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István Faragó, Róbert Horváth, Sergey Korotov : Discrete maximum prin-

ciples for FE solutions of nonstationary diffusion-reaction problems with mixed

boundary conditions ; Helsinki University of Technology Institute of Mathematics
Research Reports A550 (2008).

Abstract: In this paper we derive and discuss sufficient conditions that
provide the validity of the discrete maximum principle for nonstationary
diffusion-reaction problems with mixed boundary conditions solved by means
of simplicial finite elements and the θ time discretization method. Theoretical
analysis is supported by numerical experiments.

AMS subject classifications: 65M60, 65M50, 35B50

Keywords: nonstationary diffusion-reaction problem, maximum principle, mixed
boundary conditions, linear finite elements, discrete maximum principle, simplicial
partition, angle condition

Correspondence

Department of Applied Analysis, Eötvös Loránd University
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1 Introduction

Besides the obligatory requirement of convergence of computed approxima-
tions to the exact solution of a model under investigation, the approximations
are naturally required to mirror some basic qualitative properties of these ex-
act solutions in order to be reliable and useful in computer simulation and
visualization.

It is well known that solutions of mathematical models described by sec-
ond order elliptic and parabolic equations satisfy the (continuous) maximum
principles (CMPs) [17, 18]. Its discrete analogues, the so-called discrete
maximum principles (DMPs) were first presented and analysed in the pa-
pers [21, 4, 6], and [14, 11] for elliptic and parabolic cases, respectively. If
the finite element method (FEM) is employed, the corresponding DMPs are
normally ensured by imposing certain geometrical restrictions on the spa-
tial meshes used: such as acuteness or nonobtuseness – for simplicial meshes
[6, 11, 13, 16], non-narrowness - for rectangular meshes [3, 9, 12]. In [10], suf-
ficient geometric conditions for DMPs are given for the case of planar hybrid
meshes. The validity of DMPs for higher order finite elements and associated
geometric restrictions on FE meshes are considered in [23]. In addition, in
the case of DMPs for parabolic problems, the time-steps have to be often
chosen inbetween certain lower and upper bounds. (For finite difference di-
cretizations, there are however only upper bounds present for the time-step
(see e.g., [8, 25]).) Another important discrete qualitative property of the
numerical solutions of partial differential equations is the so-called nonnega-
tivity preservation property. This property was investigated e.g. in [7, 8, 22].
The relation between the nonnegativity preservation and the DMPs were
analysed e.g. in [8, 10].

In this work, for the first time with respect to parabolic problems and
discrete maximum principles, the cases with the mixed boundary conditions
and an additional reactive term presented in the governing equation are con-
sidered. We derive the relevant continuous maximum principle, and also give
and prove its discrete analogue, when simplicial finite elements and the θ
time discretization method are used. In addition, several numerical tests il-
lustrating the sharpness of the proposed (sufficient) conditions for a validity
of DMP are presented.

The paper is structured as follows. In Section 2, we describe the model
parabolic problem with mixed boundary conditions and present the contin-
uous maximum principle. The discretization scheme is given in detail in
Section 3. The DMP and the algebraic conditions for its validity are pre-
sented in Section 4. In Section 5 we derive geometric conditions on simplicial
meshes and two-sided bounds for the time-steps providing the DMP. Further,
several illustrative numerical tests are given in Section 6.
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2 Model problem and CMP

Consider the following nonstationary diffusion-reaction problem with mixed
boundary conditions: Find a function u = u(t, x) such that

∂u

∂t
− b∆u + cu = f in QT := (0, T ) × Ω, (1)

u = g on SD
T := (0, T ) × ∂ΩD, (2)

b∇u · ν = q on SN
T := (0, T ) × ∂ΩN , (3)

b∇u · ν + σu = r on SR
T := (0, T ) × ∂ΩR, (4)

u|t=0 = u0 in Ω, (5)

where Ω ⊂ Rd, d = 1, 2, 3, . . . , is a bounded polytopic domain with Lipschitz
boundary ∂Ω. Further, we assume that ∂Ω = ∂ΩD ∪ ∂ΩN ∪ ∂ΩR, where
∂ΩD 6= ∅ and is closed, ∂ΩN and ∂ΩR are mutually disjoint measurable
open sets. The subscripts (or superscripts) D, N , and R always stand for
Dirichlet, Neumann, and Robin types of boundary conditions, respectively,
ν is the outward normal to ∂Ω, T > 0, the problem coefficients are constant
and such that

b > 0, c ≥ 0, σ > 0, (6)

and f , g, q, r, u0 are given functions.
Let us introduce the following notations for any t ∈ (0, T ]. Let Qt stand

for the cylinder (0, t)×Ω, and let Γ0 := {0}×Ω denote its bottom. Moreover,
let us define Qt := (0, t] × Ω, SD

t
:= [0, t] × ∂ΩD, SN

t
:= [0, t] × ∂ΩN , and

SR
t

:= [0, t] × ∂ΩR.

