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1 Introduction

Let T be a bounded operator in a complex Banach space X and denote
by σ(T ) its spectrum. The resolvent of T is the analytic operator valued
function

λ 7→ (λ − T )−1 (1.1)

defined in the resolvent set ρ(T ) = C \σ(T ). For λ with |λ| large enough the
series

(λ − T )−1 =
∞∑

j=0

T jλ−1−j (1.2)

converges and can be used e.g. in holomorphic functional calculus, but there
is no ”general formula” for the resolvent which could be used everywhere
outside the spectrum.

An important feature of (1.2) is that the operator T enters only in positive
powers. In fact, then the solution of

(λ − T )x = f (1.3)

exists in the invariant subspace K(T, f) obtained as the closure of all vectors
of the form p(T )f where p is a polynomial. In numerical analysis the finite
dimensional subspaces

Kn(T, f) = span0≤j<n{T
jf} (1.4)

are called Krylov subspaces and the convergence of Krylov solvers is hence
naturally linked with polynomial approximation of the resolvent. It follows
from the maximum principle that we can hope to approximate the resolvent
by polynomials in T only in the unbounded component of the complement of
the spectrum, that is for λ /∈ σ̂(T ). Recall that if F ⊂ C is compact, then

F̂ = {λ ∈ C : |p(λ)| ≤ max
z∈F

|p(z)| for all polynomials p} (1.5)

denotes the polynomially convex hull of F and is obtained by ”filling in” the
possible holes in F .

In this paper we give a simple procedure to express the resolvent for
λ /∈ σ̂(T ). This is based on the notion of polynomial numerical hull V (T )
of the operator T which we introduced in [11], see Section 2. By Theorem
2.10.3 in [11] (or Theorem 9.4.6 in [3]) we have always

V (T ) = σ̂(T ). (1.6)

Since λ0 /∈ V (T ) is equivalent with the existence of a polynomial p such that

|p(λ0)| > ‖p(T )‖ (1.7)

we use such a polynomial to give us a representation of the resolvent near λ0

in terms of a locally converging power series.
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With this representation we can improve our treatment of convergence
speeds for (GMRES-like) Krylov methods, see in particular Theorem 6.2
and Remark 6.5 below. In fact, in [11] we divided the convergence mech-
anisms into sublinear, linear and superlinear convergence. The sublinear
phenomenon was treated in the spirit of a discrete analytic semigroup, while
the linear phase was modelled by problems with large spectrum and dealt
with potential theory outside the spectrum. It was clear that the convergence
would ultimately be superlinear for all ”right hand sides” f in (1.3) if and
only if σ(T ) has zero capacity (that is, T is quasialgebraic, [8]). However,
quantitative estimates were worked out only under the extra assumption that
the resolvent was meromorphic for λ 6= 0. Operators with meromorphic re-
solvents were further discussed in [13]. A good source on quasialgebraicity
containing classical results on polynomial approximation of analytic functions
in compact sets is [14].

2 Polynomial numerical hull of a bounded

operator

Denote by Pk the set of complex polynomials of degree not exceeding k and
by P the set of all polynomials. Given T ∈ B(X) we put, see [11]

V k(T ) = {λ ∈ C : |p(λ)| ≤ ‖p(T )‖ for all p ∈ Pk} (2.1)

and
V (T ) = ∩k≥1V

k(T ). (2.2)

We call V (T ) the polynomial numerical hull of T and V k(T ) the polynomial
numerical hull of T of degree k. These form a nonincreasing sequence of
nonempty compact sets. Additionally, if

W (T ) = {x∗(Tx) : ‖x‖ = 1, x∗ ∈ j(x)}

is the numerical range of T , where j(x) = {x∗ ∈ X∗ : x∗(x) = ‖x‖2 = ‖x∗‖2},
then V 1(T ) is the convex closure of W (T ) while, see (1.6), V (T ) equals σ̂(T ),
the polynomially convex hull of the spectrum, [11]. For later works, see [12],
[6], [5], [7], [4], [2], [1], [3], [15].

Suppose now that λ /∈ σ̂(T ) (or λ /∈ V d(T )) so that there exists a poly-
nomial p (of degree at most d) such that

|p(λ)| > ‖p(T )‖. (2.3)

But then p(λ) − p(T ) has a bounded inverse

(p(λ) − p(T ))−1 =
∞∑

j=0

p(T )j

p(λ)j+1
(2.4)

which we use to give a local representation for the resolvent.
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3 A representation for the resolvent opera-

tor

Given any monic polynomial p of degree d

p(λ) = λd + a1λ
d−1 + · · · + ad (3.1)

we introduce for j = 0, 1, . . . , d − 1

pj(λ) = λj + a1λ
j−1 + · · · + aj. (3.2)

Then one verifies easily that

p(λ) − p(T ) = q(λ, T, p)(λ − T ) (3.3)

where

q(λ, T, p) =
d−1∑
j=0

pd−1−j(λ)T j =
d−1∑
j=0

pd−1−j(T )λj. (3.4)

If now λ /∈ V d(T ) then by definition there exists p ∈ Pd such that (2.3) holds.
But then (2.4) and (3.3) give us immediately a simple local representation
for the resolvent. We formulate three separate results.

