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1 Introduction

In [7], an Lp-theory for parabolic stochastic partial differential equations is
developed. Although the theory is applicable to a far more general class of
equations, the starting point is a thorough discussion of the stochastic heat
equation

dv(t, x, ω) = ∆v(t, x, ω) dt+
∞∑

i=1

gi(t, x, ω) dwi(t, ω). (1.1)

The solution v is scalar valued and defined for t ∈ [0,∞), x ∈ Rd for some
integer d ≥ 1, and for ω in a probability space Ω. The forcing terms wi

are independent scalar valued Brownian motions, and for fixed t, x, ω, the
sequence g(t, x, ω) = (gi(t, x, ω))i=1,··· ,∞ is in ℓ2(R). As usual, ∆ denotes
the Laplace operator on Rd. Once existence and uniqueness of solutions to
(1.1) is established, these results are extended to more general equations. In
particular, in [7] very sharp estimates on the regularity of solutions are ob-
tained. Krylov’s approach relies heavily on an estimate which he has proved
in a separate paper [6] and which we will state below as Theorem 1.1. Our
paper aims at a generalization of this crucial estimate.

Our intention is to apply Krylov’s method to a stochastic partial differential-
integral equation:

y(t, x, ω) −

∫ t

0

(t− s)α−1

Γ(α)
∆y(s, x, ω) ds (1.2)

=

∫ t

0

∞∑

i=1

(t− s)β−1

Γ(β)
gi(s, x, ω) dwi(s, ω).

We always assume at least 0 < α < 2, 1
2
< β < 2. Again, x ∈ Rd, t ≥ 0,

ω is in some probability space Ω. For fixed t, x, ω, the sequence g(t, x, ω) =
(gi(t, x, ω))i=1···∞ is in ℓ2(R).

To get a better understanding of the role of the parameters α and β, we
proceed heuristically and assume for a moment that g(t, x, ω) is independent
of t. In this case, formally (1.2) can be rewritten in the language of fractional
derivatives

dα

dtα
y(t, x, ω) = ∆y(t, x, ω) +

∞∑

i=1

gi(x, ω) dwi,β−α(s, ω), (1.3)

with wi,µ(t, ω) =

∫ t

0

(t− s)µ

Γ(µ+ 1)
dwi(s, ω).

This is a fractional differential equation forced by some noise. If β = α the
forcing term dwi,0 = dwi is just white noise. If β > α, the forcing term is a
fractional integral of white noise (thus smoother), otherwise it is a fractional
derivative of white noise (thus rougher). In fact, wi,β−α is a Riemann-Liouville
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process with Hurst index H := β − α + 1
2
> 0 (see [5]). Notice that in the

case α = 1, β = 1 we obtain the stochastic heat equation (1.1).
We have made a first attempt to use Krylov’s approach to handle (1.2)

in [3]. In [3], we have replaced the analogue of Theorem 1.1 by some easier
estimates, with not quite as sharp results on regularity. To pave the way
to regularity results as sharp as [7], in the present paper we generalize The-
orem 1.1 so that it is suited to treat the integrodifferential equation. The
actual application to (1.2) will be given in a forthcoming paper.

Before we can state our results in more detail, we need to provide some
notation and background about the solution operators for the deterministic
heat equation

∂

∂t
v(t, x) = ∆v(t, x) + g(t, x), v(0, x) = h(x), (1.4)

and its generalization to an integral equation

y(t, x) −

∫ t

0

(t− s)α−1

Γ(α)
∆y(s, x) ds =

∫ t

0

(t− s)β−1

Γ(β)
g(s, x) ds. (1.5)

Let the forcing term be a function g ∈ Lp([0,∞) × Rd, H), and the initial
function h ∈ Lp(Rd, H). For fixed t ≥ 0, the solution y(t) will be a function
in Lp(Rd, H). Here H is a separable Hilbert space. (We have in mind H =
ℓ2(R).)

If the initial function h and the forcing term g are sufficiently smooth and
satisfy appropriate size conditions, then it is well known that the solution v
of (1.4) can be described by the heat kernel ut and the heat semigroup T (t),
namely

v(t, x) = [T (t)h](x) +

∫ t

0

[T (t− s)g(s, ·)](x) ds,

where

[T (t)h](x) =

∫

Rd

ut(x− y)h(y) dy.

Now let p ∈ [1,∞). It is well known that T (t) can be extended to a bounded
linear operator T (t) : Lp(Rd, H) → Lp(Rd, H).

The analogue of the heat semigroup for the integrodifferential equation
(1.5) is its resolvent operator Sα,β(t) : Lp(Rd, H) → Lp(Rd, H), which satisi-
fies

Sα,β(t)h− ∆

∫ t

0

(t− s)α−1

Γ(α)
Sα,β(s)h ds =

tβ−1

Γ(β)
h. (1.6)

Using the resolvent operator, the solution to (1.5) is given by a variation of
parameters formula

y(t, ·) =

∫ t

0

Sα,β(t− s)g(s, ·) ds. (1.7)
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The theory of resolvent operators for integral equations is well understood. In
fact, for β = 1, Equation (1.5) is a parabolic integral equation as treated in [8,
Chapter 3]. By Laplace transform methods it is shown that such equations
admit a resolvent operator on Lp(Rd, H). For fixed x ∈ H, the function
Sα,1(t)x is continuous with respect to t in [0,∞) and infinitely continuously
differentiable with respect to t for t > 0 (see [8, Theorem 3.1]). Given Sα,1 and
β > 0, at least formally the operator Sα,β could be obtained as a fractional
integral or derivative of Sα,1, depending on whether β is less or larger than 1.
However, it is easy to obtain Sα,β directly by adapting the Laplace transform
approach to the case β 6= 1: Formally, the Laplace transform of Sα,βh is

Ŝα,β(s)h = s−β(1 − s−α∆)−1h = sα−β(sα − ∆)−1. (1.8)

Thus Sα,β(t) can be defined by the contour integral

Sα,β(t)h =
1

2πi

∫

C̃

estsα−β(sα − ∆)−1h ds, (1.9)

where the contour C̃ consists of the three curves




σ 7→ −rσe−iρ for σ ∈ (−∞,−1],

σ 7→ reiσρ for σ ∈ [−1, 1],

σ 7→ rσeiρ for σ ∈ [1,∞).

Here r > 0 is an arbitrary constant, and ρ is such that π
2
< ρ and αρ < π.

The following estimates, for r = 1/t, show that the integral (1.9) exists for
t > 0 and that with suitable constants M , M1 and γ = − cos(ρ) > 0

‖Sα,β(t)h‖L2(Rd,H)

≤
1

2π

∫ ∞

1

e−γσrt(rσ)α−β M

(rσ)α
‖h‖L2(Rd,H) rdσ

+
1

2π

∫ 1

−1

ertrα−βM

rα
‖h‖L2(Rd,H)rρ dσ

+
1

2π

∫ ∞

1

e−γσrt(rσ)α−β M

(rσ)α
‖h‖L2(Rd,H) rdσ

=
1

π

∫ ∞

1

e−γσtβ−ασα−βMtα

σα
‖h‖L2(Rd,H) t

−1dσ

+
1

2π

∫ 1

−1

etβ−αMtα‖h‖L2(Rd,H)t
−1ρ dσ

= M1t
β−1‖h‖L2(Rd,H).

In particular, Sα,β(t)h admits a Laplace transform. Proceeding along these
lines, one sees that

Ŝα,β(s) = s−β(1 − s−α∆)−1,

Sα,β(t) is analytic for t in a suitable sector,

Sα,β(t) − ∆

∫ t

0

(t− s)α−1

Γ(α)
Sα,β(s) ds =

tβ−1

Γ(β)
.
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With this background we return to the topic of our paper to create tools
for the existence theory of the stochastic partial differential and integral
equations (1.1) and (1.2): In [7] the variation of parameters formula with the
heat semigroup T (t) is utilized. At least formally

v(t) = T (t)h+

∫ t

0

T (t− s)
∞∑

i=1

gi(s) dwi(s). (1.10)

Suitable estimates are needed to control the effects of the stochastic forcing.
A crucial step is the following estimate, which is proved in a separate paper.
(Krylov’s original version is more general, for the purpose of an introduction
we give a somewhat abbreviated version):

Theorem 1.1 (Krylov, [6], Theorem 2.1). Let T (t) denote the heat semigroup
on Lp(Rd, H), where H is a separable Hilbert space. Let −∞ ≤ a < b ≤
∞, let p ∈ [2,∞). Then there exists a constant M such that for any g ∈
Lp((a, b) × Rd, H) we have

∫

Rd

∫ b

a

[∫ t

a

∥∥[∇T (t− s)g(s, ·)](x)
∥∥2

H
ds

] p
2

dt dx ≤M

∫

Rd

∫ b

a

∥∥g(s, x)
∥∥p

H
ds dx.

(1.11)

Notice that this is a deterministic result, although it is the crucial lemma
to estimate the effects of the stochastic forcing in [7]. We adapt this theorem
to fit the needs of integral equation (1.2). Here the variation of parameters
formula reads

y(t) =

∫ t

0

Sα,β(t− s)
∞∑

i=1

gi(s) dwi(s). (1.12)

To handle the stochastic integral, we will prove the following estimate:

Theorem 1.2. Let α ∈ (0, 2), β > 1
2
, γ ∈ (0, 1) be such that β − αγ = 1

2
.

Let H be a separable Hilbert space, 2 ≤ p <∞, b ∈ R and g ∈ Lp((−∞, b] ×
Rd, H). Let Sα,β(t) be the resolvent operator given by (1.6). Then there exists
some constant M such that

∫

Rd

∫ b

−∞

[∫ t

−∞

∥∥[(−∆)γSα,β(t− s)g(s, ·)](x)
∥∥2

H
ds

] p
2

dt dx (1.13)

≤ M

∫

Rd

∫ b

−∞

∥∥g(s, y)
∥∥p

H
ds dy.