Remark 1 We assume that all the given functions are sufficiently smooth
so that the classical solution of problem (1)–(5) exists in the space C1,2(QT )∩
C0,1(QT ∪ SD

T
∪ SN

T
∪ SR

T
∪ Γ0) and it is unique.

First we shall derive the continuous maximum principle for the above type
of problems. The following result holds (cf. Theorem 2.1 and Theorem 2.2
from [17]).

Theorem 1 Let for problem (1)–(5) conditions (6) and q < 0 hold. Then
the following upper estimate for the solution is valid for any t1 ∈ (0, T ):

u(t1, x) ≤ inf
λ>−c

max{0, max
Γ0∪SD

t1

u exp(λ(t1 − t)), max
Qt1

f exp(λ(t1−t))
c+λ

, max
SR

t1

r exp(λ(t1−t))
σ

}. (7)
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P r o o f : Consider a function v = v(t, x) defined as follows

v(t, x) = u(t, x) exp(−λt), (8)

where λ is an arbitrary real number for the time being. This function obvi-
ously satisfies the equation

vt − b∆v + (c + λ)v = f exp(−λt), (9)

whenever u is the solution of (1)–(5). Let t1 be arbitrary from (0, T ) and let
us consider a closed cylinder Qt1

:= [0, t1]×Ω. The following three cases are
possible:

1. v ≤ 0 in Qt1
;

2. positive maximum of v is attained on Γ0 ∪ SD
t1

;

3. positive maximum of v is attained at some point (t0, x0) from Ωt1
∪

SN
t1
∪ SR

t1
.

For the first situation we have

max
Qt1

v(t, x) ≤ 0. (10)

In the second case, it holds

0 < max
Qt1

v(t, x) = max
Γ0∪SD

t1

v. (11)

Consider the third possibility when

0 < max
Qt1

v(t, x) = v(t0, x0), (12)

where (t0, x0) ∈ Qt1
∪ SN

t1
∪ SR

t1
. First, let (t0, x0) ∈ Qt1

. It is clear that in
this situation we have

vt(t
0, x0) ≥ 0, and vxi,xi

(t0, x0) ≤ 0, (i = 1, . . . , d).

Then from (9) we get (c+λ)v(t0, x0) ≤ f(t0, x0) exp(−λt0), i.e., if the number
λ is such that c + λ > 0, then

v(t0, x0) ≤ max
Qt1

f exp(−λt)

c + λ
. (13)

Further, let (t0, x0) ∈ SR
t1
, then in a view of (4)

v(t0, x0) ≤ max
SR

t1

r exp(−λt)

σ
, (14)

where the obvious property ∇v · ν|(t0,x0) ≥ 0 was used. In addition, this
property and condition q|SN

t1
< 0 assure that the point (t0, x0) cannot belong

to SN
t1

, which together with (8) proves the statement of the theorem.
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Remark 2 Theorem 1 implies, in particular, that u(t, x) ≤ 0 provided f ≤
0, r ≤ 0, u0 ≤ 0, g ≤ 0, and q < 0.

Let us further introduce the following function (0 ≤ t ≤ t1 < T , t1 is
fixed):

ū(t, x) = u(t, x) − max{0; max
Γ0∪SD

t1

u} − max{0; max
SR

t1

r

σ
} − t max{0; max

Qt1

f}.

We immediately observe the non-positivity of the given data of the initial
boundary-value problem to that the above defined function v̄ satisfies. It
is also clear that the function appearing in the RHS of the corresponding
Neumann boundary condition is the same as for the function u, i.e., q < 0,
which altogether, in a view of Remark 2, implies that

ū(t, x) ≤ 0, for t ∈ [0, t1], i.e., ū(t1, x) ≤ 0,

therefore for all t1 ∈ (0, T ), we have

u(t1, x) ≤ max{0; max
Γ0∪SD

t1

u} + max{0; max
SR

t1

r

σ
} + t1 max{0; max

Qt1

f}. (15)

Inequality (15), together with the sign-condition q < 0 and (6), represents
the form of the continuous maximum principle that we shall deal with for
the above defined parabolic problem (1)–(5).

Remark 3 In a similar way we can derive the relevant minimum principle
under condition q > 0.

3 Discretization scheme

Let

H1
∂ΩD

(Ω) = {v ∈ H1(Ω) | v|∂ΩD
= 0}. (16)

In what follows, we assume that a simplicial partition Th of Ω is given, where
h denotes the standard discretization parameter (the maximal diameter of
elements from Th ), and that the partition is conforming and is such that any
facet of any element is either a facet of the adjacent element or a part of the
boundary. Let B1, . . . , BN denote all interior nodes and the nodes belonging
to ∂ΩN ∪ ∂ΩR, and let BN+1, . . . , BN̄ be the nodes lying on ∂ΩD. We also
stand N∂ := N̄ − N .

