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János Karátson Sergey Korotov

AB TEKNILLINEN KORKEAKOULU

TEKNISKA HÖGSKOLAN

HELSINKI UNIVERSITY OF TECHNOLOGY

TECHNISCHE UNIVERSITÄT HELSINKI

UNIVERSITE DE TECHNOLOGIE D’HELSINKI





Helsinki University of Technology Institute of Mathematics Research Reports

Espoo 2008 A552

A DISCRETE MAXIMUM PRINCIPLE IN HILBERT SPACE

WITH APPLICATIONS TO NONLINEAR COOPERATIVE

ELLIPTIC SYSTEMS
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1 Introduction

The maximum principle forms an important qualitative property of second or-
der elliptic equations [24, 28], hence its discrete analogues (so-called discrete
maximum principles, DMPs) have drawn much attention. Various DMPs,
including geometric conditions on the computational meshes for FEM solu-
tions, have been given e.g. in [6, 8, 9, 10, 17, 21, 25, 29, 31, 33] for linear and
[18, 19, 22] for nonlinear equations. For elliptic operators with only prin-
cipal part, if the discretized operator Lh and the FEM solution uh satisfy
Lhuh ≤ 0, then the DMP has the simple form max

Ω
uh = max

∂Ω
uh. On the

other hand, for operators with lower order terms as well, one has the weaker
statement

max
Ω

uh = max{0,max
∂Ω

uh}. (1)

There are also typical differences in the corresponding conditions on the
meshes, as already pointed out in [10]. Namely, for operators with only
principal part, the DMP holds for all meshes under sufficient conditions that
express nonobtuseness when linear finite elements and simplicial meshes are
considered; on the other hand, for operators with lower order terms as well,
one can only provide the DMP for sufficiently fine mesh and needs stronger
acuteness type conditions in the case of simplicial FEM meshes.

The extension of the (continuous) maximum principle, CMP, to elliptic
systems has attracted much interest, but it has been proved to hold under
strong restrictions only. The main class of problems where the CMP is gen-
erally valid is that of cooperative systems: roughly speaking, writing the
system in the form

Lu = Mu + f

(where L is an s-tuple of minus Laplacians or of more general elliptic opera-
tors, further, u = (u1, . . . , us) and M is an s×s matrix), this condition means
Mij ≥ 0 for all i 6= j. In addition, one usually also assumes weak diagonal
dominance of M . Important related results are found e.g. in [12, 26, 27],
and some extensions to non-cooperative systems are also known, see [7] and
references therein. These results are formulated either in terms of maximum
principle or of nonnegativity preservation (i.e. f ≥ 0 implying u ≥ 0).

The goal of this paper is to provide DMPs for the FEM discretizations
of some elliptic systems, which has not yet been done to our knowledge.
Moreover, we consider nonlinear systems. We generalize our results in [18]
to systems with cooperative and weakly diagonally dominant coupling, and
under suitably weakened acuteness type conditions, we thus obtain an ana-
logue of (1) for sufficiently fine meshes. We include the lower order terms in
the elliptic operator, hence cooperativity will mean nonpositive cross-signs
instead of nonnegative.

The main technical difficulties encountered are as follows. First, one has
to get round the irreducibility criterion that is assumed in the basic algebraic
background statement. Second, when lower order terms of polynomial growth
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are involved, one needs careful estimates using embedding results and quasi-
regular meshes to ensure the required algebraic properties of the stiffness
matrix. In order to provide a clean line of thoughts, we therefore first state
a DMP in a Hilbert space setting, which helps to derive the corresponding
results under the considered different conditions.

The paper is organized as follows. The required algebraic background
is briefly summarized in section 2. A DMP for suitable operator equations
in a Hilbert space setting is given in section 3. The main results are given
in section 4, where DMPs are derived for three types of nonlinear elliptic
systems with cooperative and weakly diagonally dominant coupling. The
considered types of problems are systems with nonlinear coefficients, systems
with lower order terms of sublinear and polynomial growth, respectively. An
analogue of (1) is proved under suitably weakened acuteness type conditions
for the FEM mesh, which in principle allow the angles to reach asymptotically
90◦. The latter and other geometric issues are also discussed. Finally some
applications are sketched in section 5.