In the theorem above, we deal with resolvent operators instead of the heat
semigroup, and the regularity has changed. Instead of taking the gradient,
we take a fractional derivative (−∆)γ where

γ =
β

α
−

1

2α
. (1.14)
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To understand the meaning of this relation heuristically, we refer to the
fractional differential version (1.3): Here the parameter β−α determines the
smoothness of the driving noise wi,β−α. Inequality (1.13) gives an estimate
for (−∆)γSα,β(t). Therefore, in applications to (1.3), Theorem 1.2 yields
estimates for the solution in the Bessel potential space D(−∆)γ. The relation
between time smoothness of the forcing noise and space smoothness of the
solution is expressed by (1.14): Increasing the smoothness of the forcing noise
by one unit of time regularity corresponds to an increase of the smoothness
of the solution by 2

α
units of space regularity.

Since larger β means smoother input, while smaller γ means less require-
ment on the space regularity, one expects a similar result for the case

γ <
β

α
−

1

2α
.

In fact, such a result can be given, with the slight modification that subex-
ponential growth at t = ∞ is possible. Therefore we need to introduce an
exponential weight e−ǫt:

Corollary 1.3. Let α ∈ (0, 2), γ ∈ (0, 1), and θ > β := 1
2

+ αγ. Let ǫ > 0.
Let H be a separable Hilbert space, 2 ≤ p <∞, b ∈ (−∞,∞] and g such that
e−ǫtg ∈ Lp((−∞, b] × Rd, H). Let Sα,θ(t) be the resolvent operator given by
(1.6) (with θ instead of β). Then there exists some constant M such that

∫

Rd

∫ b

−∞

[∫ t

−∞

∥∥e−ǫt[(−∆)γSα,θ(t− s)g(s, ·)](x)
∥∥2

H
ds

] p
2

dt dx

≤M

∫

Rd

∫ b

−∞

∥∥e−ǫsg(s, y)
∥∥p

H
ds dy. (1.15)

We turn now to the question how to prove these estimates. In [6], The-
orem 1.1 is obtained as a straightforward corollary from a more general in-
equality, applied to the gradient of the heat kernel ψ = ∇u1:

Theorem 1.4 (Krylov, [6], Theorem 1.1). Let K be a constant, let d be a
positive integer, and ψ : Rd → R be infinitely differentiable and such that

∫

Rd

ψ(x) dx = 0,

‖ψ‖L1(Rd) + ‖ |x|ψ ‖L1(Rd) + ‖∇ψ‖L1(Rd) + ‖x · ∇ψ‖L1(Rd) ≤ K. (1.16)

Let H be a separable Hilbert space and p ∈ [2,∞). For h ∈ L2(Rd, H) let

Ψth = t−
d
2ψ(t−

1
2x) ∗ h (1.17)

where ∗ denotes convolution in Rd.
Then there exists a constant M depending only on d, p,K such that for

all −∞ < a < b ≤ ∞, g ∈ Lp((a, b) × Rd, H)

∫

Rd

∫ b

a

[∫ t

a

‖Ψt−sg(s, x)‖
2
H

ds

t− s

] p
2

dt dx ≤M

∫

Rd

∫ b

a

‖g(s, x)‖p
H ds dx.
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The keys to the application of Theorem 1.4 to the heat semigroup are the
self-similarity properties of the heat kernel and its rapid decay at infinity.
The kernel functions of resolvent operators exhibit also self-similarity, but
the exponents in (1.17) need to be adjusted. Moreover, when we treat the
integral equation, we have to deal with fractional derivatives instead of the
plain gradient. While the heat kernel and all its derivatives of integer order
are rapidly decreasing in space, its fractional derivatives are not. (This can be
seen easily from (3.2) below, since the convolution kernel involved decays only
like |x|2−2γ−d.) Instead of estimates on the gradient like (1.16) the best we
can achieve is Hölder continuity, and we only have that |x|ǫψ ∈ L1(Rd) with
some ǫ < 1 instead of ǫ = 1. Fortunately, these conditions are sufficient and
we can generalize Theorem 1.4 in the following form, which will be sufficient
to derive Theorem 1.2:

Theorem 1.5. Let ψ : Rd → R be a measurable function with the following
properties:

ψ ∈ L1(Rd) with

∫

Rd

|ψ(x)| dx ≤M1. (1.18)

There exist ǫ2 ∈ (0, 1], M2 > 0 such that∫

Rd

|xǫ2ψ(x)| dx ≤M2. (1.19)

There exist ǫ3 ∈ (0, 1], M3 > 0, δ3 > 0 such that for y ∈ Rd with |y| < δ3,∫

Rd

|ψ(x+ y) − ψ(x)| dx ≤M3|y|
ǫ3 . (1.20)

There exist ǫ4 ∈ (0, 1], M4 > 0, δ4 ∈ (0, 1) such that for λ ∈ (δ4,
1

δ4
),

∫

Rd

|ψ(λx) − ψ(x)| dx ≤M4|1 − λ|ǫ4 . (1.21)
∫

Rd

ψ(x) dx = 0. (1.22)

Let (H, ‖ · ‖H) be a separable Hilbert space. Let 2 ≤ p < ∞, α ∈ (0, 2), and
−∞ < b ≤ ∞. For g ∈ Lp((−∞, b]× Rd, H) we define Pg : (−∞, b]× Rd →
[0,∞] by

(Pg)(t, x) :=

[∫ t

−∞

∥∥∥∥
∫

Rd

(t− s)−
αd
2
− 1

2ψ
(
(t− s)−

α
2 (x− y)

)
g(s, y) dy

∥∥∥∥
2

H

ds

] 1
2

.

(1.23)
Then there exists a constant M depending on ψ, d, α, and p, such that for
all g ∈ Lp(R × Rd, H)

∫

Rd

∫ b

−∞

[(Pg)(t, x)]p dt dx ≤M

∫

Rd

∫ b

−∞

‖g(s, y)‖p
H ds dy. (1.24)
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Remark 1.6. If (1.20) holds with some δ3 > 0, then by standard arguments,
for any δ > 0 there exists some constant M such that (1.20) holds with δ and
M instead of δ3 and M3.
Similarly, if (1.21) holds with some δ4 < 1, then for any δ ∈ (0, 1) there
exists M such that (1.21) holds with δ and M instead of δ4 and M4.

Remark 1.7. It is easily seen that any function ψ satisfying the conditions
of Theorem 1.4 also satisfies (1.20) and (1.21).

Thus, the purpose of this paper is to prove Theorem 1.5 and subsequently
Theorem 1.2. The proof of Theorem 1.5 is given in Section 2. It follows very
closely the lines of [6], with obvious modifications of the exponents, but
some nontrivial refinements of the estimates for ψ at infinity are required.
The main ingredients of the proof are a straightforward L2-estimate and a
sophisticated BMO-estimate based on the rescaling properties of Ψt. In the
end, Lp-estimates are obtained by interpolation.

Once Theorem 1.5 is proved, we need to show that the convolution kernel
of (−∆)γSα,β(t) satisfies its assumptions, in particular (1.19), (1.20), and
(1.21). It turns out that this is rather involved, even if the resolvent operator
is replaced by the heat semigroup. We give the proof for the heat kernel in
Section 3. In Section 4 we proceed to the resolvent kernel in two steps. First,
(−∆)γ(s − ∆)−1 is handled by integrating the heat semigroup, and finally
(−∆)γSα,β(t) is handled by the contour integral (1.9). Finally, in Section 5
we prove Corollary 1.3.

2 Proof of Theorem 1.5

The proof follows the ideas of [6] with some nontrivial modifications. The
inequality is obtained for general p ∈ [2,∞) by interpolation between the
case p = 2 and a BMO-estimate. We start out with the case p = 2, which
will be finished in Lemma 2.2:

Lemma 2.1. With the assumptions of Theorem 1.5 let ψ̃ be the Fourier
transform of ψ. Then

1) ψ̃ is bounded and continuous on Rd.

2) There exists a constant M = M(d, ψ) such that for all ξ ∈ Rd,

|ψ̃(ξ)| ≤M |ξ|−ǫ3 . (2.1)

3) There exists a constant M = M(d, ψ) such that for all ξ ∈ Rd,

|ψ̃(ξ)| ≤M |ξ|ǫ2 . (2.2)
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4) There exists a constant M = M(d, ψ, α) such that for all ξ ∈ Rd,

∫ ∞

0

|ψ̃(t
α
2 ξ)|

dt

t
≤M. (2.3)

Proof. (1) is an immediate consequence of the assumption that ψ ∈ L1(Rd).
Since ψ̃ is bounded, it is sufficient to prove (2) for large ξ. Notice that the
Fourier transform of the shifted function satisfies

˜ψ(· + y)(ξ) = ei〈ξ,y〉ψ̃(ξ).

Using (1.20) we obtain for all y with |y| ≤ δ3 and all ξ ∈ Rd:

∣∣∣(ei〈ξ,y〉 − 1)ψ̃(ξ)
∣∣∣ =

∣∣∣ ˜ψ(· + y)(ξ) − ψ̃(ξ)
∣∣∣

= (2π)−
d
2

∣∣∣∣
∫

Rd

e−i〈ξ,x〉(ψ(x+ y) − ψ(x)) dx

∣∣∣∣ ≤ (2π)−
d
2M3|y|

ǫ3 .

Now let |ξ| ≥ π
δ3

, so that y := π
|ξ|2
ξ satisfies |y| < δ3. Then

| − 2ψ̃(ξ)| ≤ (2π)−
d
2M3

(
π

|ξ|2
|ξ|

)ǫ3

≤M |ξ|−ǫ3

with a suitable constant M .
For the proof of (3) we utilize the inequality

∣∣ei〈ξ,x〉 − 1
∣∣ ≤M (|ξ||x|)ǫ2

which follows easily from the fact that eit is both bounded and globally
Lipschitz in t. Moreover, by (1.22), we have ψ̃(0) = 0. Thus for ξ ∈ Rd we
have by (1.19)

∣∣∣ψ̃(ξ)
∣∣∣ =

∣∣∣ψ̃(ξ) − ψ̃(0)
∣∣∣ ≤ (2π)−

d
2

∫

Rd

∣∣e−i〈ξ,x〉 − 1
∣∣ |ψ(x)| dx

≤ (2π)−
d
2M |ξ|ǫ2

∫

Rd

|x|ǫ2 |ψ(x)| dx ≤ (2π)−
d
2MM2|ξ|

ǫ2 .