Let φ1, . . . , φN̄ be the continuous piecewise linear nodal basis functions
associated with nodes B1, . . . , BN̄ , respectively. It is obvious that

φi ≥ 0, i = 1, . . . , N̄ , and
N̄
∑

i=1

φi ≡ 1 in Ω. (17)

We denote the span of the basis functions by V h ⊂ H1(Ω), and define its
subspace

V h
∂ΩD

= {v ∈ V h | v|∂ΩD
= 0} ⊂ H1

∂ΩD
(Ω).
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3.1 Weak formulation

The weak formulation for (1)–(5) reads as follows: Find u = u(t, x) ∈ H1(Ω)
for t ∈ (0, T ) such that

∫

Ω

∂u

∂t
v dx + L(u, v) =

∫

Ω

fv dx +

∫

∂ΩN

qv ds +

∫

∂ΩR

rv ds ∀v ∈ H1
∂ΩD

(Ω), t ∈ (0, T ),(18)

and

u(0, x) = u0(x), x ∈ Ω, and u − g ∈ H1
∂ΩD

(Ω), t ∈ (0, T ), (19)

where

L(u, v) := b

∫

Ω

∇u · ∇v dx + c

∫

Ω

u v dx + σ

∫

∂ΩR

u v ds. (20)

3.2 Semidiscretization in space

The semidiscrete problem for (18)–(19) reads: Find a function uh = uh(t, x)
such that

∫

Ω

∂uh

∂t
vh dx + L(uh, vh) =

∫

Ω

fvh dx +

∫

∂ΩN

qvh ds +

∫

∂ΩR

rvh ds ∀vh ∈ V h
∂ΩD

, t ∈ (0, T ),(21)

and

uh(0, x) = u0
h(x), x ∈ Ω, uh(t, x) − gh(t, x) ∈ V h

∂ΩD
, t ∈ (0, T ), (22)

where u0
h(x) and gh(t, x) (for any fixed t) are suitable approximations of

u0(x) and g(t, x), respectively. In what follows, we assume that they are
linear interpolants in V h, i.e.,

u0
h(x) =

N̄
∑

i=1

u0(Bi)φi(x), (23)

and

gh(t, x) =

N∂
∑

i=1

gh
i (t)φN+i(x), where gh

i (t) = g(t, BN+i), i = 1, . . . , N∂.(24)

From the consistency of the initial and the boundary conditions g(0, s) =
u0(s), s ∈ ∂ΩD, we have gh

i (0) = u0(BN+i), i = 1, . . . , N∂.
We search for a semidiscrete solution of the form

uh(t, x) =
N
∑

j=1

uh
j (t)φj(x) + gh(t, x) =

N
∑

j=1

uh
j (t)φj(x) +

N̄
∑

j=N+1

gh
j−N(t)φj(x),(25)
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and notice that it is sufficient that uh satisfies (21) only for vh = φi, i =
1, . . . , N .

Introducing the notation

vh(t) = [uh
1(t), . . . , u

h
N(t), gh

1 (t), . . . , gh
N∂

(t)]T , (26)

we get a Cauchy problem for the systems of ordinary differential equations

M
dvh

dt
+ Kvh = f + q + r, vh(0) = [u0(B1), . . . , u

0(BN), gh
1 (0), . . . , gh

N∂
(0)]T(27)

for the solution of the semidiscrete problem, where

M = (mij)
N, N̄
i=1, j=1, mij =

∫

Ω

φjφi dx, K = (kij)
N, N̄
i=1, j=1, kij = L(φj, φi),

f = [f1, . . . , fN ]T , fi =

∫

Ω

fφi dx,

q = [q1, . . . , qN ]T , qi =

∫

∂ΩN

qφi ds,

and

r = [r1, . . . , rN ]T , ri =

∫

∂ΩR

rφi ds.

3.3 Fully discretized problem

In order to get a fully discrete numerical scheme, we choose a time-step ∆t
and denote the approximations to vh(n∆t), f(n∆t), q(n∆t), and r(n∆t) by
vn, fn, qn, and rn, n = 0, 1, . . . , nT (nT ∆t = T ), respectively.

To discretize (27), we apply the θ-method (θ ∈ (0, 1] is a given parameter,
the case θ = 0, otherwise acceptable, is excluded in what follows due to the
form of DMP and the condition of the lower bound for the time-step, see
Sections 4 and 5) and obtain a system of linear algebraic equations

M
vn+1 − vn

∆t
+ θKvn+1 + (1 − θ)Kvn = f (n,θ) + q(n,θ) + r(n,θ), (28)

where f (n,θ) := θ fn+1 + (1 − θ)fn, q(n,θ) := θ qn+1 + (1 − θ)qn, and r(n,θ) :=
θ rn+1 + (1 − θ)rn.

