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1 Introduction

The numerical approximations of models described by partial differential
equations are naturally required to mirror some basic qualitative properties of
the exact solutions. For parabolic equations, such a basic qualitative property
is the (continuous) maximum principle (CMP). Several variants of CMPs
exist, see e.g. [16, 26]. Its discrete analogues, the so-called discrete maximum
principles (DMPs) for parabolic problems were first presented and analysed
in the papers [17, 22]. If the finite element method (FEM) is employed for
the spatial discretization, then the corresponding DMPs are normally ensured
by imposing certain geometrical restrictions on the spatial meshes used, see,
e.g., [10, 12, 17, 19] and the references therein. In addition, the time-steps
have to be often chosen between certain lower and upper bounds. A related
important discrete qualitative property of the numerical solutions is the so-
called nonnegativity preservation, investigated e.g. in [8, 9]. The connection
of nonnegativity preservation to DMPs is analysed e.g. in [7, 9, 10, 12].

In this paper, we prove discrete maximum principles for nonlinear parabolic
problems, which has never been considered so far according to the authors’
knowledge. The results are natural extensions of those in [20] (for nonlinear
elliptic problems) and [13] (for linear parabolic problems).

The paper is organized as follows. In Section 2, we formulate the nonlinear
parabolic problem. The discretization scheme is given in detail in Section 3.
Some preliminaries on linear problems and the maximum principle are given
in Section 4. The DMP and related nonnegativity preservation, and the
conditions for their validity are presented in Section 5: we consider two types
of growth conditions for the reaction terms, then we also discuss sufficient
geometric conditions on the FE meshes used and finally give two relevant
real-life examples.

2 The problem

In the sequel, we consider the following mixed nonlinear parabolic problem.
Find a function u = u(x, t) such that

∂u

∂t
−div

(

k(x, t, u,∇u)∇u
)

+ q(x, t, u) = f(x, t) in QT := Ω× (0, T ), (1)

where Ω is a bounded domain in Rd and T > 0. The boundary and initial
conditions are given as

u(x, t) = g(x, t) for (x, t) ∈ ΓD × [0, T ], (2)

k(x, t, u,∇u)∂u
∂ν

+ s(x, t, u) = γ(x, t) for (x, t) ∈ ΓN × [0, T ], (3)

u(x, 0) = u0(x) for x ∈ Ω, (4)

respectively. We impose the following

Assumptions 2.1.
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(A1) Ω is a bounded polytopic domain in Rd with a Lipschitz continuous
boundary ∂Ω; ΓN , ΓD ⊂ ∂Ω are open sets, such that ΓN ∩ ΓD = ∅ and
ΓN ∪ ΓD = ∂Ω.

(A2) The scalar functions k : QT × Rd+1 → R, q : QT × R → R and
s : ΓN × [0, T ]×R → R are measurable and bounded, further, q and s
are continuously differentiable w.r.t. t, on their domains of definition.
Further, f ∈ L∞(QT ), γ ∈ L2(ΓN × [0, T ]), g ∈ L∞(ΓD × [0, T ]) and
u0 ∈ L∞(Ω).

(A3) There exist positive constants µ0 and µ1 such that

0 < µ0 ≤ k(x, t, ξ, η) ≤ µ1 (5)

for all (x, t, ξ, η) ∈ Ω × (0, T ) × R × Rd.

(A4) Let 2 ≤ p1 if d = 2, or 2 ≤ p1 < 2d
d−2

if d > 2, further, let 2 ≤ p2 < 2.5 if
d = 2 or 3 and p2 = 2 if d > 3. There exist constants α1, α2, β1, β2 ≥ 0
such that for any x ∈ Ω (or x ∈ ΓN , resp.), t ∈ (0, T ) and ξ ∈ R,

0 ≤
∂q(x, t, ξ)

∂ξ
≤ α1 + β1|ξ|

p1−2, 0 ≤
∂s(x, t, ξ)

∂ξ
≤ α2 + β2|ξ|

p2−2.

(6)

We define weak solutions in the usual way as follows. Let H1
D(Ω) := {u ∈

H1(Ω) : u|ΓD
= 0}. A function u : QT → R is called the weak solution of

the problem (1)–(4) if u is continuously differentiable with respect to t and
u(., t) ∈ H1

D(Ω) for all t ∈ (0, T ) and satisfies the relation

∫

Ω

∂u

∂t
v dx+

∫

Ω

(

k(x, t, u,∇u)∇u ·∇v + q(x, t, u)v
)

dx+

∫

ΓN

s(x, t, u)v dσ (7)

=

∫

Ω

fv dx +

∫

ΓN

γv dσ (∀v ∈ H1
D(Ω), t ∈ (0, T )),

further,

u = g on [0, T ] × ΓD, u|t=0 = u0 in Ω, (8)

Here and in the sequel, equality of functions in Lebesgue or Sobolev spaces
is understood almost everywhere.

3 Discretization scheme

The discretization of problem (1)–(4) is built up in a standard way. The
presentation below is the modification of that in [12] to the nonlinear case.
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3.1 Semidiscretization in space

Let Th be a finite element mesh over the solution domain Ω ⊂ Rd, where h
stands for the discretization parameter. We choose basis functions φ1, ..., φm̄,
assumed to be continuous and to satisfy

φi ≥ 0 (i = 1, . . . , m̄),
m̄
∑

i=1

φi ≡ 1, (9)

further, that there exist node points Pi ∈ Ω (i = 1, . . . , m̄) such that

φi(Pj) = δij, (10)

where δij is the Kronecker symbol. (These conditions hold e.g. for standard
linear, bilinear or prismatic FEM.) Let Vh denote the finite element subspace
spanned by the above basis functions:

Vh = span{φ1, ..., φm̄} ⊂ H1(Ω).