2 Some algebraic background

First we recall a basic definition in the study of DMP (cf. [32, p. 23]):

Definition 2.1 A square k × k matrix A = (aij)
k
i,j=1 is called irreducibly

diagonally dominant if it satisfies the following conditions:

(i) A is irreducible, i.e., for any i 6= j there exists a sequence of nonzero
entries {ai,i1 , ai1,i2 , . . . , ais,j} of A, where i, i1, i2, . . . , is, j are distinct
indices,

(ii) A is diagonally dominant, i.e., |aii| ≥
k
∑

j=1
j 6=i

|aij|, i = 1, ..., k,

(iii) for at least one index i0 ∈ {1, ..., k} the above inequality is strict, i.e.,

|ai0,i0 | >
k

∑

j=1
j 6=i0

|ai0,j|.

Definition 2.2 Let A be an arbitrary k × k matrix. The irreducible blocks
of A are the matrices A(l) (l = 1, . . . , q) defined as follows.

Let us call the indices i, j ∈ {1, . . . , k} connectible if there exists a se-
quence of nonzero entries {ai,i1 , ai1,i2 , . . . , ais,j} of A, where i, i1, i2, . . . , is, j ∈
{1, . . . , k} are distinct indices. Further, let us call the indices i, j mutually
connectible if both i, j and j, i are connectible in the above sense. (Clearly,
mutual connectibility is an equivalence relation.) LetN1, . . . , Nq be the equiv-
alence classes, i.e. the maximal sets of mutually connectible indices. (Clearly,
A is irreducible iff q = 1.) Letting

Nl = {s
(l)
1 , . . . , s

(l)
kl
}
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for l = 1, . . . , q, we have k1 + . . .+ kq = k. Then we define for all l = 1, . . . , q
the kl × kl matrix A(l) by

A(l)
p q := a

s
(l)
p ,s

(l)
q

(p, q = 1, . . . , kl).

Remark 2.1 One may prove (cf. [2, Th. 4.2]) that by a proper permutation
of indices, A becomes a block lower triangular matrix with the irreducible
diagonal blocks A(l).

Let us now consider a system of equations of order (k +m) × (k +m):

Āc̄ = b̄, (2)

where the matrix Ā and the vectors b̄, c̄ have the following structure:

Ā =
[

A Ã

0 I

]

, b̄ =
[

b

b̃

]

, c̄ =
[

c

c̃

]

(3)

where I is the m×m identity matrix and 0 is the m× k zero matrix. Then
(2) becomes

[

A Ã

0 I

] [

c

c̃

]

=
[

b

b̃

]

. (4)

Following [9], we introduce

Definition 2.3 A (k+m)× (k+m) matrix Ā with the structure (3) is said
to be of generalized nonnegative type if the following properties hold:

(i) aii > 0, i = 1, ..., k,

(ii) aij ≤ 0, i = 1, ..., k, j = 1, ..., k +m (i 6= j),

(iii)
k+m
∑

j=1
aij ≥ 0, i = 1, ..., k,

(iv) There exists an index i0 ∈ {1, . . . , k} for which

k
∑

j=1

ai0,j > 0. (5)

Remark 2.2 In the original definition in [9, p. 343], it is assumed instead of
the above property (iv) that the principal block A is irreducibly diagonally
dominant. However, if we assume that A is also irreducible, as will be done
in Theorem 2.1, then its irreducibly diagonal dominance follows directly from
Definition 2.3 under the given sign conditions on aij. We also note that a
well-known theorem [32, p. 85] implies in this case that A−1 > 0, i.e., the
entries of the matrix A−1 are positive.
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Many known results on various discrete maximum principles are based
on the following theorem, considered as ’matrix maximum principle’ (for a
proof, see e.g. [9, Th. 3]).