Further, (28) can be rewritten as

(M + θ∆tK)vn+1 = (M − (1 − θ)∆tK)vn + ∆t f (n,θ) + ∆t q(n,θ) + ∆t r(n,θ),(29)

where n = 0, 1, . . . , nT − 1, and v0 = vh(0).
Let A := M + θ∆tK and B := M − (1 − θ)∆tK . We shall use the

following partitions of the matrices and vectors:

A = [A0|A∂], B = [B0|B∂], vn = [(un)T |(gn)T ]T , (30)
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where A0 and B0 are (N × N) matrices, A∂,B∂ are of size (N × N∂), un =
[un

1 , . . . , u
n
N ]T ∈ RN and gn = [gn

1 , . . . , gn
N∂

]T ∈ RN∂ . Similar partitions are
used for matrices M and K. The iterative scheme (29) can now be rewritten
as follows

Avn+1 = Bvn + ∆t f (n,θ) + ∆t q(n,θ) + ∆t r(n,θ), (31)

or

[A0|A∂]

[

un+1

gn+1

]

= [B0|B∂]

[

un

gn

]

+ ∆t f (n,θ) + ∆t q(n,θ) + ∆t r(n,θ). (32)

4 The discrete maximum principle

4.1 Formulation of DMP

Let us define the following values for n = 0, . . . , nT :

gn
max = max{0, gn

1 , . . . , gn
N∂

}, (33)

vn
max = max{0, gn

max, u
n
1 , . . . , u

n
N}, (34)

and

f (n,n+1)
max =max{0, max

x∈Ω,τ∈(n∆t,(n+1)∆t)
f(τ, x)}, (35)

r(n,n+1)
max =max{0, max

x∈∂ΩR,τ∈(n∆t,(n+1)∆t)
r(τ, x)}, (36)

for n = 0, . . . , nT − 1.

The DMP corresponding to (15) (under condition q < 0) takes the fol-
lowing form (cf. [11, p. 100]):

un+1
i ≤ max{0, gn+1

max, v
n
max} +

1

θσ
r(n,n+1)
max + ∆tf (n,n+1)

max , (37)

for i = 1, . . . , N ; n = 0, . . . , nT − 1.

Remark 4 The maximum principle expresses the fact that the solution can
be estimated from above using the solution at earlier time instants, the source
function and the functions that are present in the boundary conditions. The
definition of the DMP in (37) fulfills this requirement. However, we notice
that, in (37), the second term is multiplied by the reciprocal value of θ. This
means that this estimation is somewhat weaker than the corresponding esti-
mation in the continuous case unless θ = 1.
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4.2 Algebraic conditions guaranteeing the validity of

DMP

Write

e = [1, . . . , 1]T ∈ RN̄ , e0 = [1, . . . , 1]T ∈ RN , e∂ = [1, . . . , 1]T ∈ RN∂ , (38)

f
(n,n+1)
max = f

(n,n+1)
max e ∈ RN̄ , r

(n,n+1)
max = r

(n,n+1)
max e ∈ RN̄ , vn

max = vn
maxe ∈ RN̄ ,

f
(n,n+1)
0 = f

(n,n+1)
max e0 ∈ RN , r

(n,n+1)
0 = r

(n,n+1)
max e0 ∈ RN , vn

0 = vn
maxe0 ∈ RN ,

f
(n,n+1)
∂ = f

(n,n+1)
max e∂ ∈ RN∂ , r

(n,n+1)
∂ = r

(n,n+1)
max e∂ ∈ RN∂ , vn

∂ = vn
maxe∂ ∈ RN∂ .

(39)

Lemma 1 The following relations hold provided q < 0 (and that θ 6= 0)

(P1) Ke ≥ 0,

(P2) f (n,θ) ≤ Af
(n,n+1)
max ,

(P2′) q(n,θ) ≤ 0,

(P2′′) r(n,θ) ≤ 1
σθ∆t

Ar
(n,n+1)
max ,

(P3) If A−1
0 ≥ 0, then − A−1

0 A∂ e∂ ≤ e0.

(40)

P r o o f : (P1) For the i-th coordinate of the vector Ke (i = 1, . . . , N), we
have

(Ke)i =
N̄
∑

j=1

kij =
N̄
∑

j=1

L(φj, φi) = L

(

N̄
∑

j=1

φj, φi

)

= L(1, φi) =

= b

∫

Ω

∇1 · ∇φi dx + c

∫

Ω

1 · φi dx + σ

∫

∂ΩR

1 · φi ds ≥ 0, (41)

due to conditions (6) on the coefficients of the problem and properties (17)
of the basis functions, which proves the statement.