Now, let m < m̄ be such that

P1, ..., Pm (11)

are the vertices that lie in Ω or on ΓN , and let

Pm+1, ..., Pm̄ (12)

be the vertices that lie on ΓD. Then the basis functions φ1, ..., φm satisfy
the homogeneous Dirichlet boundary condition on ΓD, i.e., φi ∈ H1

D(Ω). We
define

V 0
h = span{φ1, ..., φm} ⊂ H1

D(Ω).

Then the semidiscrete problem for (7) with initial-boundary conditions
(8) reads as follows: find a function uh = uh(x, t) such that

uh(x, 0) = uh
0(x), x ∈ Ω,

uh(., t) − gh(., t) ∈ V h
0 , t ∈ (0, T ),

and
∫

Ω

∂uh

∂t
vh dx+

∫

Ω

(

k(x, t, uh,∇uh)∇uh·∇vh+q(x, t, uh)vh

)

dx+

∫

ΓN

s(x, t, uh)vh dσ

=

∫

Ω

fvh dx +

∫

ΓN

γv dσ (∀vh ∈ V h
0 , t ∈ (0, T ).) (13)

In the above formulae, the functions uh
0 and gh(., t) (for any fixed t) are

suitable approximations of the given functions u0 and g(., t), respectively. In
particular, we will use the following form to describe gh:

gh(x, t) =

m∂
∑

i=1

gh
i (t)φm+i(x), (14)
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where

m∂ := m̄ − m.

We note that, based on the consistency of the initial and boundary conditions
(g(s, 0) = u0(s), s ∈ ∂Ω), we obtain

g(Pm+i, 0) = u0(Pm+i), i = 1, . . . ,m∂.

We seek the numerical solution in the form

uh(x, t) =
m
∑

i=1

uh
i (t)φi(x) + gh(x, t) (15)

and notice that it is sufficient that uh satisfies (13) for vh = φi, i = 1, 2, . . . ,m,
only. Then, introducing the notation

uh(t) = [uh
1(t), . . . , u

h
m(t), gh

1 (t), . . . , gh
m∂

(t)]T , (16)

we are led to the following Cauchy problem for the system of ordinary differ-
ential equations:

M
duh

dt
+ G(uh(t)) = f(t), (17)

uh(0) = uh
0 = [u0(P1), . . . , u0(Pm), gh

1 (0), . . . , gh
m∂

(0)]T , (18)

where

M = [Mij]m×m̄, Mij =

∫

Ω

φj(x)φi(x) dx, (19)

G(uh(t)) = [G(uh(t))i]i=1,...,m ,

G(uh(t))i =

∫

Ω

(

k(x, t, uh,∇uh)∇uh·∇φi+q(x, t, uh)φi

)

dx+

∫

ΓN

s(x, t, uh)φi dσ(x) ,

f(t) = [fi(t)]i=1,...,m, fi(t) =

∫

Ω

f(x, t)φi(x) dx +

∫

ΓN

γ(x, t)φi(x) dσ(x).

The solution uh = uh(t) of problem (17)–(18) is called the semidiscrete solu-
tion. Its existence and uniqueness is ensured by Assumptions 2.1, since then
G is locally Lipschitz continuous.

3.2 Full discretization

In order to get a fully discrete numerical scheme, we choose a time-step ∆t
and denote the approximation to uh(n∆t) and f(n∆t) by un and fn (for
n = 0, 1, 2, . . . , nT , where nT ∆t = T ), respectively. To discretize (17) in
time, we apply the so-called θ-method with some given parameter

θ ∈ (0, 1].

6



We note that the case θ = 0, which is otherwise also acceptable, will be
excluded later by condition (53). This gives no strong difference, since the
presence of M makes the scheme not explicit even for θ = 0.

We then obtain a system of nonlinear algebraic equations of the form

M
un+1 − un

∆t
+ θG(un+1)+ (1− θ)G(un) = f (n,θ) := θfn+1 +(1− θ)fn, (20)

n = 0, 1, . . . , nT − 1, which can be rewritten as a recursion

Mun+1 + θ∆tG(un+1) = Mun − (1 − θ)∆tG(un) + ∆t f (n,θ) (21)

with u0 = uh(0). Furthermore, we will use notations

P(un+1) := Mun+1 + θ∆tG(un+1), Q(un) := Mun − (1 − θ)∆tG(un),
(22)

respectively. Then, the iteration procedure (21) can be also written as

P(un+1) = Q(un) + ∆t f (n,θ). (23)

We note that finding un+1 in (23) requires the solution of a nonlinear
algebraic system. The mass matrix M is positive definite, and it follows
from Assumptions 2.1 that u 7→ G(u) has positive semidefinite derivatives.
Therefore, by the definition in (22), the function u 7→ P(u) has regular
derivatives. This ensures the unique solvability of (23) and, under standard
local Lipschitz conditions on the coefficients, also the convergence of the
damped Newton iteration, see e.g. [14].

4 Preliminaries: linear problems and the max-

imum principle

An important and widely studied special case of (1)–(4) is the linear problem
with Dirichlet boundary conditions

∂u

∂t
− k∆u + c(x, t)u = f(x, t), (24)

u = g on [0, T ] × ∂Ω, u|t=0 = u0 in Ω (25)

where k > 0 is constant and c ≥ 0. If the data and solution are assumed
to be sufficiently smooth, then problem (24)–(25) is known to satisfy the
continuous maximum principle, which important property is a starting point
for our study:

min{0; min
Γt1

u} + t1 min{0; min
Qt1

f} ≤ u(x, t1) ≤

≤ max{0; max
Γt1

u} + t1 max{0; max
Qt1

f}
(26)
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for all x ∈ Ω and any fixed t1 ∈ (0, T ), where Qt1 := Ω × [0, t1], and Γt1

denotes the parabolic boundary, i.e., Γt1 := (∂Ω × [0, t1]) ∪ (Ω × {0}). A
related property, which follows from the above [11], is the continuous non-
negativity preservation principle: relations f ≥ 0, g ≥ 0 and u0 ≥ 0 imply

u(x, t) ≥ 0 (27)

for all (x, t) ∈ QT .

