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Ruth Kaila: The integrated volatility implied by option prices, a Bayesian ap-

proach; Helsinki University of Technology Institute of Mathematics Research Re-
ports A545 (2008).

Abstract: In this thesis, we present the new concept of implied integrated
volatility. When the stock price volatility is stochastic, the integrated vo-
latility is the time-average of the stock price variance. This volatility is a
fundamental quantity in option theory, as the stock price returns depend on
the stock price volatility only via the integrated volatility.

The implied integrated volatility is the integrated volatility implied by
option Hull-White prices. It is a stochastic extension of the Black-Scholes
implied volatility. Unlike the latter, however, it is independent of the strike
price of options. We suggest that this volatility can be used in volatility
estimation, in pricing illiquid options consistently with corresponding liquid
ones, and in hedging options.

Estimating the implied integrated volatility is an ill-posed inverse problem.
We present methods to estimate it within a Bayesian framework. This ap-
proach provides us with not only a point estimate, but also the possibility to
gauge the reliability of this estimate.

AMS subject classifications: 91B

Keywords: implied integrated volatility, stochastic volatility, quadratic variation,
Bayesian inference, MCMC sampling, hypermodel



Ruth Kaila: Option hinnoista määräytyä integroitu volatiliteetti, Bayesilainen

lähestymistapa

Tiivistelmä: Väitöskirjassa esitetään uusi käsite implisiittinen integroitu
volatiliteetti. Kun osakkeen hinnan volatiliteetti on stokastinen, integroitu
volatiliteetti on osakkeen hinnan varianssin aikakeskiarvo. Osakkeen tuotto
riippuu osakkeen hinnan volatiliteetista vain integroidun volatiliteetin väli-
tyksellä, minkä johdosta tämä volatiliteetti on merkittävä suure optioteorias-
sa.

Implisiittinen integroitu volatiliteetti on option Hull-White hinnoista mää-
räytyvä integroitu volatiliteetti. Se on stokastinen laajennus Black-Scholesin
implisiittiselle volatiliteetille. Toisin kuin viimeksi mainittu, implisiittinen in-
tegroitu volatiliteetti ei kuitenkaan riipu option lunastushinnasta. Sitä voi-
daan käyttää volatiliteetin estimoimiseen, epälikvidien optioiden hinnoitte-
luun yhtenevästi likvidien kanssa sekä suojaukseen.

Implisiittisen integroidun volatiliteetin estimointi on huonosti asetettu
käänteisongelma. Väitöskirjassa esitetään menetelmiä sen estimoimiseksi baye-
siläisessä paradigmassa. Yksittäisten piste-estimaattien lisäksi kyseinen lä-
hestymistapa tarjoaa mahdollisuuden arvioida kyseisten estimattien luotet-
tavuutta.

Avainsanat: implisiittinen integroitu volatiliteetti, stokastinen volatiliteetti, kva-
draattinen variaatio, bayesiläinen päättely, MCMC otanta, hypermalli



You must rise above
The gloomy clouds
Covering the mountaintop
Otherwise, how will you
Ever see the brightness?

–Ryokan to Teishin (1758–1831)
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Preface

It is not known exactly when the first derivatives were traded, but contracts
similar to options were used by Phoenicians and Romans for trading. In the
early 17th century, trading in tulip options blossomed in Holland. However,
for several decades, growth in option trading remained modest.

The year 1973 was an important one for the option markets in both practical
and theoretical ways: The first options exchange was opened in Chicago,
and Black and Scholes introduced their famous formula for option pricing.
Since then, a multi-trillion-dollar derivative industry has sprung up, and
products based on financial derivatives have become an essential tool for
risk managers and investors. The range of security instruments continues to
increase, allowing diverse risks to be hedged in ways closely tailored to the
specific needs of investors and companies.

One of the central problems in financial mathematics is the pricing and hedg-
ing of derivatives, such as options. The accuracy of correct pricing and hedg-
ing depends, among other things, on how well the volatility of the underlying
asset has been estimated. The quest for quantitative tools for reliably deal-
ing with the financial instruments has given birth to mathematical finance.
Mathematical finance is, rather than a discipline in its own right, an area of
application where results from probability theory, statistics, optimal control,
functional analysis, and partial differential equations can be implemented
in real life problems. In this thesis, we consider one particular instance in
this vast field: the problem of volatility estimation at the interface of option
theory and statistical inverse problems.

Market data differ from traditional data in natural and engineering sciences
in one fundamental way. While the data in the latter is always inaccurate,
approximate, and noisy, the observed market data of asset prices such as
stock and options contain no error. In other words, a price is a price. When
comparing observed values to theoretical predictions, the possible discrep-
ancy between the two must therefore be accounted for in the insufficiency of
the model. We can assume that the observed market data on asset prices
such as stocks and options contains no error. Therefore, we must focus on
how we model the relevant quantity. At least two prevalent approaches in
modeling volatility based on this data can be distinguished, the idealistic
approach and the instrumentalist approach.

According to the idealistic point of view, there exists a volatility model that
represents a mapping of reality. This model can be inferred from market
prices that fully reflect information on this process. This approach has re-
sulted in an increasing range of parametric and semi-parametric volatility
models. Even if the models are based on many unverifiable assumptions,
huge calibrations are often done without taking into account the reliability
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of these basic assumptions. The possibility of easily accessing and processing
extensive quantities of market data has strengthened this paradigm. The
classical piece of advice presented in Nicomachean Ethics is often forgotten
- Aristotle recommends that precision used should fit reasonably with the
subject under consideration.

Alternatively, volatility models can be seen in an instrumental way: as tools
to ensure that all derivative instruments are consistently priced with respect
to each other in order to avoid any possibility of arbitrage. A commonly
known tool for this purpose is the Black-Scholes implied volatility. However,
the Black-Scholes formula is deterministic, and as such it is in conflict with
the stochastic nature of markets. In this thesis, we introduce a stochastic
extension of this tool, the integrated volatility implied by option prices. We
call this quantity the implied integrated volatility.

L’homme moyen, the average man, is a fictional character of the social sci-
ences introduced by Quetelet in 1835. Quetelet constructed this average man
from a sample of about 100,000 French compatriots by measuring attributes
like height and weight, and even computing, using arrest records, the average
man’s propensity to commit a crime. This fictitious average man has played
a central role in financial mathematics until recent years.

The probability space for an economy can be interpreted as a natural measure
expressing individual or collective subjective beliefs concerning the market
events. The market prices of assets are then a reflection of this collective
subjectivity. However, even if it is understood that investors have hetero-
geneous levels of wealth, risk aversion, patience, and belief, many theories
and models on assets and options are set as if there were one average man
or investor whose wealth, risk aversion, patience, and belief are aggregates of
those of all investors. Latent parameters such as volatility would then have
a fixed value, which can be estimated from market data fairly accurately.

In the Bayesian paradigm, randomness means a lack of information, and
our subjective belief in a random event is expressed in terms of probability.
Instead of an absolute truth, this approach searches for evidence meant to
be consistent or inconsistent with a given hypothesis. As stock and option
market prices are reflections of collective subjectivity, it is quite natural to
propose a Bayesian approach to estimating volatilities from these prices. In
this thesis, we present methods to estimate the implied integrated volatility
within a Bayesian framework.

This work is intended to be self-contained. It can be divided conceptually
into two parts. The first theoretical part, including Chapters 1-7, provides
a framework for the second part, Chapters 8-12, which is devoted to the
implied integrated volatility.

A brief introduction on the probability theory needed later is provided in the
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first chapter. It should be viewed as a glossary for notations and concepts
used later on in this thesis, not as a comprehensive treatment of the topic.
In Chapters 2-4, we present fundamental concepts related to stocks, options,
and option pricing. We also introduce the concept of integrated volatility
and discuss stock price processes with different volatilities.

The implied integrated volatility is based on the Hull-White paradigm. This
paradigm, as well as various ways to derive the Hull-White pricing formula,
is considered in Chapter 5. One explanation for the volatility smile, based on
the Hull-White formula, is presented at the end of that chapter. Chapters 6
on hedging and 7 on inverse problems close the first part of the thesis.

Chapter 8 discusses the concept of implied integrated volatility on a gen-
eral level. In Chapters 9 and 10, we present two methods to estimate this
volatility from option prices, using a Bayesian approach. Three computed
examples on volatility estimation, pricing options, and hedging options are
presented in Chapter 11. Chapter 12 contains concluding remarks and sug-
gestions for further research. Each chapter ends with a number of references
for suggested further reading, although by no means are these lists exhaustive
or all-inclusive. They are provided to the reader for both more comprehen-
sive background information, and as a springboard into more detailed and
specialized works.
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1 Preliminaries

The aim of this section is to provide a short introduction to the probability
theory needed in this thesis, in particular to stochastic processes and to
Monte Carlo sampling. In addition to the theory directly used in this work,
we willl present concepts that are useful for understanding the interface of
this thesis and quantitative finance. In addition, for fixing the notations,
we will review some basic facts concerning these fields. As the main focus
of this work is not in probability theory and stochastic processes, we will
present the formulas and theorems without proofs in an accessible way, and
will give references to more detailed and rigorous presentations in the end of
the chapter.

1.1 General probability theory

Let (Ω,F , P) be a triple, where Ω is a probability space, F a σ-algebra of
the subsets of Ω and P : F → [0, 1] a σ-additive probability measure. With
σ-algebra we mean that i) Ω ∈ F , ii) if F ∈ F then Ω\F ∈ F , and iii) if
Fi ∈ F , i ∈ N, then ∪∞

i=1Fi ∈ F .

A measurable mapping X : Ω → R is a random variable. The probability
distribution of X is µX(B) = P

{
X−1(B)

}
, where B ⊂ R is a Borel set. A

multivariate random variable is a mapping X = [X1, X2, . . . , Xn] : Ω → R
n,

where each component is a real-valued random variable. If X is an n-variate,
and Y is an m-variate random variable, then Z = [X,Y ] is an (n+m)-variate
random variable and the joint probability distribution of X and Y is defined
as the probability distribution of Z.

Let P and P ∗ be two probability measures defined on (Ω,F). We say that
the measure P is absolutely continuous with respect to P ∗ if and only if
P ∗(A) = 0 ⇒ P (A) = 0 for all A ∈ F . If P is absolutely continuous with
respect to P ∗, and if P ∗ is absolutely continuous with respect to P , we say
that P and P ∗ are equivalent measures.

According to the Radon-Nikodym Theorem, if P absolutely continuous with
respect to P ∗, then there exists a non-negative F -measurable random variable
ξ = ξ(ω) such that for any A ∈ F ,

P (A) =

∫

A

ξ(ω)dP ∗(ω). (1)

In addition, ξ is unique as a measurable function in the sense that if there were
another random variable ξ′ satisfying (1) for all A ∈ F , then P (ξ = ξ′) = 1.

The random variable ξ is called the Radon-Nikodym derivative. It is com-
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monly denoted by

ξ(ω) =
dP

dP ∗
(ω).

The Radon-Nikodym theorem says that if P is absolutely continuous with
respect to P ∗, an integral with respect to P is a weighted integral with respect
to P ∗, the weight being the Radon-Nikodym derivative.

If the probability distribution µX of a random variable X ∈ R
n is absolutely

continuous with respect to the Lebesgue measure, there is a measurable den-
sity πX : R

n → R+ so that

µX(B) =

∫

B

πX(x)dx,

B ⊂ R
n measurable. We adopt the convention that uppercase letters denote

random variables and lowercase letters their realizations. Furthermore, when
there is no danger of confusion, we will omit the subindex from the densi-
ties and write π(x) = πX(x), i.e., the variable x indicates that π(x) is the
probability density of X.

The joint probability density for two real valued random variables X and Y ,
πXY (x, y) = π(x, y), is defined via their probability distribution, i.e.,

P{X ∈ A, Y ∈ B} = P (X−1(A) ∩ Y −1(B)) =

∫ ∫

A×B

π(x, y)dxdy,

and, assuming that such a density exists, the marginal density of X is recov-
ered as

π(x) =

∫

R

π(x, y)dy. (2)

We denote the expectation of X by E
{
X

}
, the variance by Var{X} the

covariance of X and Y by Cov{X,Y }, and define the correlation coefficient
of X and Y by

ρ{X,Y } =
Cov{X,Y }

√

Var{X}Var{Y }
. (3)

The conditional expectation is defined in the following way. Assume that
‖X‖2 : Ω → R+ is integrable. Denote ‖X‖2

2 = E
{
‖X‖2

}
< ∞, and let

L2(Ω,F , P) denote the space of square integrable random variables.

Assume that S ⊂ F is a sub-σ-algebra and denote by L2(Ω,S, P) the sub-
space of S-measurable functions, L2(Ω,S, P) ⊂ L2(Ω,F , P). This subspace
is closed. If P is the orthogonal projection L2(Ω,S, P) → L2(Ω,F , P), we
denote E

{
X | S

}
= PX.

Let X ∈ R
n and Y ∈ R

m are two random variables, and consider the mapping
B(Rn) → R+, B 7→ E{χB(X) | σ(Y )}, where B(Rn) denotes the Borel sets
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of R
n and χB is the characteristic function of B ⊂ R

n. It can be shown
that there exists a regular version of the conditional measure, i.e., a mapping
µ : B(Rn)×R

m → R+, so that B 7→ µ(B | y) is a measure and y 7→ µ(B | y)
is measurable, and E{χB(X) | σ(Y )} = µ(B | Y (ω)), i.e., the conditional
expectation depends only on the realization of Y . If the joint distribution of
X and Y is absolutely continuous with respect to the Lebesgue measure of
R

n×R
m, with the density π(x, y), then the conditional measure B 7→ µ(B | y)

is absolutely continuous with respect to the Lebesgue measure of R
n and the

density π(x | y) is obtained by

π(x | y) =
π(x, y)

π(y)
, if µ(y) 6= 0. (4)

By the symmetry of the roles of X and Y , we have

π(x, y) = π(x | y)π(y) = π(y | x)π(x). (5)

The following types of convergence are important in a stochastic environment,
an will be used in the sequel.

1. The sequence X1, X2, . . . converges in probability to X if for every ǫ > 0,
we have

lim
n→∞

P{|Xn − X| > ǫ} = 0, (6)

and we denote X
P
= limn→∞ Xn.

2. The sequence X1, X2, . . . converges with probability one to X if

P{ lim
n→∞

Xn = X} = 1. (7)

In this case, we write X
a.s.
= limn→∞ Xn or say that the sequence con-

verges almost surely, that is a.s. to X.

3. The sequence X1, X2, . . . converges in mean square sense to X if

lim
n→∞

E{|Xn − X|2} = 0, (8)

which is denoted with X
m.s.
= limn→∞ Xn.

4. The sequence X1, X2, . . . converges in distribution to X if

lim
n→∞

E{f(Xn)} = E{f(X)} (9)

for every bounded continuous function f : R
n → R. We then write

X
d
= limn→∞ Xn.
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The Law of Large Numbers and the Central Limit Theorem will be used when
analyzing the convergence of averages of random variables. Suppose that
X1, X2, . . . are independent and identically distributed real valued random
variables with mean µ and variance σ2 which we assume to be finite. A
version of the Law of Large Numbers says that

lim
n→∞

1

n
(X1 + X2 + · · · + Xn)

a.s.
= µ. (10)

Let µ̂n denote the sample mean

µ̂n =
1

n

n∑

i=1

Xi.

Then a version of the Central Limit Theorem states that the random variables
µ̂n are asymptotically normally distributed in the following sense:

lim
n→∞

P

{
µ̂n − nµ

σ
√

n
< x

}

=
1√
2π

∫ x

−∞

e−t2/2dt = N (x). (11)

1.2 Stochastic processes

A stochastic process is a collection of real valued random variables (Xt)t≥0

defined on a probability space (Ω,F , P ); the time parameter t can be either
discrete or continuous. The mapping t 7→ Xt(ω), ω ∈ Ω fixed, is a sample
path of Xt.

A filtration on (Ω,F) is a nested family M = {Mt}t≥0 of σ-algebras Mt ⊂ F ,

0 ≤ s < t ⇒ Ms ⊂ Mt.

The filtration refers to the information available at time t. A natural filtration
associated with a stochastic process (Xt)t≥0 is FX

t = σ(Xs | s ≤ t), i.e., FX
t

is the σ-algebra generated by the stochastic process (Xs)s≤t.

A stochastic process (Xt)t≥0 is adapted to the filtration (Ft)t≥0, if the stochas-
tic process Xt is Ft-measurable for every t. Observe that (Xt)t≥0 is always
FX

t -adapted. Two important classes of adapted processes are Markov pro-
cesses and martingales.

A Markov process is a stochastic process for which only the present value of
the random variable is relevant for forecasting the future, that is, the past
history of the random variable and the way in which the present has emerged
from the past are irrelevant in forecasting the future behavior of the variable.
In other words, an (Ft)t≥0-adapted process (Xt)t≥0 is a Markov process if

E{Xt | Fs} = E{Xt | Xs} for all 0 ≤ s ≤ t. (12)
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We call (12) the Markov property.

A real-valued (Ft)t≥0-adapted stochastic process (Xt)t≥0 on (Ω,F , P ) is a
(Ft)t≥0-martingale if

1. E{|Xt|} < ∞ for every 0 ≤ t < ∞

2. E{Xt|Fs} = Xs for every 0 ≤ s < t < ∞.

If a stochastic process is a martingale, its expected value at any future time
t conditioned on all information of the past equals the current value of the
process. Therefore, the best guess for the future value of the process is its
current value. This property is often expressed by saying that for a game
that is a martingale there is no winning strategy.

Given a not-necessarily equispaced partition Π of an interval [t0, t],

0 = t0 < t1 < t2 < · · · < tn = t, (13)

denote by ‖Π‖ the maximum step size of the partition

‖Π‖ = maxi=0,...,n−1(ti+1 − ti).

By the total variation of a stochastic process (Xt)t≥0 we mean

TV(X)t
P
= lim

‖Π‖→0

{
n−1∑

i=0

|Xti+1
(ω) − Xti(ω)|},

and the quadratic variation of (Xt)t≥0 is defined as

〈X〉t P
= lim

‖Π‖→0

{
n−1∑

i=0

(Xti+1
(ω) − Xti(ω))2}. (14)

The quadratic covariation of two stochastic processes (Xt)t≥0 and (Yt)t≥0 is
defined as

〈X,Y 〉t P
= lim

‖Π‖→0

{
n−1∑

i=0

(Xti+1
(ω) − Xti(ω))(Yti+1

(ω) − Yti(ω))}. (15)

It can be shown that if a continuous stochastic process has finite total varia-
tion, it has zero quadratic variation. Conversely, this means that the sample
paths of a process with non-vanishing quadratic variation are non-rectifiable
with probability one.

A real-valued stochastic process (Wt)t≥0 adapted to the filtration (Ft)t≥0 is
called a Brownian motion if it satisfies the following properties:
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1. W0 = 0, almost surely;

2. for all 0 ≤ s < t, the increment Wt − Ws is independent of Fs and is
normally distributed with

E{Wt − Ws} = 0 and Var{Wt − Ws} = t − s;

3. (Wt)t≥0 has continuous sample paths almost surely.

A Brownian motion is a Markov process and a martingale. It will be used
later to model the random fluctuations of stock prices.