Lemma 3.1. If λ /∈ V d(T ), there exists a monic p ∈ Pd satisfying (2.3),
such that

(λ − T )−1 = q(λ, T, p)
∞∑

k=0

p(λ)−k−1p(T )k. (3.5)

Take now any open Ω containing σ̂(T ).

Lemma 3.2. If Ω is open such that σ̂(T ) ⊂ Ω, then there exists d such that
V d(T ) ⊂ Ω.

Proof. If not, then for each j there exists µj ∈ V j(T ) such that µj /∈ Ω. But
the complement of Ω is closed and as σ̂(T ) is compact there exists δ > 0 such
that dist(λ, σ̂(T )) ≥ δ for all λ /∈ Ω. However, as µj ∈ V 1(T ) and as V 1(T )
is compact, there is a subsequence µjl

converging to a point in V (T ) = σ̂(T ),
violating dist(µjl

, σ̂(T )) ≥ δ.

Lemma 3.3. If Ω is open such that σ̂(T ) ⊂ Ω, then there exist open sets
U1, . . . , UN and monic polynomials {q1, . . . , qN} such that the following holds:

C \ Ω ⊂ ∪N
j=1Uj, (3.6)

|qj(λ)| > lim ‖qj(T )k‖1/k for all λ ∈ Uj, (3.7)

and so the series (3.5) converges for λ ∈ Uj with p = qj.
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Proof. Let us denote by r(T ) the spectral radius of T :

r(T ) = lim ‖T k‖1/k.

Then clearly for |λ| > r(T ) we have

(λ − T )−1 =
∞∑

k=0

λ−1−kT k

which is of the form wanted with p(λ) = λ. Thus all we need to consider is
the compact set M = {λ /∈ Ω : |λ| ≤ r(T )}.

Take any µ ∈ M . Since µ /∈ σ̂(T ) there exists, by the definition of
polynomial convexity, a polynomial qµ such that

|qµ(µ)| > max
z∈σ̂(T )

|qµ(z)|,

which we can assume without loss of generality to be monic. Let Uµ be the
open set such that

|qµ(λ)| > max
z∈σ̂(T )

|qµ(z)| (3.8)

holds for λ ∈ Uµ. By the spectral radius formula applied to qµ(T ) we can
rewrite (3.8) as

|qµ(λ)| > lim ‖qµ(T )k‖1/k (3.9)

and we see that the series in (3.5) converges for λ ∈ Uµ with p = qµ. But
now the open sets Uµ cover M and as M is compact, it follows that we only
need a finite number of such polynomials qµ.

4 Green’s function for a bounded operator

In order to discuss the convergence speed of the series representation

(λ − T )−1 = q(λ, T, p)
∞∑

k=0

p(λ)−k−1p(T )k

we shall associate a ”Green’s function” with the operator T , following [11]
and [9]. Consider subharmonic functions of the form

up(λ) =
1

deg(p)
log

|p(λ)|

‖p(T )‖
(4.1)

where p is any monic polynomial. If we now take the supremum of up(λ)
over p ∈ P, pointwise in λ the limit function vanishes in σ̂(T ) and is positive
or infinite outside. We put for all λ ∈ C

g(λ, T ) = sup
p∈P

up(λ) = sup
p∈P

1

deg(p)
log

|p(λ)|

‖p(T )‖
, (4.2)
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and call it the Green’s function for T . By spectral radius formula one sees
that it’s values only depend on T thru σ̂(T ). It does satisfy the mean value
property of subharmonic functions but the upper semicontinuity may be lost
in taking the supremum. We could do an upper regularization to it in order
to get upper semicontinuity, but it does not bring any added value to us here.

Remark 4.1. If the boundary of σ̂(T ) is regular, then g(λ, T ) equals the
classical harmonic Green’s function for the outside of σ̂(T ).

Remark 4.2. The Green’s function g(λ, T ) is finite for all λ whenever the
logarithmic capacity of σ(T )is positive. On the other hand, if cap(σ(T )) = 0,
then g(λ, T ) = ∞ for all λ /∈ σ̂(T ).