To prove (4), use (2) and (3) and make a transform s = t|ξ|
2
α :

∫ ∞

0

|ψ̃(tα/2ξ)|
dt

t
≤M

∫ ∞

0

min
((
tα/2|ξ|

)−ǫ3
,
(
tα/2|ξ|

)ǫ2) dt

t

= M

∫ ∞

0

min
(
s−ǫ3α/2, sǫ2α/2

) ds
s
<∞.

The following lemma is the special case of Theorem 1.5 for p = 2:
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Lemma 2.2. Suppose all assumptions of Theorem 1.5 hold. Then there
exists a constant M depending only on α, d, and ψ such that for all g ∈
L2(R × Rd, H)

∫

Rd

∫ b

−∞

[(Pg)(t, x)]2 dt dx ≤M

∫

Rd

∫ b

−∞

‖g(s, y)‖2
H ds dy.

Proof. By Plancherel’s Theorem (which holds also forH-valued functions) we
may switch to Fourier transforms. Recall the convolution theorem for Fourier

transforms f̃ ∗ g = (2π)
d
2 f̃ g̃, and the rescaling formula ψ̃(λ·)(ξ) = 1

λd ψ̃( 1
λ
ξ).

Using these transformations and, in the end, (2.3) and again Plancherel, we
obtain

∫

Rd

∫ b

−∞

∫ t

−∞

∥∥∥∥
∫

Rd

(t− s)−
1
2
−αd

2 ψ
(
(t− s)−

α
2 (x− y)

)
g(s, y) dy

∥∥∥∥
2

H

ds dt dx

=

∫ b

−∞

∫ t

−∞

(t− s)−1−αd

∫

Rd

∥∥[ψ
(
(t− s)−

α
2 ·
)
∗ g(s, ·)

]
(x)
∥∥2

H
dx ds dt

= (2π)
d
2

∫ b

−∞

∫ t

−∞

(t− s)−1−αd

∫

Rd

∥∥∥∥
˜ψ

(
(t− s)−

α
2 ·
)
(ξ)g̃(s, ·)(ξ)

∥∥∥∥
2

H

dξ ds dt

= (2π)
d
2

∫ b

−∞

∫ t

−∞

(t− s)−1−αd

∫

Rd

∥∥∥(t− s)
dα
2 ψ̃
(
(t− s)

α
2 ξ
)
g̃(s, ·)(ξ)

∥∥∥
2

H
dξ ds dt

= (2π)
d
2

∫

Rd

∫ b

−∞

‖g̃(s, ξ)‖2
H

∫ b

s

(t− s)−1
∣∣∣ψ̃
(
(t− s)

α
2 ξ
)∣∣∣

2

dt ds dξ

= (2π)
d
2

∫

Rd

∫ b

−∞

‖g̃(s, ξ)‖2
H

∫ b−s

0

t−1
∣∣∣ψ̃(t

α
2 ξ)
∣∣∣
2

dt ds dξ

≤ (2π)
d
2M

∫

Rd

∫ b

−∞

‖g̃(s, ξ)‖2
H ds dξ

= (2π)
d
2M

∫ b

−∞

∫

Rd

‖g(s, x)‖2
H dx ds

This finishes the case p = 2 and we set out for the BMO-estimate. The
following definition is a slight modification of the definition ofQ(r) given in [6]
in order that the rescaling argument in Lemma 2.8 below can be reproduced
in our setting:

Definition 2.3. For r > 0 we set Q(r) = (−r2/α, 0) × B(0, r) ⊂ R × Rd.
Here B(0, r) is the open ball in Rd with center 0 and radius r.

We begin investigating the case b = 0. The case of general b will be
settled later by a rescaling method.
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Definition 2.4. As in [6] we split the operator P into two parts: For (t, x) ∈
Q(1) and g ∈ L∞((−∞, 0] × Rd, H) we define

(P1g)(t, x) =

[∫ −2

−∞

∥∥∥∥
∫

Rd

(t− s)−
αd
2
− 1

2ψ
(
(t− s)−

α
2 (x− y)

)
g(s, y) dy

∥∥∥∥
2

H

ds

] 1
2

,

(P2g)(t, x) =

[∫ t

−2

∥∥∥∥
∫

Rd

(t− s)−
αd
2
− 1

2ψ
(
(t− s)−

α
2 (x− y)

)
g(s, y) dy

∥∥∥∥
2

H

ds

] 1
2

.

Obviously, with this notation, for f0 ≥ 0 we have

∣∣(Pg)(t, x) − f0

∣∣ ≤
∣∣(P1g)(t, x) − f0

∣∣+
∣∣(P2g)(t, x)

∣∣.

Lemma 2.5. Let the assumptions of Theorem 1.5 hold. Then there exists a
constant M such that for all g ∈ L∞((−∞, 0] × Rd, H),

∫

Q(1)

∣∣(P1g)(t, x) − (P1g)(0, 0)
∣∣ dx dt ≤M‖g‖L∞((−∞,0]×Rd,H).

Proof. This is the part of the proof which deviates most from Krylov’s paper
[6], since our assumptions on the behavior of ψ at infinity are much weaker.
Since Q(1) has finite measure, it is sufficient to show that

∫

Q(1)

∣∣(P1g)(t, x) − (P1g)(0, 0)
∣∣2 dx dt ≤M‖g‖2

L∞((−∞,0]×Rd,H).

We use the triangle inequality in L2((−∞,−2),R). Subsequently we apply
the following transforms of variables: σ = −s, τ = −t/σ, ξ = σ−α/2x, and
η = −σ−α/2y. Notice that in the integrals below t ∈ [−1, 0] and s < −2, so
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that τ ∈ [0, 1
2
] and 1 − τ ∈ [1

2
, 1].

∫ 0

−1

∫

B(0,1)

∣∣(P1g)(t, x) − (P1g)(0, 0)
∣∣2 dx dt

=

∫ 0

−1

∫

B(0,1)

∣∣∣
[∫ −2

−∞

∥∥∥∥
∫

Rd

(t− s)−
αd
2
− 1

2ψ[(t− s)−
α
2 (x− y)] g(s, y) dy

∥∥∥∥
2

H

ds

] 1
2

−

[∫ −2

−∞

∥∥∥∥
∫

Rd

(−s)−
αd
2
− 1

2ψ[(−s)−
α
2 (−y)] g(s, y) dy

∥∥∥∥
2

H

ds

] 1
2 ∣∣∣

2

dx dt

≤

∫ 0

−1

∫

B(0,1)

∫ −2

−∞

[ ∥∥∥∥
∫

Rd

(t− s)−
αd
2
− 1

2ψ[(t− s)−
α
2 (x− y)] g(s, y) dy

∥∥∥∥
H

−

∥∥∥∥
∫

Rd

(−s)−
αd
2
− 1

2ψ[(−s)−
α
2 (−y)] g(s, y) dy

∥∥∥∥
H

]2
ds dx dt

≤ ‖g‖2
L∞

∫ −2

−∞

∫ 0

−1

∫

B(0,1)

[ ∫

Rd

∣∣(t− s)−
αd
2
− 1

2ψ[(t− s)−
α
2 (x− y)]

−(−s)−
αd
2
− 1

2ψ[(−s)−
α
2 (−y)]

∣∣ dy
]2
dx dt ds

= ‖g‖2
L∞

∫ ∞

2

∫ 1/σ

0

∫

B(0,σ−α/2)

σ
αd
2

[ ∫

Rd

∣∣(1 − τ)−
αd
2
− 1

2ψ[(1 − τ)−
α
2 (η + ξ)] − ψ[η]

∣∣ dη
]2
dξ dτ dσ

≤ 3‖g‖2
L∞

(
I1 + I2 + I3

)
.

with

I1 =

∫ ∞

2

σ
αd
2

∫ 1/σ

0

∫

B(0,σ−α/2)

[ ∫

Rd

(1 − τ)−
αd
2
− 1

2

∣∣ψ[(1 − τ)−
α
2 (η + ξ)] − ψ[(1 − τ)−

α
2 η]
∣∣ dη
]2
dξ dτ dσ,

I2 = MU

∫ ∞

2

∫ 1/σ

0

[ ∫

Rd

(1 − τ)−
αd
2
− 1

2

∣∣ψ[(1 − τ)−
α
2 (η)] − ψ[η]

∣∣ dη
]2
dτ dσ,

I3 = MU

∫ ∞

2

∫ 1/σ

0

[ ∫

Rd

∣∣(1 − τ)−
αd
2
− 1

2 − 1
∣∣ |ψ(η)| dη

]2
dτ dσ.

In the equations above, MU is the Lebesgue measure of the unit ball in Rd.
Now we estimate the three integrals separately. In the following estimates,
M will denote a generic constant which may vary from line to line.

For I1 we make a transform of variables ξ1 = (1 − τ)−α/2ξ, η1 = (1 −
τ)−α/2η, and utilize Hypothesis (1.20). By Remark 1.6 we may assume that
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δ3 > 1.

I1 =

∫ ∞

2

σ
αd
2

∫ 1/σ

0

∫

B(0,[(1−τ)σ]−α/2)

[ ∫

Rd

(1 − τ)−
1
2

∣∣ψ(η1 + ξ1) − ψ(η1)
∣∣ dη1

]2
(1 − τ)αd/2 dξ1 dτ dσ,

≤ M

∫ ∞

2

σ
αd
2

∫ 1/σ

0

∫

B(0,σ−α/2)

|ξ1|
2ǫ3 dξ1 dτ dσ

= M

∫ ∞

2

σ
αd
2

∫ 1/σ

0

∫ σ−α/2

0

r2ǫ3+d−1 dr dτ dσ

= M

∫ ∞

2

σ
αd
2 σ−1 σ−α

2
(2ǫ3+d) dσ

= M

∫ ∞

2

σ−1−ǫ3α dσ <∞.