Almost all sample paths of the Brownian motion have infinite total variation,
but the quadratic variation of the Brownian motion over a time interval [s, t]
is finite, and is given by

〈W 〉s,t P
= lim

‖Π‖→0

n−1∑

i=0

(Wti+1
− Wti)

2 = t − s, (16)

where we have used the time partition (13) of the interval [s, t]. We denote
〈W 〉t = 〈W 〉0,t. In the subsequent sections, we will denote the differential of
the quadratic variation 〈X〉t of a stochastic process (Xt)t≥0 by d〈X〉t. It is
defined as

d〈X〉t = lim
h→0

〈X〉t,t+h

h
dt, (17)

provided that the limit exists. The differential of the quadratic variation of
the Brownian motion (16) is

d〈W 〉t = dt.

Since the total variation is infinite for almost all paths of the Brownian mo-
tion, the integral of stochastic processes with respect to the Brownian mo-
tion cannot be defined as a Lebesgue-Stjeltjes integral. However, integrals
for these processes can be defined as Itô integrals. Let (13) be a partition
of [0, t] and let (Xt)0≤t≤T be a stochastic process adapted to (Ft)0≤t≤T for a
fixed T , so that

E{
∫ T

0

X2
t dt} < ∞,

i.e., the paths are square integrable almost surely. If (Wt)0≤t≤T is a (Ft)0≤t≤T -
adapted Brownian motion, it can be shown that the sequence of random
variables Zn, where Zn =

∑n−1
i=0 Xti(Wti+1

− Wti) converges in the mean
square sense (8). We omit the proof, which is presented in Oksendal [?]. The
limit of this sequence, denoted by

It =

∫ t

0

XsdWs
m.s.
= lim

‖Π‖→0

n−1∑

i=0

Xti(Wti+1
− Wti), (18)
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is called the Itô integral of Xt over [0, t], t ≤ T .

The Itô integral has several important features. As a function of time, it
defines a continuous square integrable process such that

E
{(

∫ t

0

XsdWs

)2}
= E

{
∫ t

0

X2
s ds

}
< ∞. (19)

The Itô integral is an Ft-martingale, i.e.,

E{
∫ t

0

XudWu | Fs} =

∫ s

0

XudWu, almost surely, s ≤ t.

Since Wti+1
− Wti is independent of Fti and therefore of Xti , we have

E{Xti(Wti+1
− Wti)} = E{Xti}E{Wti+1

− Wti}
︸ ︷︷ ︸

=0

= 0,

and thus the expectation E{It} = 0 for all t ≥ 0 and the variance is Var{It} =
E{I2

t }. Using (19), the variance of the Itô integral is therefore

Var{It} = E
{

∫ t

0

X2
s ds

}
.

The quadratic variation of the Itô integral It over the interval [0, t] is

〈I〉t =

∫ t

0

X2
s ds,

and its differential is
d〈I〉t = X2

t dt.

Observe that the quadratic variation of the Itô integral is a random variable,
its expectation is the variance Var{It} of the Itô integral.

Let Wt be a (Ft)-adapted Brownian motion on (Ω,F , P ). The stochastic
process (Xt)t≥0 is said to be an Itô process if it can be represented as

Xt = X0 +

∫ t

0

bsds +

∫ t

0

σsdWs, (20)

where X0 is non-random, and bs and σs are real-valued stochastic processes
adapted to the filtration (Fs)s≥0 that satisfy the following conditions:

∫ t

0

|bs|ds < ∞ a.s. and E

{∫ t

0

σ2
sds

}

< ∞, for all t > 0.

The Itô process can be written in the differential form as

dXt = btdt + σtdWt. (21)
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It can be shown (see Shreve 2004 [?] that the quadratic variation of the Itô
process (20) on the interval [0, t] is

〈X〉t =

∫ t

0

σ2
sds, 0 ≤ t ≤ T. (22)

Consider another Itô process (Yt)0≤t≤T

Yt = Y0 +

∫ t

0

csds +

∫ t

0

ξsdZs,

such that the Brownian motions Wt and Zt are correlated and the correlation
coefficient ρ = ρ{Wt, Zt} is independent of t.

The quadratic covariation of the Itô processes Xt and Yt is

〈X,Y 〉t =

∫ t

0

σsξsρds. (23)

An Itô diffusion is a stochastic process (Xt)0≤t≤T that satisfies a stochastic
differential equation of the form

dXt = b(t,Xt)dt + σ(t,Xt)dWt, t ≥ s; Xs = x, (24)

where Wt is a Brownian motion and b, σ : [0, T ]×R → R satisfy the Lipshitz
condition

|b(t, x) − b(t, y)| + |σ(t, x) − σ(t, y)| ≤ D|x − y|,
for a positive constant D independent of t.

A typical Itô diffusion used in financial mathematics is

dXt = btXtdt + σtXtdWt, (25)

which can be expressed in integral form as

Xt = X0 +

∫

bsXsds +

∫ t

0

σsXsdWs,

and whose quadratic variation over the interval [0, t] is

〈X〉t =

∫ t

0

σ2
sX

2
s ds. (26)

In stochastic calculus, the counterpart of the chain rule in ordinary calculus
is called the Itô formula. This formula provides a rule for computing differen-
tials of stochastic processes of the form f(Wt), where f(x) is a differentiable
function and Wt is a Brownian motion. We present here the one-dimensional
and the two-dimensional versions of this formula.
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Let Xt be an Itô process and g(t, x) is twice continuously differentiable on
[0,∞) × R, i.e., g ∈ C2([0,∞) × R). Then it can be shown (see Oksendal
2003 [?]) that

Yt = g(t,Xt)

is also an Itô process satisfying

dYt = dg(t,Xt) =
∂g

∂t
(t,Xt)dt +

∂g

∂x
(t,Xt)dXt +

1

2

∂2g

∂x2
(t,Xt)d〈Xt〉, (27)

where x = Xt and d〈X〉t is the derivative of the quadratic variation of Xt.
We call (27) the one-dimensional Itô formula.

Given the two Itô processes Xt and Yt and a function g ∈ C2([0,∞) × R
2),

again the process g(t,Xt, Yt) is an Itô process, and the two-dimensional Itô
formula is

dg(t,Xt, Yt) =
∂g

∂t
dt +

∂g

∂x
dXt +

∂g

∂y
dYt

+
1

2

(∂2g

∂x2
d〈X〉t + 2

∂2

∂x∂y
d〈X,Y 〉t +

∂2

∂y2
d〈Y 〉t

)
, (28)

where y denotes Yt and d〈X,Y 〉t is the derivative of the joint variation
〈X,Y 〉t, given in (23).

The Feynman-Kac formula relates stochastic differential equations and par-
tial differential equations. It provides a solution to a parabolic partial dif-
ferential equation as the expectation of a certain functional of a Brownian
motion.

Consider the Itô diffusion

dXt = bt(Xt)dt + σt(Xt)dWt.

Let f be a twice continuously differentiable function with a compact support,
f ∈ C2

0(R) and q a continuous function, q ∈ C(R). Assume that q is bounded
from below. Put

v(t, x) = E

{

exp

(

−
∫ t

0

q(Xs)ds

)

f(Xt)|X0 = x

}

. (29)

The Feynman-Kac formula states that v thus defined satisfies the initial value
problem

∂v

∂t
= Av − qv, t > 0, x ∈ R,

v(0, x) = f(x), x ∈ R,

where A is the generator of this diffusion, mapping g ∈ C2
0(R) as

A : g(x) 7→ bt(x)
∂g(x)

∂x
+

1

2
σt(x)

∂2g(x)

∂x2
.
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Financial instruments are modeled using different probability measures, such
as the natural probability measure and the risk-neutral probability measure,
to be defined in the next chapter. The Radon-Nikodym Theorem and the
Girsanov Theorem are important tools to cope with different probability
measures.

Let Yt ∈ R be an Itô process of the form

dYt = θt(ω)dt + dWt; t ≤ T, Y0 = 0,

where Wt is a Brownian motion. Define a stochastic process (Mt)t≥0 by

Mt = exp
{
−

∫ t

0

θs(ω)dWs −
1

2

∫ t

0

θs(ω)2ds
}
, 0 ≤ t ≤ T,

and assume that Mt is a martingale with respect to Ft and P . Define the
measure P ∗ on FT by

dP ∗(ω) = MT (ω)dP (ω).

Then a version of the Girsanov Theorem states that P ∗ is a probability
measure on FT and Yt is a Brownian motion with respect to P ∗, for 0 ≤ t ≤ T .

The following Novikov condition is sufficient to guarantee that (Mt)0≤t≤T is
a martingale:

E
{

exp
(1

2

∫ T

0

θ2
sds

)}
< ∞. (30)

Proofs for the theorem and for the Novikov condition are presented in Karatzas
and Shreve 1999 [?].

The Girsanov Theorem describes how the stochastic processes change with
respect to the changes in the underlying measure. It is important in many
applications in financial mathematics and econometrics and is used, for ex-
ample, to remove trends from certain stochastic processes.

1.3 Monte Carlo sampling

A commonly encountered computational problem is the numerical approxi-
mation of the integral ∫

D

f(x)π(x)dx, (31)

where D ⊂ R
n and R

n is a high-dimensional space, f(x) is the function of
interest, and π is a density. One possibility is to use numerical quadrature
methods, i.e., to define a set of support points in D, give weights to these
points, and to approximate the integral as a sum of the weighted point evalua-
tions of f . However, if the dimensionality of the space is high or if the support
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is poorly known or unknown, this method is not feasible. An alternative is
integration based on random sampling, called Monte Carlo integration.

In Monte Carlo integration, instead of evaluating the integral at given points
of the density, we draw a sample from the density π(x) in such a way that the
sample optimally represents the distribution. The sample point evaluations
of f , possibly weighted, are then used to approximate the integral.

Suppose that we have a random variable X whose probability density is π(x)
and we want to calculate the integral

E{f(X)} =

∫

Rn

f(x)π(x)dx, (32)

where the function f is measurable and integrable over R
n with respect to

π(x)dx.

A natural approach is to approximate (32) by empirical average using a
sample {x1, x2, . . . , xm} which is independently sampled from the distribution
of X, that is,

f̂m =
1

m

m∑

j=1

f(xj), (33)

where f̂m converges almost surely to E{f(X)} according to the Law of Large
Numbers (10). In addition, when E{f(X)}2) < ∞, also the variance

Var{f(X)} =

∫

Rn

(f(x) − E{f(X)})2π(x)dx = v

can be estimated from the sample {x1, . . . , xm} by

vm =
1

m

m∑

j=1

(f(xj) − f̂m)2.

Now, according to the Central Limit Theorem (11),

dm =
f̂m − E{f(X)}√

v
(34)

is approximately normally distributed for large m, with a mean of zero and
a variance of order 1/m. This provides the speed of convergence of f̂m, as
well as confidence bounds for the approximation of E{f(X)} by f̂m.

A fundamental question is how to pick realizations of a random variable X
in such a way that (33) converges to (32). It is possible that the probability
density π(x) of X is presented only abstractly, lacking analytical formula-
tion, or that evaluating π(x) numerically is possible, albeit time consuming.
The sample points can then be generated using Markov Chain Monte Carlo
(MCMC) methods.
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Consider a sequence {Xn}n≥0 of random variables. This sequence is a Markov
process, if for all integers 0 ≤ k ≤ n, we have

π(xk+1|x0, x1, . . . , xk) = π(xk+1|xk). (35)

If there exists a fixed function

q : R
n × R

n → R,

such that we can write

π(xk+1|xk) = q(xk, xk+1) ∀k,

we say that the chain is time-homogeneous and call q the transition kernel
and (35) the Markov chain generated by q.

Consider an arbitrary transition kernel q. Let X be a random variable with
probability density p(x) = π(x). Here, we emphasize that p is a known
function of x, while π(x) denotes the generic density of X. We can generate
a new random variable Y by applying the transition kernel q(x, y), i.e.,

π(y | x) = q(x, y).

The probability density π(y) of the new variable is found by marginalization:

π(y) =

∫

π(y | x)π(x)dx

=

∫

q(x, y)p(x)dx.

If π(y) = p(y), then p is an invariant distribution of the transition kernel
q. The basic idea of the MCMC methods is to define a transition kernel,
or transition rule, such that the density p of interest is its invariant density.
The sample distributed according to this density is then generated by this
transition rule.

Two commonly used algorithms to generate a Markov chain are the Metropolis-
Hastings algorithm and the Gibbs sampler. We now briefly present the latter,
which will be used later in this work. References for more detailed presenta-
tions are given in Notes on references.

The Gibbs sampler, introduced by Geman and Geman in 1984 [?], is a Markov
Chain Monte Carlo scheme that updates the sample points component-wise.
Suppose that a random variable X with a probability density π can be pre-
sented component-wise as X = (X(1), X(2), . . . , X(n)), where n > 1. In ad-
dition, suppose that we can simulate X from the corresponding conditional
univariate densities πi,

(X i | x(1), x(2), . . . , x(i−1), x(i+1), . . . x(n))

∼ πi(x
(i) | x(1), x(2), . . . , x(i−1), x(i+1), . . . x(n))
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for i = 1, 2, . . . , n. The Gibbs sampling algorithm generates a Markov chain
{Xn}n≥0 using the following steps.

Given xj = [x
(1)
j , x

(2)
j , x

(3)
j , . . . , x

(n)
j ], generate

1. X
(1)
j+1 from t 7→ π1(t | x

(2)
j , x

(3)
j , . . . , x

(n)
j )

2. X
(2)
j+1 from t 7→ π2(t | x

(1)
j+1, x

(3)
j , . . . , x

(n)
j )

3. . . .

4. X
(n)
j+1 from t 7→ πj(t | x

(1)
j+1, x

(2)
j+1, . . . , x

(n−1)
j+1 ).

The Gibbs sampler accepts every proposal, and every single conditional up-
date leaves the probability density π invariant. It can be shown that, under
certain appropriate regularity conditions, the Gibbs sampler chain converges
geometrically, and its convergence rate is related to the mutual correlation
of the variables (see for example Schervish and Carlin 1992 [?]). All of the
simulations may be univariate even in high-dimensional problems, which is
usually an advantage.

1.4 Notes on references

Classical references on probability theory include Gihman and Skorohod 1974
[?], Billingsley 1979 [?], and Breiman 1992 [?], and on stochastic calculus
include Oksendal 2003 [?], Karatzas and Shreve 1999 [?], and Protter 2004
[?].

Stochastic calculus for finance is considered in Shreve 2003 [?]. Many books
on finance, financial modeling, or quantitative finance provide an introduction
to the topic, including Cont and Tankov 2004 [?] and Platen and Heath 2006
[?].

Comprehensive books on Monte Carlo Methods include Robert and Casella
2004 [?], Liu 2001 [?], and Bremaud 1999 [?]. Applications to financial
engineering are considered in Glasserman 2004 [?], a shorter presentation
is provided in Boyle, Broadie and Glasserman 1997 [?], and applications to
financial econometrics are treated by Johannes and Polson 2004 [?].
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2 Options

In recent years, risk management has become a central question in finance.
Options are tools to cope with various risks, as they can be used to some
extent to protect current or anticipated positions in the asset. At the price of
an option, the asset holder can obtain downside protection and still preserve
upside potential reduced by the option price. Options can also be used to
take advantage of the anticipated price movements on some financial asset.

Even if options have been around for centuries, it was only in 1973 that
organized option markets were created by the Chicago Board Options Ex-
change. Nowadays, there are over 50 exchanges worldwide on which options
are traded, and option markets are among the fastest growing financial mar-
kets.

In this chapter, we will present fundamental concepts related to options and
option pricing.

2.1 Bonds and stocks

We start by defining a probability space for an economy, and by reviewing the
basic concepts such as bonds and stocks, and the corresponding mathematical
models. We model the stock price process based on Samuelson 1965 [?], who
suggested using exponential Brownian motion to describe stock price move-
ments. Even earlier, motivated by an attempt to model the fluctuations of
asset prices and to price derivatives, Bachelier 1900 [?] introduced Brownian
motion.

Consider a continuous-time economy with a finite trading interval [0, T ]. We
assume that trading can take place continuously and that there are no taxes.
Let (Ω,F , P ) be a probability space, equipped with a filtration (Ft)0≤t≤T .
This filtration refers to the information available in the economy at time t,
increasing as a function of time. We assume that there is a natural underlying
probability measure which expresses the individual or collective subjective
belief concerning the market events. We denote this measure by P and call
it the natural probability measure. The market risk and profit expectations
are expressed with respect to this measure.

A bond is a riskless asset. The price Bt of a bond at time t is governed by
the ordinary differential equation

dBt

Bt

= rdt,

where r is a non-negative number denoting the riskless rate of return, the
interest rate. If the initial investment B0 = 1, we have Bt = ert for t ≥ 0.
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A stock is an asset representing ownership in a company. It is common to
present the stock price process as an Itô process, given by the stochastic
differential equation

dXt

Xt

= µdt + σdWt, (36)

where Xt denotes the price of the stock at time t, µ is the expected rate
of return of the asset, σ is the stock price volatility, assumed here to be
constant, and Wt is a Brownian motion. The first term on the right-hand
side of (36) represents the riskless part of the relative rate of change of the
asset price. The second term represents the uncertainty of the asset, the
volatility being the instantaneous variance of the stock price return. It is
called the martingale term of the process.

In the thesis, we assume that the interest rate r and the expected rate of
return µ are constants. Also, we assume that the asset does not pay dividends
during the time scale we are considering.

When the volatility σ is constant, the stock price process (36) can be written
as a geometric Brownian motion:

Xt

X0

= exp
(
(µ − 1

2
σ2)t + σWt

)
. (37)

This equation is obtained from (36) applying the Itô formula (27) with
g(t, x) = log x, x > 0, yielding

d(log Xt) =
dXt

Xt

− 1

2
· 1

X2
t

d〈Xt〉. (38)

From (26), we have
d〈Xt〉 = σ2X2

t dt, (39)

and by substituting (36) and (39) into (38) we get

d(log Xt) = (µ − 1

2
σ2)dt + σdWt. (40)

Integrating all terms from zero until time t gives

log Xt = log X0 + (µ − 1

2
σ2)t + σWt,

which leads to (37).

We can see that if the volatility is constant, the logarithm of the stock price
return Xt/X0 is normally distributed with mean (µ− 1

2
σ2)t and variance σ2t.

In fact, as the stock price process is Markovian, the logarithm of the stock
price return for any Xt/Xs, 0 ≤ s ≤ t ≤ T , is normally distributed with
mean (µ − 1

2
σ2)(t − s) and variance σ2(t − s).
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2.2 Stock price volatility and integrated volatility

Stock price volatility is modeled in various ways. In the simplest models, it is
treated as a constant. There is empirical evidence that this is not a sufficient
model in the real world. The volatility can be modeled as a function of
time, σ = σ(t), or as a function of time and the instantaneous stock price,
σ = σ(t,Xt). The latter is called deterministic volatility. In more complex
models, the volatility is modeled, for example, as a a stochastic process or a
diffusion with jumps. Various stochastic volatility models will be considered
in Chapter 4.

Consider the stock price process (Xt)0≤t≤T with a stochastic volatility σt,
both adapted to the filtration (Ft)0≤t≤T . Let the stock price process be given
by

dXt

Xt

= µdt + σtdWt, (41)

where µ denotes the expected rate of return and σt satisfies the condition

E

{ ∫ T

0

σ2
sds

}

< ∞.