5 Convergence of partial sums

Given any monic polynomial p we denote

Rm(λ, T, p) = q(λ, T, p)
m∑

k=0

p(λ)−1−kp(T )k (5.1)

where q(λ, T, p) is given in (3.4). Notice that Rm is a rational function in λ
of exact degree d(m+1) and a polynomial in T of exact degree d(m+1)− 1,
where d is the degree of p. It is therefore natural to ask for bounds on

‖(λ − T )−1 − Rm(λ, T, p)‖

in terms of (m + 1)d.
Take any open Ω containing σ̂(T ). Then it follows from Lemma 3.3 that

there are monic polynomials q1, . . . , qN such that for all λ /∈ Ω

f(λ) := max
j=1,...,N

uqj
(λ) > 0 (5.2)

where uqj
is as in (4.1). It follows, as Ω is open, that

inf
λ/∈Ω

f(λ) > 0,

and, since g(λ, T ) ≥ f ,

ηΩ := inf
λ/∈Ω

g(λ, T ) > 0.

Recall, that ηΩ < ∞ if and only if cap(σ(T )) > 0. Fix now θ such that

e−ηΩ < θ < 1. (5.3)
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Proceeding as in the proof of Lemma 3.3 we now conclude from (4.2) and (5.3)
the existence of a finite set of monic polynomials {qj}

N
1 and corresponding

open sets Uj such that for all λ ∈ Uj

θdj |qj(λ)| > ‖qj(T )‖ (5.4)

where dj = deg(qj). If qj(T ) = 0, then T is algebraic, see below, and the
series reduces to the exact resolvent. So, assume ‖qj(T )‖ > 0 for all j. Then,
by (5.4) 1/|qj(λ)| is bounded and there is a constant C1 such that for all j
with p = qj and λ ∈ Uj

‖R0(λ, T, p)‖ = ‖q(λ, T, p)‖/|p(λ)| ≤ C1. (5.5)

Combining (5.1), (5.4) and (5.5) then gives with C = maxj=1,...,N{C1/(1 −
θdj)}

‖(λ − T )−1 − Rm(λ, T, p)‖ ≤ Cθdj(m+1).

Theorem 5.1. Let T be a bounded operator in a Banach space X and suppose
Ω is an open set containing σ̂(T ). Then for every θ satisfying (5.3) there
exist a constant C, open sets U1, . . . , UN covering the complement of Ω and
polynomials q1, . . . , qN such that, for λ ∈ Uj and for all m = 0, 1, . . . we have

‖(λ − T )−1 − Rm(λ, T, p)‖ ≤ C θ(m+1)deg(p), (5.6)

where p = qj.

For some subclasses of bounded operators stronger representations than
(5.6) are available.

Definition 5.2. An operator T ∈ B(X) is called algebraic, T ∈ A, if there
exists a monic q such that q(T ) = 0;

it is called almost algebraic, T ∈ AA, if there exists a complex sequence
{aj} such that

‖qj(T )‖1/j → 0

where qj(λ) = λj + a1λ
j−1 + · · · + aj;

we call it polynomially quasinilpotent, T ∈ PQN , if there exists monic q
such that

‖q(T )k‖1/k → 0;

and it is called quasialgebraic, T ∈ QA, if there exists a sequence of monic
polynomials {qj} such that

‖qj(T )‖1/deg(qj) → 0.

Remark 5.3. All operators in finite dimensional spaces are algebraic, all
projections are algebraic (of degree 2) and e.g. the Fourier transform in
L2(R) is algebraic of degree 4. Further, an operator is algebraic if and only
if its resolvent is rational. If T ∈ A, then the resolvent is simply

(λ − T )−1 = R0(λ, T, p)

with p the minimal polynomial.
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Remark 5.4. All compact operators are almost algebraic and an operator
is almost algebraic if and only if its resolvent is meromorphic in 1/λ for all
λ 6= 0, [11]. If T ∈ AA, then a global representation is still available. In fact,
there exists a characteristic function χ, entire in 1/λ and vanishing at the
nonzero spectrum, such that

(λ − T )−1 =
1

χ(λ)

∞∑
j=0

qj(T )λ−1−j,

see [11]. Here χ(λ) = 1 + a1/λ + a2/λ
2 + . . . and the polynomials qj are

qj(λ) = λj + a1λ
j−1 + · · · + aj.

Remark 5.5. Polynomially quasinilpotent operators are clearly exactly those
with finite spectrum. So, if T has a finite spectrum, and p vanishes exactly on
the spectrum, then Rm(λ, T, p) is a very efficient approximation converging
superlinearly for every λ /∈ σ(T ) and again we have a single representation
in the whole resolvent set.