Theorem 2.1 Let Ā be a (k+m)×(k+m) matrix with the structure (3), and
assume that Ā is of generalized nonnegative type in the sense of Definition
2.3, further, that A is irreducible.

If the vector c̄ = (c1, ..., ck+m)T ∈ Rk+m (where ( . )T denotes the trans-
posed) is such that (Āc̄)i ≤ 0, i = 1, ..., k, then

max
i=1,...,k+m

ci ≤ max{0, max
i=k+1,...,k+m

ci}. (6)

The irreducibility of A is a technical condition which is sometimes difficult
to check in applications, see e.g. [11]. We now show that it can be omit-
ted from the assumptions if (iv) is suitably strengthened. For convenient
formulations, we will hence use the following

Definition 2.4 A (k + m) × (k + m) matrix Ā with the structure (3) is
said to be of generalized nonnegative type with irreducible blocks if properties
(i)-(iii) of Definition 2.3 hold, further, property (iv) therein is replaced by
the following stronger one:

(iv’) For each irreducible component of A there exists an index i0 =

i0(l) ∈ Nl = {s
(l)
1 , . . . , s

(l)
kl
} for which

k
∑

j=1
ai0,j > 0.

Remark 2.3 Let assumptions (i)-(iii) hold in Definitions 2.3 or 2.4. Then
for a given index i0 ∈ {1, . . . , k}, a sufficient condition for (5) to hold is that:

there exists an index j0 ∈ {k + 1, . . . , k +m} for which ai0,j0 < 0.

Namely, using also assumptions (ii) and (iii), respectively, we then have

k
∑

j=1

ai0,j >
k

∑

j=1

ai0,j + ai0,j0 ≥
k

∑

j=1

ai0,j + ai0,j0 +
k+m
∑

j=k+1
j 6=j0

ai0,j =
k+m
∑

j=1

ai0,j ≥ 0.

Theorem 2.2 Let Ā be a (k +m) × (k +m) matrix with the structure (3),
and assume that Ā is of generalized nonnegative type with irreducible blocks
in the sense of Definition 2.4.

If the vector c̄ = (c1, ..., ck+m)T ∈ Rk+m is such that (Āc̄)i ≤ 0, i =
1, ..., k, then (6) holds.

Proof. We may assume that A has the lower block triangular form
mentioned in Remark 2.1. (Otherwise we can permute the indices to have
this form, since the desired result is independent of the ordering of indices
in the block A.) That is, the block A in (3) has the irreducible diagonal
blocks A(l) (i.e. the irreducible components defined in Definition 2.2), and
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the corresponding blocks in A vanish in the upper block triangular part,
further, we can use an analogous column decomposition of the block Ã in
(3) to blocks Ã(l) (l = 1, . . . , q). Using an analogous decomposition of the
vectors c and b, system (4) can be written as















A(1) 0 0 . . . Ã(1)

A(21) A(2) 0 . . . Ã(2)

. . . . . .
A(q1) A(q2) . . . A(q) Ã(q)

0 . . . . . . 0 I





























c(1)

c(2)

. . .
c(q)

c̃















=















b(1)

b(2)

. . .
b(q)

b̃















(7)

We must prove that if b(1), ...,b(q) ≤ 0, then (6) holds, i.e. c̄ ≤ max c̃.

Step 1. First we consider the special case when b̃ ≤ 0. Then c̃ = b̃ ≤ 0,
hence the statement (6) becomes c̄ ≤ 0. Since c̄ = [c, c̃]T , we in fact need to
prove c ≤ 0. We prove by induction that c(1), ..., c(q) ≤ 0.

Note first that A(l) (l = 1, . . . , q) are of generalized nonnegative type,
since they inherit Assumptions (i)-(iv’) in Definition 2.3 from A. Namely,
this is obvious for Assumptions (i)-(ii). The nonnegativity in Assumption
(iii) holds for A(l) since we drop nonpositive elements in the row sum for
A(l) compared to the row sum for A. Finally, Assumption (iv’) for A just
means that the original Assumption (iv) holds for each A(l). Also, A(l) are
irreducible by definition, hence Theorem 2.1 can be applied to systems of the
form (3) with left upper block A(l). We will do this repeatedly for the case
c̃ ≤ 0 to obtain nonpositive solution vectors.