In the same way as in (37), we apply the Itô formula (28) to g(t, x, y) = log x,
x > 0, which leads to

d(log Xt) = (µ − 1

2
σ2

t )dt + σtdWt, (42)

and further, by integrating all terms from zero until time t, to the logarithm
of the stock price return, given by

log
Xt

X0

= µt − 1

2

∫ t

0

σ2
sds +

∫ t

0

σsdWs. (43)

Now, according to (22), the quadratic variation of (43) is finite and given by

〈log
Xt

X0

〉t =

∫ t

0

σ2
sds, 0 ≤ t ≤ T. (44)

In financial mathematics and econometrics, the average of the quadratic vari-
ation of the stock price process over the time interval [t, T ], 0 ≤ t < T is
called the integrated volatility. This integral, denoted by σ̄2

t , is given by

σ̄2
t =

1

T − t

∫ T

t

σ2
sds. (45)

It should be noticed that even if we call (45) the integrated volatility, the
integral is taken of the square of the instantaneous volatility, i.e, of the in-
stantaneous variance, and not of the instantaneous volatility itself.
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Consider a stock price process on the time interval [t, T ]. Applying (45) to
(43) leads to a formula for the stock price return, given by

XT

Xt

= exp

( ∫ T

t

(µ − 1

2
σ2

s)ds +

∫ T

t

σsdWs

)

,

We can see from this formula that the stock price return is related to the
stock price volatility only through the integrated volatility σ̄2

t . This is one
leading idea in our work.

2.3 Options and option markets

Derivatives are financial instruments whose value is derived from the value
of some underlying asset, e.g. stock index, stock, interest rate, or foreign
currency. Options are derivatives that give their owner the right but not the
obligation to a transaction at a specific price, strike price K, and at or before
a specific time, maturity T . A call option U(t,Xt) gives the owner the right
to buy, and a put option P (t,Xt) gives the right to sell.

A European option is determined by the terminal price of the underlying
asset XT . Its value is independent of the path of the underlying before the
maturity. In this paper, when talking about options we refer to European
options. At maturity, the value of a European call is given by

U(T,XT ) = (XT − K)+ =

{
XT − K, if XT > K,
0, if XT ≤ K.

We denote h(XT ) = U(T,XT ) and call h(XT ) the payoff function. The payoff
of a European put is given by

P (T,XT ) = (K − XT )+ =

{
K − XT , if XT < K,
0, if XT ≥ K.

The call option price Ut = U(t,Xt) and the put option price Pt = P (t,Xt)
are related to each other with the put-call -parity

U(t,Xt) − P (t,Xt) = Xt − Ke−r(T−t), 0 ≤ t ≤ T,

where r is the riskless rate of return. Because the price of one can be deduced
from that of the other one, we will concentrate on call options in this paper.
In general, when explaining general features of options, we call the underlying
asset a stock, even though it could as well be, for example, a stock index or
foreign currency.

The relation between the strike price of an option and the value of the un-
derlying is often described in terms of moneyness, which we define in this
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paper as the ratio K/(Xte
r(T−t)). Further, a call will be referred to as in-

the-money, at-the-money, or out-of-the-money, if the strike price is less than,
approximately equal to, or greater than Xte

r(T−t).

Simple options with normal maturities and strike prices, without special fea-
tures, are called plain vanilla options. Other options are called exotic options.
Plain vanilla options are traded in liquid markets where the options are priced
by the markets. More complex options are traded in over-the-counter (OTC)
markets where the price has been fixed by a market-maker. These options
can be tailor made and have special features. They are often priced based
on the market prices of plain vanilla options. Nowadays, one can also buy
derivatives that are written on the volatility itself. The definition and the
measurement of the volatility are then specified in the derivative contract.

In liquid option markets, there are two different prices for options, one for
bids and another for offers. We call this phenomenon the bid-offer spread.
The size of the spread depends on the liquidity of the markets, among other
things, and is usually of the order of some percents of the option prices.

2.4 Replicating the value of an option

Replicating portfolios are a basic tool for pricing and hedging options. In
its simplest form, the concept of replicating an option refers to holding a
portfolio of stocks and bonds in such a way that, at the maturity of the
option, the value of this replicating portfolio equals the payoff of the option
h(XT ) = (XT − K)+, regardless of the path the stock price has taken.

If, at maturity, the value of the replicating portfolio equals the payoff of
the option, and if no funds are added after the initial investment, then, at
any time t, 0 ≤ t ≤ T , the value of the option must equal the value of the
replicating portfolio. To understand this claim, consider a case in which, at
some moment, the value of either the option or the replicating portfolio is
less than the value of the other one. We can then sell the more expensive
one and buy the cheaper one, and still get the same amount of money at
maturity. In this situation, there is an opportunity for arbitrage, i.e., a way
to systematically outperform the market by trading in the marketed assets.
The right price of the option refers to one that leads to no arbitrage.

Holding an option does not require any extra funds after the initial invest-
ment. The replicating portfolio should not, either; it should, therefore, be
self-financing. The price of the stock varies continuously, and, according to
it, the value of the option does as well. If, for example, the stock price rises,
then the value of the option usually rises also. Due to these variations, the
amount of stocks and bonds in the replicating portfolio must be continuously
adjusted.
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If, in an economy, the payoff of any derivative can be completely replicated,
we say that the economy is complete; otherwise, it is incomplete. Incom-
pleteness can arise from many sources such as transaction costs, constraints
in the trading strategies, or stochastic volatility. In a complete market, all
risks can be perfectly hedged. Theoretically, markets on options with con-
stant volatility are complete, and stochastic volatility renders these markets
incomplete. In Chapter 5.3, we will show how the value of an option can be
replicated when the volatility is stochastic.

2.5 Risk-neutral pricing of options with constant volatil-

ity

Instead of using replicating portfolios, the price of European options can
be derived by evaluating the expectation of the discounted payoff of the
underlying at maturity. We call this approach the risk-neutral pricing of
options.

Suppose that the stock price process follows the stochastic dynamics de-
scribed by equation (36). The value of a European option on the stock does
not depend on the path of the underlying. We can then write its value as the
expectation of the discounted payoff of the underlying at maturity, that is

U(t,Xt; K,T ; σ2) = E{e−r(T−t)h(XT )} = E{er(T−t)(Xt − K)+}. (46)

However, unless µ = r, this is not a fair price for the option. The discounted
price X̃t = e−rtXt, 0 ≤ t ≤ T is not a martingale, as it contains a non-zero
drift term µ − r, that is

dX̃t = d(e−rtXt) = (µ − r)(e−rtXt)dt + σ(e−rtXt)dWt (47)

= (µ − r)X̃tdt + σX̃tdWt.

Holding an option valued with (46) and replicating it with stocks and bonds
leads to an opportunity of arbitrage.

Harrison and Kreps 1979 [?] and Harrison and Pliska 1981 [?] have suggested
that option prices are given as an expectation, but not as the one with re-
spect to the natural probability measure implied by stock markets. Instead,
the expectation should be taken with respect to a measure under which the
discounted price of the underlying asset is a martingale. We call such a mea-
sure an equivalent martingale measure. Under this measure, the option price
does not depend on the expected rate of return µ, which may be different for
each investor. For this reason, we say that the measure is risk-neutral.

Let us construct an equivalent martingale measure for (46). We first absorb
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the drift term from (47) into the martingale term, getting

dX̃t = σX̃t

[

dWt +

(
µ − r

σ

)

dt

]

,

and define the market price of asset risk as

θ =
µ − r

σ
.

We write then

W ∗
t = Wt +

∫ t

0

θds = Wt + θt,

so that
dX̃t = σX̃tdW ∗

t .

We define the random variable ξθ
t by

ξθ
t = exp(−1

2
θ2t − θWt), 0 ≤ t ≤ T.

Clearly, the Novikov condition (30) is fulfilled, i.e.,

E
{

exp
(1

2

∫ t

0

θ2ds
)}

< ∞

and ξθ
t is a martingale.

Then, according to the Girsanov Theorem, the probability measure P ∗ given
by

P ∗(ω) = ξθ
T (ω)dP (ω)

is an equivalent martingale measure to P and the process W ∗ ∈ R is a
Brownian motion. The stock price X̃t a then a martingale under the measure
P ∗.

In conclusion, if we assume that µ, r, and σ are constants, without the loss of
generality, we may assume that µ = r, by possibly passing from the natural
probability measure P to the risk neutral measure P ∗ of the option markets.

2.6 Notes on references

The main references on option theory used in this thesis are Fouque, Papan-
icolaou, and Sircar 2000 [?], Cont ja Tankov 2004 [?], and Rebonato 2004
[?]. Common references on option theory include Hull 2006 [?], Duffie 2001
[?], and Wilmott 1998 [?]. More mathematical approaches are given in Steele
2001 [?], Lamberton and Lapeyre 1997 [?] and Musiela and Rutkowski 2005
[?].
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3 Black-Scholes paradigm

In 1973, Fisher Black and Myron Scholes [?] introduced the Black-Scholes
equation for pricing European options. Assuming that the stock price process
follows (36), they showed that the price U(t,Xt) of an option with maturity
T , 0 ≤ t ≤ T , must satisfy the following partial differential equation:

∂U

∂t
(t, x) +

1

2
σ2x2∂2U

∂x2
(t, x) + rx

∂U

∂x
(t, x) − rU(t, x) = 0, (48)

where x = Xt denotes the stock price, r the riskless rate of return, and σ the
stock price volatility.

The Black-Scholes equation (48) is a general tool for pricing options. When
solved using the final condition h(XT ) = (XT − K)+ of a European call
option, this equation leads to the Black-Scholes formula providing the price
UBS(t, x) = UBS(t, x; K,T ; σ2) of a European call:

UBS(t, x) = xN (d1) − Ke−r(T−t)N (d2), (49)

where

d1 =
log(x/K) + (r + σ2/2)(T − t)

√

σ2(T − t)
, d2 = d1 −

√

σ2(T − t)), (50)

and N (z) is

N (z) =
1√
2π

∫ z

−∞

e−y2/2dy, (51)

the cumulative probability distribution function for a standard normal dis-
tribution. The corresponding price for a European put option PBS(t, x) is
given by

PBS(t, x) = Ke−r(T−t)N (−d2) − xN (−d1),

where d1 and d2 are as in (50).

One should notice that the Black-Scholes equation is independent of the risk
preferences of the investor. It is related by the Feynman-Kac formula (29)
with q(Xs) = r to the expectation of the discounted payoff of the underlying
at maturity, which is given by

U(t,Xt) = E{e−r(T−t)h(XT )}. (52)

The Black-Scholes formula can be derived from (52), as presented in Shreve
2004 [?].
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Summarizing, the Black-Scholes equation is based on the following assump-
tions:

1. The markets are complete;

2. The price of the asset follows an Itô process, given by (36);

3. The stock price volatility is constant;

4. The security trading is continuous;

5. There are no transaction costs or taxes.

Even though, in practice, these assumptions are too restrictive and are vio-
lated by the markets, the Black-Scholes model is still by far the most used
option pricing model. The model is simple and practitioners often see more
complex models as complicated, costly, and risky.

3.1 Black-Scholes implied volatility, volatility smile,

and term structure

The Black-Scholes formula is often represented as a tool to price prejudi-
ciously the plain vanilla options. However, these options are priced by mar-
kets according to offer and demand; hence, there is no need to calculate their
prices. In fact, this formula is merely used in an inverse way to estimate the
volatility implied by option market prices, called the implied volatility. This
volatility is used in risk management and in pricing options other than liquid
vanilla options.

The Black-Scholes option price UBS
t = UBS(t,Xt; K,T ; σ2) depends on var-

ious parameters. The implied volatility I is defined to be the value of the
volatility parameter with which the Black-Scholes option price UBS

t equals the
market price of the option uobs

t with the given strike price K and maturity
T ,

UBS
t (t, x; K,T ; I2) = uobs

t (K,T ). (53)

The solution of the implied volatility is unique because the Black-Scholes
pricing formula (49) is strictly increasing in σ.

The implied volatility can be seen as a kind of markets forecast for the average
development of the underlying during the remaining lifetime of the option.
This forecast should not depend on the strike price of the option. There is,
however, empirical evidence that the implied volatility is a function of both
strike price and maturity; i.e., for t and Xt fixed, I = I(K,T ). The mapping

K 7→ I(K,T )
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Figure 1: Simulated implied volatility surface and the corresponding volatil-
ity smile when the maturity is T = .15 years.

gives a volatility smile, and the mapping

T 7→ I(K,T )

a term structure. Finally, the mapping

(K,T ) 7→ I(K,T )

gives a volatility smile surface. In other words, the volatility smile refers to
the curve one can notice when plotting implied volatilities as a function of
strike prices, and the term structure to the curve one can notice when plotting
them against different maturities. One gets a smile surface when considering
a collection of smiles with different maturities. In general, the smile tends to
attenuate as the time to expiration increases. The smile surface and volatility
smiles are illustrated in Figure 1.

The existence of volatility smiles and term structures suggests that the Black-
Scholes prices are not consistent with option market prices. In particular, the
assumption of constant volatility is unrealistic. Then, unless the volatility is
a function of time only, the implied volatility is not a market forecast for the
average development of the underlying during the remaining lifetime of the
option.

Prior to the October 1987 market crash, Black-Scholes implied volatility
smiles typically were more or less symmetric with respect to the implied
volatility of an at-the-money option, and in-the-money and out-of-the-money
options had higher implied volatilities than at-the-money options. Since the
crash, the implied volatilities of call options typically increase monotonically
as the call goes deeper in-the-money, and the volatility smiles are rather
skews with respect to the strike price. In the same way, put options increase
monotonically as the put goes deeper out-of-the-money. The change of the
shape of the smile into a skew suggests that the implied volatility contains
more information than just the expected average of the stock price volatility
such as a risk premium due to incomplete markets. Despite problems with
the volatility smile, volatilities implied by the market prices of liquidly traded
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vanilla options are used when forecasting future stock price volatility, when
pricing exotic options, and in risk management.

The risk of arbitrage makes pricing exotic options a difficult task. When
sharing the same underlying, options with different strike prices are not mu-
tually independent. The problem is then what volatility to use when pricing
exotic options. The implied volatility varies as a function of the strike price
and maturity. When using it, one question is whether one should use a sin-
gle volatility to price all options with different strikes, a weighted average of
different volatilities, or separate volatilities for options with different strike
prices. The situation is further complicated by the fact that the shape of the
implied volatility surface changes as a function of time. Then, even if certain
exotic options are priced today so that there is no possibility of arbitrage
between them, the situation may be different in the future.

According to empirical studies, at-the-money implied volatilities are the less
biased ones with respect to the volatilities of the underlying. At-the-money
options are typically the most traded ones and probably they reflect best
the traders’ opinions on the future stock price volatility. For these reasons,
they are often used for volatility forecasts. A commonly used alternative to
at-the-money implied volatilities is a weighted average of implied volatilities
with different strikes.

Three different lines have dominated the research on implied volatilities:
searching alternative option pricing models to explain the existence of the
volatility smile and the term structure, exploiting the implied volatility as a
predictor for stock price movements and exploiting the information content of
the option prices and implied volatilities to price more complicated options.
We will discuss various stochastic volatility models in the next chapter, and
explain in Chapter 5.4 how the stochastic volatility induces a volatility smile.
In Chapter 8 we will explain how the information content of the option prices
can be, to some extent, encoded in the distribution of the integrated volatility
inferred from these prices.

3.2 Notes on references

Empirical evidence on the smile curve of implied volatilities is presented in
many papers, for example Rubinstein 1994 [?] and Jackwerth and Rubinstein
1996 [?]. The term structure has been examined, among others, in Poterba
and Summers 1986 [?], Stein 1989 [?], and Das and Sundaram 1998 [?].

The implied volatility as a predictor for stock price movements is considered
in several papers, such as Christensen and Prabhala 1998 [?]. A review of
explanations of the volatility smile is given in Poon and Granger 2003 [?] and
Hentschel 2003 [?].
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Classical references on the information content of the implied volatility and
the volatility smile include Latane and Rendleman 1976 [?], Chiras and Man-
aster 1978 [?], Lamoureux and Lastrapes 1993 [?] and Canina and Figlewski
1993 [?], and Amin and Ng 1997 [?]. Hentschel 2003 [?] contains a lot of
references on the topic.

In order to incorporate information from the whole volatility smile, many
early works on implied volatility focused on finding optimal schemes to ag-
gregate implied volatilities across strike. These weighting schemes are sur-
veyed in Bates 1995 [?]. A newer class of models try to specify directly the
dynamics of implied volatilities and implied volatility surfaces. Papers on
this topic include Schönbucher 1999 [?], Cont and da Fonseca 2002 [?], and
Cont, da Fonseca, and Durrleman 2002 [?].
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4 Stochastic volatility

One main focus in financial mathematics during the last years has been find-
ing optimal ways to model and estimate the stock price volatility. The time-
varying character of volatility has been known for a long time. Early com-
ments include Mandelbrot 1963 [?], Officer 1973 [?], and Black and Scholes
1972 [?], and early models have been presented by Clark 1973 [?] and Taylor
1982 [?]. Nowadays, there is a wide range of research papers on the topic.

Methods to model and estimate the volatility from stock prices can be divided
in three groups, which are

1. parametric models such as stochastic volatility models and autore-
gressive conditional heteroskedasticity ARCH/GARCH -models. These
models explicitly parametrize the volatility process. Stochastic volatil-
ity models are the basis of this paper and will be considered in the
next section. The discrete ARCH-models by Engle 1982 [?] and the
GARCH-models by Bollerslev 1986 [?] estimate the volatility σt as a
weighted average of a constant long-run average rate V , the previous
discretely sampled variance rate σ2

t−1 and stock price xt−1. These widely
used models are out of our scope, and we refer the reader to related
literature listed in the end of this chapter.

2. direct market-based realized volatilities which are constructed by sum-
ming historical intra-period high-frequency stock return data, i.e., data
whose frequency is typically less than five minutes. These volatility
estimates, suggested in the unrelated papers by Andersen and Boller-
slev 1998 [?], Barndorff-Nielsen and Shephard 2001 [?], and Comte and
Renault 1998 [?], are sometimes called integrated volatilities.

3. forward-looking market-based volatilities inferred from option prices.
These models include implied and local volatilities. The local volatil-
ity, introduced by Dupire 1994 [?] and Derman and Kani 1994 [?], is
a unique state-dependent diffusion coefficient σ = σ(t,Xt), which is
consistent with the market prices of European options. This volatility
is out of our scope, and we refer to the end of this chapter for related
literature.

The integrated volatility as a realized volatility is based on historical informa-
tion. Later in this paper, we will introduce the concept of integrated volatility
implied by option market prices. One should notice the different structure of
these two integrated volatilities.
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4.1 Modeling the continuous time stochastic volatility

process

If the stock price volatility is constant, then, according to (37), the distribu-
tion of the stock price returns is log-normal. However, empirical studies on
stock price data show that this is not the case in reality. The returns dis-
tributions tend to be fat-tailed and left-skewed compared to the log-normal
distribution. This has been interpreted as a sign that the volatility is a
stochastic process or a diffusion process with jumps.

Stochastic volatility has dominated the option pricing literature in math-
ematical finance and financial economics since the 1980s. From the late
1990s, stochastic volatility models have taken center stage in the economet-
ric analysis of volatility forecasting. Nowadays, there is a wide range of stock
price models with stochastic volatility. An important principle is that the
model should be able to fit to historical price data and have the ability to
explain option price smiles both over strike and over maturity. It should
also give superior performance in risk management over the one given by the
Black-Scholes model. Finally, it should be such that the estimation of model
parameters is straightforward.