(P2) For the i-th element of f (n,θ), we observe that

(f (n,θ))i =

∫

Ω

(

(1 − θ)f(n∆t, x) + θf((n + 1)∆t, x)
)

φi(x) dx ≤

≤
∫

Ω

f (n,n+1)
max φi(x) dx = f (n,n+1)

max

∫

Ω

(

N̄
∑

j=1

φj(x)

)

φi(x) dx = (42)

= f (n,n+1)
max

N̄
∑

j=1

mij =
(

Mf (n,n+1)
max

)

i
≤
(

(M + θ∆tK)f (n,n+1)
max

)

i
=
(

Af (n,n+1)
max

)

i
,

10



where in the above, we used (P1).

(P2′) is trivial due to the condition q < 0.

(P2′′) For the i-th element of r(n,θ), we observe that

(r(n,θ))i =

∫

∂ΩR

(

(1 − θ)r(n∆t, x) + θr((n + 1)∆t, x)
)

φi(x) ds ≤

≤
∫

∂ΩR

r(n,n+1)
max φi(x) ds =

r
(n,n+1)
max

θ ∆t σ
θ∆tσ

∫

∂ΩR

(

N̄
∑

j=1

φj(x)

)

φi(x) ds ≤ (43)

≤ 1

σ θ ∆t

(

θ ∆tKr(n,n+1)
max

)

i
≤ 1

σ θ ∆t

(

(M + θ∆tK)r(n,n+1)
max

)

i
=

1

σ θ ∆t

(

Ar(n,n+1)
max

)

i
,

where in the above, we used the nonnegativity of the mass matrix M provided
by the fact that the basis functions are nonnegative.

(P3) Matrix M is non-negative, thus, 0 ≤ Me ≤ (M + θ∆tK)e = Ae =
A0e0 + A∂e∂, and (P3) is obtained by multiplying both sides by the non-
negative matrix A−1

0 . A0 is always regular because it is a Gram-matrix.

Theorem 2 Galerkin approximation for the solution of problem (1)–(5),
combined with the θ-method for time discretization (where θ ∈ (0, 1]), satis-
fies the discrete maximum principle (37) under condition q < 0 if

A−1
0 ≥ 0, (C1)

A−1
0 A∂ ≤ 0, (C2)

A−1
0 B ≥ 0. (C3)

P r o o f :

From (31), (P2) and (P2′), we have

A0u
n+1+ A∂g

n+1 =Avn+1 = Bvn+∆t f (n,θ)+∆t q(n,θ)+∆t r(n,θ)≤ (44)

≤ Bvn+∆tAf (n,n+1)
max +

1

θσ
Ar(n,n+1)

max .

From (P1), we find Bvn
max ≤ Avn

max. Multiplying both sides of (44) by
A−1

0 ≥ 0 (see (C1)), expressing un+1 and using (C3), we obtain

un+1 ≤ −A−1
0 A∂ gn+1 + A−1

0 Bvn + ∆tA−1
0 Af (n,n+1)

max +
1

θσ
A−1

0 Ar(n,n+1)
max ≤(45)

≤ −A−1
0 A∂ gn+1 + A−1

0 Bvn
max + ∆tA−1

0 Af (n,n+1)
max +

1

θσ
A−1

0 Ar(n,n+1)
max ≤

11



≤ −A−1
0 A∂ gn+1 + A−1

0 Avn
max + ∆tA−1

0 Af (n,n+1)
max +

1

θσ
A−1

0 Ar(n,n+1)
max =

= −A−1
0 A∂ gn+1+A−1

0 [A0| A∂]v
n
max+∆tA−1

0 [A0| A∂] f
(n,n+1)
max +

1

θσ
A−1

0 [A0| A∂] r
(n,n+1)
max =

= −A−1
0 A∂ gn+1 + vn

0 + A−1
0 A∂v

n
∂ + ∆tf

(n,n+1)
0 +

+∆tA−1
0 A∂ f

(n,n+1)
∂ +

1

θσ
r
(n,n+1)
0 +

1

θσ
A−1

0 A∂ r
(n,n+1)
∂ .

Regrouping the above inequality, we get

un+1 − vn
0 − ∆tf

(n,n+1)
0 − 1

θσ
r
(n,n+1)
0 ≤ −A−1

0 A∂(g
n+1 − vn

∂ − ∆tf
(n,n+1)
∂ − 1

θσ
r
(n,n+1)
∂ ).(46)

Hence, for the i-th coordinate of both sides in the above inequality we obtain

un+1
i − vn

max − ∆t f (n,n+1)
max − 1

θσ
r(n,n+1)
max ≤

≤
N∂
∑

j=1

(

−A−1
0 A∂

)

ij
(gn+1

j − vn
max − ∆t f (n,n+1)

max − 1

θσ
r(n,n+1)
max ) ≤ (47)

≤
(

N∂
∑

j=1

(

−A−1
0 A∂

)

ij

)

· max{0, max
j

{gn+1
j − vn

max}} ≤

≤ max{0, max
j

{gn+1
j − vn

max}} ≤ max{0, gn+1
max},

where we applied (C2) and (P3). Finally, isolating un+1
i , we obtain the re-

quired inequality.