The first and last rows of (7) yield the system

[

A(1) Ã(1)

0 I

] [

c(1)

c̃

]

=
[

b(1)

b̃

]

. (8)

Here b(1) ≤ 0 and c̃ = b̃ ≤ 0, hence Theorem 2.1 yields c(1) ≤ 0.
Now let l ∈ {2, . . . , q} and assume that c(1), ..., c(l−1) ≤ 0. The lth and

last rows of (7) yield the system

[

A(l) Ã(l)

0 I

] [

c(l)

c̃

]

=
[

b̂(l)

b̃

]

, (9)

where b̂(l) := b(l) −
l−1
∑

s=1
A(ls)c(s). Here b(l) ≤ 0 by assumption, c(s) ≤ 0

(s = 1, . . . , l−1) from the inductional assumption and A(ls) ≤ 0 elementwise
from property (ii) of Definition 2.3, therefore b̂(l) ≤ 0. Using c̃ = b̃ ≤ 0 and
applying Theorem 2.1 again, we obtain c(l) ≤ 0.

Step 2. Let us consider the case when max b̃ = max c̃ > 0. We must
prove that if b(1), ...,b(q) ≤ 0 (i.e. b ≤ 0) then (6) holds, i.e. that c̄ ≤ max c̃.

Let c∗ := c̄ − (max c̃) · 1k+m, where 1k+m is the constant 1 vector of
length k+m. Since Āc̄ = b̄, therefore c∗ is the solution of the linear system
Āc∗ = b∗, where

b∗ := b̄ − (max c̃) · Ā1k+m =
[

b

b̃

]

− (max c̃) ·
[

A Ã

0 I

] [

1k

1m

]
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=
[

b − (max c̃) · [A Ã ]1k+m

b̃ − (max c̃) · 1m

]

. (10)

Here the first component in (10) is nonpositive, since b ≤ 0 and max c̃ > 0 by
assumption, further, [A Ã ]1k+m ≥ 0 by item (iii) of Definition 2.3. The
second component in (10) is also nonpositive, since obviously b̃ = c̃ ≤ max c̃.
Therefore b∗ ≤ 0. Thus, applying step 1 to system Āc∗ = b∗, we obtain
c∗ ≤ 0, i.e. c̄ − (max c̃) · 1k+m ≤ 0, which was to be proved.

Consequently, in what follows, our main goal is to show that the stiffness
matrix of the problems considered is of generalized nonnegative type with
irreducible blocks in the sense of Definition 2.4..

3 A discrete maximum principle in Hilbert

space

3.1 Formulation of the problem

Let H be a real Hilbert space and H0 ⊂ H a given subspace. We consider
the following operator equation: for given vectors ψ, g∗ ∈ H, find u ∈ H such
that

〈A(u), v〉 = 〈ψ, v〉 (v ∈ H0) (11)

and u− g∗ ∈ H0 (12)

with an operator A : H → H satisfying the following conditions:

Assumptions 3.1.

(i) The operator A : H → H has the form

A(u) = B(u)u+R(u)u (13)

where B and R are given operators mapping from H to B(H). (Here
B(H) denotes the set of bounded linear operators in H.)

(ii) There exists a constant m > 0 such that

〈B(u)v, v〉 ≥ m ‖v‖2 (u ∈ H, v ∈ H0). (14)

(iii) There exist subsets of ’positive vectors’ D,P ⊂ H such that

〈R(u)w, v〉 ≥ 0 (u ∈ H, v ∈ D, w ∈ P or w = v). (15)

(iv) There exists a continuous function MR : R+ → R+ and another norm
‖|.‖| on H such that

〈R(u)w, v〉 ≤MR(‖u‖) ‖|w‖| ‖|v‖| (u,w, v ∈ H). (16)
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In practice for PDE problems (considered in section 4), g∗ plays the role
of boundary condition and H0 will be the subspace corresponding to homo-
geneous boundary conditions, further, B(u) is the principal part of A.