Important early papers with stochastic volatility are Cox and Ross 1976 [?],
Geske 1979 [?], Hull and White 1987 [?], Wiggins 1987 [?], Scott 1987 [?],
Johnson and Shanno 1987 [?], Melino and Turnbull 1990 [?], Stein and Stein
1991 [?] and Heston 1993 [?]. In these models, as well as in several others,
the stock price process is modeled as

dXt = µXtdt + σtXtdWt, (54)

σt = f(Yt), (55)

where µ is the expected rate of return, σt is the volatility, Wt is a Brownian
motion, and Yt is a stochastic process. The function f as well as the process
Yt vary in different models. It could be, for example, f(y) =

√
y (used, for

example, in Hull and White 1987 [?]) or f(y) = ey (used, for example, in Scott
1987 [?]), but there are many other possibilities. The weakness in using a
volatility function f is that inference on the process Yt becomes very difficult.
In many models, there is correlation between the Brownian motions of the
stock price process and the volatility process. A table on the characteristics
of the models mentioned above is presented in Cont and Tankov 2004 [?] and
in Fouque, Papanicolaou, and Sircar 2000 [?].

In general, with the exceptions of Heston 1993 [?] and Stein and Stein 1991
[?], the models mentioned above require either the use of Monte-Carlo sim-
ulation or the numerical solution of a two-dimensional parabolic differential
equation. Estimating the development of stock prices or option prices with
these models is computationally demanding.
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From our point of view, the work of Hull and White 1987 [?] is of particular
interest. Hull and White showed how stochastic stock price volatilities in-
duced smiles and skews in the implied volatilities. They also derived a pricing
function for options with stochastic volatility. These results are a bedrock of
our work.

According to historical stock price data, stock price volatility seems to be
mean-reverting, that is, oscillating around a long-term average. A com-
monly used model for the volatility process is the mean-reverting Ornstein-
Uhlenbeck process introduced by Scott 1987 [?] and Stein and Stein 1991 [?].
The stock price process with this volatility is given by

dXt = µXtdt + σtXtdWt, (56)

σt = f(Yt), (57)

dYt = α(m − Yt)dt + βdẐt, (58)

Ẑt = ρWt +
√

1 − ρ2Zt, (59)

where α > 0 is the rate of mean reversion, m is the long-run mean level of Yt,
β is the volatility of Yt, Zt is the Brownian motion of Yt, and ρ ∈ [−1, 1] is the
correlation coefficient between Ẑt and Wt, assumed to be constant, and given
by (3). In the subsequent chapters, we will model the stock price process as
(56)-(59). Figure 2 represents paths of two mean reverting volatilities and the
respective stock price returns. The paths are generated with a discretized
version of (56)-(59), where f(y) =

√
y, the discrete time step ∆t = .005,

µ = 0, m = .12, β = .3, and ρ = 0. A similar simulation is presented in
Fouque, Papanicolaou, and Sircar 2000 [?].

According to empirical studies the stock price model with stochastic volatility
driven by one Brownian motion is unable to fit the volatility smiles implied
by options with short maturity. Bates 2000 [?], Duffie, Pan, and Singleton
1999 [?] and Eraker, Johannes and Polson 2000 [?], among others, suggest to
include a jump component in the stochastic volatility processes Yt to enable
rapid moves for the volatility, for example,

dYt = µdt + σtdWt + κtdqt,

where κt denotes the jump size and dqt is a counting process with dqt = 1
corresponding to a jump at t and dqt = 0 to the case without a jump.

Several papers, such as Fouque, Papanicolaou, and Sircar 2000 [?] and Jones
2003 [?], suggest that the volatility σt in (54) should be driven by two stochas-
tic processes, σt = f(Yt, Vt). The first process Yt could, for example, model
the instantaneous moves of the volatility, and the second process Vt longer-
term trends.
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Figure 2: Simulated mean-reverting volatilities when the rate of mean re-
version of the volatility is either small, α = .5, (top left) or large, α = 200,
(bottom left), and corresponding returns paths.

4.2 Estimating continuous-time stochastic volatility mod-

els

Except for a few special cases, the estimation of continuous time stochas-
tic volatility models is complicated and computationally intensive. As the
volatility is a latent variable, one must first decide how to model the volatility
process and possibly the stock price process, and then choose a method to es-
timate the parameters of the models. Jacquier and Jarrow 2000 [?] point out
that especially when models are complex, the estimation method becomes
crucial.

One possibility is to estimate the parameters of the stochastic volatility model
from historical time series data of stock price returns. Common methods are,
among others, maximum likelihood methods or various methods of moments.
Using these methods, one tries to optimize a chosen criterion computed from
the observed data. In maximum likelihood methods, one tries to optimize a
likelihood function. In the methods of moments, this criterion is generally
based on some difference of moments of the distribution and the correspond-
ing empirical moments. These methods are beyond the scope of this work,
and we refer the reader to the end of the chapter for related literature.

An alternative to using historical stock price data is to use option market
data and calculate an output least squares (OLS) estimate for the volatility
parameters from option prices. For example, when estimating the parameters
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θ ∈ R
n, one tries to minimize

θ = arg min
θ∈Rn

∑

(U(K,T ; θ) − uobs(K,T ))2,

where U(K,T ; θ) is the option price predicted by a pricing model.

A third possibility is to use data from both stock price returns and option
prices. One must then cope with the problem of two different probability
measures, the natural measure implied by stock prices and the risk-neutral
measure implied by option market prices. We have derived in Chapter 2.5
this risk-neutral measure in the case of constant volatility. We will next
consider this measure in the case of stochastic volatility.

4.3 Market price of volatility risk

If the stock price volatility is stochastic or has jumps, the markets are incom-
plete and it is not possible to completely replicate options on the stock. This
introduces a volatility risk affecting the prices of options. In this situation,
there is no universal scheme for pricing options.

Two approaches for modeling the volatility risk have been suggested in the
literature. In certain cases, e.g. Hull and White 1987 [?], Johnson and
Shanno 1987 [?] and Scott 1987 [?], the risk is assumed to be non-systematic
and, therefore, it has zero price. In other cases, e.g. Melino and Turnbull
1990 [?], the risk premium is modeled in a tractable functional form, with
extra parameters to be estimated from observed option prices. However, even
if the risk premium is non-zero, often there is no need to know explicitly it
as long as all assets are defined in the same probability space.

The price of European options can be given as the expected discounted pay-
off with respect to an equivalent martingale measure which incorporates a
compensation for systematic asset, volatility, interest rate, and jump risk.
We now show how such a measure is constructed.

Consider a stock price process (Xt)t≥0 defined on (Ω,F , P ), equipped with
the filtration (Ft)t≥0 and let (Xt)t≥0 satisfy the stochastic differential equa-
tion (56)-(59). As explained in Chapter 2.5, unless µ = r, the discounted
price X̃t = e−rtXt is not a martingale under the probability measure P as it
contains a drift term µ − r.

Let us absorb the drift term in (56) in the martingale term, so that

dX̃t = (µ − r)X̃tdt + f(Yt)X̃tdWt

= f(Yt)X̃t

[
(µ − r)

f(Yt)
dt + dWt

]

= f(Yt)X̃tdW ∗
t ,
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where

dW ∗
t =

(µ − r)

f(Ys)
+ dWt.

Then, according to the Girsanov Theorem, dW ∗
t is a Brownian motion under

a probability measure P ∗, which is an equivalent martingale measure to P .
The discounted stock price X̃t = e−rtXt is then a martingale under P ∗ and,
for any European option with payoff h(XT ) and maturity T , an arbitrage-free
price option Vt, 0 ≤ t ≤ T , is given by the formula

Vt = E
∗{e−r(T−t)h(XT ) | Ft} (60)

where E
∗ denotes the expectation with respect to the measure P ∗.

Option market prices are possibly affected by a premium for the volatility
risk, reflected as a trend in the volatility process. To cope with this phe-
nomenon we make a shift to the Brownian motion of the volatility , i.e., we
define

Z∗
t = Zt +

∫ t

0

γsds,

where γs is any adapted and suitably regular process. We call γt the market
price of volatility risk.

The measure P ∗(γ) is defined by its Radon-Nikodym derivative as

dP ∗(γ)

dP
= exp

(

− 1

2

∫ T

0

(
(µ − r)

f(Ys)

2

+ γ2
s

)

ds −
∫ T

0

(µ − r)

f(Ys)
dWs −

∫ T

0

γsdZs

)

,

where we assume the pair ( (µ−r)
f(Ys)

, γs) to be such that P ∗(γ) is a well-defined
equivalent martingale measure. This will be the case if f is bounded away
from zero and γt is bounded.

According to Girsanov’s theorem, W ∗ and Z∗ are independent standard
Brownian motions under the measure P ∗(γ). Then, under this measure, the
stochastic differential equation (56)-(59) becomes

dXt = rXtdt + f(Yt)XtdW ∗
t , (61)

dYt =

[

α(m − Yt) − β

(

ρ
(µ − r)

f(Yt)
+

√

1 − ρ2γt

)]

dt + βdẐ∗
t . (62)

Ẑ∗
t = ρW ∗

t +
√

1 − ρ2Z∗
t . (63)

The corresponding option price without possibility to arbitrage is given by

Vt = E
∗(γ){e−r(T−t)h(XT ) | Ft}. (64)

We will use this equation in the next chapter, when deriving prices to options
with stochastic volatility. If we write γt = γ(t,Xt, Yt), the process (61)-(62)
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remains a Markovian process. In the sequel, we will assume that this is the
case.

Because the volatility is stochastic, these is no one unique martingale mea-
sure under which (64) is a martingale. According to the Girsanov theorem
any adapted and suitably regular choice of γt provides a possible martingale
measure, so that γt parametrizes the space of equivalent martingale measures
{P ∗(γ)}. In practice, γt is calibrated from market data to fit a chosen stock
price model with the corresponding market data.

4.4 Notes on references

The litterature on various volatility models grows at an increasing rate. We
recommend the recent paper with a large amount of references by Andersen,
Bollerslev, Christoffensen, and Diebold 2005 [?] as an introduction to the
topic.

Later in this thesis, we will use a Bayesian approach to estimate volatili-
ties. Bayesian methods have been used to estimate the stock price volatility
by Jacquier, Polson and Rossi 1994 [?], Jacquier and Jarrow 1996 [?], and
Jacquier, Polson and Rossi 2004 [?]. Jones 2003 [?] infer a stochastic volatil-
ity model from implied volatilities using Bayesian MCMC methods while
Forbes, Martin and Wright 2002 [?] suggest a Bayesian approach to estimate
a stochastic model using both the prices of the underlying and the option
prices.
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5 Hull-White paradigm

In 1987, Hull and White [?] showed how the price of a European option
with stochastic volatility can be given as the expectation of Black-Scholes
prices integrated over the distribution of the integrated volatility, provided
that the correlation between the Brownian motions of the stock price and
the volatility vanishes. In other words, they suggested that the price of an
option with stochastic volatility would be given by

UHW(t,Xt; K,T ; σ2
t ) =

∫

UBS(t,Xt; K,T ; σ̄2
t )π(σ̄2

t | σ2
t )dσ̄2

t , (65)

where UBS is the Black-Scholes option price (49), Xt is the stock price, K is
the strike price, T is the maturity, σ2

t is the instantaneous variance, and σ̄2
t

is the integrated volatility, given by

σ̄2
t =

1

T − t

∫ T

t

σ2
sds, 0 ≤ t < T. (66)

The equation (65) is the bedrock of our paper. It gives the option price as a
function of the distribution of the integrated volatility. In Chapter 8, we will
formulate a related inverse problem and present a method to estimate the
distribution of the implied integrated volatility, that is the distribution of the
integrated volatility implied by option market prices. In this very chapter, we
consider the Hull-White paradigm more generally. We first give alternative
derivations for the Hull-White formula and then give one explanation for the
volatility smile, based on this formula. We also show how different volatil-
ity smile patterns can be explained by different distributions of the implied
integrated volatility.

5.1 Hull-White formula

In this chapter, we derive the Hull-White formula based on the derivation in
the seminal paper of Hull and White 1987 [?]. Assume that the stock price
process is given by (61)-(63) under a martingale measure P ∗(γ) equivalent
with the natural measure P , and that the correlation between the Brownian
motions of the stock price process and the volatility process vanishes. As
presented in (40)-(43), the logarithm of the stock price return on a time
interval [t, T ] is obtained by applying the Itô formula (28) to the logarithm
of the stock price (61) and by integrating all terms from t to T , which leads
to

log
XT

Xt

= r(T − t) − 1

2

∫ T

t

σ2
sds +

∫ T

t

σsdW ∗
s . (67)

In particular, the logarithm of the stock price return is normally distributed
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conditional on the integrated volatility σ̄2
t , so that

E
∗(γ)

{
log

XT

Xt

| Ft, σ̄
2
t

}
=

(
r − 1

2
σ̄2

t

)
(T − t),

Var∗(γ)
{

log
XT

Xt

| Ft, σ̄
2
t

}
= σ̄2

t (T − t),

where Var∗(γ) denotes the variance with respect to the probability measure
P ∗(γ).

As explained in Chapter 4.3, a possible no-arbitrage price for an option on Xt

is given as the discounted expectation of the payoff h(XT ) under the measure
P ∗(γ), that is

U(t,Xt; K,T ; σ2
t ) = E

∗(γ)
{
e−r(T−t)h(XT ) | Ft, Xt, σ

2
t

}
, (68)

= e−r(T−t)
∫

h(XT )π(XT | Xt, σ
2
t )dXT , (69)

where π(XT | Xt, σ
2
t ) is the density of the risk neutral measure.

To simplify this equation, we use the fact that if three random variables a,
b and c are related such that a depends on c only through b, the conditional
density functions are related by

π(a | b) =

∫

π(a | c)π(c | b)dc.

As XT depends on σ2
t only through σ̄2

t , we can write

π(XT | σ2
t ) =

∫

π(XT | σ̄2
t )π(σ̄2

t | σ2
t )dσ̄2

t . (70)

We substitute (70) into (69), which gives us

Ut(Xt, σ
2
t ) = e−r(T−t)

∫ ∫

h(XT )π(XT | σ̄2
t )π(σ̄2

t | σ2
t )dXT dσ̄2

t , (71)

=

∫ [

e−r(T−t)

∫

h(XT )π(XT | σ̄2
t )dXT

]

π(σ̄2
t | σ2

t )dσ̄2. (72)

Now, the inner term in (72) is the Black-Scholes price of an option on a stock

with a constant volatility equal to
√

σ̄2
t , that is

UBS
t (Xt, σ̄

2
t ) =

[

e−r(T−t)

∫

h(XT )π(XT | σ̄2
t )dXT

]

. (73)

We substitute (73) into (72), getting the Hull-White formula (65):

Ut(Xt, σ
2
t ) =

∫

UBS
t (Xt, σ̄

2
t )π(σ̄2

t | σ2
t )dσ̄2

t . (74)
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The use of this formula to option pricing is limited by the fact that the distri-
bution of the integrated volatility is unknown and has to be simulated using
some chosen volatility model. The accuracy of the option prices depends
on how well the volatility process has been modeled. On the other hand,
as explained in Chapter 3.1, the prices of liquid vanilla options, including
European options, are defined by markets, according to offer and demand;
therefore, there is no need to calculate their prices using, for example, the
Hull-White formula.

We are interested in the Hull-White formula for another reason. If option
market prices coincide with the corresponding Hull-White prices, the Hull-
White formula can be used to extract information on the integrated volatility
implied by option market prices. We will discuss this idea more deeply in
Chapter 8.

5.2 Hull-White formula with correlated volatility

Renault and Touzi 1996 [?] have shown that the Hull-White formula pro-
duces a symmetric volatility smile when the implied volatilities are plotted as
a function of log-moneyness given by log(K/(xer(T−t))). Asymmetric smiles
could then be explained by a correlation between the Brownian motions of
the stock price and the volatility. In 1996, Willard [?] derived a variation of
the Hull-White equation, with a non-zero correlation between the Brownian
motions of the stock price process and of the volatility process. For com-
pleteness of the Hull-White paradigm, we derive the Hull-White formula for
options with correlated volatility, even if it will not be used in this paper.

We begin by writing the stock price process given by (61)-(63) as

dXt = rXtdt + f(Yt)Xt(
√

1 − ρ2dŴ ∗
t + ρdẐ∗

t ),

dYt =

[

α(m − Yt) − β

(

ρ
(µ − r)

f(Yt)
+ γt

√

1 − ρ2

)]

dt + βdẐ∗
t

Ŵ ∗
t =

√

1 − ρ2W ∗
t − ρZ∗

t ,

where Ŵ ∗
t and Ẑ∗

t are two independent Brownian motions.

We apply the Itô formula (28) to the logarithm of Xt, getting

d log Xt = (r − 1

2
σ2

t )dt + σt(
√

1 − ρ2dW ∗
t + ρdZ∗

t ), (75)

and integrate both sides of (75) from t to T , which gives us

log XT = log Xt +

(∫ T

t

(r − 1

2
σ2

s)ds + ρ

∫ T

t

σsdZ
∗
s +

√

1 − ρ2

∫ T

t

σsdW ∗
s

)

= log(ξt,T Xt) +

(∫ T

t

(r − 1 − ρ2

2
σ2

s)ds +
√

1 − ρ2

∫ T

t

σsdW ∗
s

)

.
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where

ξt,T = exp

(

− 1

2
ρ2

∫ T

t

σ2
sds + ρ

∫ T

t

σsdZ
∗
s

)

. (76)

The logarithm of the stock price return is normally distributed conditional
on σ̄2

t and ξt,T , with

E
∗(γ)

{
log

XT

Xt

| Ft, σ̄
2
t , ξt,T

}
= log(ξt,T ) + (r − 1

2
(1 − ρ2)σ̄2

t )(T − t),

Var∗(γ)
{

log
XT

Xt

| Ft, σ̄
2
t , ξt,T

}
= (1 − ρ2)σ̄2

t (T − t).

It is important to notice that here, due to the stochastic integral in (76), the
logarithm of the stock price return is not normally distributed conditional on
the integrated volatility. Instead, it is normally distributed conditional on
the entire path of Ẑ∗

t .

Now, similarly as in Chapter 5.1, an arbitrage free option price is given by
(72) where the inner term equals the Black-Scholes option price on a stock

with value xξt,T and a constant volatility equal to
√

σ̄2
t . We write

UBS
t (xξt,T ; K,T ; σ̄2

t ) =

[

e−r(T−t)

∫

h(XT )π(XT | σ̄2
t )dXT | Xt = xξt,T

]

,

(77)
substitute (77)into (72), and get

Ut(x; K,T ; σ2
t ) =

∫

UBS
t (xξt,T ; K,T ; σ̄2

t )π(σ̄2
t | σ2

t )dσ̄2
t . (78)

It is easy to check from the Black-Scholes formula (49) that the identity

UBS(t, xξt,T ; K,T ; σ2) = ξt,T UBS(t, x; Kξ−1
t,T , T ; σ2)

holds. Therefore, we can write the Hull-White equation for correlated volatil-
ity as

UHW,ρ
t (x; K,T ; σ2

t ) = ξt,T

∫

UBS
t (x; Kξ−1

t,T , T ; σ̄2
t )π(σ̄2

t | σ2
t )dσ̄2

t , (79)

where we have denoted

UHW,ρ
t (x; K,T ; σ2

t ) = Ut(x; K,T ; σ2
t ).

According to empirical studies, there is usually a negative correlation between
the Brownian motions of the stock price process and the volatility process.
Precise estimates vary widely according to the method used. It seems that
the negative correlation is more pronounced for indices than for stocks. In
some markets, like foreign currency option markets, the assumption of zero
correlation might be tenable. In general, the practical importance of corre-
lation is unclear for the prices of at-the-money options. According to Jarrow
and Rudd 1982 [?], the additional error caused by non-zero correlation is
likely to be small.
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5.3 Hull-White formula by replicating portfolios

In this section, we present an alternative way to derive Hull-White formula.
We start from the stock price process under the natural measure P and,
using replicating portfolios, derive an arbitrage-free price for options with
stochastic volatility. This price is further developed in the form of the Hull-
White formula. The reason to present this approach is that the replicating
portfolios are a central tool in risk management and financial hedging and
will be needed later, when discussing hedging in Chapters 6 and 11.