To estimate I2 we use Hypothesis (1.21). By Remark 1.6 we may assume
without loss of generality that δ4 <

1
2
. Notice also that |(1− τ)−

α
2 −1| ≤Mτ

with a suitable constant M , since 0 ≤ τ ≤ 1
2
.

I2 ≤ M

∫ ∞

2

∫ 1/σ

0

[ ∫

Rd

∣∣ψ[(1 − τ)−
α
2 (η)] − ψ[η]

∣∣ dη
]2
dτ dσ

≤ M

∫ ∞

2

∫ 1/σ

0

τ 2ǫ4 dτ dσ = M

∫ ∞

2

σ−2ǫ4−1 dσ <∞.

Finally, to estimate I3 we use Hypothesis (1.18) and the fact that |(1 −

τ)−
αd
2
− 1

2 − 1| ≤Mτ . Thus

I3 ≤ M

∫ ∞

2

∫ 1/σ

0

[ ∫

Rd

τ |ψ(η)| dη
]2
dτ dσ

≤ M

∫ ∞

2

∫ 1/σ

0

τ 2 dτ dσ = M

∫ ∞

2

σ−3 dσ <∞.

This finishes the proof of Lemma 2.5.

Lemma 2.6. Let the assumptions of Theorem 1.5 hold. Then there exists a
constant M such that for all g ∈ L∞((−∞, 0] × Rd, H),

∫

Q(1)

(P2g)(t, x) dx dt ≤M‖g‖L∞((−∞,0]×Rd,H).

Proof. The proof is the same as in [6] with some very small modifications.
We split the function g in two parts

g1(t, x) =

{
g(t, x) if (t, x) ∈ [−2, 0] ×B(0, 2),

0 else,

g2(t, x) = g(t, x) − g1(t, x).

14



Of course, it is sufficient to prove the lemma separately for the two special
cases g = g1 and g = g2.

For g1 we utilize the L2-estimate Lemma 2.2. Notice that the support of
g1 is contained in [−2, 0] × B(0, 2) and the domain of integration is Q(1) =
(−1, 0) × B(0, 1). Both have finite measure such that the embedding L∞ ⊂
L2 ⊂ L1 holds on both domains. The constant M in the following estimates
may change from line to line.

∫

Q(1)

|(P2g1)(t, x)| dx dt ≤
√

|Q(1)|

[∫

Q(1)

(P2g1)(t, x)
2 dx dt

] 1
2

≤ M

[∫ 0

−∞

∫

Rd

(Pg1)(t, x)
2 dx dt

] 1
2

≤M

[∫ 0

−∞

∫

Rd

‖g1(t, x)‖
2
H dx dt

] 1
2

≤ M‖g1‖L∞((−∞,0]×Rd,H).

Now we consider the case g = g2. Let (t, x) ∈ Q(1). If s ≥ −2, then either
g2(s, y) = 0 or |y| ≥ 2. The latter implies |x− y| ≥ 1. Using this observation
together with Hypothesis (1.19) and some easy transforms of variables, we
obtain

[(P2g2)(t, x)]
2

=

∫ t

−2

∥∥∥∥
∫

|y|≥2

(t− s)−
αd
2
− 1

2ψ[(t− s)−
α
2 (x− y)]g2(s, y) dy

∥∥∥∥
2

H

ds

≤ ‖g2‖
2
L∞

∫ t

−2

[∫

|x−y|≥1

(t− s)−
αd
2
− 1

2

∣∣ψ[(t− s)−
α
2 (x− y)])

∣∣ dy
]2

ds

= ‖g2‖
2
L∞

∫ t+2

0

[∫

|x−y|≥1

τ−
αd
2
− 1

2

∣∣ψ[τ−
α
2 (x− y)]

∣∣ dy
]2

dτ

= ‖g2‖
2
L∞

∫ t+2

0

[∫

|z|≥τ−α/2

τ−
1
2 |ψ(z)| dz

]2

dτ

≤ ‖g2‖
2
L∞

∫ t+2

0

[∫

|z|≥τ−α/2

|z|ǫ|ψ(z)| dz

]2

τ−1+αǫ dτ

≤ ‖g2‖
2
L∞

∥∥|z|ǫψ
∥∥2

L1(Rd,R)

∫ 2

0

τ−1+αǫ dτ

≤ M‖g2‖
2
L∞ .

The remainder of the proof of Theorem 1.5 follows exactly the lines of [6].
By self-similarity, the estimates above can be rescaled for Q(r) with arbitrary
r > 0. In the end, an interpolation argument completes the proof:

Definition 2.7. For a measurable function f : R×Rd → [0,∞] and (t0, x0) ∈
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R × Rd, we define

Mf(t0, x0) = sup
1

|Q(r)|

∫

(t1,x1)+Q(r)

f(t, x) dt dx. (2.4)

f ♯(t0, x0) = sup inf
f0∈R

1

|Q(r)|

∫

(t1,x1)+Q(r)

|f(t, x) − f0| dt dx. (2.5)

where in both cases the supremum is taken over all (t1, x1) ∈ R × Rd and all
r > 0 such that (t0, x0) ∈ (t1, x1)+Q(r). Here |Q(r)| is the Lebesgue measure
of Q(r).

Lemma 2.8. Let the assumptions of Theorem 1.5 hold. Then there exists a
constant M such that for all g ∈ L∞((−∞, b] × Rd, H) and all t0 ∈ (−∞, b],
x0 ∈ Rd,

|(Pg)♯(t0, x0)| ≤M‖g‖L∞((−∞,b]×Rd,H).

Proof. Combining Lemmas 2.5 and 2.6 we obtain for all g1 ∈ L∞((−∞, 0] ×
Rd, H)

1

|Q(1)|

∫

Q(1)

∣∣(Pg1)(t, x) − f0

∣∣ dx dt ≤M‖g1‖L∞((−∞,0]×Rd,H),

with f0 = (P1g1)(0, 0). We generalize this estimate by a simple rescaling
procedure: Let g ∈ L∞((−∞, b] × Rd, H) with general b ∈ R. Fix r > 0 and
(t1, x1) ∈ (−∞, b]×Rd, such that (t0, x0) ∈ (t1, x1)+Q(r). We want to show
that

1

|Q(r)|

∫

(t1,x1)+Q(r)

|(Pg)(t, x) − f0| dx dt ≤M‖g‖L∞((−∞,b]×Rd,H)

with a suitable f0. In the following estimates we use the transforms τ =
r−

2
α (t− t1), ξ = r−1(x−x1), σ = r−

2
α (s− t1), η = r−1(y−x1), and g1(σ, η) =

g(t1 + r
2
ασ, x1 + rη). This substitution is constructed in a way such that in

the computation all powers of r cancel. We put f0 = (P1g1)(0, 0).

1

|Q(r)|

∫

(t1,x1)+Q(r)

∣∣f0 − (Pg)(t, x)
∣∣ dx dt

=
1

rd+ 2
α |Q(1)|

∫ t1

t1−r2/α

∫

B(x1,r)

∣∣∣f0−

[ ∫ t

−∞

∥∥∥
∫

Rd

(t− s)−
αd
2
− 1

2ψ[(t− s)−
α
2 (x− y)] g(s, y) dy

∥∥∥
2

H
ds
] 1

2
∣∣∣ dx dt

=
1

|Q(1)|

∫ 0

−1

∫

B(0,1)

∣∣∣(P1g1)(0, 0)−

[ ∫ 0

−∞

∥∥∥
∫

Rd

(τ − σ)−
αd
2
− 1

2ψ[(τ − σ)−
α
2 (ξ − η)] g1(σ, η) dη

∥∥∥
2

H
dσ
] 1

2
∣∣∣ dξ dτ

≤M‖g1‖L∞((−∞,0]×Rd,H)

= M‖g‖L∞((−∞,t1]×Rd,H).

Thus the lemma is proved.
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Proof of Theorem 1.5, completed: For g ∈ L2(R × Rd, H) + L∞(R × Rd, H)
we define P ♯g = (Pg)♯. We have noticed in Lemma 2.2 that P maps L2(R×
Rd, H) continuously into L2(R×Rd,R). Moreover, the operator M maps L∞

into L∞ and is weak (1,1) by [2, Théorème 2.1]. Therefore, similarly as in
[4, Theorem 2.5], we infer that M maps Lp into Lp for 1 < p ≤ ∞. This
holds in particular for p = 2, so that P ♯g ≤ MPg ∈ L2. By Lemma 2.8,
the operator P ♯ maps L∞(R×Rd, H) continuously into L∞(R×Rd,R). Now
Marcinkiewicz’s interpolation theorem [4, Theorem 2.4] implies that P ♯ maps
Lp(R × Rd, H) into Lp(R × Rd,R) for all p ∈ [2,∞). (We remark that
in [4] Marcinkiewicz’s interpolation theorem is stated and proved for real
valued functions, but the proof carries over to Banach space valued functions
literally.) For any nonnegative function f we have f(t, x) ≤ Mf(t, x) almost
everywhere. Moreover, from [1, Théorème 2] we infer that ‖MPg‖Lp ≤
c‖P ♯g‖Lp with a constant c dependent on d and α, but not on g. Therefore
we have

‖Pg‖Lp((−∞,b]×Rd,R) ≤ ‖MPg‖Lp((−∞,b]×Rd,R)

≤ c‖P ♯g‖Lp((−∞,b]×Rd,R) ≤M‖g‖Lp((−∞,b]×Rd,H)

with a suitable constant M . This proves Theorem 1.5.