Assumptions 3.1 are not in general known to imply existence and unique-
ness for (11)-(12). The following extra conditions already ensure well-posedness:

Assumptions 3.2.

(i) Let

F (u) := B(u)u, G(u) := R(u)u (u ∈ H). (17)

The operators F,G : H → H are Gateaux differentiable, further, F ′

and G′ are bihemicontinuous (i.e. mappings (s, t) 7→ F ′(u+ sk + tw)h
are continuous from R2 to H, and similarly for G′).

(ii) There exists a continuous function MA : R+ → R+ such that

〈A′(u)w, v〉 ≤MA(‖u‖) ‖w‖ ‖v‖ (u ∈ H, w, v ∈ H0). (18)

(iii) There exists a constant m > 0 such that

〈F ′(u)v, v〉 ≥ m ‖v‖2 (u ∈ H, v ∈ H0). (19)

(iv) We have

〈G′(u)v, v〉 ≥ 0 (u ∈ H, v ∈ H0). (20)

Proposition 3.1 If Assumptions 3.1–3.2 hold, then problem (11)-(12) is
well-posed.

Proof. Problem (11)-(12) can be rewritten as follows:

find u0 ∈ H : 〈Ã(u0), v〉 ≡ 〈A(u0 + g∗), v〉 = 〈ψ, v〉 (v ∈ H0), (21)

and let u := u0 + g∗. (22)

From (19) and (20) we have

〈A′(u)v, v〉 ≥ m ‖v‖2 (u ∈ H, v ∈ H0) (23)

whence A is uniformly monotone on H0, further, from (18), A is locally
Lipschitz continuous on H0. These properties of A are inherited by Ã by the
definition of the latter: that is, for all u, v ∈ H0, we obtain

m ‖u−v‖2 ≤ 〈Ã(u)−Ã(v), u−v〉, ‖Ã(u)−Ã(v)‖ ≤MA(max{‖u‖, ‖v‖}) ‖u−v‖ .
(24)

These imply well-posedness for (21), see, e.g., [13, 23].

9



3.2 Galerkin type discretization

Let n0 ≤ n be positive integers and φ1, ..., φn ∈ H be given linearly indepen-
dent vectors such that φ1, ..., φn0 ∈ H0. We consider the finite dimensional
subspaces

Vh = span{φ1, ..., φn} ⊂ H, V 0
h = span{φ1, ..., φn0} ⊂ H0 (25)

with a real positive parameter h > 0. In practice, as is usual for FEM, h is
inversely proportional to n, and one will consider a family of such subspaces,
see Definition 3.2 later.

Let gh =
n
∑

j=n0+1
gjφj ∈ Vh be a given approximation of the component of

g∗ in H \H0. To find the Galerkin solution of (11)-(12) in Vh, we solve the
following problem: find uh ∈ Vh such that

〈A(uh), v〉 = 〈ψ, v〉 (v ∈ V 0
h ) (26)

and uh − gh ∈ V 0
h . (27)

Using (13), we can rewrite (26) as

〈B(uh)uh, v〉 + 〈R(uh)uh, v〉 = 〈ψ, v〉 (v ∈ V 0
h ). (28)

Let us now formulate the nonlinear algebraic system corresponding to
(28). We set

uh =
n

∑

j=1

cjφj, (29)

and look for the coefficients c1, . . . , cn. For any c̄ = (c1, ..., cn)T ∈ Rn, i =
1, ..., n0 and j = 1, ..., n, we set

bij(c̄) := 〈B(uh)φj, φi〉 rij(c̄) := 〈R(uh)φj, φi〉, di := 〈ψ, φi〉,

aij(c̄) := bij(c̄) + rij(c̄). (30)

Putting (29) and v = φi into (28), we obtain the n0 × n system of algebraic
equations

n
∑

j=1

aij(c̄) cj = di (i = 1, ..., n0). (31)