In the discrete case, the ODE system (17) now becomes a linear system

M
duh

dt
+ Kuh(t) = f , (28)

where K =
∫

Ω

(

k∇φi · ∇φj + cφiφj

)

. The full discretization is

M
un+1 − un

∆t
+ θKun+1 + (1 − θ)Kun = f (n,θ) := θfn+1 + (1 − θ)fn. (29)

Then (22)–(23) can be simplified: introducing the matrices

A := M + θ∆tK, B := M − (1 − θ)∆tK, (30)

equation (29) can now be rewritten as

Aun+1 = Bun + ∆t f (n,θ). (31)

To formulate the discrete maximum principle, let us define the following
values:

gn
min = min{0, gn

1 , . . . , gn
m∂

}, gn
max = max{0, gn

1 , . . . , gn
m∂

}, (32)

un
min = min{0, gn

min, un
1 , . . . , u

n
m}, un

max = max{0, gn
max, u

n
1 , . . . , u

n
m}, (33)

for n = 0, 1, . . . , nT , and

f
(n,n+1)
min := inf

x∈Ω,
τ∈(n∆t,(n+1)∆t)

f(x, τ), f
(n,n+1)
max := sup

x∈Ω,
τ∈(n∆t,(n+1)∆t)

f(x, τ), (34)

for n = 0, 1, . . . , nT − 1. If f is only in L∞(Ω), then the above infima and
suprema will mean essential infima and suprema, respectively. Then the dis-
crete analogue of the continuous maximum principle (26) can be formulated
as follows:

min{0, g
(n+1)
min , u

(n)
min} + ∆t min{0, f

(n,n+1)
min } ≤

un+1
i ≤ max{0, g

(n+1)
max , u

(n)
max} + ∆t max{0, f

(n,n+1)
max }.

(35)

This will be denoted by DMP and it corresponds to the continuous maximum
principle for one time-level, i.e., when t1 ∈ [n∆t, (n + 1)∆t].

It has been proved that the full discretization of the linear problem sat-
isfies the DMP (35) in the following case:
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Theorem 4.1 [17, 12]. Let the basis functions satisfy (9)–(10), and let the
following conditions hold for the matrices (30):

(i) Aij ≤ 0 (i 6= j, i = 1, ...,m, j = 1, ..., m̄);

(ii) Bii ≥ 0 (i = 1, ...,m).

Then the Galerkin solution of the problem (24)–(25), combined with the
θ-method in the time discretization, satisfies the discrete maximum principle
(35).

We note that in the original form, see e.g. [12, Thm. 6], it is also assumed
that Kij ≤ 0 (i 6= j, i = 1, ...,m, j = 1, ..., m̄). However, now by our
assumption θ > 0, using (9) and (19) we have Mij ≥ 0, hence it follows from
assumption (i) and (30) that Kij = (1/θ∆t)(Aij − Mij) ≤ 0.

The above result has been extended recently to mixed boundary value
problems [13]. Let the boundary conditions in (25) be replaced by

u = g on [0, T ] × ΓD, k∇u · ν = q on [0, T ] × Γ0
N , (36)

k∇u · ν + σu = ̺ on [0, T ] × Γ1
N ,

where σ > 0 is constant. If the conditions of Theorem 4.1 hold and q ≤ 0,
then

un+1
i ≤ max{0, g(n+1)

max , u(n)
max} + ∆t max{0, f (n,n+1)

max } +
1

θ
max{0,

(̺

σ

)(n,n+1)

max
}.

(37)
In [13] a constant σ is considered for simplicity, in which case σ is simply a

constant factor above and ̺
(n,n+1)
max is defined analogously to (34). However,

their proof can be rewritten exactly in the same way for a variable coefficient
σ = σ(x, τ), simply estimating ̺/σ by its suprema, in which case we have
the DMP (37) with

(̺

σ

)(n,n+1)

max
:= sup

x∈Γ1
N

,

τ∈(n∆t,(n+1)∆t)

̺(x, τ)

σ(x, τ)
. (38)

Remark 4.1 The indices 1, ...,m that arise in (33) now correspond to node
points in the interior of Ω or on ΓN , as in (11), and accordingly, the other m∂

indices involved in g
(n+1)
max in (37) correspond to the values on ΓD. That is,

whereas the DMP (35) involves the values of g on ∂Ω, the DMP (37) involves
the values of g on ΓD only.

5 The discrete maximum principle for the non-

linear problem

5.1 Reformulation of the problem

We can rewrite problem (7) as follows. Let

r(x, t, ξ) :=

∫ 1

0

∂q

∂ξ
(x, t, αξ) dα, z(x, t, ξ) :=

∫ 1

0

∂s

∂ξ
(x, t, αξ) dα (39)

9



(for any x ∈ Ω, t > 0, ξ ∈ R),

f̂(x, t) := f(x, t)−q(x, t, 0), γ̂(x, t) := γ(x, t)−s(x, t, 0) (x ∈ Ω, t > 0).

Then the Newton-Leibniz formula yields for all x, t, ξ that

q(x, t, ξ) − q(x, t, 0) = r(x, t, ξ) ξ, s(x, t, ξ) − s(x, t, 0) = z(x, t, ξ) ξ.

Subtracting q(x, t, 0) and s(x, t, 0) from (1) and (3), respectively, we thus
obtain that problem (7) is equivalent to
∫

Ω

∂u

∂t
v dx + B(u; u, v) =

∫

Ω

f̂v dx +

∫

ΓN

γ̂v dσ (∀v ∈ H1
D(Ω), t ∈ (0, T )),

(40)
where

B(w; u, v) :=

∫

Ω

(

k(x, t, w,∇w)∇u ·∇v + r(x, t, w)uv
)

dx+

∫

ΓN

z(x, t, w)uv dσ

(41)
(w, u, v ∈ H1

D(Ω)).

