7, 7)< Cy max{ [ / dr ( / |f(z)[P dH"1> 1/(11’)] 1_p,

_7-//_1 o’*’"_l(T)
T 1/(1-p)] 1P
[ / dT< / ()P dH"—1> ] }
T o*mn=a(r)
v *,M— v *,n—
Xmax { exp [1/; / A;(Zp;(T)(U ; 1(7))d7} , €XP [1/; /)‘;13,/217;:(7)(‘7 1)) dT:| }

—T T

(4.11)

However here we do not have any identity similar to (4.8). We have:

4.12 Theorem. Let ty > 0, and let f: B,_1(ty) — R be a generalized solu-
tion of (1.3) with (1.1) and (1.2) satisfying the boundary condition (1.12) on
Yn—1(to). If the right side of (4.11) tends to 0 as 7" — oo, then f =0 on the
cylinder By,_1(to)

If f(z) = 0 everywhere on the boundary %, _(¢y) of the cylinder, then
an identity similar to (4.8) holds in the following form:

)\;/p(a*’"_l(r)) = A;/p(a”_l(o))(A) . (4.13)

20



As above, we find

-

[2(—7",7")§C7max{[ / dr( / \f(x)\pdml)l/(l_p)]l_p,

— /11 o-*,nfl(q—)

[Tl/lﬂdT( / !f(x),den_l)l/(l—m]l—p}

T o*n=1(r)

X exp {— YL (6m=L(0)) (7" — T')} . (4.14)

Vo p
Thus we obtain:

4.15 Corollary. Let to > 0, and let f: B,_1(ty) — R be a generalized
solution of (1.3) with (1.1) and (1.2) satisfying the boundary condition f =0
on X,_1(to). If the right side of (4.14) tends to 0 as 7" — oo, then f = const
on the cylinder B, 1(to)

See also Miklyukov [Mik81].

Phragmén-Lindel6f type theorems II

We prove Phragmén-Lindel6f type theorems for canonical domains of an ar-
bitrary form. Let 1 < k < n — 1 and let {5 > 0 be fixed. We consider a
domain

D = By(to) = {x = (T1y ooy Ty Thg1y - -, Tp) = di(T) < to}.

Let f be a generalized solution of (1.3) with (1.1) and (1.2) satisfying the
boundary condition (1.8) on

Si(to) = {z € R" 1 di(z) < to} .

Fix 70 > 0. Let 79 < 7/ < 7" < 00. By (4.6) we may write

11

]dT< / |f(x) _c‘den_l)l/U—p)] l—p’

T ok

/ VP dH" < C
Dk,

where Cg = C7/2. As in (3.6) we obtain from (2.2) the estimate

7./

[vsrare < [ e e | -2 et

Dk

k b
0,79 DO,T/ 0
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By combining these inequalities we obtain

,7_//

1/(1-p] ' P
/ IV fIP dH™ < Cg /dr( / |f(x)—C’|de”_1) ]
’ ok (r)

k
DO,TO T

’Tl

1%

X exp [— n /up(ak(f))df} (4.16)

The inequality (4.16) holds for arbitrary constant C' and every 7”7 > 7/. Thus
the following statement holds:

4.17 Theorem. Let ty > 0, and let f: By(ty) — R be a generalized solution
of (1.3) with (1.1) and (1.2) satisfying the boundary condition (1.8) on Xk (to),
1 <k <n-—1. If for a constant C the right side of (4.16) tends to 0 as
7', 7" — 400, then f = const on By(to).

In the case if f satisfies (1.3) with (1.1), (1.2) and the boundary condition
(1.12) on X (to), then we have

7_//

1/(-p)] 1P
/ [VfIPdH™ < Cs /dr( / |f(fB)|”dH”‘1) ]
/ ot (7)

k
DO,TO T

We obtain:

4.19 Theorem. Let ty > 0, and let f: Bi(tg) — R be a generalized solu-
tion of (1.3) with (1.1) and (1.2) satisfying the boundary conditions (1.8) on
Yi(to), 1 <k <n—1. If for a constant C the right side of (4.18) tends to 0
as 7', 7" — 400, then f =0 on By(to).
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