Using the notations

A(c̄) := {aij(c̄)}, i, j = 1, ..., n0, Ã(c̄) := {aij(c)}, i = 1, ..., n0; j = n0+1, ..., n,

d := {dj}, c := {cj}, j = 1, ..., n0, and c̃ := {cj}, j = n0 + 1, ..., n,
(32)

system (31) turns into

A(c̄)c + Ã(c̄)c̃ = d. (33)
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In order to obtain a system with a square matrix, we enlarge our system to
an n × n one. Since uh − gh ∈ V 0

h , the coordinates ci with n0 + 1 ≤ i ≤ n
satisfy automatically ci = gi, i.e.,

c̃ = g̃ := {gj}, j = n0 + 1, ..., n,

hence we can replace (33) by the equivalent system

[

A(c̄) Ã(c̄)
0 I

] [

c

c̃

]

=
[

d

g̃

]

. (34)

Defining further

Ā(c̄) :=
[

A(c̄) Ã(c̄)
0 I

]

, c̄ :=
[

c

c̃

]

, (35)

we rewrite (33) as follows:
Ā(c̄)c̄ = d. (36)

3.3 Maximum principle for the abstract discretized prob-

lem

When formulating a discrete maximum principle for system (36), we will use
the following notion:

Definition 3.1 Certain pairs {φi, φj} ∈ Vh × Vh are called ’neighbouring
basis vectors’, and then i, j are called ’neighbouring indices’, such that the
following property holds: the set {1, . . . , n} can be partitioned into disjoint
sets S1, . . . , Sr such that for each k = 1, . . . , r,

(i) both S0
k := Sk ∩ {1, . . . , n0} and S̃k := Sk ∩ {n0 + 1, . . . , n} are

nonempty;

(ii) the graph of all neighbouring indices in S0
k is connected;

(iii) the graph of all neighbouring indices in Sk is connected.

In later PDE applications, this notion is meant to express that the supports
of basis functions cover the domain, both its interior and the boundary.

The following notion will be crucial for our study:

Definition 3.2 A set of subspaces V = {Vh}h→0 in H is said to be a family
of subspaces if for any ε > 0 there exists Vh ∈ V with h < ε.

First we give sufficient conditions for the generalized nonnegativity of the
matrix Ā(c̄).

Theorem 3.1 Let Assumptions 3.1 hold. Let us consider the discretization
of operator equation (11)-(12) in a family of subspaces V = {Vh}h→0 with
bases as in (25). Let uh ∈ Vh be the solution of (28) and let the following
properties hold:

11



(a) For all φi ∈ V 0
h and φj ∈ Vh, one of the following holds: either

〈B(uh)φj, φi〉 = 0 and 〈R(uh)φj, φi〉 ≤ 0, (37)

or
〈B(uh)φj, φi〉 ≤ −MB(h) (38)

with a proper function MB : R+ → R+ (independent of h, φi, φj) such
that, defining

T (h) := sup{‖|φi‖| : φi ∈ Vh)} , (39)

we have

lim
h→0

MB(h)

T (h)2
= +∞. (40)

(b) If, in particular, φi ∈ V 0
h and φj ∈ Vh are neighbouring basis vectors

(as defined in Definition 3.1), then (38)-(40) hold.

(c) MR(‖uh‖) is bounded as h → 0, where MR is the function in Assump-
tion 3.1 (iv).

(d) For all u ∈ H and h > 0,
n
∑

j=1
φj ∈ kerB(u).

(e) For all h > 0, i = 1, ..., n, we have φi ∈ D and
n
∑

j=1
φj ∈ P for the sets

D,P introduced in Assumption 3.1 (iii).

Then for sufficiently small h, the matrix Ā(c̄) defined in (35) is of gen-
eralized nonnegative type with irreducible blocks in the sense of Definition
2.4.