3 Estimates for the heat kernel

In this section let ut denote the heat kernel on Rd, i.e., for x ∈ Rd,

ut(x) = (4πt)−d/2e−|x|2/4t. (3.1)

Here tmay be any complex number with positive real part. ∆ is the Laplacian
in Rd, and its fractional powers are denoted by (−∆)γ for γ ∈ (0, 1). By
T (t) = et∆ we denote the heat semigroup on Lp(Rd, H). Then for | arg(t)| ≤
φ < π

2
and for h ∈ Lp(Rd, H),

[T (t)h](x) =

∫

Rd

ut(x− y)h(y) dy.

It is known ([9, p.117]) that for rapidly decreasing f (such as the heat kernel)

[(−∆)γf ](x) = c

∫

Rd

|x− y|2−2γ−d[−∆f ](y) dy, (3.2)

with a constant c depending on γ and d. Notice also that

[∆ut](x) = (4πt)−d/2(
|x|2

4t2
−
d

2t
)e−|x|2/4t. (3.3)

We will prove the following result:
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Proposition 3.1. Let d ∈ N, φ ∈ (0, π
2
) and γ ∈ (0, 1). As in (3.1), ut is the

heat kernel in Rd. For shorthand we denote vt = (−∆)γut. Let ǫ ∈ [0, 2γ)
and η ∈ (0, 2−2γ)∩(0, 1). Then there exists a constant M depending only on
d, γ, ǫ, η, φ, such that for all t ∈ C with | arg(t)| ≤ φ the following estimates
hold:

∫

Rd

|x|ǫ |vt(x)| dx ≤M |t|
ǫ
2
−γ, (3.4)

for all z ∈ Rd,

∫

Rd

|vt(x+ z) − vt(x)| dx ≤M |t|−
η
2
−γ |z|η, (3.5)

for all λ ∈ (
7

8
,
9

8
),

∫

Rd

|vt(λx) − vt(x)| dx ≤M |t|−γ |1 − λ|η. (3.6)

We give the proof in several steps. We notice that vt as well as [vt(· +
z)−vt(·)] and [vt(λ·)−vt(·)] are obtained by convolution of ∆ut with suitable
functions f , fz, and fλ (see, e.g., (3.2)):

∫

Rd

f(x, y)(−∆ut)(y) dy.

We prove a general result (Lemma 3.2) for such integrals. Since f(x, y),
fλ(x, y), fz(x, y) may blow up at x = y, we need two sets of assumptions
on f etc., namely L1-assumptions near x = y and L∞-estimates where x is
bounded away from y. Subsequently we will prove that f , fz, and fλ satisfy
the assumptions of Lemma 3.2. This requires elementary but tedious calcu-
lations, summed up in Lemma 3.7 which is nothing less than Proposition 3.1
for the case of |t| = 1. In the end, a self-similarity argument yields the result
for general t.

Lemma 3.2. Let f : Rd × Rd → R satisfy the following assumptions: There
exist 0 < α1 < α2 < 1, 0 < β1 < β2, K > 0, δ > 0, κ ≥ 0, such that

1) If α1|x|+ β1 < |x− y|, then f(x, y) is twice continuously differentiable
with respect to y, and

|f ′′(x, y)| ≤ K(1 + |x|)−d−δ.

2) If α1|x| + β1 < |x− y| ≤ α2|x| + β2, then

|f(x, y)| ≤ K(1 + |x|)−d−δ+2,

|f ′(x, y)| ≤ K(1 + |x|)−d−δ+1.

3) For all x ∈ Rd,

∫

B(x,α2|x|+β2)

|f(x, y)| dy ≤ K(1 + |x|)κ.
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(Here f ′ is the gradient and f ′′(x, y) is the Hessian of f with respect to y,
and |f ′′(x, y)| is its matrix norm.)
Let ǫ ∈ [0, δ), φ ∈ (0, π

2
). Let ut denote the heat kernel as in (3.1), and put

wt(x) =

∫

Rd

f(x, y)[∆ut](y) dy.

Then there exists a constant M depending only on d, β1, β2, α1, α2, δ, ǫ, κ,
φ, such that for t with | arg(t)| ≤ φ, |t| = 1,

∫

Rd

|x|ǫ |wt(x)| dx ≤MK. (3.7)

Proof. By a standard partition-of-unity procedure we can decompose f =
f1+f2 such that f1, f2 satisfy the Assumptions 1 and 3 of the lemma (possibly
with modified constants), and in addition

f1(x, y) = 0 if |x− y| ≥ α2|x| + β2,

f2(x, y) = 0 if |x− y| ≤ α1|x| + β1.

(In fact, Assumption 2 is only needed to prove Assumption 1 for f1 and f2.)
It is sufficient to prove Lemma 3.2 for the two special cases f = f1 and
f = f2. In the following computations, M will denote a generic constant
which may vary from line to line, and which depends only on d, β1, β2, α1,
α2, δ, ǫ, κ, φ. Let t ∈ C with |t| = 1, | arg(t)| ≤ φ.

To treat the case f = f1, notice that f(x, y) 6= 0 implies |y| ≥ (1 −
α2)|x| − β2, so that

e−|y|2 cos(φ)/4 ≤ g(|x|)e−|y|2 cos(φ)/8

with

g(|x|) =

{
e−[(1−α2)|x|−β2]2 cos(φ)/8 if (1 − α2)|x| ≥ β2,

1 else.

Remember that |t| = 1. We estimate

|wt(x)| = M

∣∣∣∣
∫

Rd

f(x, y)(
d

2t
−

|y|2

4t2
) e−|y|2/4t dy

∣∣∣∣

≤ M

∫

|x−y|≤α2|x|+β2

|f(x, y)| (1 + |y|2) e−|y|2 cos(φ)/4 dy

≤ Mg(|x|)

∫

|x−y|≤α2|x|+β2

|f(x, y)| (1 + |y|2) e−|y|2 cos(φ)/8 dy

≤ Mg(|x|)

∫

|x−y|≤α2|x|+β2

|f(x, y)| dy.

Now we use Assumption 3 of the Lemma to obtain
∫

Rd

|x|ǫ |wt(x)| dx ≤M

∫

Rd

|x|ǫg(|x|)K(1 + |x|)κ dx ≤MK.
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To treat the case f = f2 we use that [∆ut](y) = [∆ut](−y) and
∫

Rd [∆ut](y) dy =
0. Notice that in this case also |f ′′(x, y)| ≤ MK(1 + |x|)−d−δ for all (x, y) ∈
Rd × Rd, so that Assumption 1 implies for all (x, y)

|
1

2
f(x, y) +

1

2
f(x,−y) − f(x, 0)| ≤MK(1 + |x|)−d−δ|y|2.

Therefore we have

|wt(x)| =

∣∣∣∣
∫

Rd

[
1

2
f(x, y) +

1

2
f(x,−y) − f(x, 0)] [∆ut](y) dy

∣∣∣∣

≤ M

∫

Rd

K(1 + |x|)−d−δ|y|2 (
d

2
+

|y|2

4
)e−|y|2 cos(φ)/4 dy

≤ KM(1 + |x|)−d−δ,

and since ǫ < δ, we obtain
∫

Rd

|x|ǫ |wt(x)| dx ≤ KM

∫

Rd

|x|ǫ (1 + |x|)−d−δ dx

= KM

∫ ∞

0

rǫ(1 + r)−1−δ dr ≤ KM.

Lemma 3.3. Let f : Rd × Rd be defined by f(x, y) = |x − y|2−2γ−d with
γ ∈ (0, 1). Then, for y 6= x, f is twice continuously differentiable with
respect to y, with the following gradient and Hessian (with respect to y):

f ′(x, y) = (2 − 2γ − d) |x− y|−2γ−d (y − x)T ,

f ′′(x, y) = (2 − 2γ − d) |x− y|−2γ−d 1

−(2 − 2γ − d)(2γ + d) |x− y|−2−2γ−d (y − x)(y − x)T .

(Here 1 is the d× d unit matrix.)

The proof is straightforward computation.

Lemma 3.4. Let f : Rd ×Rd → R be defined by f(x, y) = |x− y|2−2γ−d with
γ ∈ (0, 1). Then f satisfies the assumptions of Lemma 3.2 with arbitrary
0 < α1 < α2 < 1, 0 < β1 < β2, δ = 2γ, κ = 2 − 2γ and a constant K
depending on d, α1, α2, β1, β2.

Proof. Assumptions 1 and 2 of Lemma 3.2 are obtained from Lemma 3.3 by
straightforward estimates. To obtain Assumption 3 we estimate

∫

B(x,α2|x|+β2)

|f(x, y)| dy =

∫

B(0,α2|x|+β2)

|z|2−2γ−d dz

= M

∫ α2|x|+β2

0

r2−2γ−d rd−1 dr = M(β2 + α2|x|)
2−2γ .
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Lemma 3.5. With z in Rd, γ ∈ (0, 1), we consider the function

fz :

{
Rd × Rd → R,

(x, y) 7→
[
|x+ z − y|2−d−2γ − |x− y|2−d−2γ

]
.

Then fz is twice continuously differentiable with respect to y whenever y 6∈
{x, x + z}. Moreover, there exists a constant M depending only on d and γ
such that for all x, y, z ∈ Rd with

|y − x| ≥
1

4
|x| + 2 and |z| ≤

1

8
|x| + 1 (3.8)

the following estimates hold:

|fz(x, y)| ≤ M |z| (1 + |x|)−d−2γ+1,

|f ′
z(x, y)| ≤ M |z| (1 + |x|)−d−2γ,

|f ′′
z (x, y)| ≤ M |z| (1 + |x|)−d−2γ−1.

(Here f ′ denotes the gradient and f ′′ denotes the Hessian with respect to y.)

Proof. From Lemma 3.3 we know that fz is twice differentiable with respect
to y if y 6= x and y 6= x+ z with

f ′
z(x, y) = (2 − d− 2γ)

[
|x+ z − y|−d−2γ(y − x− z)T − |x− y|−d−2γ(y − x)T

]
,

f ′′
z (x, y) = (2 − d− 2γ)

[
|x+ z − y|−d−2γ − |x− y|−d−2γ

]
1

− (2 − d− 2γ)(d+ 2γ)
[
|x+ z − y|−2−d−2γ(x+ z − y)(x+ z − y)T

− |x− y|−2−d−2γ(x− y)(x− y)T
]
.