Suppose that the stock whose price process is given by (56)-(59), that is

dXt = µXtdt + σtXtdWt

σt = f(Yt),

dYt = α(m − Yt)dt + βdZt,

Ẑt = ρWt +
√

1 − ρ2Zt,

where α > 0 is the rate of mean reversion, m is the long-run mean level of Yt,
β is the volatility of Yt, and ρ is the correlation coefficient between Ẑt and
Wt. Suppose that we want to define the value of a European call option on
this stock. We denote this option by U

(1)
t = U (1)(t,Xt, Yt).

In order to price the option correctly, we construct a portfolio replicating its
value until maturity T . As both the stock price and the volatility are stochas-
tic, there will be two sources of randomness. To replicate U (1)(t,Xt, Yt), we
need, in addition to stocks and bonds, a certain amount of another option
on the same underlying but with longer maturity T2, T2 > T . We denote this
replicating option by U

(2)
t = U (2)(t,Xt, Yt) and the instantaneous amounts of

stocks, bonds, and replicating options to hold by at, bt, and ct, respectively.
To secure well-defined stochastic integrals, we assume that E{

∫ T

0
a2

t dt} < ∞,

and to secure well-defined original integrals, we assume that
∫ T

0
|bt|dt < ∞.

The value of the bond is Bt = ert, where we have assumed that B0 = 1.

The value V (t,Xt, Yt) of the replicating portfolio is now

V (t,Xt, Yt) = atXt + bte
rt + ctU

(2)(t,Xt, Yt),

and the option is replicated at any time 0 ≤ t ≤ T , if, almost surely,

U (1)(t,Xt, Yt) = V (t,Xt, Yt)

= aT XT + bT ert + cT U (2).
(80)

The portfolio should be self-financing, so that

dVt = atdXt + btre
rtdt + ctdU

(2)
t . (81)
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A change in the value of the portfolio is due to changes in the prices of the
instruments, not to changes in the amounts. If such a portfolio exists, to
avoid the opportunity of arbitrage, we must have

U
(1)
t = atXt + bte

rt + ctU
(2)
t for every 0 ≤ t ≤ T. (82)

To calculate the instantaneous amounts at, bt, and ct of stocks, bonds, and
replicating options in the replicating portfolio, we apply the two-dimensional
version of the Itô formula (28) to U

(1)
t = U (1)(t,Xt, Yt), getting

dU (1)(t,Xt, Yt) =

(
∂U (1)

∂t
+

1

2
f(y)2x2∂2U (1)

∂x2
+ ρβxf(y)

∂2U (1)

∂x∂y

+
1

2
β2∂2U (1)

∂y2

)

dt +
∂U (1)

∂x
dXt +

∂U (1)

∂y
dYt, (83)

where we have denoted x = Xt and y = Yt. We then equate U(t,Xt, Yt) =
V (t,Xt, Yt) and apply the Itô formula (28) to the right-hand side of (81),
getting

dU (1)(t,Xt, Yt) =

(

at + ct
∂U (2)

∂x

)

dXt + ct
∂U (2)

∂y
dYt

+

[

ct

(
∂U (2)

∂t
+

1

2
f(y)2x2∂2U (2)

∂x2
+ρβxf(y)

∂2U (2)

∂x∂y
+

1

2
β2∂2U (2)

∂y2

)

+btre
rt

]

dt,

(84)

where the derivatives of U (1) and U (2) are evaluated at (t,Xt, Yt).

We solve ct by equating the dYt terms from (83) and (84), which gives us

ct =
∂U (1)/∂y

∂U (2)/∂y
, (85)

the amount of the replicating option U
(2)
t we should hold in our portfolio.

Equating the dXt terms in (83) and (84) leads to

at =
∂U (1)

∂x
− ct

∂U (2)

∂x
, (86)

the amount of the underlying stock we should hold in our portfolio, and
solving bt from (82) gives the amount of the bond we should hold in our
portfolio, that is

bt = e−rt(U
(1)
t − atXt − ctU

(2)
t ).

We equate the dt terms in (83) and (84) where we have substituted at, bt,
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and ct. This gives us

(
∂U (1)

∂t
+

1

2
f(y)2x2∂2U (1)

∂x2
+ ρβxf(y)

∂2U (1)

∂x∂y
+

1

2
β2∂2U (1)

∂y2

)

dt

=
∂U (1)/∂y

∂U (2)/∂y

(
∂U (2)

∂t
+

1

2
f(y)2x2∂2U (2)

∂x2
+ ρβxf(y)

∂2U (2)

∂x∂y
+

1

2
β2∂2U (2)

∂y2

)

+ r

(

U
(1)
t −

(
∂U (1)

∂x
− ∂U (1)/∂y

∂U (2)/∂y

∂U (2)

∂x

)

x − ∂U (1)/∂y

∂U (2)/∂y

∂U (2)

∂x

)

(87)

We denote

A : u → ∂u

∂t
+

1

2
f(y)2x2∂u2

∂x2
+ ρβxf(y)

∂u2

∂x∂y

+
1

2
β2∂u2

∂y2
+ r

(

x
∂u

∂x
− u

)

, u = u(t, x, y),

and reorganize the terms in (87) so that it can be written as

(
∂U (1)

∂y

)−1

AU (1)(t,Xt, Yt) =

(
∂U (2)

∂y

)−1

AU (2)(t,Xt, Yt). (88)

Now, the left-hand side of equation (88) contains terms depending on the
maturity T but no terms depending on the maturity T2. The reverse is true
for the right-hand side. Accordingly, both sides must be independent of the
maturity. In addition, they must be independent of the strike price of the
options, as we have not defined it for U

(1)
t and U

(2)
t .

We write both sides of (88) equal to a function γ, depending on the state
variables t, Xt, and Yt, and on the parameters µ and r, but not depending
on K and T . In our case, the exact form of this function is not important.

The pricing function U(t,Xt, Yt) for U = U (1) and U = U (2) must satisfy

∂U

∂t
+

1

2
f(y)2x2∂2U

∂x2
+ ρβxf(y)

∂2U

∂x∂y
+

1

2
β2∂2U

∂y2

+ rx
∂U

∂x
− rU = −γ(t, x, f(y); r)

∂U

∂y
.

(89)

Neither (89) nor the final conditions h(XT ) = (XT −K)+ depend on the risk
preferences of the investor. Furthermore, we have assumed that there is no
correlation between the Brownian motions of the stock price process and of
the volatility process. Then, at time t, the option price U(t,Xt, σ

2
t ) must

equal to the present value of the discounted expectation of the payoff h(XT )
at maturity, conditional on the stock price Xt and on the variance σ2

t , given
by

U(t,Xt; K,T ; σ2
t ) = E

∗(γ)
{
e−r(T−t)h(XT ) | Ft, Xt, σ

2
t

}
, (90)
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Figure 3: Black-Scholes surface where yellow indicates convexity and red
concavity.

where E
∗(γ) denotes the expectation with respect to the measure P ∗(γ).

This is Equation (69). In fact, Equation (89) with its final condition is
related to (69) by the Feynman-Kac formula (29). To proceed and obtain
the Hull-White formula, we continue from (90) as in Chapter 5.1.

5.4 Hull-White formula and volatility smile

Various explanations for the volatility smile have been proposed in the lit-
erature. We present one explanation for the smile, based in the distribution
of the integrated volatility, in the convexity of the Black-Scholes formula,
and in the Hull-White formula (65). To begin, we define the expectation of
the integrated volatility σ̂2

t as the expectation of the conditional distribution
π(σ̄2

t | σ2
t ), given by

σ̂2
t = E{σ̄2

t | σ2
t } =

∫

σ̄2
t π(σ̄2

t | σ2
t )dσ̄2

t .

The convexity of the Black-Scholes formula depends on the value of the
volatility. When the Black-Scholes formula UBS is a convex function of σ̄2

t ,
then, by Jensen’s inequality, E{UBS(σ̄2

t )} > UBS(E{σ̄2
t }). For concave UBS

the reverse is true, E{UBS(σ̄2
t )} < UBS(E{σ̄2

t }). The Hull-White price is
the expectation of the Black-Scholes prices with respect to the integrated
volatility, UHW = E{UBS(σ̄2

t )}. This means that when UBS is convex,
UBS(σ̂2

t ) = UBS(E{σ̄2
t }) underprices options when compared to the Hull-

White option prices, and when it is concave, UBS(σ̂2
t ) overprices them. In

the first case, the implied volatility is higher than the square root of the
expectation of the integrated volatility, It >

√

σ̂2
t , the reverse being true in
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Figure 4: The left panel represents two simulated distributions of the in-
tegrated volatility with the same expectation. The right panel represents
the volatility smiles that have been calculated from the Hull-White prices of
these distributions.

the second case. When we say that UBS is convex or concave with respect
to σ̄2

t , the whole distribution of this random variable should be in the range
of the convexity or concavity of UBS, i.e, σ2 7→ UBS(σ2) should be concave
or convex on the whole support of π(σ̄2

t ).

The inflection points of the Black-Scholes formula can be calculated from the
second derivative of UBS with respect to the integrated volatility σ̄2

t , given
by

(UBS)′′(σ̄2
t ) =

x
√

T − t

4(σ̄2
t )

3/2
N ′(d1)(d1d2 − 1),

where d1 and d2 are as in (50).

The convexity of UBS depends on the sign of (UBS)′′(σ̄2
t ), which equals the

sign of d1d2−1. The inflection points, denoted by IPt, is given when d1d2 = 1,
so that

IPt =
2

T − t

[√

1 + (ln(x/K) + r(T − t))2 − 1
]
.

When σ̄2
t < IPt, (UBS)′′(σ̄2

t ) > 0, and UBS is a convex function of σ̄2
t , while

when σ̄2
t > IPt, (UBS)′′(σ̄2

t ) < 0, and UBS is a concave function of σ̄2
t . If

x = Ke−r(T−t), then IPt = 0 and UBS is concave everywhere, for all values
and distributions of σ̄2

t . When log(x/K) → ±∞, IPt becomes arbitrarily
large and UBS is convex everywhere.

The convexity of the Black-Scholes formula is illustrated in terms of the
Black-Scholes surface in Figure 3. In practice, this formula overprices options
that are at-the-money or near-at-the money. Most option trading is done in
this range.

Consider then the existence of volatility smiles from the point of view of in-
tegrated volatility. Because the Hull-White price UHW is a function of the
distribution of the integrated volatility σ̄2

t , not a function of its expectation
σ̂2

t , different distributions with the same expectation σ̂2
t may give different
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Hull-White prices. Assuming that the Hull-White prices coincide with ob-
served option prices, these differences are reflected in implied volatilities and
in the shapes of the corresponding volatility smiles.

The phenomenon explained above is illustrated in Figure 4, where we have
plotted two distributions of the integrated volatility and the correspond-
ing implied volatilities calculated from Hull-White prices. The distributions
have the same expectation but different shapes which results to two different
volatility smiles. It is possible that the shapes of volatility smiles calculated
from option market prices contain information on the support or skewness of
the corresponding integrated volatilities.

We have here restricted the explanations to the case where the correlation
between the Brownian motions of the stock price process and the volatility
process vanishes. The relation between the volatility smile and the distribu-
tion of the integrated volatility is much more complicated in the case that
the correlation is non-zero, and is out of our scope.

5.5 Notes on references

The derivation of the Hull-White formula in Chapter 5.1 is based on the one
presented in the seminal paper of Hull and White 1987 [?], while the deriva-
tion with replicating portfolios in Chapter 5.3 is close to the one presented
in Wilmott 1998 [?]. The Hull-White formula with a correlated volatility is
derived in Willard 1996 [?] and considered by Roger W Lee 2001 [?]. The
comprehensive book of Fouque, Papanicolaou, and Sircar 2000 [?] discusses
all of these topics. Section 5.4 is based on Hull and White 1987 [?].
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6 Dynamic hedging

The term hedging refers to the reduction of randomness using correlations
between various risky investments. One can hedge investment portfolios as
well as outcomes of horse race bets.

We can divide the hedgers related to options roughly in two categories. The
first ones are those having an investment portfolio of, for example, stocks,
and wanting to hedge this portfolio with options. The second ones are those
selling options to the first ones, and to markets more generally. They hedge
changes in the value of the short option, i.e., the option that has been sold,
with a portfolio consisting of some other traded assets. These hedgers make
profit if they can hedge the options better than other hedgers in the markets.
In the sequel, when talking about hedgers and hedging, we refer to this latter
type.

In static hedging, the goal is to construct a portfolio of liquidly traded stan-
dard assets that perfectly replicates the payoff of a given over-the-counter
option. This hedge needs no readjustment. The problem with static hedges
is that the requirements for the liquidly traded assets are seldom reached.

In dynamic hedging, the attempt is to hold and readjust a portfolio consist-
ing of a short option, of an instantaneous amount of the underlying stock,
and possibly of an instantaneous amount of replicating options so that the
portfolio is immune to small changes in the price of the underlying asset in
the next small interval of time. We call the amounts of stocks and replicat-
ing options hedging ratios. Re-hedging can not be done too frequently due
to transaction costs and the fact that one always pays the higher bid-prices
when buying and the corresponding lower offer-prices when selling. It would
be valuable to find hedge ratios that do not need too frequent adjusting.

Hedgers are interested in the greeks, that is, the sensitivities of the Black-
Scholes option prices UBS

t describing how sensitive the value of an option is
to changes in the value of the underlying, in the volatility, in time, or in the
interest rates. Here, we will use the sensitivity of UBS

t with respect to the
stock price Xt, called the delta, and the sensitivity with respect to the stock
price volatility σt, called the vega.

The delta, denoted by ∆t, is given by

∆t =
∂UBS

t

∂x
= N (d1), (91)

and the vega, denoted by κt, is given by

κt =
∂UBS

t

∂σt

=
xe−d2

1
/2
√

T − t√
2π

= x
√

(T − t)N ′(d1), (92)
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where N ′(d1) = e−d2
1
/2/

√
2π, and d1 is as in (50).

6.1 Hedging performance

The hedging performance depends, among other things, on the hedging strat-
egy, on the type of volatility used with the hedging strategy, and on the
hedging frequency. Hedging strategies in incomplete markets depend on some
dynamic risk-measure that has to be minimized. Common strategies include
delta hedging and delta-vega hedging as well as minimum-variance hedging,
i.e., hedging so that the variance of the portfolio is minimized.

In delta hedging, changes in the value of the short option UH
t are hedged by

trading on the underlying. When the stock price volatility is constant and
trading is continuous, it is theoretically possible to replicate the option by
holding an instantaneous amount ∆t = ∂UBS

t /∂x of the underlying and to
eliminate in this way all risk of loss if the option is executed. In practice,
complete elimination is not possible as trading is done discretely.

When the stock price volatility is stochastic, perfect hedging is not possible
even theoretically. One can then attempt to hedge the short option following,
instead of the delta strategy, the delta-vega strategy. According to this strat-
egy, the option is replicated by holding an instantaneous amount αt of the
underlying stock and an instantaneous amount γt of the replicating option
URep

t which has the same underlying and strike price than the option to be
hedged UH

t , but a longer maturity.

According to equations (86) and (85), the amount αt of stocks to hold is

αt(σ̃t) =
∂UH

t

∂x
− ∂UH

t /∂σ̃t

∂URep
t /∂σ̃t

∂URep
t

∂x
(93)

and the amount γt of the replicating options to hold is

γt(σ̃t) =
∂UH

t /∂σ̃t

∂URep
t /∂σ̃t

, (94)

where σ̃t denotes some kind of volatility, for example the implied volatility
or the local volatility.

The hedging ratios αt and γt can be written in terms of the greeks delta
∆t(σ̃t) and vega κt(σ̃t) as

αt(σ̃t) = −∆H
t (σ̃t) +

κH
t (σ̃t)

κRep
t (σ̃t)

∆Rep
t (σ̃t) (95)

and

γt(σ̃t) = − κH
t (σ̃t)

κRep
t (σ̃t)

, (96)
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where ∆H
t and κH

t refer to the delta and vega of the hedged option UH
t , and

∆Rep
t and κRep

t refer to those of the replicating option URep
t .

The hedging ratios presented above were derived in Chapter 5.3 using the in-
stantaneous stock price volatility. This volatility, unfortunately, is not known.
Bender, Sottinen, and Valkeila 2007 [?] have shown that the hedging prices
depend essentially only on the quadratic variation of the underlying. This
quadratic variation, however, is not directly related to the implied integrated
volatility, which is defined under a risk neutral probability measure.

Common choices for the volatility are the implied volatility and the local
volatility. We suggest that, in the same way that the Hull-White option
price is given as the expectation of Black-Scholes prices integrated over the
distribution of the integrated volatility, the hedging ratios could be given as
the distributions. The expectations of the hedging ratios, ∆̂t, α̂t, and γ̂t,
would then be given by

∆̂t(σ̄
2
t ) =

∫

∆(σ̄2
t )π(σ̄2

t )dσ̄2
t , (97)

α̂t(σ̄
2
t ) =

∫

α(σ̄2
t )π(σ̄2

t )dσ̄2
t , (98)

γ̂t(σ̄
2
t ) =

∫

γ(σ̄2
t )π(σ̄2

t )dσ̄2
t . (99)

The delta and vega strategy being robust hedging tools, it possible that the
hedging performance of the implied integrated volatility does not outperform
the one of other volatilities. However, as distributions, the hedging ratios
are more informative than simple point estimates. We present a computed
example on the topic in Chapter 11.4.

6.2 Notes on references

Comprehensive presentations on dynamic hedging are provided in the books
by Taleb 1997 [?] and by Rebonato 2004 [?]. Early papers include Breeden
and Litzenberger 1978 [?] and Green and Jarrow 1987 [?], other important
papers are El Karoui, Jeanblanc-Piqué, and Shreve 1998 [?], Avellaneda,
Levy, and Paràs 1995 [?], Bates 2003 [?] and 2005 [?]. A lot of references
can be found in the recent paper of Alexander and Nogueira 2007 [?] on
model-free hedging ratios.

The hedging performance of different volatilities is compared in Bakshi, Cao,
and Chen 1997 [?], Bates 1995 [?], and Dumas, Fleming, and Whaley 1998
[?], Coleman, Kim, Li, and Verma 2001 [?]. The paper of Dudenhausen
2002 [?] contains a lot of references on hedging effectiveness under model
misspecification, on hedging in incomplete markets, and on hedging with
transaction costs.
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7 Inverse problems

A commonly encountered problem is that we want to get information about
some quantity that is not directly observable. However, this quantity may
depend on some other, directly observable quantity. We have an inverse
problem when, starting from data on this observable quantity, we try to get
information about the quantity of interest. This is the situation when we try
to get information on the stock price volatility from option market prices.