Proof. Our task is to check properties (i)-(iv’) of Definition 2.4 for

aij(c̄) = 〈B(uh)φj, φi〉 + 〈R(uh)φj, φi〉 (i, j = 1, ..., n). (41)

(i) For any i = 1, ..., n0, we have φi ∈ V 0
h ⊂ H0 from (25), hence we can

set v = φi in (14). Further, by assumption (e), we have φi ∈ D, hence we
can set v = w = φi in (15). These imply

aii(c̄) = 〈B(uh)φi, φi〉 + 〈R(uh)φi, φi〉 ≥ m ‖φi‖
2 > 0.

(ii) Let i = 1, ..., n0, j = 1, ..., n with i 6= j. If (37) holds then aij(c̄) ≤ 0
by (41). If (38) holds then, using also (41), (16), respectively, and letting
M̃ := supMR(‖uh‖), we obtain

aij(c̄) ≤ −MB(h) +MR(‖uh‖) ‖|φi‖| ‖|φj‖| ≤ −MB(h) +MR(‖uh‖)T (h)2

≤ T (h)2
(

−
MB(h)

T (h)2
+ M̃

)

< 0 (42)

for sufficiently small h, since by (40) the expression in brackets tends to
−∞ as h→ 0.
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(iii) For any i = 1, ..., n0,

n
∑

j=1

aij(c̄) =
〈

B(uh)
(

n
∑

j=1

φj

)

, φi

〉

+
〈

R(uh)
(

n
∑

j=1

φj

)

, φi

〉

≥ 0,

since the first term equals zero by assumption (d), further, by assumption

(e) we can set w =
n
∑

j=1
φj and v = φi in (15), hence the second term is

nonnegative.
(iv’) We must prove that for each irreducible component of A(c̄) there

exists an index i0 ∈ Nl = {s
(l)
1 , . . . , s

(l)
kl
} for which

n0
∑

j=1
a(c̄)i0,j > 0. Here,

with the notations of Definition 2.2, the matrix Ā(c̄) has q irreducible blocks
A(l)(c̄) (l = 1, . . . , q), and Nl denotes the indices arising in A(l)(c̄). Then
k1 + . . .+ kq = n0. Using Remark 2.3, we must prove that for all l = 1, . . . , q
there exist indices i0 ∈ Nl and j0 ∈ {n0 + 1, . . . , n} such that a(c̄)i0,j0 < 0.

From now, let N0 := {1, . . . , n0}, Ñ := {n0 + 1, . . . , n} and N :=
{1, . . . , n} = N0 ∪ Ñ .

First note that if i ∈ N0, j ∈ N are neighbouring indices then aij(c̄) < 0.
Namely, (38) holds by assumption (b), whence (42) yields aij(c̄) < 0. Hence,
it suffices to find i0 ∈ Nl and j0 ∈ Ñ such that i0, j0 are neighbouring indices.

Now we observe that each Nl contains entire sets S0
k , introduced in Defini-

tion 3.1. Namely, by item (ii) of Definition 3.1, the graph of all neighbouring
indices in S0

k is connected, i.e. for all i, j ∈ S0
k there exists a chain (i, i1),

(i1, i2), . . . , (ir, j) of neighbouring indices (with all im ∈ S0
k), whence by the

above ai,i1(c̄) < 0, ai1,i2(c̄) < 0, . . . , air,j(c̄) < 0. Therefore the entries of
Ā(c̄) with indices in S0

k belong to the same irreducible component, i.e. S0
k

lies entirely in one of the sets Nl.
Consequently, it suffices to prove that for all k = 1, . . . , r there exist

indices i0 ∈ S0
k and j0 ∈ Ñ such that i0, j0 are neighbouring indices. By

item (i) of Definition 3.1, there exists i ∈ S0
k and j ∈ S̃k. Using that i, j ∈ Sk,

by item (iii) of Definition 3.1, there exists a chain (i, i1), (i1, i2), . . . , (ir, j) of
neighbouring indices with all im ∈ Sk. If i1 ∈ S̃k then we let i0 := i(∈ S0

k)
and j0 := i1(∈ Ñ). Otherwise, since j ∈ S̃k, there exists a first index k in
the chain such that ik ∈ S0

k and ik+1 ∈ S̃k, and then we let i0 := ik(∈ S0
k)

and j0 := ik+1(∈ Ñ).