Notice that (3.8) implies that both, |x− y| and |x+ z− y| are bounded away
from 0, in particular,

1

8
|x| + 1 ≤

1

2
|x− y| ≤ |x− y| − |z| ≤ |x+ z − y| ≤ |x− y| + |z| ≤

3

2
|x− y|.

In this case, for any power θ ≤ 1, the mean value theorem implies the fol-
lowing estimate:

∣∣∣|x+ z − y|θ − |x− y|θ
∣∣∣ ≤ |θ| max

(
|x+ z − y|θ−1, |x− y|θ−1

)
|z|(3.9)

≤ 21−θ |θ| |x− y|θ−1 |z|.
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We use (3.9) repeatedly and obtain

|fz(x, y)| =
∣∣∣|x+ z − y|2−d−2γ − |x− y|2−d−2γ

∣∣∣

≤M |x− y|1−d−2γ |z|

≤M(1 + |x|)1−d−2γ|z|,

|f ′
z(x, y)| ≤M

∣∣∣|x+ z − y|−d−2γ(y − x− z)T − |x− y|−d−2γ(y − x)T
∣∣∣

≤M
[∣∣|x+ z − y|−d−2γ − |x− y|−d−2γ

∣∣ |(y − x− z)|

+ |x− y|−d−2γ
∣∣(x+ z − y) − (x− y)

∣∣
]

≤M
[
|x− y|−d−2γ−1 |z| |y − x− z| + |x− y|−d−2γ |z|

]

≤M |x− y|−d−2γ |z|

≤M (1 + |x|)−d−2γ |z|,

|f ′′
z (x, y)| ≤M

[∣∣∣|x+ z − y|−d−2γ − |x− y|−d−2γ
∣∣∣

+
∣∣∣|x+ z − y|−d−2γ−2 − |x− y|−2−d−2γ

∣∣∣ |x+ z − y|2

+ |x− y|−d−2γ−2
∣∣∣(x+ z − y)(x+ z − y)T − (x− y)(x− y)T

∣∣∣
]

≤M
[
|x− y|−d−2γ−1 |z|

+ |x− y|−d−2γ−3 |z| |x− y|2

+ |x− y|−d−2γ−2
(
2|x− y| |z| + |z|2

)]

≤M |x− y|−d−2γ−1 |z|

≤M (1 + |x|)−d−2γ−1 |z|.

Lemma 3.6. As in Lemma 3.5 we consider the function

fz :

{
Rd × Rd → R,

(x, y) 7→
[
|x+ z − y|2−d−2γ − |x− y|2−d−2γ

]
.

with z in Rd, γ ∈ (0, 1). Let x ∈ Rd be such that |z| ≤ 1
8
|x|+1. Let η ∈ (0, 1)

such that η < 2 − 2γ. Then there exists a constant M , depending only on d,
γ, η such that

∫

B(x, 1
4
|x|+2)

|fz(x, y)| dy ≤M |z|η (1 + |x|)2−2γ−η.

Proof. For shorthand we write R = 1
4
|x|+2, thus |z| ≤ R

2
≤ R ≤M(1+ |x|).

First we consider the case d ≥ 2. Without loss of generality we assume
z = (0, · · · , 0, ζ)T with ζ > 0, in particular, ζ = |z|. We decompose x− y =
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(
y
ξ

)
where y consists of the first d−1 coefficients of x−y. We denote µ = |y|.

Then
∫

B(x, 1
4
|x|+2)

|fz(x, y)| dy

≤

∫ R

−R

∫

|y|≤R

∣∣(|y|2 + |ξ + ζ|2)
2−d−2γ

2 − (|y|2 + |ξ|2)
2−d−2γ

2

∣∣ dy dξ

= M

∫ R

−R

∫ R

0

µd−2
∣∣(µ2 + (ξ + ζ)2)

2−d−2γ
2 − (µ2 + ξ2)

2−d−2γ
2

∣∣ dµ dξ

= M

∫ R

0

µd−2
[ ∫ −ζ/2

−R

[
(µ2 + (ξ + ζ)2)

2−d−2γ
2 − (µ2 + ξ2)

2−d−2γ
2

]
dξ

+

∫ R

−ζ/2

[
(µ2 + ξ2)

2−d−2γ
2 − (µ2 + (ξ + ζ)2)

2−d−2γ
2

]
dξ
]
dµ

= M

∫ R

0

µd−2
[
−

∫ −ζ/2

−R

+

∫ ζ/2

−R+ζ

−

∫ R+ζ

ζ/2

+

∫ R

−ζ/2

]
(µ2 + ξ2)

2−d−2γ
2 dξ dµ

= M

∫ R

0

µd−2
[
−

∫ −R+ζ

−R

+2

∫ ζ/2

−ζ/2

−

∫ R+ζ

R

]
(µ2 + ξ2)

2−d−2γ
2 dξ dµ

≤ 4M

∫ R

0

µd−2

∫ ζ/2

0

(µ2 + ξ2)
2−d−2γ

2 dξ dµ

= 4M

∫ R

0

µ1−2γ

∫ ζ/2µ

0

(1 + τ 2)
2−d−2γ

2 dτ dµ

= 4M
[ ∫ ζ/2R

0

(1 + τ 2)
2−d−2γ

2

∫ R

0

µ1−2γ dµ dτ

+

∫ ∞

ζ/2R

(1 + τ 2)
2−d−2γ

2

∫ ζ/2τ

0

µ1−2γ dµ dτ
]

= 4M [I1 + I2].

The first integral is

I1 = MR2−2γ

∫ ζ/2R

0

(1 + τ 2)
2−d−2γ

2 dτ ≤MR1−2γζ

= MR1−2γζ1−ηζη ≤M(1 + |x|)2−2γ−η |z|η.

The second integral is

I2 = M

∫ ∞

ζ/2R

(1 + τ 2)
2−d−2γ

2 ζ2−2γτ 2γ−2 dτ

≤ Mζη

∫ 1

ζ/2R

ζ2−2γ−ητ 2γ−2 dτ +Mζ2−2γ

∫ ∞

1

τ−d dτ

≤ Mζη

∫ 1

0

(2R)2−2γ−ητ−η dτ +MζηR2−2γ−η

≤ MR2−2γ−ηζη ≤M (1 + |x|)2−2γ−η |z|η.

23



The case d = 1 needs to be treated separately, since some exponents have
opposite sign, so that the inequalities are reverted. In this case we assume
without loss of generality that z > 0 and obtain

∫ x+R

x−R

|fz(x, y)| dy

=

∫ R

−R

∣∣∣|y + z|1−2γ − |y|1−2γ
∣∣∣ dy

= ±

∫ −z/2

−R

(
|y + z|1−2γ − |y|1−2γ

)
dy ∓

∫ R

−z/2

(
|y + z|1−2γ − |y|1−2γ

)
dy

Here the sign depends on whether 1−2γ is positive or negative. We continue
the estimate:

∫ x+R

x−R

|fz(x, y)| dy

= ±

(∫ z/2

−R+z

−

∫ −z/2

−R

−

∫ R+z

z/2

+

∫ R

−z/2

)
|y|1−2γ dy

= ±

(
−

∫ −R+z

−R

−

∫ R+z

R

+2

∫ z/2

−z/2

)
|y|1−2γ dy

≤

∫ R+z

R−z

y1−2γ dy + 4

∫ z/2

0

y1−2γ dy

≤ MzR1−2γ +Mz2−2γ

≤ MzηR2−2γ−η +MzηR2−2γ−η

≤ Mzη(1 + |x|)2−2γ−η.

Lemma 3.7. Suppose that the assumptions of Proposition 3.1 hold. Then
there exists a constant M depending only on d, γ, ǫ, η, φ, such that for all
t ∈ C with |t| = 1 and | arg(t)| ≤ φ the following estimates hold:

∫

Rd

|x|ǫ |vt(x)| dx ≤M, (3.10)

for all z ∈ Rd,

∫

Rd

|vt(x+ z) − vt(x)| dx ≤M |z|η, (3.11)

for all λ ∈ (
7

8
,
9

8
),

∫

Rd

|vt(λx) − vt(x)| dx ≤M |1 − λ|η. (3.12)

Proof. To prove (3.10), put f(x, y) = |x − y|2−2γ−d (as in Lemma 3.4) and
notice that vt(x) = M

∫
Rd f(x, y)∆ut(y) dy with a suitable constant M . Take

0 < α1 < α2 and 0 < β1 < β2 arbitrary, δ = 2γ, κ = 2 − 2γ. Lemma 3.4
states that f satisfies the conditions of Lemma 3.2 so that (3.10) holds with
ǫ ∈ [0, 2γ).

24



To prove (3.11) we distinguish the cases |z| < 1 and |z| ≥ 1. The case
|z| ≥ 1 is an easy consequence of (3.10) with ǫ = 0:

∫

Rd

|vt(x+ z) − vt(x)| dx ≤ 2

∫

Rd

|vt(x)| dx ≤ 2M ≤ 2M |z|η.

For |z| < 1, we put fz(x, y) =
[
|x + z − y|2−2γ−d − |x − y|2−2γ−d

]
as in

Lemma 3.5. Then vt(x+ z)− vt(x) = M
∫

Rd fz(x, y)∆ut(y) dy. Take α1 = 1
4
,

α2 = 1
2
, β1 = 2, β2 = 4, δ = 1 + 2γ, κ = 2 − 2γ − η, where 0 < η < 2 − 2γ.