Consider the inverse problem of solving or estimating f from

A(f) = d

when d is observed and the mapping A is given. We say that the inverse
problem is well-posed if

1. There exists a solution for any data d in the data space;

2. The solution is unique;

3. The inverse mapping d 7→ f is continuous.

If small errors in the data d propagate to large errors in f , we say that the
problem is ill-conditioned. If an inverse problem is not well-posed or if it
is numerically ill-conditioned, we say that it is ill-posed. Traditionally, the
ill-posedness of inverse problems is dealt with by using regularization: The ill-
posed problem is replaced with a nearby problem that is well-posed. Another
possibility is to state the problem in a new way, using a statistical, Bayesian
approach: instead of a deterministic problem, the inverse problem is recast
in the form of statistical inference on the distribution of the unknown. This
approach has several advantages. First, it allows us to integrate additional
prior knowledge into our estimation process. Secondly, even if the determin-
istic problem is ill-posed and lacking a unique solution, there always exists
a probability density of the unknown, the variance of which may be large or
small.

We now proceed by presenting direct and inverse problems in option pricing
with both constant and stochastic volatility on a very general level. Then,
before going deeper to a particular inverse problem, we review basic concepts
on statistical inverse problems.

7.1 Direct and inverse problems in option pricing

Suppose that we want to price a European call option. We have at least three
possibilities to do it, depending on our prior knowledge on the price process
and on the volatility of the underlying stock.
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1. Assume first that the stock price volatility σ is constant. The option
can then be priced with the Black-Scholes formula (49).

2. Alternatively, assume that the stock price process and the volatility
process are known. In this case, we can estimate the option prices by
simulation, using the fact that, under a risk neutral probability measure
P ∗, the price of a European option is the expectation of the discounted
payoff at maturity. Having chosen a proper model for the stock price
process, we calculate the discounted payoffs hK(xT ) = (xT −K)+ from
a simulated sample {x1

T , x2
T , . . . , xN

T } and approximate the option price
with

Ut(x; K,T ; σ2
t ) ≈

1

N

N∑

j=1

e−r(T−t)hK(xj
T ). (100)

3. As a third case, suppose that, instead of the volatility process, we know
the distribution of the integrated volatility σ̄2

t . Then, according to the
Hull-White paradigm, the option price can be calculated as the ex-
pectation of Black-Scholes prices conditional on the distribution of the
integrated volatility, with respect to a risk-neutral probability measure
P ∗, that is

Ut(x; K,T ; σ2
t ) =

∫

UBS
t (x; K,T ; σ̄2

t )π(σ̄2
t )dσ̄2

t ,

where UBS
t denotes the Black-Scholes price given by (49).

In all these cases, pricing the option is a direct problem: We know the op-
tion pricing function as well as all input variables and parameters; what we
compute is the option price.

Let us then consider the corresponding inverse problem. Suppose that we
know the market price of a stock as well as the prices of options with different
strike prices. Using this data, we want to estimate the stock price volatility
implied by these option prices, or a quantity related to it: for example, the
average squared volatility during the remaining lifetime of an option.

When the stock price volatility is constant, the Black-Scholes implied volatil-
ity (53) equals the stock price volatility and it corresponds to the average
squared volatility during the remaining lifetime of the option. The inverse
problem reduces then to estimating the implied volatility from option prices.

A common inverse problem considered is to estimate from option market
prices the local volatility σ = σ(t,Xt). The computation of this volatility is
an ill-posed inverse problem and various regularization methods have been
proposed. As this volatility is out of our scope, we refer to the end of the
chapter for related literature.
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If the stock price volatility is stochastic, the option price is a function of the
distribution of the integrated volatility under a risk-neutral measure P ∗. If
the price process of the underlying stock is an Itô process, the integrated
volatility equals the quadratic variation of the logarithm of the stock price
return during the remaining lifetime of the option, given by (44). The inverse
problem would then be to estimate the distribution or the expectation of
this volatility. We will consider this problem in a Bayesian framework, which
allows incorporating information from both historical and actual stock and
option market data. As a prelude, we will briefly present some core ideas and
tools of statistical Bayesian inverse problems to be used later in this thesis.

7.2 Statistical inverse problems

Consider a basic inverse problem with an unknown hidden variable x ∈ R
n

and an observation y ∈ R
m related to the hidden variable by some known

model. The inverse problem is to get information of x by measuring y when
these variables are related by the function f ,

y = f(x, e), (101)

where f : R
n × R

k → R
m is the model function and e ∈ R

k is referred to
as noise, which accounts for the measurement noise and other poorly known
parameters.

A stochastic extension of the model (101) is obtained by replacing x, y, and e
with the random variables X, Y , and E. The relation between these variables
is then

Y = f(X,E). (102)

We call the hidden random variable X the unknown, the observable random
variable Y a measurement, and its realization Y = y the measurement data
of the process. The random variable E is referred to as noise.

In the Bayesian paradigm, prior information of the random variable X, pre-
sented in a prior density πpr(x), is combined with the information provided
by an observed realization of Y via a likelihood function π(y | x), resulting to
the joint probability density π(x, y) = πpr(x)π(y | x), according to formula

The conditional density π(x | y), obtained by formula (4), is called the pos-
terior density. Combining (4) and (5) gives the Bayes formula

π(x | y) =
πpr(x)π(y | x)

π(y)
, y = yobserved (103)

for the posterior density. The posterior distribution refers to the information
that we have about x if Y = y. Oftentimes, it is not available in a closed
form.
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There are three main steps in solving an inverse problem in the Bayesian
framework:

1. Encoding the possible prior knowledge about the hidden variable x in
the prior density πpr(x);

2. Forming the likelihood function π(y | x), which describes how probable
each observation y is conditional on a realization x of X;

3. Developing methods to interpret the posterior distribution π(x | y).

These parts form the framework of our inverse problem.

Usually, the marginal density π(y) has the role of a normalizing constant,
with minor importance.

As an example, consider a stochastic model Y = f(X) + E, where X ∈
R

n, Y ∈ R
m, and X and E are mutually independent. Assume that the

probability distribution of E is πnoise(e). As fixing X = x does not alter the
probability density of E, we can deduce that Y conditioned on X = x is
distributed like E and the likelihood function is

π(y | x) = πnoise(y − f(x)). (104)

If the noise is normally distributed with zero mean and a variance of Varnoise,
this likelihood function is given by

π(y | x) =

(
1√

2πVarnoise

)m

exp
(
− 1

2Varnoise
‖y − f(x)‖2

)
. (105)

In the Bayesian paradigm, the posterior density is the solution of the inverse
problem. However, it is often difficult to visualize as the dimensionality of
problems tends to be very high. What can be done is to calculate from the
posterior distribution point estimates of x.

Possibly the most popular statistical point estimate in the frequentist statis-
tics is the maximum likelihood (ML) estimate. The corresponding estimator
xML is defined as

xML = arg max
x∈Rn

π(y | x), y = yobs,

provided that such a maximizer exists. This estimate tells which value of x
maximizes the probability of the outcome y. It is based only on observed data
with no prior information included. This estimator is often very sensitive to
noise and other inaccuracies and quite useless for ill-posed inverse problems.
In fact, solving the maximum likelihood estimate is tantamount to solving
an inverse problem without regularization.

63



A common Bayesian estimate is the Maximum-A-Posteriori (MAP) estimate,
telling which value of x maximizes the posterior distribution of this unknown.
The corresponding estimator is defined as

xMAP = arg max
x∈Rn

π(x | y),

provided that such a maximizer exists.

Another Bayesian estimate is the conditional mean (CM) or posterior mean,
defined as

xCM = E{x | y} =

∫

Rn

xπ(x | y)dx,

provided that the integral converges. This estimate provides information of
the point of mass of the posterior distribution.

The two major classes of numerical problems arising in inverse estimation
are optimization problems and integration problems. The Maximum-A-
Posteriori estimate leads to an optimization problem and the conditional
mean estimate to an integration problem. When the posterior density is
Gaussian, as it will be in our case, these estimates coincide.

The conditional mean estimation is an integration problem, requiring often
numerical evaluation of a high-dimensional integral. The integration usually
needs to be done by Monte Carlo sampling as explained in Chapter 1.3.

7.3 Notes on references

The section on statistical inverse problems is based on Kaipio and Somersalo
2005 [?] and on Calvetti and Somersalo 2007 [?]. Other references related to
the field include Jeffrey 2004 [?] and Tarantola 2005 [?].

Papers related to the inverse problem of implied volatility are given in the end
of Chapter 3. The inverse problem of local volatility is considered in various
papers as well as in the book by Gatheral 2006 [?]. Early papers on the topic
include Avellaneda, Friedman, Holmes, and Samperi 1997 [?], Bouchouev and
Isakov 1997 [?], and Lagnado and Osher 1997 [?], more recent papers with
a lot of references are Coleman, Kim, Li, and Verma 2001 [?], Crépey 2003
[?] and Hein and Hofman 2003 [?]. The topic is further developed in Friz
and Gatheral 2005 [?] and Cont and Hamida 2005 [?]. The latter propose a
probabilistic approach for the problem.
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8 The implied integrated volatility

The remaining four chapters in this thesis center on the integrated volatility
implied by option market prices; they are the core of this thesis. This chapter
introduces the topic. In the following two chapters, we will present two
methods to estimate this volatility through a Bayesian approach. Finally, in
the last chapter, we will present three simplified examples of the use of the
integrated volatility.

The Hull-White option prices are functionals of the distribution of the inte-
grated volatility. If these prices coincide with the corresponding option mar-
ket prices, it should be possible to estimate, via the Hull-White formula, the
distribution of the integrated volatility implied by option market prices. This
distribution, which reflects to some extent the market’s assumptions about
the average volatility during the remaining lifetime of the option, could be
used, for example, to hedge and price illiquid options.

Before delving more deeply into these ideas, we will discuss advantages re-
lated to the use of the implied integrated volatility. We then will construct a
relationship between option market prices and the corresponding Hull-White
prices, which will be used when estimating this volatility.

8.1 Model risk and the implied integrated volatility

In recent years, many empirical studies have pointed out the importance of
the model risk in derivative industry. For instance, Figlewski and Green
1998 [?] showed empirical evidence that the pricing and hedging errors due
to imperfect models and inaccurate volatility forecasts create important risk
exposure for option deliverers. The model risk is considered in-depth in Cont
2006, [?].

As it is a latent variable, stock price volatility cannot be directly observed.
In Chapter 4, the methods to estimate stochastic volatility were arranged
in three groups, which are parametric volatility models, volatility estimates
based on direct market-based integrated volatilities, and forward-looking
market-based volatility estimates inferred from option prices. The choice
between these estimates depends on the purpose of use.

As is common for all models, parametric volatility models are only more or
less successful attempts to describe the volatility process. Besides including
model errors, they might include errors due to calibration and to discretiza-
tion. Estimating the parameters of a volatility model can be computationally
expensive. This is the case, for example, when one tries to estimate a risk
premium for the stochasticity of the volatility. This risk premium can be
estimated only from option prices, and the procedure tends to be slow and
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computationally intensive.

Being non-parametric, the volatility estimation methods from the realized
high-frequency data avoid, to some extent, the risk of model error. They are,
however, severely affected by the noise of the data, as shown in Andersen,
Bollerslev, and Meddahi 2006 [?]. Using realized volatilities in option pricing
is not straightforward because, in addition to the volatility of the underlying,
option prices can be affected by a premium for the volatility risk or a premium
for a negative jump, to mention a few factors.

The implied volatility is a straightforward estimate of the stock price volatil-
ity implied by option prices, based on the assumption that the volatility is
constant. This assumption is not solid in reality, and, as a result, the implied
volatilities vary according to strike prices. To cope with this problem, the
volatility information provided by option markets is transferred in pricing
and hedging problems using different implied volatilities for different strike
prices. An opportunity of arbitrage might occur if the mutual levels of the
implied volatilities vary as a function of time. In addition, pricing and hedg-
ing options with strike prices different from those provided by markets can
result in inaccuracies.

We suggest that, instead of using the Black-Scholes formula and the implied
volatility, the information of the stock price volatility implied by option mar-
kets should be coded, transferred, and decoded using the distribution of the
integrated volatility and the Hull-White formula. This volatility is indepen-
dent of strike prices, which renders the pricing of options with strike prices
other than those observed in the markets straightforward.

We need not always know the exact volatility process or even the instan-
taneous volatilities during the remaining lifetime of an option. Oftentimes,
an estimate of the average integrated volatility during this period is enough.
Instead of the instantaneous stock price volatility calculated with a para-
metric model, using a meta-level quantity, namely the integrated volatility,
reduces the modeling and calibrating errors to a less significant error due to
the assumption that the Hull-White formula adequately describes the option
prices.

The implied integrated volatility is robust in that it is not based on a spe-
cific stochastic volatility model. Instead of a single valued estimate for the
volatility, it provides information on the distribution of the volatility and thus
information about the sensitivity of the estimate. Options with existing and
non-existing strike prices are priced the same way, decoding with the Hull-
White formula information from the implied distribution of the integrated
volatility.

In addition to the stochasticity of the volatility, the volatility smile has been
explained by many other factors, such as the risk premium for negative jumps.
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When transferring information about the volatility using the distribution of
the implied integrated volatility, we do not necessarily need to know the dif-
ferent factors affecting the volatility implied by option market prices. The
latent information is embedded in the distribution, and transferred and de-
coded as such.

8.2 Basic setting to estimate the integrated volatility

This section sets the basis for the inverse problem of implied integrated
volatility σ̄2

t . We will first model a relationship between the observed op-
tion market prices and theoretical Hull-White prices, to be be used later in
the likelihood function. We then collect the prior knowledge on the integrated
volatility.

As there are two different option prices in the markets, one for bids, ubid
t ,

and another for offers, uoffer
t , we must choose which one to use. Suppose

that we want to use the bid price as the observed price, so that uobs
t = ubid

t .
We model the option prices through the Hull-White formula and expect that
there is little error eobs

t between this model-based value and the observed
price. We assume that this error is independent of the integrated volatility
and that it is a normally distributed random variable, with mean zero and
a variance Varobs

t . We denote eobs
t ∼ N (0, Varobs

t ). The variance reflects our
confidence on the Hull-White model, not the assumption of the market price
distribution.

For a model to tie together the observed option market price and the in-
tegrated volatility implied by option prices, we substitute the Hull-White
formula (65) into (120) , that is,

uobs
t =

∫

UBS
t (Xt, K, T ; σ̄2

t )π(σ̄2
t | σ2

t )dσ̄2
t + eobs

t . (106)

We will present two methods to estimate the integrated volatility from equa-
tion (106). The first method is based on very general prior assumptions
about the integrated volatility, such as positivity of distribution. We cal-
culate a MAP estimate for the distribution of the integrated volatility, and
study the reliability of this estimate using MCMC techniques. The second
method is a Bayesian extension of the more traditional estimation of implied
volatilities. In addition to an estimate for the expectation of the integrated
volatility, this method provides a bridge between this quantity and the com-
monly used implied volatility. Before going to these methods, we collect our
prior knowledge on the distribution of the integrated volatility.

We have two kinds of prior knowledge on the distribution of the integrated
volatility: one based on general properties of the integrated volatility and of
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probability distributions, and another based on a specific volatility process.
In general, we know that

i) the integrated volatility is non-negative,

π(σ̄2) ≥ 0, and

ii) the cumulative distribution of σ̄2 equals one,

∫

π(σ̄2)dσ̄2 = 1. (107)

Depending on a specific case, we can make assumptions about the distribution
of the integrated volatility, for example,

a) on the support [a, b] of the distribution,

b) on the skewness of the distribution, and

c) on the smoothness and oscillation of the distribution.

A natural source of information is historical market data on the implied
integrated volatility. We explained in Chapter 5.4 how different distributions
of the integrated volatility with the same expectation are reflected via the
Hull-White formula to different volatility smiles. If this is the case, it should
be possible to extract some information on the implied integrated volatilities
from the corresponding volatility smiles.
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9 Estimating the distribution of the implied

integrated volatility

In this chapter, we discuss Bayesian statistical methods to estimate the dis-
tribution of the integrated volatility σ̄2

t using indirect information provided
by option market prices and very general prior information. We calculate a
MAP estimate as well as an estimate based on MCMC sampling, a single-
component full scan Gibbs sampler. The advantage of the first method is
that it is quick and can be used on-line, while the second method provides
not only an estimate of the distribution of interest, but also information on
the reliability of this estimate. Information on the uncertainty of the estimate
can then be used in prediction reliability analysis.

We assume that the stock price volatility is stochastic and model the option
prices via the Hull-White formula (65). Furthermore, we assume that the
observed option prices uobs

t correspond to these prices up to a small normally
distributed error, so that

uobs
t =

∫

UBS
t (x; K,T ; σ̄2

t )π(σ̄2
t )dσ̄2

t + eobs
t , (108)

where eobs
t ∼ N (0, Varobs

t ). As pointed out earlier, the role of the error is to
indicate our belief on the model, since the market data obviously contain no
observation error. We have market data on a stock and on several options
on it, with different strike prices and the same maturity.

To begin, we fix the time t and discretize the distribution of the integrated
volatility. We assume that π(σ̄2) takes on positive values in the interval
[a, a + M ], divide this interval into n volatility points,

σ̄2
j = a +

j − 1

n − 1
M, 1 ≤ j ≤ n,

and denote the values of the corresponding discretized distribution by z ∈ R
n,

where
zj = π(σ̄2

j ), 1 ≤ j ≤ n.

We then discretize the Hull-White equation (108), thus obtaining a forward
model given by

uobs
i =

∫ a+M

a

UBS(x; Ki, T ; σ̄2)π(σ̄2)dσ̄2 + ei

≈ M

n

n∑

j=1

UBS(x; Ki, T ; σ̄2
j )π(σ̄2

j ) + ei

=
n∑

j=1

aijzj + ei, aij =
M

n
UBS(x; Ki, T ; σ̄2

j ),
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where ei denotes the uncertainty corresponding the strike price Ki, 1 ≤ i ≤ L
and the maturity T is fixed. In matrix form, we have

uobs = Az + eobs. (109)

Since π(σ̄2) is a probability density, its integral over the support equals one,

1 =

∫ a+M

a

π(σ̄2)dσ̄2 ≈ M

n

n∑

j=1

zj = qT
n z,

where qn = (M/n)[1 1 . . . 1]T . Using this condition, we can fix one coordi-
nate by performing a linear transformation.

We define a basis of R
n, {q1, q2, . . . , qn}, where

q1 =
M

n










1
0
0
...
0










, q2 =
M

n










1
1
0
...
0










, . . . , qn =
M

n










1
1
1
...
1










,

and denote by Q the matrix with columns qj, 1 ≤ j ≤ n. We then define the
vector α = [α1, α2, . . . , αn]T as

α = QT z.

This transformation maps the discrete probability distribution z onto the
discrete cumulative distribution α where αn = 1 is fixed. We denote V =
Q−T , where

V =
n

M








1
−1 1

. . . . . .

−1 1







∈ R

n×n, (110)

so that the discretized probability distribution z is recovered from α by

z = V α. (111)

Substituting (111) into (109) leads to a likelihood function of uobs conditioned
on α, given by

Pli(u
obs | α, αn = 1) ∝ exp

(
− 1

2Varobs
‖uobs − AV α‖2

)
, (112)

where the notation ∝ means ”up to a proportionality constant.” To avoid
confusion with the distribution π(σ̄2), which we are estimating, we denote
the likelihood function, the prior density, and the posterior density by Pli,
Pprior, and Ppost, respectively.
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We model the prior density so that αj is a realization of the random variable
Aj, 1 ≤ j ≤ n − 1, with

Aj =
1

2
Aj−1 +

1

2
Aj+1 +

√
θjWj, A0 = 0, An = 1,

where Wj is a time invariant Gaussian innovation process, Wj ∼ N (0, 1),
and θj is the time varying unknown variance of this process. This model
corresponds to the qualitative information that the discretized probability
distribution is smooth. The corresponding matrix form is

LA = D1/2W, W ∼ N (0, I),

where D1/2 = D
1/2
θ = diag(θ

1/2
1 , θ

1/2
2 . . . , θ

1/2
n ) ∈ R

n×n and L is a second order
smoothness matrix, i.e.,

L =








2 −1

−1
. . . . . .
. . . . . . −1

−1 2







∈ R

n×n. (113)

The prior density of α conditional on θ is now given by

Pprior(α | θ) ∝ P<(α) exp
(
− 1

2
‖D−1/2Lα‖2 − 1

2

n∑

j=1

log θj

)
, (114)

where

P<(α) =

{
1, if αj+1 ≥ αj, 1 ≤ j ≤ n − 1
0 elsewhere.