Then the semidiscretization of the problem reads as follows: find a func-
tion uh = uh(x, t) such that

uh(x, 0) = uh
0(x), x ∈ Ω,

uh(., t) − gh(., t) ∈ V h
0 , t ∈ (0, T ),

and
∫

Ω

∂uh

∂t
vh dx+B(uh; uh, vh) =

∫

Ω

f̂vh dx+

∫

ΓN

γ̂vh dσ (∀vh ∈ V h
0 , t ∈ (0, T )).

Proceeding as in (15)–(17), the Cauchy problem for the system of ordinary
differential equations (17) takes the following form:

M
duh

dt
+ K(uh)uh = f̂ , (42)

uh(0) = uh
0 = [u0(P1), . . . , u0(Pm), gh

1 (0), . . . , gh
m∂

(0)]T , (43)

where M is as in (17),

K(uh) = [K(uh)ij]m×m̄ , K(uh)ij = B(uh; φj, φi),

f̂(t) = [f̂i(t)]i=1,...,m, f̂i(t) =

∫

Ω

f̂(x, t)φi(x) dx +

∫

ΓN

γ̂(x, t)φi(x) dσ(x).

(44)
The full discretization reads as

Mun+1 + θ∆tK(un+1)un+1 = Mun − (1 − θ)∆tK(un)un + ∆t f̂ (n,θ). (45)
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Since we have set G(uh) = K(uh)uh in (17), the expressions (22)–(23) be-
come

P(un+1) =
(

M+θ∆tK(un+1)
)

un+1, Q(un) =
(

M−(1−θ)∆tK(un)
)

un,

respectively. Then, letting

A(uh) := M+θ∆tK(uh), B(uh) := M−(1−θ)∆tK(uh) (uh ∈ Rm̄),
(46)

the iteration procedure (45) takes the form

A(un+1)un+1 = B(un)un + ∆t f̂ (n,θ), (47)

which is similar to (31), but now the coefficient matrices depend on un+1

resp. un.

5.2 The DMP: problems with sublinear growth

Let us consider Assumptions 2.1, where we let p1 = p2 = 2 in assumption
(A4), i.e. we have

Assumption (A4’): there exist constants α1, α2 ≥ 0 such that for any
x ∈ Ω (or x ∈ ΓN , resp.), t ∈ (0, T ) and ξ ∈ R,

0 ≤
∂q(x, t, ξ)

∂ξ
≤ α1, 0 ≤

∂s(x, t, ξ)

∂ξ
≤ α2. (48)

In what follows, we will need the standard notion of (patch-)regularity of
the considered meshes (cf. [3]).

Definition 5.1 Let Ω ⊂ Rd and let us consider a family of FEM subspaces
V = {Vh}h→0. The corresponding family of FE meshes will be called regular
if there exist constants c0, c1 > 0 such that for any h > 0 and basis function
φp,

c1h
d ≤ meas(supp φp), diam(supp φp) ≤ c0h (49)

(where meas denotes d-dimensional measure and supp denotes the support,
i.e. the closure of the set where the function does not vanish).

Note that the upper bound in (49) implies the following estimates for the
corresponding supports and their boundaries:

meas(supp φp) ≤ c2h
d and meas(∂

(

supp φp)
)

≤ c2h
d−1. (50)

Theorem 5.1 Let problem (1)–(4) satisfy Assumptions 2.1, such that we
let p1 = p2 = 2 in (6), i.e. (A4) reduces to assumption (A4’) above. us
consider a family of finite element subspaces V = {Vh}h→0 such that the
basis functions satisfy (9)–(10), and the family of associated FE meshes is
regular as in Definition 5.1. Let the following assumptions hold:
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(i) for any i = 1, ...,m, j = 1, ..., m̄ (i 6= j), if meas(supp φi ∩ supp φj) >
0 then

∇φi · ∇φj ≤ 0 on Ω and

∫

Ω

∇φi · ∇φj ≤ −K0 hd−2 (51)

with some constant K0 > 0 independent of i, j and h;

(ii) the mesh parameter h satisfies

h < h0 :=
2µ0K0

c2α2 +
√

c2
2α

2
2 + 4µ0K0c2α1

; (52)

(iii) we have

∆t ≥
c2h

2

θ
(

µ0K0 − α1c2h2 − α2c2h
) ; (53)

(iv) if θ < 1 then

∆t ≤
1

(1 − θ) R(h)
, (54)

where

R(h) := max
i=1,...,m

[

∫

Ω

(

µ1|∇φi|
2 + α1φ

2
i

)

+
∫

ΓN

α2 φ2
i

]

∫

Ω
φ2

i

. (55)

Then for all uh ∈ Rm̄, the matrices A(uh) and B(uh), defined in (46),
have the following properties:

(1) A(uh)ij ≤ 0 (i 6= j, i = 1, ...,m, j = 1, ..., m̄);

(2) B(uh)ii ≥ 0 (i = 1, ...,m).

Proof. (1) We have

A(uh)ij := Mij + θ∆tK(uh)ij =

∫

Ω

φjφi + θ∆tB(uh; φj, φi) (56)

=

∫

Ω

φjφi+ θ∆t





∫

Ω

(

k(x, t, uh,∇uh)∇φj · ∇φi + r(x, t, uh)φjφi

)

+

∫

ΓN

z(x, t, uh)φjφi



 .

Let Ωij := supp φi ∩ supp φj and Γij := ∂Ωij. Here, by (9) and (50),
∫

Ω

φjφi ≤ meas(Ωij) ≤ c2h
d and

∫

ΓN

φjφi ≤ meas(Γij) ≤ c2h
d−1, (57)

and similarly,
∫

Ω

r(x, t, uh)φjφi ≤ α1c2h
d,

∫

ΓN

z(x, t, uh)φjφi ≤ α2c2h
d−1 (58)
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since by (39), r and z inherit (48). By (5) and (51),

∫

Ω

k(x, t, uh,∇uh)∇φj · ∇φi ≤ −µ0K0 hd−2 . (59)

Altogether, we obtain

A(uh)ij ≤ c2h
d

[

1 + θ∆t

(

−
µ0K0

c2

1

h2
+ α1 +

α2

h

)]

.