Remark 5 Conditions (C1)–(C3) are ensured by the following simpler as-
sumptions

A−1
0 ≥ 0, (C1⋆)

A∂ ≤ 0, (C2⋆)

B ≥ 0. (C3⋆)

Theorem 3 Galerkin approximation for the solution of problem (1)–(5),
combined with the θ-method for time discretization (where θ ∈ (0, 1]), satis-
fies the discrete maximum principle (37) if

kij ≤ 0, i = 1, . . . , N, j = 1, . . . , N̄ , i 6= j, (C1′)

mij + θ∆t kij ≤ 0, i = 1, . . . , N, j = 1, . . . , N̄ , i 6= j, (C2′)

mii − (1 − θ)∆t kii ≥ 0, i = 1, . . . , N. (C3′)
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hK
j

K
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Figure 1: Tetrahedron K with denotations.

P r o o f : It is enough to show that (C1⋆)–(C3⋆) follow from the conditions
of the theorem. The relations (C1′) and (C3′) yield (C3⋆), whereas (C2⋆)
follows from (C2′). Condition (C1⋆) is valid in a view of [20, Corollary 3,
p. 85]), because A0 is, obviously, positive definite and symmetric matrix
with nonpositive off-diagonal entries provided by (C2′) (i.e., A0 is Stieltjes
matrix).

Remark 6 In a view of properties (17) of the basis functions and the as-
sumption θ > 0, condition (C2′), in fact, implies (C1′).

5 The validity of DMP on simplicial meshes

5.1 The entries of matrices M and K

From now on, we denote a simplex from Th by the symbol K and also use
denotation αK

ij for the angle between (d− 1)-dimensional facets FK
i and FK

j

of K which is opposite to the edge connecting vertices Bi and Bj, and let
hK

i (hK
j ) be the height of K from Bi(Bj) onto FK

i (FK
j ), see Figure 1.

The contributions to the mass matrix M over the simplex K are (cf. [5,
p. 201])

mij|K =

∫

K

φi φj dx = (1 + δij)
d!

(d + 2)!
measd K, (48)

where δij is Kronecker’s symbol.
In order to compute the entries of the matrix K, we shall use the following

formulae presented e.g. in [1, 24]:

∇φi · ∇φj|K = −measd−1F
K
i · measd−1F

K
j

(d measd K)2
cos αK

ij = −cos αK
ij

hK
i hK

j

(i 6= j), (49)
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∇φi · ∇φi|K =
(measd−1F

K
i )2

(d measd K)2
=

1

(hK
i )2

. (50)

5.2 Conditions on simplicial partitions and time-step

Lemma 2 Let the simplicial partition Th of Ω be such that for any pair of
distinct (d − 1)-dimensional facets FK

i and FK
j of any simplex K from Th,

we have

cos αK
ij

hK
i hK

j

≥ c

b (d + 1)(d + 2)
+

σ

b d(d + 1)

measd−1 (∂K ∩ ∂ΩR)

measd K
, (51)

where ∂K is the boundary of K. Then

kij ≤ 0, for i = 1, . . . , N, j = 1, . . . , N̄ , i 6= j.

P r o o f : Let Sij := supp φi ∩ supp φj. Then for kij, i 6= j, we have

kij = L(φj, φi) = b

∫

Ω

∇φj · ∇φi dx + c

∫

Ω

φjφi dx + σ

∫

∂ΩR

φjφi ds =

= b
∑

K⊆Sij

∫

K

∇φj · ∇φi dx + c
∑

K⊆Sij

∫

K

φjφi dx + σ
∑

K⊆Sij

∫

∂K∩∂ΩR

φjφi ds =

=
∑

K⊆Sij

(

b

∫

K

∇φj · ∇φi dx + c

∫

K

φjφi dx + σ

∫

∂K∩∂ΩR

φjφi ds
)

=

=
∑

K⊆Sij

(

−b cos αK
ij

hK
i hK

j

measd K+
c

(d + 1)(d + 2)
measd K+

σ

d(d + 1)
measd−1 (∂K∩∂ΩR)

)

.

In a view of (51) we immediately prove the lemma.