The second term in the exponent of (114) comes from the normalizing con-
stant, which cannot be neglected when the variance vector θ is modeled as
an unknown.

We model the variance vector θ = [θ1, θ2, . . . , θn] as a random vector and
estimate it together with α. Assuming that the random variables θj are
mutually independent and independent of Aj, the prior density of the pair
(α, θ) is given by the Bayesian hypermodel

Pprior(α, θ) = Pprior(α | θ)Phyper(θ), (115)

where the hyperprior Phyper(θ) reflects our belief on θ. We model the hyper-
prior with a truncated gamma distribution, given by

Phyper(θ) ∝ P+(θ)
n∏

j=1

exp

(

− θj

θ0

+ (β − 1) log θj

)

, (116)
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where P+(θ) is a characteristic function of the hypercube,

P+(θ) = P+(θ, θmax) =

{
1, if 0 ≤ θj ≤ θmax for every j
0 otherwise.

The choices of the hypermodel parameters θ0, β, and θmax are discussed in
connection with the computed examples.

We have chosen as hyperprior the gamma distribution because it favors val-
ues of θj that are close to the mean θ0/(β − 1), but being a heavy-tailed
distribution, allows large outliers. Hence, the hyperprior corresponds to the
qualitative information that the discretized cumulative distribution is second
order smooth with possibly few points of first order non-smoothness.

The posterior density Ppost(α, θ | uobs, αn = 1), obtained by substituting
(112) and (115) in the Bayes formula,

Ppost(α, θ | uobs, αn = 1) ∝ P<(α)P+(θ) exp

(

− 1

2Varobs
‖uobs − AV α‖2

− 1

2
‖D−1/2Lα‖2 −

n∑

j=1

θj

θ0

+ (β − 3

2
) log θ

)

. (117)

We propose here an alternating iteration algorithm for finding an approx-
imation for the MAP estimate of the pair (α, θ). Similar algorithms have
previously been used in other contexts, such as signal and image processing
applications; see Calvetti and Somersalo 2007 [?], [?], [?], and [?]. We initial-
ize α = α0 and θ = θ0, set a limit for the prior variance by defining an upper
bound θmax for θ, and alternate the following two steps until convergence:

1. update α by maximizing the posterior density, conditional on the cur-
rent value of θ,

α = arg min
α∈Rn

{
1

2Var
‖uobs − AV α‖2 +

1

2
‖D−1/2Lα‖2

}

, αj+1 ≥ αj,

where Var = Varobs. To respect the ordering αj+1 ≥ αj, the minimiza-
tion is done component-wise.

2. update θ component-wise by maximizing the posterior density condi-
tional on the current value of α,

θM
j = arg max

θ∈[0,θmax]

{

exp(−1

2
‖D−1/2(Lα)j‖2 − θj

θ0

+ (β − 3

2
) log θj

}

,

and define θj = min(θM
j , θmax).
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The discrete probability distribution z is recovered from the MAP estimate
of α by (111).

The reliability of the MAP estimate for α can be assessed with MCMC sam-
pling. We set the MAP estimates of α and θ as the initial points, α1 = αMAP

and θ1 = θMAP, and set k = 1. We then apply the following block form Gibbs
sampler N times, where N is the sample size.

1. sample αk+1 from the distribution α 7→ P (α | θk) ∝ Ppost(α, θk), where

P (α | θk) ∝ P<(α) exp

(

− 1

2Var
‖uobs − AV α‖2 − 1

2
‖D1/2Lα‖

)

,

where D1/2 = diag
√

θk.

2. sample θk+1 from the distribution θ 7→ P (θ | αk+1) ∝ Ppost(α
k+1, θ)

component-wise, so that the component θk+1
j is drawn from the density

θj 7→ P+(θ) exp

(

− (V αk+1)2
j

2θj

− θj

θ0

+ (β − 3

2
) log θj

)

.

3. If k < N , increase by k by one and repeat from 1.

The inverse cumulative distribution method is used for sampling both α and
θ. We can calculate from the corresponding samples the conditional means
αCM, θCM, and zCM = V αCM.

We now demonstrate the algorithms through a computed example.

Let ztrue denote a true discrete probability density. We generate the test data
with

uobs = Aztrue.

To avoid the obvious inverse crime, we generate the data using a denser
discretization than the one, n = 50, used in the model for solving the in-
verse problem. The true distribution ztrue and the corresponding cumulative
distribution αtrue = QTztrue are shown in Figure 5.

Although the likelihood model assumes a white noise modeling error, we do
not add any noise to our test data. Instead, we treat the variance Varobs as
a quantity indicating our confidence in the Hull-White formula with respect
to the true option prices.

To apply the MAP estimation algorithms and MCMC sampling, we fix the
prior parameters as β = 3 and θ0 = 10−11 in the gamma distribution, θmax =
10−9 and Varobs = 10−9. We run the MAP estimation algorithm, which
converges after N = 600 iteration rounds. We have plotted the results αMAP

and zMAP = V αMAP in Figure 5.
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Figure 5: Estimates for α and z. The true distributions are plotted in black
and the estimates are plotted in red. The MAP estimate αMAP is presented
in the left panel of the top row and the corresponding estimate zMAP in the
right panel. The initiating distribution α0 is plotted in blue. The second
row represents the conditional means, αCM being presented in the left panel
and zCM in the right panel. On the bottom row, we have plotted the point-
wise predictive output envelopes of 75% (lighter) and 90% (darker) of the
estimated α and z.
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Figure 6: The autocorrelations from the sample history of the k = 20th
component of α.

We now generate a sample {α1, α2, . . . , αN} by the Gibbs sampler with N =
200000. The posterior means αCM and zCM are shown in Figure 5. We also
present the point-wise predictive output envelopes for both α and z. The
point-wise envelope of α indicates at each support point σ̄2

j of αj the interval
containing a given percentage of the values α1

j , . . . , α
N
j .

To assess the convergence of the MCMC sampling, we compute the autocor-
relation function (ACF) of the sample history of a given component of α. By
fixing k, 1 ≤ k ≤ n, define

xj = αj
k −

1

N

N∑

i=1

αi
k, 1 ≤ j ≤ N

and further, the l’th lagged ACF of the k’th component as

hl =
1

‖x‖2

N−l∑

j=1

xjxj+l, ‖x‖2 =
N∑

j=1

(xj)2

where l = 0, 1, 2, . . . . We have plotted the ACF of the component αk, k = 20
in Figure 6.

The performance of the MAP estimation algorithm in this example gives
quite good results, although numerical experiments indicate that a grossly
off-target starting point for the iteration may converge to a solution that
markedly differs from the true one. This indicates that the posterior density
may have local minima, or that the posterior density is flat. The slow con-
vergence of the MCMC chain, as indicated by the autocorrelation functions
of various components of the vector α, enhance the impression that the pos-
terior density has a long and narrow valley that allows the chain to move. To
remove the non-uniqueness, further information, based either on prior belief
or on complementary data, should be used.
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As mentioned earlier, we are interested in the implied integrated volatility as a
tool for pricing and hedging options, rather than as a quantity in and of itself.
For this reason, we test the performance of our MAP and CM estimates by
calculating option Hull-White prices UMAP = AzMAP and UCM = AzCM with
the estimates zMAP and zCM, and comparing these prices with the original
option prices uobs. The relative pricing errors eMAP and eCM are computed
with

eMAP = (uobs − UMAP)/uobs, (118)

eCM = (uobs − UCM)/uobs. (119)

The result is that this test is very good: the relative pricing errors eMAP being
of size 10−5 for in-the-money options and out-of-the-money options, and of
size 10−4 for at-the-money options. The relative errors eCM are even smaller,
being of size 10−6 for in-the-money options and at-the-money options, and
of size 10−5 for out-of-the-money options.
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10 Black-Scholes formula and the systematic

model error

Theoretically, when the stock price volatility is constant, the average volatil-
ity during the remaining lifetime of an option is given by the implied volatil-
ity. When the stock price volatility is stochastic, according to the Hull-White
paradigm, this average volatility is the square root of the expectation of the
implied integrated volatility. However, as it is robust and easy to implement,
the implied volatility is also a commonly used estimator in this case.

In this chapter, we show how the expectation of the implied integrated volatil-
ity can be estimated similarly to the implied volatility: with the Black-Scholes
formula, but here adding a stochastic correction based on the Hull-White for-
mula and its Bayesian inference. As earlier, we assume that the stock price
volatility is stochastic, that the Hull-White formula gives the correct option
price, and that the observed option price uobs

t equals the Hull-White price
UHW

t with possibly a small normally distributed error, i.e.,

uobs
t = UHW

t + eobs
t , (120)

where eobs
t ∼ N (0, Varobs

t ).

Suppose that we want to estimate from option market prices the average vari-
ance during the remaining lifetime of an option. A simple, classical solution
is to approximate the observed price with the Black-Scholes price,

uobs
t ≈ UBS

t (I2
t ), (121)

and to calculate the corresponding implied volatility It. The expectation
of the integrated volatility can then be approximated by I2

t ≈ σ̂2
t . There is,

however, a systematic error between these quantities, as explained in Chapter
5.4. To compensate for this bias, we add to (121) an error term êBS

t and write

UHW
t (σ2

t ) = UBS
t (σ̂2

t ) + [UHW
t (σ2

t ) − UBS
t (σ̂2

t )]

= UBS
t (σ̂2

t ) + êBS
t ,

(122)

where the error term is given by

êBS
t =

∫

UBS
t (σ̄2

t )π(σ̄2
t )dσ̄2

t − UBS
t (σ̂2

t )dσ̄2
t

=

∫

(UBS
t (σ̄2

t ) − UBS
t (σ̂2

t ))π(σ̄2
t )dσ̄2

t .

(123)

Stated in another way, êBS
t is the expectation of the random model error eBS

t ,
that is

eBS
t = UBS

t (σ̄2
t ) − UBS

t (σ̂2
t ) and

êBS
t =

∫

eBS
t π(σ̄2

t )dσ̄2
t .

77



The distribution of the model error eBS
t depends on the variables affecting

the implied volatility smile, i.e., the distribution of the integrated volatility,
the ratio Xt/K and the remaining time to maturity T − t. Clearly, the
expectation of this error also depends on these variables. In the sequel, when
talking about model error, we mean êBS

t , the expectation of the model error,
not the random model error eBS

t .

The available possibilities for estimating the model error depend on our prior
knowledge of the distribution of the integrated volatility. If we have an
estimate for the distribution of the integrated volatility, we can calculate the
model error directly from (123), using

σ̂2
t =

∫

σ̄2
t π(σ̄2

t )dσ̄2
t .

Suppose, then, that we do not know the distribution of the integrated volatil-
ity but do have a model for the volatility process. However, some of the
model parameters are poorly known, so we have only qualitative information
on them, and thus model them as random variables. In this case, we can
pick M realizations of the volatility process, propagate each of them N times
in the time interval [t, T ] and calculate the corresponding distributions of
the integrated volatility. Having performed [N × M ] simulations, we obtain
a sample of M distributions, {π1(σ̄2

t ), π
2(σ̄2

t ), . . . , π
M(σ̄2

t )}. Using (123), we
calculate a model error êBS

mt for each distribution, that is,

êBS
mt =

∫

(UBS
t (

√

σ̄2
t ) − UBS

t (σ̂2
t ))π

m(σ̄2
t )dσ̄2

t , 1 ≤ m ≤ M.

The average error êBS
t and the variance VarBS

t of the error are then given by

êBS
t =

1

M

M∑

m=1

êBS
mt, VarBS

t =
1

M − 1

M∑

m=1

(êBS
t − êBS

mt)
2. (124)

For simplicity, we assume that the distribution of the model errors can be ap-
proximated by a Gaussian distribution. The applicability of these estimates
depends on how much and how quickly the integrated volatility implied by
option markets changes. When this volatility is estimated as an implied
volatility with a systematic correction êBS

t , the volatility estimates for each
strike price should coincide. If this is not roughly the case, the estimate for
the model error êBS

t is not accurate.

Let us then return to our pricing model. We substitute (122) in (120), which
gives

uobs
t = UBS

t (σ̂2
t ) + êBS

t + eobs
t . (125)
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As we assumed that the error eobs
t is normally distributed and approximated

the distribution of êBS
t via a normal distribution, then, by (105), the likelihood

function Pli(u
obs
t | σ̂2

t ) is given by

Pli(u
obs
t | σ̂2

t ) ∝ exp
(
− 1

2(Varobs
t + VarBS

t )
(uobs

t − UBS
t (σ̂2

t ) − êBS
t )2

)
. (126)

We encode the prior information about the expectation of the integrated
volatility in the prior density Pprior(σ̂

2
t ), given by

Pprior(σ̂
2
t ) ∝ exp

(

− 1

2Varpr
t

(
σ̂2

t − σ̃2
t )

2

)

, (127)

where σ̃2
t denotes the expected value of σ̂2

t and Varpr
t reflects our confidence

on the prior information.

Combining information provided by the prior density (127) and the likelihood
function (126) provides us, via the Bayes formula, the posterior distribution
Ppost(σ̂

2
t | uobs

t ), given by

Ppost(σ̂
2
t | uobs

t ) = Pli(u
obs
t | σ̂2

t )Pprior(σ̂
2
t )

∝ exp
(
− 1

2(Varobs
t + VarBS

t )
(uobs

t − UBS
t (σ̂2

t ) − êBS
t )2 − 1

2Varpr
t

(
σ̂2

t − σ̃2
t )

2
)

∝ exp
(
− δ2

t

(
σ̂2

t − σ̃2
t )

2 − (uobs
t − UBS

t (σ̂2) − êBS
t )2

)
,

(128)

where

δt =

√

VarBS
t + Varobs

t

Varpr
t

.

The MAP estimate for σ̂2
t is the minimizer of the log-posterior:

σ̂2
MAP,t = arg min

σ̂2
t
∈Rn

∥
∥
∥
∥

[
UBS

t (σ̂2
t ) + êBS

t

δσ̂2
t

]

︸ ︷︷ ︸

F (σ̂2
t
)

[
uobs

t

δσ̃2
t

]

︸ ︷︷ ︸

z

∥
∥
∥
∥

2

= arg min
σ̂2

t
∈Rn

‖F (σ̂2
t ) − z‖.

(129)

If Varpr → ∞, i.e., no prior information is available, the formula reduces to
the Black-Scholes implied volatility formula, with the significant difference
that the systematic bias êBS

t due to the smile has been removed. The problem
reduces to the non-linear least squares problem of minimizing the objective
function ‖F (σ̂2

t )− z‖2, which can be done with standard minimization tech-
niques.

We illustrate the idea of the model error ê in Figure 7, and a computed
example is presented in Chapter 11.2. We can see from Figure 7 that, as
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Figure 7: Simulated model error surface

expected from Section 5.4, the model error is very little for at-the-money op-
tions, positive for in-the-money and out-of-the-money options, and negative
for deep-in-the-money and deep-out-of-the-money options. The option mar-
ket prices are calculated with the Hull-White formula using a distribution
of the integrated volatility generated by a discretized version of (58)-(59),
with f(y) =

√
y, α = 1, m = .12, β = .6, and ρ = 0. The model errors are

calculated with (123).

In this chapter, we have used ideas presented in the paper by Kaipio and
Somersalo 2007 [?].
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11 Computed examples with the implied

integrated volatility

This chapter presents three examples of the use of the implied integrated
volatility. First, we test how well the volatility smile can be removed when,
instead of the implied volatility, we estimate the expectation of the integrated
volatility. We then consider a simplified example of pricing illiquid European
options using the integrated volatility. Finally, we consider a hedging problem
where a European option is hedged using the inference on the volatility. In
the pricing and hedging problems, the use of the implied integrated volatility
provides, in addition to an estimate, information on the reliability of this
estimate.

We use simulated market data in all the three examples. We assume that all
prices are given in a risk-neutral martingale measure P ∗(γ), which is equiv-
alent to the natural measure of the markets P . Since we are working with
volatilities implied by option prices, not with real stock price volatilities, this
assumption would be suitable even if we were using real market data. When
the stock price volatility is stochastic, the option prices include a premium for
the volatility risk. This premium is reflected in different volatilities implied
by option prices, and via these volatilities, it is transferred to new prices or to
hedging ratios. We can estimate the implied volatility, the distribution of the
integrated volatility, and the expectation of the integrated volatility without
knowing the exact value of this risk premium merged in our estimates.

11.1 Generating the market data

The simulated market data consist of the prices of one stock and of options
on this stock with several strike prices and two maturities on a time interval
[0, T ]. The discrete market data on stock prices and stock price volatilities
are generated using the time grid

vj =
j − 1

V − 1
T, 1 ≤ j ≤ V, (130)

with ∆v = T/V as the time step. We choose from this grid W evenly
spaced points as observation points from which we calculate the integrated
volatilities and option prices. We denote the observation times by tj, 1 ≤
j ≤ W .

We assume that the stock price process is given by (61)-(62), and generate
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stock price data using a discretized version of this process, given by

Xv+1 = Xv + rXv∆v + σvXvνv

√
∆v, (131)

σv = f(Yv) (132)

Yv+1 = Yv + α(m − Yv)∆v + βǫv

√
∆v, (133)

where νv and ǫv are mutually uncorrelated, (νv, ǫv) ∝ N (0, 1), and 1 ≤ v ≤ V .
We have here discretized (131) and (133) using the Euler method, considered,
for example, in Glasserman 2004 [?].

We assume that the observed option prices uobs
t equal the Hull-White prices

up to a small, normally distributed error. This error accounts for the uncer-
tainty of the Hull-White formula as a model for the market price. Although
there is no guarantee that the market price coincides with the theoretical one,
we use this value as a model for the market value. We use the discretized
version of the Hull-White formula to calculate the observed option prices,
and approximate the option market prices by

uobs
j =

M

n

n∑

k=1

UBS
k (tj, xj; K,T ; σ̄2

jk)π(σ̄2
jk) + ej, (134)

where M is the length of the support interval of the volatility distribution, n
is the number of discrete volatility points on this support, and the error ej ∼
N (0, Varobs

j ). The integrated volatilities σ̄2
jk are generated using the volatility

model (132)-(133) and the discretized version of the integrated volatility (66).

When estimating the hedging performance of different volatilities, we need a
replicating option with a longer maturity T2, T < T2 than the one of the op-
tion to be hedged. We denote this option with uRep

j = uRep(tj, xj; K,T2; σ
2
j ).

The parameters used when simulating the stock price process are r = 0
α = 1, m = .14, β = .4, ∆t = 2 days, x0 = 1, σ2

0 = .12, and f(x) =
√

x. The
parameters related to option prices will be presented separately with each
example.