Since h < h0 for h0 defined in (52), it readily follows that we have a negative
coefficient of θ∆t above, and from (53) we obtain that the expression in the
large brackets is nonpositive, hence A(uh)ij ≤ 0.

(2) Analogously to (56), we have

B(uh)ii := Mii − (1 − θ)∆tK(uh)ii ≥ 0

if and only if

∫

Ω

φ2
i ≥ (1−θ)∆t





∫

Ω

(

k(x, t, uh,∇uh)|∇φi|
2 + r(x, t, uh)φ

2
i

)

+

∫

ΓN

z(x, t, uh) φ2
i



 .

The latter holds for all ∆t if

θ = 1

(i.e. the scheme is implicit), and for all ∆t that satisfies (55) if θ < 1.

Now we can derive the corresponding discrete maximum principle:

Corollary 5.1 Let the conditions of Theorem 5.1 hold, and let γ̂(x, t) :=
γ(x, t) − s(x, t, 0) ≤ 0. Then

un+1
i ≤ max{0, g(n+1)

max , u(n)
max} + ∆t max{0, f̂ (n,n+1)

max }. (60)

Proof. Our reformulated problem has the right-hand side f̂(x, t) :=
f(x, t)− q(x, t, 0), which is in L∞(QT ) by Assumption 2.1 (A2). Further, by
(40)–(41), we have the Neumann boundary condition

k(x, t, u,∇u)∇u · ν + z(x, t, u)u = γ̂(x, t) on ΓN ,

where z ≥ 0 and γ̂ ≤ 0. We can rewrite our boundary conditions to match
(36): let Γ0

N and Γ1
N be the portions where z ≡ 0 and z > 0, respectively.

Then, by assumption, q := γ̂|Γ0
N
≤ 0 and ̺ := γ̂|Γ1

N
≤ 0. Therefore (37) can

be applied (with f̂) and its last term can be dropped, whence we obtain (60).
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Remark 5.1 Note that the DMP (60) involves the values of g on ΓD, see also
Remark 4.1. Besides that, (60) is formally identical to the upper part of (35),
and could in fact be derived from it directly as an alternate proof. Namely,
one can apply Theorem 4.1 as an algebraic result for the ODE system (42).
Here f is replaced by f̂ that also involves the values of γ̂, see (44). However,
by our assumption γ̂ ≤ 0, we obtain a further upper bound by dropping the
integrals with γ̂, and we are thus led to (60).

Remark 5.2 (Discussion of the assumptions in Theorem 5.1.)

(i) Assumption (i) can be ensured by suitable geometric properties of the
space mesh, see subsection 5.4 below.

(ii) The value of h0 contains given or computable constants from the
assumptions on the coefficients, the mesh regularity and geometry.

(iii) The lower bound in (53) is asymptotically

∆t ≥ O(h2) (61)

as h → 0, and the constants are similarly computable.
(iv) If θ = 1, i.e. the scheme is implicit, then there is no upper restriction

on ∆t. If θ < 1, then it can be often proved (e.g. for popular simplicial,
bilinear and prismatic elements) that R(h) = O(h−2) in (55), hence ∆t ≥
O(h2) as h → 0, which yields with (61) the usual condition

∆t = O(h2) (62)

(as h → 0) for the space and time discretizations. In addition, the lower
bound in (53) must be smaller than the upper bound in (54): in view of the
factor 1− θ in the latter, this gives a restriction on θ to be close enough to 1.

Remark 5.3 Let us consider problem (1)–(4) with principal parts only, i.e.
when q ≡ s ≡ 0:

∂u

∂t
− div

(

k(x, t, u,∇u)∇u
)

= f(x, t) in QT := Ω × (0, T ),

u(x, t) = g(x, t) for (x, t) ∈ ΓD × [0, T ],

k(x, t, u,∇u)∂u
∂ν

= γ(x, t) for (x, t) ∈ ΓN × [0, T ],

u(x, 0) = u0(x) for x ∈ Ω,

Then Assumptions (ii)-(iv) of Theorem 5.1 become much simplified, since
α1 = α2 = 0. Namely, assumption (ii) is dropped since formally h0 = ∞, i.e.
there is no upper bound on h. Assumptions (iii)-(iv) read as follows:

∆t ≥
c2

θµ0K0

h2; if θ < 1 then ∆t ≤
1

µ1 (1 − θ)
min

i=1,...,m

∫

Ω
φ2

i
∫

Ω

|∇φi|2
.

(63)
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Let us now return to the statement (60). By reversing signs in Corollary
5.1, we obtain the corresponding discrete minimum principle:

Corollary 5.2 Let the conditions of Theorem 5.1 hold, and let γ̂(x, t) :=
γ(x, t) − s(x, t, 0) ≥ 0. Then

un+1
i ≥ min{0, g

(n+1)
min , u

(n)
min} + ∆t min{0, f̂

(n,n+1)
min }. (64)

An important special case is the discrete nonnegativity preservation prin-
ciple, the discrete analogue of (27):

Theorem 5.2 Let the conditions of Theorem 5.1 hold, and let f̂ ≥ 0, g ≥ 0,
γ̂ ≥ 0 and u0 ≥ 0. Then the discrete solution satisfies

un
i ≥ 0 (n = 0, 1, ..., nT , i = 1, ...,m).

Proof. Assumptions f̂ ≥ 0, g ≥ 0 and γ̂ ≥ 0 imply g
(n+1)
min ≥ 0 and

f̂
(n,n+1)
min for all n and i, hence (64) becomes

un+1
i ≥ min{0, u

(n)
min}.

Here assumption u0 ≥ 0 implies u
(0)
min ≥ 0, hence we obtain by induction that

u
(n)
min ≥ 0 for all n.