6 Quasialgebraic operators

Since the Green’s function becomes infinite for quasialgebraic operators, the
coding does not carry information about the convergence other than it be-
comes superlinear. In order to code speeds on the superlinear scales we need
to refine the coding. To that end we put

gk(λ, T ) = sup
p∈Pk

up(λ) = sup
deg(p)≤k

1

deg(p)
log

|p(λ)|

‖p(T )‖
(6.1)

Lemma 6.1. For every fixed λ0 ∈ C there exists pk ∈ Pk such that

gk(λ0, T ) = upk
(λ0). (6.2)

Proof. Normalize every polynomial considered in Pk so that its largest coeffi-
cient has absolute valued 1. Then the set over which the supremum is taken
is compact. But

p 7→ up(λ0)

is upper semicontinuous and obtains therefore its maximum. The maximum
is 0 if and only if λ0 ∈ V k(T ) and ∞ if and only if T is algebraic of degree
at most k (and λ0 /∈ σ(T )).

Theorem 6.2. For T ∈ B(X) and λ0 /∈ V k(T ) let pk be monic and such
that (6.2) holds. Then

‖(λ0 − T )−1 − R0(λ0, T, pk)‖ ≤ ‖R0(λ0, T, pk)‖
e−kgk(λ0,T )

1 − e−kgk(λ0,T )
. (6.3)
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Proof. Put, for short, R0 = R0(λ0, T, pk). Then

(λ0 − T )−1 − R0 = R0

∞∑
j=1

pk(T )j

pk(λ0)j

implies

‖(λ0 − T )−1 − R0‖ ≤ ‖R0‖
∞∑

j=1

‖pk(T )j‖

|pk(λ0)|j

and since, by arrangement ‖pk(T )‖/|pk(λ0)| = e−kgk(λ0,T ), the claim follows.

Remark 6.3. Observe that for C > 1 there is some δ > 0 such that the
inequality (6.3) holds for all |λ − λ0| < δ

‖(λ − T )−1 − R0(λ, T, pk)‖ ≤ C‖R0(λ, T, pk)‖
e−kgk(λ,T )

1 − e−kgk(λ,T )
. (6.4)

We could then again use compactness as before and conclude that we can ap-
proximate the resolvent with R0(λ, T, p) using a finite number of polynomials
p ∈ Pk with error controlled by gk(λ, T ).

Remark 6.4. Notice that as k → ∞

gk(λ, T ) → ∞ (6.5)

if and only if λ /∈ σ(T ) and cap(σ(T )) = 0; i.e. when T is quasialgebraic.

Remark 6.5. Suppose now that we are solving in a Hilbert space H an
equation

Ax = b

with an invertible quasialgebraic A ∈ B(H). Then Krylov -methods such as
GMRES can be used. Theorem 6.2 guarantees the existence of approxima-
tions xk ∈ Kk+1(A, b) such that

‖xk − x‖ ≤ ‖xk‖
e−kgk(0,A)

1 − e−kgk(0,A)
.

In fact

xk − x = −(R0(0, A, pk) − A−1)b

from which the claim follows immediately.
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7 Application to Riesz projections

Let K1 and K2 be two compact polynomially convex disjoint sets such that

σ(T ) ⊂ K1 ∪ K2 (7.1)

and for j = 1, 2

σ(T ) ∩ Kj 6= ∅. (7.2)

The Riesz projection to the invariant subspace associated with K1 is

P =
1

2πi

∫
γ

(λ − T )−1dλ (7.3)

where γ is a contour surrounding K1 and leaving K2 outside. We can assume
that γ consists of a finite number of circular arcs and is therefore also of finite
length. In fact, since the compact sets are disjoint, there is a d > 0 such that
|z1 − z2| ≥ d for zj ∈ Kj. Take an open cover of K1 with discs of radius d/2
and choose, by compactness, a finite subcover. Then the outer boundary of
the cover can be taken as such a contour γ.

As in the proof of Theorem 5.1 we set ηγ := infλ∈γ g(λ, T ) and choose any
θ satisfying

e−ηγ < θ < 1. (7.4)

We then obtain analogously a partition of γ into finitely many subarcs γj and
polynomials qj so that (5.5) holds for λ ∈ γj. Let d = maxj=1,...,N deg(qj).
Then denote:

pmd(T ) =
N∑

j=1

1

2πi

∫
γj

Rm(λ, T, qj)dλ. (7.5)

It is clear that pmd is a polynomial of degree at most md. As in Theorem 5.1
we have convergence to P in the operator norm.