11.2 Removing the volatility smile

In this first example, we present how the expectation of the integrated volatil-
ity can be estimated from option market prices. The average volatility during
the remaining lifetime of an option is sometimes approximated with the im-
plied volatility. When the volatility is constant, this is the proper estimate.
However, if the stock price volatility is stochastic, the implied volatility de-
pends on the strike price, a phenomenon reflected as a volatility smile. In
this case, theoretically, the average volatility is given by the expectation of
the implied integrated volatility. This expectation is not usually a straight-
forward forecast for the future stock price volatility, but it probably reflects
market expectations on stock price fluctuations.
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Figure 8: The model error surface and volatility surfaces implied by option
market prices. The top left panel represents the surface of the systematic
model error ê. In the top right panel, we have plotted the surfaces of the
implied volatility I (blue) and of the square root of the expectation of the
implied integrated volatility (green). The left panel of the bottom row rep-
resents the real volatility surface (violet) and the implied volatility surface
(blue); the right panel represents the real volatility surface (violet) and the
surface of the square root of the expectation of the implied integrated volatil-
ity (green).

Even though the implied volatility can be a biased estimator, it has its
strengths - it is a commonly known and robust estimator that is easy to cal-
culate. We now show how, using this estimator, one can calculate an estimate
for the expectation of the integrated volatility, an estimate independent of
the strike price. The correction is done by simply adding a systematic model
error to the observed option prices and then calculating the corresponding
implied volatilities, as discussed in Chapter 10.

Suppose that we want to estimate the expectation of the integrated volatility
implied by the market prices of certain options with the same underlying
and maturity but different strike prices. In this example, we assume that we
have an accurate model for the volatility process but have only qualitative
information on some of its parameters.

As a preliminary task, we estimate the systematic model error êBS
t by simu-

lation. We model the volatility process with

σj = f(Yj) (135)

Yj+1 = α(M − Yj)∆t + Bǫj

√
∆t, (136)
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where ∆t = T/W , ǫj ∝ N (0, 1) and the long run level of mean reversion M
and the volatility of the volatility B are modeled as random variables. In the
forward simulations, we draw from uniform distributions M ∼ Uniform[m1,m2]

and B ∼ Uniform[β1,β2].

We pick L realizations of the volatility process (135)-(136), propagate each
of them N times in the time interval [t, T ] and calculate the corresponding
distributions of the integrated volatility. Using (123), we calculate a model
error êBS

mt for each distribution, as well as the average error êBS
t and the

variance VarBS
t , given by (124).

An estimate for σ̂2
j is now obtained from the option market prices uobs

j by
solving this volatility from

uobs
j = UBS

j (x; K,T ; σ̂2
j ) + êBS

j

with the MAP algorithm presented in Chapter 10 with prior variance Varpr →
∞. To compare the performance of this estimate, we also calculate the
corresponding squared implied volatilities I2

j from

uobs
j = UBS

j (x; K,T ; I2
j ).

We estimate the model error from a sample of L = 100 realizations of the
volatility process (135)-(136), where M and B are drawn from the uniform
distribution M ∼ Uniform[0.13,0.15] and B ∼ Uniform[0.3,0.45]. To avoid an
inverse crime, we have used a different time discretization than the one used
when simulating the market data.

The results of the simulation are presented in Figures 8 and 9. Figure 8
represents the model error surface, the estimated surfaces of implied volatility
and of the square root of the implied integrated volatility, and finally the
true volatility surface. Clearly adding a systematic model error to observed
option prices and calculating the corresponding implied volatilities removes
some of the volatility smile. The original volatility surface and the surface of
the square root of the implied integrated volatility are compared in the left
panel of the bottom row. The effect of adding a systematic model error is
particularly drastic due to the fact that we knew the volatility process up to
the two unknown parameters modeled as random variables.

Figure 9 represents the implied volatilities, square roots of the implied inte-
grated volatilities, and the true volatility at maturities T = 0.5 and T = 0.3.
The square root of the expectation of the implied integrated volatility is fairly
flat for both maturities.
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Figure 9: Implied volatility (green), square root of the expectation of the
implied integrated volatility (red), and the true volatility (blue). estimated
from simulated option market data. In the left panel, the maturity is T = 0.5
years and in the right panel, it is T = 0.3 years.

11.3 Pricing illiquid European options

Illiquid options on a certain underlying can be priced using a volatility implied
by some liquidly traded option on the same underlying. As implied volatilities
depend on the option strike prices, illiquid options with different strike prices
are often priced using different implied volatilities. We suggest the use of
the distribution of the integrated volatility implied by option prices as an
alternative for the use of the implied volatility. Unlike the Black-Scholes-
based implied volatility, the implied integrated volatility is independent of
the strike prices, which reduces the risk of arbitrage between illiquid options
with different maturities.

In this simulation, we compare the pricing performances of the distribution of
the implied integrated volatility and the implied volatility in a very simplified
example of pricing illiquid options. We assume that we know the prices for
certain liquid European options with the same underlying and maturity, but
different strike prices. Based on volatilities implied by the prices of these
options, we price two similar illiquid options, one having a lower and the
other a higher strike price than those of the liquid options. The illiquid
options with the lowest and highest strike price are denoted by Ut,−(σ̃2

t ) and
Ut,+(σ̃2

t ), respectively, where σ̃2
t refers to the square of the volatility. To be

able to compare the pricing performance of the two different volatilities, we
must also know the real prices ureal

t,− and ureal
t,+ , i.e., the simulated prices of

these options. Of course, the estimated option prices are calculated without
this information.

To price the illiquid options, we proceed as follows. We estimate from the
market data the distribution of the integrated volatility σ̄2

j as a posterior
mean, using the Gibbs sampler presented in Chapter 9, and price the illiquid
options UHW

j,− (x, σ2
j ) and UHW

j,+ (x, σ2
j ) using this estimate and the Hull-White

formula. We then calculate the implied volatilities and price UBS
j,−(x, I2

j,−) and
UBS

j,+(x, I2
j,+) using the Black-Scholes formula and a volatility which has been
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Figure 10: Histograms on the prices price estimates UHW
j,− (x, σ2

j ) and
UHW

j,+ (x, σ2
j ) provided by the Gibbs sampler. The left panel represents the

histograms of prices for Ut,−(σ̃2
t ) and the right panels those for Ut,+(σ̃2

t ). The
variance Varobs on the upper row is Varobs

1 = 10−9, on the bottom row it is
Varobs

2 = 10−8.

linearly interpolated from the implied volatilities corresponding to the two
nearest strike prices.

We finally compute the relative errors between the estimated and real prices
of the illiquid options, given by

eK±(σ̃2
j ) = (ureal

K± − UK±(σ̃2))/ureal
K±,

where σ̃2 denotes the square of the volatility that has been used. The Gibbs
sampler provides a sample of prices for the illiquid options. We present these
samples as histograms in Figure 10.

The strike prices of the illiquid options used in this example are K = [.6, 1.4],
and the maturity is half a year. To apply the the Gibbs sampler, we fix the
prior parameters as β = 3 and θ0 = 10−9 in the gamma distribution and
θmax = 10−9. We estimate the prices of the illiquid options using two different
variances, Varobs

1 = 10−9 and Varobs
2 = 10−8.

Figure 10 represents as histograms the price estimates of the illiquid options
provided by MCMC sampling. It is interesting to see that the variance Varobs

has a remarkable effect on the accuracy of the price estimates. The prices
with nearly no variation on the upper row are calculated with Varobs

1 = 10−9,
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and prices with a larger variation on the bottom row using Varobs
2 = 10−8. In

our case, a natural explanation is that the market data was generated with
the Hull-White formula, and the variance reflects confidence on this formula.

The effect of Varobs is remarkable also when comparing the pricing accuracy of
the pricing estimates. In general, the relative errors between the correct prices
of the illiquid options and the prices computed with interpolated implied
volatilities are of the size eK

−

(I2) ≈ 10−4 for the lower illiquid option and
of the size eK+

(I2) ≈ 10−3 for the upper one. The corresponding posterior
mean estimates calculated with the Gibbs sampler are of the same size for
both options when the variance used is Varobs

2 = 10−8. The performance
is clearly better using Varobs

1 = 10−9, the relative errors being of the size
eK

−

(I2) ≈ 10−6 for the lower illiquid option and of the size eK+
(I2) ≈ 10−5

for the upper one.

11.4 Hedging a European option

The value of an option is sensitive to changes in the value of the underlying.
One can try to hedge changes in the value of a short option, i.e., an option
that has been sold, by holding a replicating portfolio consisting of a certain
amount of the underlying and possibly of a certain amount of a replicating
option, i.e., of an option similar to the short option, but with longer matu-
rity. The hedging performance depends on how well changes in the value of
the replicating portfolio replicate changes in the value of the short option.
In practice, due to the fact that hedging is done discretely, to transaction
costs, market restrictions etc., perfect hedging is impossible even if the stock
price volatility is constant and known. Some degree of hedging is, however,
possible.

Rebonato 2004 [?] has discussed practical hedging of a call option when
the volatility of the underlying is stochastic, but the hedger lives in a Black-
Scholes world and hedges a short option either by following the delta strategy
or the delta-vega strategy described in Chapter 6. Rebonato has shown that
if the trader knows exactly the correct average quadratic variation of the
underlying, both hedging strategies reduce significantly the standard devi-
ation of the terminal payoff of the portfolio consisting of the short option
and the replicating portfolio compared to that one of the naked option, at
least if the re-hedging frequency is greater than once a week. However, if
he guesses wrong the average quadratic variation, the delta-vega strategy
performs better than the delta strategy.

In this example, we illustrate how using the implied integrated volatility
in hedging provides, in addition to a point estimate for a hedging ratio,
information on the reliability of this estimate. We assume that option prices
are given by the Hull-White formula and try to replicate changes in option

87



prices with either the delta strategy or the delta-vega strategy, modelling
the instantaneous hedging ratios delta (91), alpha (93), and gamma (94)
as distributions. These ratios are calculated with the integrated volatility
implied by the Hull-White option prices. To have a benchmark, we hedge
the short options also using the implied volatility. We estimate the implied
integrated volatility as a posterior mean, using MCMC techniques presented
in Chapter 9, and the implied volatility with optimization.

Suppose that at the initial moment t = t1, we sell an option with price UH
1 .

To hedge this option, we first estimate from the market data the discrete
distribution of the integrated volatility σ̄2

1 and calculate the corresponding
discrete distributions for delta, ∆1(σ̄

2
1), alpha, α1(σ̄

2
1), and gamma, γ1(σ̄

2
1).

The expectations of the initial values of the delta portfolio V D(σ̄2) and of
the delta-vega portfolio V DV(σ̄2) are then given by

V D
1 (σ̄2

1) =

∫

∆1(σ̄
2
1)π(σ̄2

1)dσ̄2
1X1

and

V DV
1 (σ̄2

1) =

∫

α1(σ̄
2
1)π(σ̄2

1)dσ̄2
1X1 +

∫

γ1(σ̄
2
1)π(σ̄2

1)dσ̄2
1U

Rep
1 ,

where X denotes the value of the underlying and URep the value of the
replicating option.

We then estimate the instantaneous implied volatility I1 and calculate the
corresponding hedging ratios. The initial values of the delta portfolio V D(I2)
and the delta-vega portfolio V DV(I2) are then

V D
1 (I2

1 ) = ∆1(I
2
1 )X1

and
V DV

1 (I2
1 ) = α1(I

2
1 )X1 + γ1(I

2
1 )URep

1 .

At n− 1 evenly spaced moments of time, we calculate new estimates for the
discrete distribution of the implied integrated volatility and for the implied
volatility, and calculate the corresponding hedging ratios. We then re-hedge
the portfolios V D

j and V DV
j using either the distribution of the ratios ∆j(σ̄

2
j ),

αj(σ̄
2
j ), and γj(σ̄

2
j ), or the ratios ∆j(I

2
j ), αj(I

2
j ), and γj(I

2
j ), 2 ≤ j ≤ n.

To know the cost of re-hedging, we also calculate the changes ∆V D
j and

∆V DV
j in the value of the replicating portfolio, i.e,

∆V D
j = (∆j − ∆j−1)Xj

∆V DV
j = (αj − αj−1)Xj + (γj − γj−1)U

Rep
j .

At the last moment of time tn, we calculate how much selling the option and
hedging it has cost to us, following each of the two hedging strategies and
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Figure 11: Hedging ratios for the option with strike price K = 0.8. The top
left panel represents the expectation ∆̂j(σ̄

2
j ), as well as error bars calculated

using integrated volatilities within one standard deviation from the expec-
tation of this volatility. The top right panel represents the corresponding
values of alpha, and the bottom left panel the corresponding values of the
whole delta-vega portfolio V DV

j . Finally, the bottom right panel represents
the value of the underlying stock.

using each of the two volatilities. The price C(σ̃2) of the whole procedure is
given by

C(σ̃2) = UH
1 − V1(σ̃

2
1) −

n∑

j=2

∆Vj(σ̃
2
j ) − UH

n + Vn,

where V refers to either V D or V DV and σ̃2
j to either σ̄2

j of I2
j .

In this example, we have options with strike prices K = [.6, .8, 1, 1.2, 1.4]
and a maturity of half a year, T = .5, the maturity of the corresponding
replicating options being T = .9. Hedging and re-hedging is done n = 6
times, once a month. We estimate the implied integrated volatility from
the same option prices using the Gibbs sampler, and fix the variance to
Varobs

1 = 10−9 as well as the prior parameters to β = 3 and θ0 = 10−9 in the
gamma distribution, and define θmax = 10−9.

In Figure 11, we present the expectations of the hedging ratios delta and
alpha, given by

∆̂j(σ̄
2
j ) =

∫

∆j(σ̄
2
j )π(σ̄2

j )dσ̄2
j and

α̂j(σ̄
2
j ) =

∫

∆j(σ̄
2
j )π(σ̄2

j )dσ̄2
j ,
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for an option with strike price K = 0.8. The error bars indicate the ratios
calculated with implied integrated volatilities within one standard deviation
from the expectation of this volatility. We denote by ∆STD

j (σ̄2
j ) and αSTD

j (σ̄2
j )

the ratios calculated with the volatilities exactly one standard deviation from
the expectation.

In Figure 11, we also present the corresponding values of the replicating
portfolio V DV of the delta-vega strategy and the prices of the underlying.
The hedging ratios calculated with the implied volatility are approximately
the same as the expectations ∆̂j(σ̄

2
j ) and α̂j(σ̄

2
j ).

Obviously, when the option is deep in-the-money and the time to maturity
decreases, the error bars decrease as well. However, at the last moment of
time t6, the value of the stock has fallen, the option is not so deep in-the-
money, and the delta ratio is again more sensitive to the volatility.

Figure 12 represents the ratios ∆i(σ̄
2
i ) and αi(σ̄

2
i ), i = [1, 5] of different strike

prices. The ratios calculated with integrated volatilities within 1 and 1.5
standard deviation from the expectations of this volatility are presented in
darker and lighter green, respectively, an the corresponding expectations are
presented in red. In this example, the delta and alpha ratios calculated with
the implied volatility coincide with the latter ones.

In the same way than the Black-Scholes formula, also the sensitivity delta (91)
is linear with respect to the volatility for an at-the-money options and non-
linear for other options. This phenomenon that can be observed in the left
panel of the first and second rows by comparing the ratios ∆j(σ̂

2
j ), ∆STD

j (σ̄2
j ),

and ∆1.5STD
j (σ̄2

j ) of the at-the-money options. At the first moment of time t1
the option with strike price K = 1 is at the money, and at t5 the correspond-
ing strike price is approximately K = 1.1.

At t5, the option is close to maturity, and the changes in the value of the
underlying are reflected directly in the value of the options that are deep-in-
the-money, with strike prices K = 0.6 and K = 0.8. This is then reflected in
the delta ratios, which, regardless the volatility used, are approximately one.

The alpha ratios of the delta-vega strategy are presented in the right panels
of the first two rows in Figure 12. Now, as the short option is hedged with
both an instantaneous amount of the underlying and of a replicating options,
the relation between alpha and the value of the underlying is not as straight-
forward as earlier. However, these ratios clearly have similarities with the
delta ratios.

The bottom row represents the price C(σ̄2) of the whole hedging procedure of
both delta and delta-vega strategies. The expectation of the cost is presented
in red while the green refers to the price of hedging when the ratios are
calculated with integrated volatilities within one standard deviation from
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Figure 12: Expectations and distributions of the delta and alpha ratios. On
the top row, the left panel represents delta ratios and the right panel alpha
ratios at the initial moment t1. The delta ratios calculated with integrated
volatilities within 1 and 1.5 standard deviation from the expectation of these
volatilities are presented in darker and lighter green, respectively, and the
expectation α̂j(σ̄

2
j ) is presented in red. The left panel of the second row

represents the corresponding delta ratios and the right panel the alpha ratios
at t5. The bottom row represents the expectation and distribution of the
total cost of the delta strategy (left) and of the delta-vega strategy (right),
as well as corresponding performances of the implied volatility.
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the expectation of these volatilities. We can see that the delta-vega strategy
is less sensitive to wrong volatilities, as the error from a wrong volatility is
partly cancelled by the replicating option. In this particular example, the
average cost of both strategies is approximately the same. Repeating the
simulation several times reveals that the cost of the delta-vega strategy is in
the average less than the cost of the delta strategy. In this example, possible
differences between the performance of the implied integrated volatility and
the implied volatility are dominated with errors due to the low re-hedging
frequency, which is once a month.
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12 Concluding remarks

The integrated volatility is the time-average of the stock price variance. It
is a fundamental quantity related to the stock price returns, as these re-
turns depend on the stock price volatility only via the integrated volatility.
Hull-White option prices are functionals of the distribution of the integrated
volatility.

In this thesis, we presented the new concept of implied integrated volatil-
ity, i.e., the integrated volatility implied by option Hull-White prices. The
commonly known Black-Scholes implied volatility is based on the assump-
tion of constant stock price volatility. As it is well known, this assumption
is non-tenable, which is reflected as a volatility smile, an inconsistency of
volatilities implied by option prices with different strikes. In contrast, the
integrated volatility is based on the assumption that stock price volatility is
a stochastic process.

The Hull-White formula (65) is a bedrock of our work. We have derived
this formula in various ways, and, based on it, explained how the different
shapes of volatility smiles are related to different distributions of the implied
integrated volatility.

The Bayesian approach was used for the ill-posed problem of estimating the
integrated volatility implied by option prices. This approach allowed us to
integrate additional prior information into the estimation process. We pre-
sented two methods to estimate the implied integrated volatility, calculated
MAP estimates for this volatility and studied their reliability with MCMC
methods.

We suggested that the implied integrated volatility can be used in volatility
estimation, in pricing illiquid options consistently with corresponding liquid
ones, and in hedging options. Three computed examples on these topics using
the integrated volatility were presented. We showed how, in addition to a
point estimate, the Bayesian approach provides information on the reliability
of these estimates.

Numerous possibilities for future research predicated on the topics considered
in this thesis exist. For option prices, we used simulated data based on the
Hull-White pricing formula. We did not add noise to the data, as in our
paradigm, observed market data contains no noise. The real test of the theory
remains to be done: to test the theory and algorithms with real market data.

We have presented only a very simplified example of pricing illiquid options
with the integrated volatility. Further research should be done on the possi-
bilities of present and future pricing of different exotic options.

Hedging with integrated volatility was discussed and demonstrated only on
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a general level. In a computed example, we demonstrated what kind of
information on the hedging ratios and hedging performance is provided by
our volatility. Comparing the hedging performance of this volatility to the
performance of other volatilities remains to be done.

In addition to the topics presented in this thesis, other possible fields to apply
the implied integrated volatility should be surveyed, such as, for example, the
fast growing fields of volatility options and the Value at Risk.
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