By Theorem 5.2, uh is nonnegative in each node point. Properties (9)–
(10) of the basis functions imply that the FEM solution uh(., n∆t) is also
nonnegative for all time levels n∆t. If, in addition, we extend the solutions
to QT with values between those on the neighbouring time levels, e.g. with
the method of lines, then we obtain that the discrete solution satisfies

uh ≥ 0 on QT .

5.3 The DMP: problems with superlinear growth

In this subsection we allow stronger growth of the nonlinearities q and s than
in the above, i.e. we return to Assumption 2.1 (A4). For this we need some
extra technical assumptions and results.

Let us first summarize the additional conditions.

Assumptions 5.3.

(B1) We restrict ourselves to the case of implicit scheme:

θ = 1.

(B2) Vh is made by linear , bilinear or prismatic elements.

(B3) The coefficient on ΓN satisfies γ̂(x, t) := γ(x, t)−s(x, t, 0) ≡ 0, further,
ΓD 6= ∅.

15



(B4) The exact solution satisfies u(., t) ∈ W 1,q(Ω) for some q > 2 (if d = 2)
or some q ≥ 2d/(d − (d − 2)(p1 − 2)) (if d ≥ 3) for all t ∈ [0, T ].

(B5) The discretization satisfies Mp1 := supt∈[0,T ] ‖u(., t) − uh(., t)‖Lp1 (Ω) <
∞.

Now, by [1], under Assumption 2.1 (A4), we recall the Sobolev embedding
estimates

‖v‖Lp1 (Ω) ≤ CΩ,p1‖v‖H1
D
, ‖v‖Lp2 (ΓN ) ≤ CΓN ,p2‖v‖H1

D
(∀v ∈ H1

D(Ω)) (65)

with some constants CΩ,p1 , CΓN ,p2 > 0 independent of v.

Lemma 5.1 Let Vh be made by linear , bilinear or prismatic elements. Then
there exists a constant cp2 > 0 such that

‖v‖Lp2 (ΓN ) ≤ cp2h
−1‖v‖L2(Ω) (v ∈ Vh). (66)

Proof. We have

‖v‖2
H1

D
:=

∫

Ω

|∇v|2 ≤

∫

Ω

v2 max
v∈Vh

∫

Ω

|∇v|2

∫

Ω
v2

≤ const. · R(h)

∫

Ω

v2 ,

where R(h) comes from (55) and, as seen before, satisfies R(h) = O(h−2).
This, combined with (65), yields the required estimate.

Now we consider the full discretization (45) for θ = 1:

Mun+1 + ∆tK(un+1)un+1 = Mun + ∆t f̂ (n). (67)

Let un+1 ∈ Vh denote the function with coefficient vector un+1, and let
fn(x) := f(x, n∆t). Then, by the definition of the mass and stiffness matri-
ces, (67) implies

∫

Ω

un+1v+∆t B(un+1; un+1, v) =

∫

Ω

unv+∆t
(

∫

Ω

f̂nv+

∫

ΓN

γ̂nv
)

(v ∈ Vh).

(68)
Here, by assumption (B3), the integral on ΓN vanishes, further, recall that
f̂ ∈ L∞(QT ) by Assumption 2.1 (A2).

Lemma 5.2 If Assumptions 5.3 hold, then for all t ∈ [0, T ]

‖u(., t)‖Lp1 (Ω) ≤ ‖u0‖Lp1 (Ω) + T (meas(Ω))
1

p1 ‖f̂‖L∞(QT ) ,

wherein the r.h.s. is independent of t.
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Proof. Let v = |u|p1−2u, which satisfies ∇v = (p1 − 1)|u|p1−2∇u. By
assumption (B4), |∇u| ∈ Lq(Ω), and it is easy to see from the condition on
q that |u|p1−2 ∈ Lq′(Ω) where (1/q) + (1/q′) = 1/2; these imply by Hölder’s
inequality that |∇v| ∈ L2(Ω). That is, for all fixed t we have v(., t) ∈ H1

D(Ω),
hence we can set it in (40):

∫

Ω

∂u

∂t

(

|u|p1−2u
)

dx+B(u; u, |u|p1−2u) =

∫

Ω

f̂ |u|p1−2u dx (∀v ∈ H1
D(Ω), t ∈ (0, T )),

(69)
where we have used γ̂ ≡ 0. Let

N(t) := ‖u(., t)‖p1

Lp1 (Ω) =

∫

Ω

|u(x, t)|p1 dx ,

then N ′(t) =
∫

Ω

p1 |u|
p1−2u ∂u

∂t
dx. Further, using (41) and that ∇v = (p1 −

1)|u|p1−2∇u, we obtain

B(u; u, |u|p1−2u) =

∫

Ω

(

k(x, t, u,∇u)(p1 − 1)|u|p1−2|∇u|2

+r(x, t, u)|u|p1

)

dx +

∫

ΓN

z(x, t, u)|u|p1 dσ ≥ 0

hence the left-hand side of (69) is estimated below by N ′(t)/p1. Using
Hölder’s inequality for the right-hand side of (69), we then obtain

1

p1

N ′(t) ≤ ‖f̂(., t)‖Lp1 (Ω)‖u(., t)‖p1−1
Lp1 (Ω) ≤ (meas(Ω))

1
p1 ‖f̂‖L∞(QT ) N(t)

p1−1
p1 .

Excluding the trivial case u ≡ 0, we can divide by N(t)
p1−1

p1 and integrate
from 0 to t to obtain

N(t)
1

p1 − N(0)
1

p1 ≤ T (meas(Ω))
1

p1 ‖f̂‖L∞(QT ),

which is the desired estimate.

Lemma 5.3 (1) If Assumptions 5.3 (B1) and (B3) hold, then the norms
‖un‖L2(Ω) are bounded, independently of n and Vh, by the constant KL2 :=

‖u0‖L2(Ω) + T (meas(Ω))
1
2‖f̂‖L∞(QT ).