Lemmas 3.5 and 3.6 imply that fz satisfies the assumptions of Lemma 3.2
with K = M0|z|

η, where M0 is a suitable constant independent of z. Notice
that the condition |z| ≤ 1

8
|x|+1 in (3.8) and in Lemma 3.6 is trivially satisfied

for any x, since |z| ≤ 1. We apply Lemma 3.2 with ǫ = 0 and obtain (3.11).
Finally let λ ∈ (7

8
, 9

8
) and put fλ(x, y) =

[
|λx− y|2−2γ−d − |x− y|2−2γ−d

]

so that vt(λx)−vt(x) = M
∫

Rd fλ(x, y)∆ut(y) dy. Notice that for each fixed x
we have fλ(x, y) = fz(x, y) with z = (λ−1)x and fz defined as in Lemma 3.5.
The restrictions on λ imply the estimate |z| ≤ |λ − 1|(1 + |x|) ≤ 1

8
|x| + 1.

Again, put α1 = 1
4
, α2 = 1

2
, β1 = 2, β2 = 4, δ = 2γ, κ = 2−2γ−η, and choose

0 < η < 2− 2γ. Lemmas 3.5 and 3.6 imply that fλ satisfies the assumptions
of Lemma 3.2 with K = M0|λ − 1|η. Again we use Lemma 3.2 with ǫ = 0.
Thus (3.12) holds.

The last ingredient for the proof of Proposition 3.1 is the self-similarity
of vt:

Proposition 3.8. Let µ > 0 be some constant and s ∈ C with ℜs > 0. Let
vs = (−∆)γus be given as in Proposition 3.1. Then for all x ∈ Rd

vµs(x) = µ
−2γ−d

2 vs(µ
− 1

2x) (3.13)

Proof. We start with the self-similarity of the heat kernel:

uµs(y) = (4πµs)−
d
2 e−|y|2/4µs

= µ− d
2 (4πs)−

d
2 e−|µ−1/2y|2/4s

= µ− d
2us(µ

− 1
2y).

Therefore
[∆uµs](y) = µ

−d−2
2 [∆us](µ

− 1
2y),

and consequently (with some given constant c and with ξ = µ−1/2x)

vµs(x) = c

∫

Rd

|x− y|2−2γ−d[∆uµs](y) dy

= cµ
−d−2

2

∫

Rd

|x− y|2−2γ−d[∆us](µ
− 1

2y) dy

= cµ
−d−2

2

∫

Rd

µ
2−2γ−d

2 |ξ − η|2−2γ−d[∆us](η)µ
d
2 dη

= µ
−2γ−d

2 vs(µ
− 1

2x).
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Proof of Proposition 3.1, completed: Now let t ∈ C with | arg(t)| ≤ φ, and
t = µs with µ = |t|. The estimates (3.10), (3.11), and (3.12) can be applied
with s instead of t. From (3.10) we infer

∫

Rd

|x|ǫ |vt(x)| dx

= µ
−2γ−d

2

∫

Rd

|x|ǫ |vs(µ
− 1

2x)| dx

= µ
ǫ−2γ

2

∫

Rd

|ξ|ǫ |vs(ξ)| dξ ≤ µ
ǫ−2γ

2 M,

which proves (3.4). From (3.11) we infer
∫

Rd

|vt(x+ z) − vt(x)| dx

= µ
−2γ−d

2

∫

Rd

|vs(µ
− 1

2x+ µ− 1
2 z) − vs(µ

− 1
2x)| dx

= µ
−2γ−d

2

∫

Rd

|vs(ξ + µ− 1
2 z) − vs(ξ)|µ

d
2 dξ

≤ Mµ−γ|µ− 1
2 z|η

= Mµ
−2γ−η

2 |z|η,

which proves (3.5). Finally (3.12) implies
∫

Rd

|vt(λx) − vt(x)| dx

= µ
−2γ−d

2

∫

Rd

|vs(λµ
− 1

2x) − vs(µ
− 1

2x)| dx

= µ
−2γ−d

2

∫

Rd

|vs(λξ) − vs(ξ)|µ
d
2 dξ

≤ µ−γM |λ− 1|η,

which proves (3.6). Now the proof of Proposition 3.1 is finished.

4 Proof of Theorem 1.2

We proceed by two steps. In the following Lemmas 4.1 and 4.2 we investigate
the kernel of (−∆)γ(s− ∆)−1 for s with | arg(s)| ≤ φ+ π

2
, where φ ∈ (0, π

2
).

For this purpose we use that (s−∆)−1 can be obtained by integrating the heat
semigroup. In the subsequent Propositions 4.3 and 4.4, the properties of the
convolution kernel of (−∆)γSα,β(t) are discussed. These will be derived from
the properties of (−∆)γ(s−∆)−1 utilizing the contour integral (1.9). Finally
we will use these results to apply Theorem 1.5, where ψ is the convolution
kernel of the operator (−∆)γSα,β(1).
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Lemma 4.1. For t ∈ C with ℜ(t) > 0 we denote by ut the heat kernel in Rd

as in (3.1). Let γ ∈ (0, 1), φ ∈ (0, π
2
), ǫ ∈ [0, 2γ), η ∈ (0, 2 − 2γ) ∩ (0, 1).

For s ∈ C with arg s = ω, |ω| ≤ 2φ, we put

ws = e−iω/2

∫ ∞

0

e−|s|ei(ω/2)t [(−∆)γute−iω/2 ] dt. (4.1)

Then the integral in (4.1) exists as a Bochner integral in L1(Rd). Moreover,
there exists a constant M depending only on d, γ, φ, ǫ, η, such that the
following estimates hold:
∫

Rd

|x|ǫ |ws(x)| dx ≤M |s|−1+γ− ǫ
2 , (4.2)

for all z ∈ Rd,

∫

Rd

|ws(x+ z) − ws(x)| dx ≤M |s|−1+ η
2
+γ |z|η, (4.3)

for all λ ∈

(
7

8
,
9

8

)
,

∫

Rd

|ws(λx) − ws(x)| dx ≤M |s|γ−1 |λ− 1|η. (4.4)

Moreover, for all p ∈ [1,∞) and all h ∈ Lp(Rd, H) we have

[(−∆)γ(s− ∆)−1h](x) =

∫

Rd

ws(x− y)h(y) dy. (4.5)

Proof. For shorthand we write ν = e−iω/2, so that s = |s|ν−2 and

ws = ν

∫ ∞

0

e−|s|t/νvνt dt

where we use the notation of Proposition 3.1:

vνt = (−∆)γuνt.

Of course, |ν| = 1 and | arg(ν)| ≤ φ. We start by proving (4.2). The same
estimate (for the special case ǫ = 0) will also prove that the integral in (4.1)
converges as an integral in L1(Rd). Using (3.4) we obtain with a suitable
constant M

∫

Rd

|x|ǫ |ws(x)| dx ≤

∫ ∞

0

∫

Rd

|e−|s|t/ν | |x|ǫ |vνt(x)| dx dt

≤ M

∫ ∞

0

e−|s| cos(φ)t |t|
ǫ
2
−γ dt = M |s|γ−

ǫ
2
−1

∫ ∞

0

e−τ cos(φ) τ
ǫ
2
−γ dτ.

This proves (4.2).
Equations (4.3) and (4.4) are derived similarly from (3.5) and (3.6), re-

spectively.
Now notice that t 7→ T (νt) is a bounded analytic semigroup generated by

ν∆. Therefore,

(s− ∆)−1h = ν(|s|ν−1 − ν∆)−1h = ν

∫ ∞

0

e−|s|t/νT (νt)h dt.
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Since γ < 1 and T (νt) is a bounded analytic semigroup, we have that

∫ ∞

0

|e−|s|t/ν | ‖(−∆)γT (νt)‖ dt <∞.

Using the closedness of (−∆)γ, we see therefore that

(−∆)γ(s− ∆)−1h = ν

∫ ∞

0

e−|s|t/ν(−∆)γT (νt)h dt

as a Bochner integral in Lp(Rn, H). On the other hand the heat semigroup
is given by convolution

νe−|s|t/ν(−∆)γT (νt)h = νe−|s|t/νvνt ∗ h.

We have shown that

ws = ν

∫ ∞

0

e−|s|t/νvνt dt

as a Bochner integral in L1(Rd), thus

ws ∗ h = ν

∫ ∞

0

e−|s|t/νvνt ∗ h dt = (−∆)γ(s− ∆)−1h,

where the integral is a Bochner integral in Lp(Rd, H), and (4.5) holds.

Lemma 4.2. For s ∈ C with s 6∈ (−∞, 0] and γ ∈ (0, 1), let ws be the kernel
of (−∆)γ(s−∆)−1 as in Lemma 4.1. Let µ > 0 be some constant. Then for
all x ∈ Rd,

wµs(x) = µ
2γ+d−2

2 ws(µ
1
2x). (4.6)

Proof. As in the proof of Lemma 4.1, let arg(s) = ω and ν = e−iω/2. Using
Proposition 3.8 and the definition of ws, we have

wµs(x) = ν

∫ ∞

0

e−µ|s|t/νvνt(x) dt

= µ−1ν

∫ ∞

0

e−|s|τ/νvνµ−1τ (x) dτ

= µ−1+ 2γ+d
2 ν

∫ ∞

0

e−|s|τ/νvντ (µ
1
2x) dτ

= µ
2γ+d−2

2 ws(µ
1
2x).
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Proposition 4.3. Let α ∈ (0, 2), β ≥ 0, γ ∈ (0, 1) be such that 1 + αγ > β.
Let ǫ ∈ [0, 2αγ−β+1

α
), η ∈ (0, 2 − 2γ) ∩ (0, 1). As in Lemma 4.1, ut denotes

the heat kernel in Rd, and ws is given by (4.1). Let ρ ∈ (π
2
, π) be such that

αρ < π. We define the contour C = {(τ, s(τ)) | τ ∈ (−∞,∞)} by

s(τ) =

{
−e−iρτ if τ ≤ 0,

eiρτ if τ > 0.