Remark 7 For the case c ≡ 0 and when the Robin boundary condition is
absent, the above requirement on the mesh is nothing else, but just the nonob-
tuseness property, which is only related to the shape of elements. However,
in the general case we need more stringent (strict acuteness) condition on
the shape of simplicial elements, and also the restriction on the size (value
of h) of the mesh.

Lemma 3 Let the simplicial partition Th of Ω and the time-step ∆t be such
that for any pair of distinct (d − 1)-dimensional facets FK

i and FK
j of any

simplex K from Th, we have

cos αK
ij

hK
i hK

j

≥ c + 1/(θ ∆t)

b (d + 1)(d + 2)
+

σ

b d(d + 1)

measd−1 (∂K ∩ ∂ΩR)

measd K
. (52)
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where ∂K is the boundary of K. Then

mij + θ∆t kij ≤ 0, for i = 1, . . . , N, j = 1, . . . , N̄ , i 6= j.

P r o o f : We observe that

mij+θ∆tkij = θ ∆t b

∫

Ω

∇φj·∇φi dx+(1+θ ∆t c)

∫

Ω

φjφi dx+θ ∆t σ

∫

∂ΩR

φjφi ds =

= θ ∆t b
∑

K⊆Sij

∫

K

∇φj·∇φi dx+(1+θ ∆t c)
∑

K⊆Sij

∫

K

φjφi dx+θ ∆t σ
∑

K⊆Sij

∫

∂K∩∂ΩR

φjφi ds =

=
∑

K⊆Sij

(

θ ∆t b

∫

K

∇φj·∇φi dx+(1+θ ∆t c)

∫

K

φjφi dx+θ ∆t σ

∫

∂K∩∂ΩR

φjφi ds
)

=

=
∑

K⊆Sij

(

−θ ∆t b
cos αK

ij

hK
i hK

j

measd K+
1 + θ ∆t c

(d + 1)(d + 2)
measd K+σ

θ ∆t

d(d + 1)
measd−1 (∂K∩∂ΩR)

)

.

In a view of (52) we immediately prove the lemma.

Lemma 4 Let the simplicial partition Th of Ω and the time-step ∆t be such
that for any simplex K from Th, we have

0 ≤ − 1

(hK
i )2

+
2
(

1
(1−θ)∆t

− c
)

b(d + 1)(d + 2)
− 2σ

bd(d + 1)

measd−1 (∂K ∩ ∂ΩR)

measd K
, (53)

where ∂K is the boundary of K. Then

mii − (1 − θ)∆t kii ≥ 0, i = 1, . . . , N.

P r o o f : Let Sii := supp φi. We get

mii − (1 − θ)∆t kii =

= −(1−θ) ∆t b

∫

Ω

∇φi·∇φi dx+(1−(1−θ) ∆t c)

∫

Ω

φiφi dx−(1−θ) ∆t σ

∫

∂ΩR

φiφi ds =

=
∑

K⊆Sii

(

−(1−θ)∆t b

∫

K

∇φi·∇φi dx+(1−(1−θ)∆t c)

∫

K

φiφi dx−(1−θ)∆tσ

∫

∂K∩∂ΩR

φiφi ds
)

=

=
∑

K⊆Sii

(−(1 − θ) ∆t b

(hK
i )2

measd K+
2(1 − (1 − θ)∆t c)

(d + 1)(d + 2)
measd K−2(1 − θ)σ ∆t

d(d + 1)
measd−1 (∂K∩∂ΩR)

)

.

In a view of (53) we immediately prove the lemma.

Summarizing the above results we can formulate the main

15



Theorem 4 Galerkin approximation for the solution of problem (1)–(5),
combined with the θ-method for time discretization (where θ ∈ (0, 1]), satis-
fies the discrete maximum principle (37) if an acute simplicial mesh is used
and the time-step satisfies the following (lower and upper) estimates:

1

∆t
≤ θ
(cos αK

ij b(d + 1)(d + 2)

hK
i hK

j

− σ(d + 2)measd−1 (∂K ∩ ∂ΩR)

d measd K
− c
)

, (54)

and

∆t ≤ 1

(1 − θ)
(

b(d+1)(d+2)

2(hK
i )2

+ σ(d+2)measd−1 (∂K∩∂ΩR)

d measd K
+ c
) . (55)

5.3 Comments on conditions

• As was already mentioned earlier (see Remark 6), condition (52) implies,
in fact, condition (51) for any (positive) value of ∆t.
• The second terms in the RHS’s of (51) and (52) are zeros for all simplices
K which are not adjacent to the part ∂ΩR of the solution domain boundary.
• Angle conditions (51) and (52) impose, in general, more severe condition
on acuteness and size for those simplices K which are adjacent to ∂ΩR than
for those in the other parts of the solution domain.
• For the particular case c = 0 and σ = 0, the final conditions (54) and

(55) reduce to some known [11, 10] requirements for DMPs.
• In the case θ = 1, we have no upper estimate for the time-step ∆t. It is
also clear that in a view of (54) we should exclude the case θ = 0. Also, the
value of θ should, in general, be taken sufficiently close to 1 to provide the
existence of ∆t satisfying conditions (54) and (55).
• For details and literature on how to construct acute (and also nonobtuse)
simplicial meshes, see [2].
• Our conditions are only sufficient, it is still possible to guarantee the

DMP without using the concept of Stieltjes matrix, see [15, 19] for the rele-
vant work in the elliptic case.