Proposition 7.1. If T ∈ B(X) and Kj are such that (7.1), (7.2) hold, then
the polynomials pmd(T ) in (7.5)satisfy with some C and for all m = 0, 1, 2, . . .

‖P − pmd(T )‖ ≤ C θmd, (7.6)

where P is the Riesz projection in (7.3) and θ satisfies (7.4).

Remark 7.2. In this ”application” the connection with Green’s function
becomes familiar. In fact, you could take a holomorphic f , identically 1 in
a neighborhood of K1 and vanishing in some neighborhood of K2. Then
approximate f in K1 ∪K2 uniformly by polynomials pn and compare P with
pn(T ).

Remark 7.3. With some extra information on the growth of the resolvent
as |λ| decreases it is possible to give estimates for norms of Riesz projections.
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In fact, assume that (λ − T )−1 is meromorphic for |λ| > rm(T ). Then, near
any r > rm there exists some radius ρ such that the norm of the integral

1

2πi

∫
|λ|=ρ

(λ − T )−1dλ

can be controlled. For details, see Theorem 7.5 in [13].

8 Additional remarks

We include some related remarks.

Remark 8.1. Part of the motivation in representing the resolvent in positive
powers of T comes from the fact that the operator T may be given only as
a ”black box” x 7→ Tx. As K(T, x) is invariant for T we may denote by T[x]

the restriction of T to K(T, x), i.e. T[x] ∈ B(K(T, x)). It follows that

σ(T[x]) ⊂ σ̂(T ) (8.1)

and that the set of vectors x ∈ X for which

σ̂(T[x]) = σ̂(T ) (8.2)

is of second category in X. The inclusion (8.1) is simple while the second
claim follows from local spectral theory where one studies equations of the
form

(λ − T )f(λ) = x

for a given x ∈ X. If in a neighborhood of λ0 there exists an analytic
f(λ) satisfying the equation in that neighborhood, then one says that λ0 is
in the local resolvent set ρT (x). The local spectrum of T at x is then the
complement of ρT (x) and denoted by σT (x). If X0 is the set of vectors x
such that σT (x) = σ(T ), then X0 is of second category in X, see [16] or [10].
Let X1 be the set of vectors for which (8.2) holds. It is clear that we always
have σT (x) ⊂ σ(T[x]) so X0 ⊂ X1. We shall discuss the computability of local
resolvent set and local resolvent in a separate paper.

Remark 8.2. Finding good polynomials to represent the resolvent is com-
putationally demanding. For each fixed λ denote by pλ a polynomial in Pk

such that

gk(λ, T ) =
1

k
log

|pλ(λ)

‖pλ(T )‖
(8.3)

with pλ(z) =
∑k

j=0 aj(λ)zj normalized e.g. by
∑k

j=0 |aj(λ)|2 = 1. For de-
signing good heuristics for finding effective approximations to pλ results on
the dependence of pλ in λ and in k would be of great interest.
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Remark 8.3. Recall that if a compact K is connected, then C \ K̂ can be
mapped by a conformal map onto outside a disc. The Faber polynomials
are then obtained from the conformal map and provide approximations to
its powers. If K contains the spectrum of an operator in its interior and the
degree of the Faber polynomial is large enough, we obtain a representation
for the resolvent outside K with just one polynomial.

Remark 8.4. One of the main uses of explicit representations for the the
resolvent is the holomorphic functional calculus. For example, one would like
to compute etA using the formula

etA =
1

2πi

∫
γ

etλ(λ − A)−1dλ.

In the simplest case, suppose that we have a polynomial p such that

Vp(A) = {λ : |p(λ)| ≤ ‖p(A)‖}

is in the open left half plane. Then we can take a contour around it and
represent the resolvent along the contour with just one p in Rm(λ,A, p).
Observe that the evaluation of contour integral reduces to residue calculus
at zeros of this known polynomial p.

Remark 8.5. As a final remark, the material of this paper complements
the discussion in [11] which where partly based on Lectures at ETH in 1992.
This paper was written at ETH in 2007.
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Convergence of solutions of a non-local phase-field system

March 2008

A543 Outi Elina Maasalo

Self-improving phenomena in the calculus of variations on metric spaces

February 2008

A542 Vladimir M. Miklyukov, Antti Rasila, Matti Vuorinen

Stagnation zones for A-harmonic functions on canonical domains

February 2008

A541 Teemu Lukkari

Nonlinear potential theory of elliptic equations with nonstandard growth

February 2008

ISBN 978-951-22-9406-0 (print)

ISBN 978-951-22-9407-7 (PDF)

ISSN 0784-3143 (print)

ISSN 1797-5867 (PDF)