Then for each t > 0, the following integral exists as a Bochner integral in
L1(Rd):

ψt =
1

2πi

∫

C

estsα−βwsα ds. (4.7)

There exists a constant M depending only on d, α, β, γ, ǫ, η, such that

∫

Rd

|x|ǫ |ψt(x)| dx ≤M |t|β−αγ+αǫ
2
−1, (4.8)

for all z ∈ Rd

∫

Rd

|ψt(x+ z) − ψt(x)| dx ≤M |t|β−αγ−αη
2
−1|z|η, (4.9)

for all λ ∈ (
7

8
,
9

8
),

∫

Rd

|ψt(λx) − ψt(x)| dx ≤M |t|β−αγ−1 |λ− 1|η. (4.10)

Moreover, let H be a separable Hilbert space, p ∈ [1,∞). Let Sα,β be the
resolvent operator to (1.6) and h ∈ Lp(Rd, H). Then

[(−∆)γSα,β(t)h](x) =

∫

Rd

ψt(x− y)h(y) dy. (4.11)

Proof. We start with proving (4.8). With ǫ = 0, our computations will also
imply that the integral in (4.7) converges in L1(Rd). Let M be the constant
from (4.2) in Lemma 4.1.

∫

C

|estsα−β|

∫

Rd

|x|ǫ |wsα(x)| dx |ds|

≤ 2

∫ ∞

0

ecos(ρ)σtσα−βM σα(−1+γ− ǫ
2
) dσ

= 2M

∫ ∞

0

ecos(ρ)σtσαγ−β−αǫ
2 dσ

= 2Mt−αγ+β+αǫ
2
−1

∫ ∞

0

ecos(ρ)τταγ−β−αǫ
2 dτ.

The last integral is a finite constant, since αγ− β− αǫ
2
> −1 and cos(ρ) < 0.

Using the same technique and Equations (4.3) and (4.4), respectively, we
obtain (4.9) and (4.10).

Now we use the contour integration formula (1.9). Since ∆ generates an
analytic semigroup, we know that

‖s−β+α(−∆)γ(sα − ∆)−1‖ ≤M |s|−β+α|sα|−1+γ = |s|−β+γα. (4.12)
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Since −β + γα > −1, we see easily that the integral

1

2πi

∫

C̃

ests−β+α(−∆)γ(sα − ∆)−1 ds

converges even in operator norm, and using the closedness of (−∆)γ, we see
that

(−∆)γSα,β(t)h =
1

2πi
(−∆)γ

∫

C̃

ests−β+α(sα − ∆)−1h ds

=
1

2πi

∫

C̃

ests−β+α(−∆)γ(sα − ∆)−1h ds

=
1

2πi

∫

C

ests−β+α(−∆)γ(sα − ∆)−1h ds.

In fact, the contour C̃ can be replaced by the contour C (with radius r = 0)
because of (4.12) and Cauchy’s Theorem. On the other hand, by (4.5) we
know that

1

2πi

∫

C

ests−β+α[(−∆)γ(sα − ∆)−1h](x) ds

=
1

2πi

∫

C

ests−β+α

∫

Rd

wsα(x− y)h(y) dy

=

∫

Rd

ψt(x− y)h(y) dy.

Here we have used that the integral in (4.7) converges in L1(Rd). This proves
(4.11).

Proposition 4.4. Let α, β, γ be as in Proposition 4.3, and let ψt be the
kernel of (−∆)γSα,β(t) as defined by (4.7). Let µ > 0. Then for all x ∈ Rd,
t > 0, we have

ψµt(x) = µβ−γα−αd
2
−1ψt(µ

−α
2 x). (4.13)

Proof. We use Lemma 4.2 and some elementary computations:

ψµt(x) =
1

2πi

∫

C

esµtsα−βwsα(x) ds

=
1

2πi

∫

C

eσt

(
σ

µ

)α−β

w(σ/µ)α(x)
1

µ
dσ

=
1

2πi
µβ−α−1

∫

C

eσtσα−βµ−α 2γ+d−2
2 wσα(µ−α

2 x) dσ

=
1

2πi
µβ−γα− dα

2
−1

∫

C

eσtσα−βwσα(µ−α
2 x) dσ

= µβ−γα− dα
2
−1ψt(µ

−α
2 x).
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Proof of Theorem 1.2, completed: Now let β − αγ = 1
2
. We put ψ = ψ1

as defined in Proposition 4.3. By (4.11) and Proposition 4.4 we have

[(−∆)γSα,β(t− s)g(s, ·)](x)

=

∫

Rd

ψt−s(x− y)g(s, y) dy

=

∫

Rd

(t− s)β−γα−αd
2
−1ψ1((t− s)−

α
2 (x− y))g(s, y) dy

=

∫

Rd

(t− s)−
1
2
−αd

2 ψ((t− s)−
α
2 (x− y))g(s, y) dy.

By Proposition 4.3, the function ψ satisfies all requirements of Theorem 1.5.
Putting

[Pg](t, x) =

[∫ t

−∞

∥∥[(−∆)γSα,β(t− s)g(s, ·)](x)
∥∥2

H
ds

] 1
2

we obtain Theorem 1.2 as a corollary of Theorem 1.5.

5 Proof of Corollary 1.3

Now let g be such that the function e−ǫtg(t, x) is in Lp((−∞, b]×Rn, H) with
some ǫ > 0. Let α ∈ (0, 2), θ > 1

2
, γ ∈ (0, 1) be such that θ − αγ > 1

2
. Put

β = 1
2

+ αγ and µ = θ − β > 0. We want to find an estimate

∫

Rd

∫ b

−∞

[∫ t

−∞

∥∥e−ǫt[(−∆)γSα,β+µ(t− s)g(s, ·)](x)
∥∥2

H
ds

] p
2

dt dx

≤ M

∫

Rd

∫ b

−∞

∥∥e−ǫsg(s, y)
∥∥p

H
ds dy.

Of course it is sufficient to find a proof for b <∞, provided the constant M
is independent of b. A trivial limiting argument settles then the case b = ∞.

For shorthand we write

g1(t, x) = e−ǫtg(t, x),

W (t, s, x) = ‖[(−∆)γSα,β(t)g1(s, .)] (x)‖H ,

V (t, x)2 =

∫ t

−∞

‖[(−∆)γSα,β(t− s)g1(s, .)] (x)‖
2
H ds,

U(t, x)2 =

∫ t

−∞

‖[(−∆)γSα,β+µ(t− s)eǫsg1(s, .)] (x)‖
2
H ds.

With this notation, Theorem 1.2 (applied to g1 instead of g) says that for
some constant M we have

∫

Rd

∫ b

−∞

V p(t, x) dt dx ≤M

∫

Rd

∫ b

−∞

‖g1(s, y)‖
p
H ds dy. (5.1)
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Corollary 1.3 is proved if we can show that

∫

Rd

∫ b

−∞

[e−ǫtU(t, x)]p dt dx ≤Mǫ−µp

∫

Rd

∫ b

−∞

‖g1(s, y)‖
p
H ds dy. (5.2)

We prove first

U(t, x) ≤ eǫt

∫ ∞

0

σµ−1

Γ(µ)
e−ǫσV (t− σ, x) dσ. (5.3)

In fact, from (1.8) we obtain

Sα,β+µ(t)h =

∫ t

0

σµ−1

Γ(µ)
Sα,β(t− σ)h dσ.

Now,

U(t, x) = sup

∫ t

−∞

f(s) ‖[(−∆)γSα,β+µ(t− s)eǫsg1(s, .)] (x)‖H ds

where the supremum is taken over all f ∈ L2((−∞, t],R) such that

∫ t

−∞

f(s)2 ds = 1.

For such f , we estimate
∫ t

−∞

f(s) ‖[(−∆)γSα,β+µ(t− s)eǫsg1(s, .)] (x)‖H ds

≤

∫ t

−∞

f(s)

∫ t−s

0

σµ−1

Γ(µ)
eǫsW (t− s− σ, s, x) dσ ds

≤

∫ ∞

0

σµ−1

Γ(µ)

∫ t−σ

−∞

f(s)eǫsW (t− s− σ, s, x) ds dσ

≤

∫ ∞

0

σµ−1

Γ(µ)
eǫ(t−σ)

[∫ t−σ

−∞

f(s)2 ds

]1/2 [∫ t−σ

−∞

W (t− s− σ, s, x)2 ds

]1/2

dσ

≤ eǫt

∫ ∞

0

σµ−1

Γ(µ)
e−ǫσV (t− σ, x) dσ.

This proves (5.3).

Next we prove

∫ b

−∞

[
e−ǫtU(t, x)

]p
dt ≤ ǫ−µp

∫ b

∞

V (t, x)p dt. (5.4)

We utilize the same trick as above: Let 1
p

+ 1
q

= 1 and f ∈ Lq((−∞, b],R)

such that f(t) ≥ 0 and ∫ b

−∞

f(t)q dt = 1.
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Then, using (5.3) and Hölder’s inequality we have

∫ b

−∞

f(t)e−ǫtU(t, x) dt

≤

∫ b

−∞

f(t)

∫ ∞

0

σµ−1

Γ(µ)
e−ǫσV (t− σ, x) dσ dt

=

∫ ∞

0

σµ−1

Γ(µ)
e−ǫσ

∫ b

−∞

f(t)V (t− σ, x) dt dσ

≤

∫ ∞

0

σµ−1

Γ(µ)
e−ǫσ

[∫ b

−∞

f(t)q dt

]1/q [∫ b−σ

−∞

V (t, x)p dt

]1/p

dσ

≤

∫ ∞

0

σµ−1

Γ(µ)
e−ǫσ dσ

[∫ b

−∞

V (t, x)p dt

]1/p

= ǫ−µ

[∫ b

−∞

V (t, x)p dt

]1/p

.

Finally, integrating (5.4) over Rd and using (5.1) we arrive at

∫

Rd

∫ b

−∞

[
e−ǫtU(t, x)

]p
dt dx

≤ ǫ−µp

∫

Rd

∫ b

−∞

[V (t, x)]p dt dx

≤ ǫ−µpM

∫

Rd

∫ b

−∞

‖g1(s, y)‖
p
H ds dy.

This is (5.2), and the proof of Corollary 1.3 is finished.
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