(2) If all Assumptions 5.3 hold, then the norms ‖un‖Lp1 (Ω) are bounded,
independently of n and Vh, by the constant Kp1,Ω := Mp1 + ‖u0‖Lp1 (Ω) +

T (meas(Ω))
1

p1 ‖f̂‖L∞(QT ).
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Proof. (1) Setting v = un+1 in (68), we obtain
∫

Ω

(un+1)
2
+ ∆t B(un+1; un+1, un+1) =

∫

Ω

unun+1 + ∆t

∫

Ω

f̂nun+1. (70)

To estimate below, the bilinear form can be dropped from the l.h.s. since it
is coercive, and also using Cauchy-Schwarz inequalities, we have

‖un+1‖2
L2(Ω) ≤ ‖un‖L2(Ω)‖u

n+1‖L2(Ω) + ∆t‖f̂n‖L2(Ω)‖u
n+1‖L2(Ω).

Dividing by ‖un+1‖L2(Ω) and repeating the argument n times, we obtain

‖un+1‖L2(Ω) ≤ ‖u0‖L2(Ω) + (n + 1)∆t‖f̂n‖L2(Ω),

where the r.h.s. is bounded since (n+1)∆t ≤ T and ‖f̂n‖L2(Ω) ≤ (meas(Ω))
1
2‖f̂‖L∞(QT ).

(2) It follows directly from Lemma 5.2 and assumption (B5).

Lemmas 5.1 and 5.3 imply

Corollary 5.3 We have

‖un‖Lp2 (ΓN ) ≤ Kp2,ΓN
h−1

where the constant Kp2,ΓN
> 0 is bounded independently of n and Vh.

Theorem 5.3 Let problem (1)–(4) satisfy Assumptions 2.1 and Assump-
tions 5.3. Let us consider a family of finite element subspaces V = {Vh}h→0

such that the family of associated FE meshes is regular as in Definition 5.1.
Let the following assumptions hold:

(i) for any i = 1, ...,m, j = 1, ..., m̄ (i 6= j), if meas(supp φi ∩ supp φj) >
0 then

∇φi · ∇φj ≤ 0 on Ω and

∫

Ω

∇φi · ∇φj ≤ −K0 hd−2 (71)

with some constant K0 > 0 independent of i, j and h;

(ii) the mesh parameter h satisfies h < h0, where h0 > 0 is the first positive
root of the equation

−
µ0K0

c2

1

h2
+ α1 +

α2

h
+

β1K
p1−2
p1,Ω

hγ1
+

β2K
p2−2
p2,ΓN

hγ2
= 0, (72)

where the numbers 0 < γ1, γ2 < 2 are defined below in (74), (75),
respectively;

(iii) we have

∆t ≥
c2h

2

θ
(

µ0K02 − c2α1h2 + c2α2h − c2β1K
p1−2
p1,Ω h2−γ1 − c2β2K

p2−2
p2,ΓN

h2−γ2
) .

(73)
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Then the matrices A(un+1) and B(un), defined in (46)–(47), have the
following properties:

(1) A(un+1)ij ≤ 0 (i 6= j, i = 1, ...,m, j = 1, ..., m̄);

(2) B(un)ii ≥ 0 (i = 1, ...,m).

Proof. We follow the proof of Theorem 5.1. As a first difference, instead
of uh in the arguments, we must consider the functions un+1 (for A) and un

(for B) that have the coefficient vectors un+1 and un, respectively.

(1) Since we now have (6) instead of (48), the first estimate in (58) is
replaced by

∫

Ω

r(x, t, un+1)φjφi ≤

∫

Ω

(

α1+β1|u
n+1|p1−2

)

φjφi ≤ α1meas(Ωij)+β1

∫

Ωij

|un+1|p1−2 .

Here the first term is bounded by α1c2h
d as before. To estimate the second

term, we use Hölder’s inequality:

∫

Ωij

|un+1|p1−2 ≤ ‖un+1‖p1−2
Lp1 (Ωij)

‖1‖2
Lp1 (Ωij)

.

For the first factor, we use Lemma 5.3 (2) to find that

‖un+1‖p1−2
Lp1 (Ωij)

≤ ‖un+1‖p1−2
Lp1 (Ω) ≤ Kp1−2

p1,Ω .

The second factor satisfies, by (57),

‖1‖2
Lp1 (Ωij)

=
(

meas(Ωij)
)2/p1 ≤ c2h

2d
p1 ≡ c2h

d−γ1

with

γ1 := d −
2d

p1

< 2, (74)

since from Assumption 2.1 (A4) we have 2d
p1

> d − 2. Hence

∫

Ωij

|un+1|p1−2 ≤ Kp1−2
p1,Ω c2h

d−γ1

and altogether,

∫

Ω

r(x, t, un+1)φjφi ≤ α1c2h
d + β1K

p1−2
p1,Ω c2h

d−γ1 .

Similarly,

∫

ΓN

z(x, t, un+1)φjφi ≤ α2c2h
d−1 + β2

∫

Γij

|un+1|p2−2
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and here, for d = 2, 3 we use Corollary 5.3 and (50) to have
∫

Γij

|un+1|p2−2 ≤ ‖un+1‖p2−2
Lp2 (Γij)

‖1‖2
Lp2 (Γij)

≤ ‖un+1‖p2−2
Lp2 (ΓN )

(

meas(Γij)
)2/p2

≤ Kp2−2
p2,ΓN

c2h
2−p2+

2(d−1)
p2 ≡ Kp2−2

p2,ΓN
c2h

d−γ2 ,

where

γ2 := d − 2 + p2 −
2(d − 1)

p2

< 2 (75)

from assumption p2 ≤ 2.5. Summing up, using the above and (59), we obtain

A(uh)ij ≤ c2h
d

[

1 + θ∆t

(

−
µ0K0

c2

1

h2
+ α1 +

α2

h
+

β1K
p1−2
p1,Ω

hγ1
+

β2K
p2−2
p2,ΓN

hγ2

)]

.