6 Numerical tests

In this section, we verify our theoretical results on a two-dimensional test
problem. We solve problem (1)–(5) with constant coefficient functions b = 1,
c = 100, and f = 0 in a trapezoidal spatial domain depicted in Figure 2. This
trapezoid is obtained by cutting off one of the corners of a regular triangle
with unit edge lengths.

On the top and on the bottom of the trapezoid the homogeneous Dirichlet
boundary condition is prescribed, that is g ≡ 0. On the left-hand and on
the right-hand sides we apply, respectively, Robin, and Neumann boundary
conditions. The coefficient functions in the boundary conditions are chosen
to be constant with q = −1, r = −2 and σ = 100. Naturally, for this
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problem, the continuous maximum principle (15) holds. In particular, the
maximum principle implies that the solution u is non-positive provided that
the initial function u0 is a non-positive function (see Remark 2).

D i r i c h l e t

D i r i c h l e t

R o b i n N e u m a n n

h

Figure 2: The spatial solution domain with a uniform triangular spatial mesh.

We are going to solve the continuous problem numerically with the finite
element method given in Section 3. We use piecewise linear basis functions on
uniform triangular meshes (Figure 2). The mesh size is denoted by h. With
these basis functions, the elements of the mass and stiffness matrices can be
computed relatively easily and the one-step iteration (32) can be constructed
fast.

In order to guarantee the maximum principle for the numerical solution
it is enough to choose the spatial and temporal discretization parameters
according to the conditions (51)–(53). Condition (51) simplifies to

25h2 +
200h√

3
≤ 2 (56)

and results in an upper bound for the mesh size: h ≤ −4/
√

3 +
√

1218/15 ≈
0.0173. Thus let h = 1/64 = 0.015625. Then, conditions (52) and (53) give
the requirement

1

θ
(

8/h2 − 800/(
√

3h) − 100
) ≤ ∆t ≤ 1

(1 − θ)
(

8/h2 + 800/(
√

3h) + 100
)

(57)
for the time-step. This condition can be satisfied only for θ values not less
than θmin ≈ 0.9526. Let us set θ = 0.99. Then, based on condition (57)
and the assumption that h = 1/64, the time-step should be chosen from the
interval

[0.0003250, 0.001603]. (58)

Let us suppose that the initial approximation presented in Figure 3 is
a finite element approximation of a sufficiently smooth non-positive initial
function u0 that has a spike near the bottom edge of the trapezoid. With
this initial approximation the numerical solution should be non-positive.
Choosing, however, the time-step outside the interval (58), say ∆t = 0.00001
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Figure 3: The approximation of a non-positive initial function on the given
grid with h = 1/64.

and ∆t = 0.01, we obtain that the solution function has also positive values
(Figure 4). In the first case, positive values occur in the first 137 iteration
steps, while in the second case only in the first step. The numerical tests

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

−10

−8

−6

−4

−2

0

2

x 10
−3

Figure 4: Left: the approximation at the second time level with ∆t =
0.00001. Right: the approximation at the first time level with ∆t = 0.01. The
figures show only the critical region near the bottom edge of the trapezoid.

show that with the given initial function the choice of the time-step from
the interval [0.00005645, 0.00825] results in a qualitatively adequate solution.
The length of this interval is approximately twice bigger than that of the in-
terval (58) in the sufficient condition. The above two time steps, which gave
false numerical results, were chosen outside of this interval. A qualitatively
adequate solution with the time step ∆t = 0.00006 at the 11-th time level
can be seen in Figure 5.

Remark 8 Estimates (57) also show that our sufficient conditions cannot
guarantee the numerical maximum principle for the Crank-Nicolson time dis-
cretization scheme not even for sufficiently small mesh sizes.
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[13] J. Karátson, S. Korotov, Discrete Maximum Principles for Finite
Element Solutions of Nonlinear Elliptic Problems with Mixed Boundary
Conditions , Numer. Math. 99 (2005), pp. 669–698.

[14] H. B. Keller, The Numerical Solution of Parabolic Partial Differential
Equations , In: Mathematical Methods for Digital Computers (eds. A.
Ralston, H.S. Wilf), New York, 1960, pp. 135–143.
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