Since h < h0 for h0 defined in (72), it follows that we have a negative coeffi-
cient of θ∆t above, and from (73) we obtain that the expression in the large
brackets is nonpositive, hence A(uh)ij ≤ 0.

(2) For the implicit scheme, B(un) coincides with the mass matrix M ,
whose diagonal entries are positive.

Similarly to the sublinear case, we can derive the corresponding discrete
maximum, minimum and nonnegativity preservation principles. We only
formulate here the latter:

Corollary 5.4 Let the conditions of Theorem 5.3 hold, and let f̂ ≥ 0, g ≥ 0,
γ̂ ≥ 0 and u0 ≥ 0. Then the discrete solution satisfies

un
i ≥ 0 (n = 0, 1, ..., nT , i = 1, ...,m).

5.4 Geometric properties of the space mesh

In order to satisfy condition (71), the most direct way is to require

∇φi · ∇φj ≤ −K0 h−2 (76)

pointwise on the common support of these basis functions. In view of well-
known formulae (see e.g. [2, 5, 25, 27]), the above condition has a nice
geometric interpretation: in the case of simplicial meshes, it is sufficient
if the employed mesh is uniformly acute [4, 25]. In the case of bilinear
elements, condition (76) is equivalent to the so-called strict non-narrowness
of the meshes, see [12, 19]. The case of prismatic finite elements is treated
in [18].

These conditions are sufficient but not necessary. For instance, for lin-
ear elements, some obtuse interior angles may occur in the simplices of the
meshes, just as for linear problems (see e.g. [24]), or one can require (76)
only on a proper subpart of each intersection of supports with asymptotically
nonvanishing measure, see more details in [21]. These weaker conditions may
allow in general easier refinement procedures.
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5.5 Examples

We give two real-life examples where discrete nonnegativity can be derived
for suitable discretizations.

(a) Nonlinear heat conduction.

Heat conduction in a body Ω ⊂ R3 with nonlinear diffusion coefficient is
often described by the model

∂u

∂t
− div

(

k(x, t, u)∇u
)

= f(x, t) (77)

in QT := Ω × (0, T ), where T > 0 is the time interval considered; see, e.g.,
[15]. The usual boundary and initial conditions are

u(x, t) = g(x, t) for (x, t) ∈ ΓD × [0, T ], (78)

k(x, t, u)∂u
∂ν

= γ(x, t) for (x, t) ∈ ΓN × [0, T ], (79)

u(x, 0) = u0(x) for x ∈ Ω, (80)

where all coefficients are bounded nonnegative measurable functions and k
has a positive lower bound. The function u describes the temperature, hence
u ≥ 0.

(b) Reaction-diffusion problems.

A reaction-diffusion process in a body Ω ⊂ Rd, d = 2 or 3, is often
described by the model

∂u

∂t
− div

(

k(x, t)∇u
)

+ q(x, u) = f(x, t) (81)

in QT := Ω × (0, T ). The boundary and initial conditions are

u(x, t) = g(x, t) for (x, t) ∈ ΓD × [0, T ], (82)

k(x, t)∂u
∂ν

+ s(x, u) = γ(x, t) for (x, t) ∈ ΓN × [0, T ], (83)

u(x, 0) = u0(x) for x ∈ Ω, (84)

The function u describes the temperature, hence

u ≥ 0.

Here the coefficients k, f , g, γ and u0 are bounded nonnegative measurable
functions and k has a positive lower bound. Further, q and s desribe the rate
of reaction in the body and on the transmission boundary, respectively, hence
q(x, 0) = s(x, 0) = 0 for all x. In various examples the reaction process is such
that q and s grow along with u, further, the rate is at most polynomial, i.e.
we may assume that the growth conditions (6) are satisfied. For instance,
q(x, u) = uσ for some σ > 1 in some autocatalytic chemical reactions, or
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q(x, u) = 1
ε

u
u+κ

describes the Michaelis-Menten reaction in enzyme kynetics
[6, 23].

In both examples, we have f̂ = f ≥ 0, g ≥ 0, γ̂ = γ ≥ 0 and u0 ≥ 0.
Therefore we can use Theorem 5.2 and Corollary 5.4, respectively, to derive
the discrete nonnegativity principle:

Theorem 5.4 Let the full discretization satisfy the conditions of Theorem
5.1 for problem (77)–(80), or the conditions of Theorem 5.3 for problem
(81)–(84). Then the discrete solution satisfies

un
i ≥ 0 (n = 0, 1, ..., nT , i = 1, ...,m).

In particular, for problem (77)–(80) we can use the simplified assumptions
(63) for Theorem 5.1, as given in Remark 5.3.

Consequently, as pointed out after Theorem 5.2, if we extend the solutions
to QT with values between those on the neighbouring time levels, e.g. with
the method of lines, then the discrete solution satisfies

uh ≥ 0 on QT .
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Simplicial Partitions , SIAM Rev. (in press).

[5] P. G. Ciarlet, P. A. Raviart, Maximum Principle and Uniform
Convergence for the Finite Element Method , Comput. Methods Appl.
Mech. Engrg. 2 (1973), pp. 17–31.

[6] J. I. D́ıaz, Applications of Symmetric Rearrangement to Certain Non-
linear Elliptic Equations with a Free Boundary , In: Nonlinear differ-
ential equations (Granada, 1984), 155–181, Res. Notes in Math., 132,
Pitman, Boston, MA, 1985.

22



[7] M. Elshebli, Maximum Principle and Non-Negativity Preservation in
Linear Parabolic Problems , Annales Univ. Sci. Sec. Math. 47 (2006), pp.
643–653.
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[11] I. Faragó, R. Horváth, Continuous and Discrete Parabolic Opera-
tors and their Qualitative Properties, IMA J. Numer. Anal. (2008) (in
press).
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