By Theorem 2.2, we immediately obtain the corresponding algebraic dis-
crete maximum principle:

Corollary 3.1 Let the assumptions of Theorem 3.1 hold. For sufficiently
small h, if di ≤ 0 (i = 1, ..., n0) in (32) and c̄ = (c1, ..., cn)T ∈ Rn is the
solution of (36), then

max
i=1,...,n

ci ≤ max{0, max
i=n0+1,...,n

ci}. (43)

Remark 3.1 Assumption (c) of Theorem 3.1 follows in particular if Assump-
tions 3.2 are added to Assumptions 3.1 as done in Proposition 3.1, provided
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that the functions gh ∈ Vh in (27) are bounded in H-norm as h → 0. (In
practice, the usual choices for gh even produce gh → g∗ in H-norm.) In fact,
in this case ‖uh‖ is bounded as h→ 0; then the continuity of MR yields that
MR(‖uh‖) is bounded too.

Namely, using (23),

〈A(uh)−A(gh), uh−gh〉 = 〈A′(θuh+(1−θ)gh)(uh−gh), uh−gh〉 ≥ m ‖uh−gh‖2

(where θ ∈ [0, 1]). From (26)

〈A(uh) − A(gh), uh − gh〉 = 〈f − A(gh), uh − gh〉 (44)

and from (18)

〈A(g∗) − A(gh), uh − gh〉 = 〈A′(θg∗ + (1 − θ)gh)(g∗ − gh), uh − gh〉

≤MA(max{‖g∗‖, ‖gh‖}) ‖g∗ − gh‖ ‖uh − gh‖ (45)

(where θ ∈ [0, 1]). From the above,

m ‖uh−gh‖2 ≤ 〈f−A(g∗), uh−gh〉+MA(max{‖g∗‖, ‖gh‖}) ‖g∗−gh‖ ‖uh−gh‖

≤ (‖f − A(g∗)‖ +MA(max{‖g∗‖, ‖gh‖}) ‖g∗ − gh‖) ‖uh − gh‖ .

Using the notation γ := sup
h>0

‖g∗ − gh‖, we obtain

‖uh‖ ≤ ‖gh‖ + ‖uh − gh‖ ≤ ‖g∗‖ + γ + 1
m

(

‖f − A(g∗)‖ +MA(‖g∗‖ + γ) γ
)

,

i.e. ‖uh‖ is bounded as h→ 0.

4 Discrete maximum principles for coopera-

tive and weakly diagonally dominant ellip-

tic systems

4.1 Systems with nonlinear coefficients

4.1.1 Formulation of the problem

We consider nonlinear elliptic systems of the form

−div
(

bk(x, u,∇u)∇uk

)

+
s
∑

l=1
Vkl(x, u,∇u)ul = fk(x) in Ω,

bk(x, u,∇u)
∂uk

∂ν
= γk(x) on ΓN ,

uk = gk(x) on ΓD























(k = 1, . . . , s)

(46)
with unknown function u = (u1, . . . , us), under the following assumptions,
where inequalities for functions are understood pointwise for all possible ar-
guments:

Assumptions 4.1.
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(i) Ω ⊂ Rd is a bounded piecewise C1 domain; ΓD,ΓN are disjoint open
measurable subsets of ∂Ω such that ∂Ω = ΓD ∪ ΓN and ΓD 6= ∅.

(ii) (Smoothness and boundedness.) For all k, l = 1, . . . , s we have bk ∈
(C1 ∩ L∞)(Ω × Rs × Rs×d) and Vkl ∈ L∞(Ω × Rs × Rs×d).

(iii) (Ellipticity.) There exists m > 0 such that bk ≥ m holds for all k =
1, . . . , s.

(iv) (Cooperativity.) We have

Vkl ≤ 0 (k, l = 1, . . . , s, k 6= l). (47)

(v) (Weak diagonal dominance.) We have

s
∑

l=1

Vkl ≥ 0 (k = 1, . . . , s). (48)

(vi) For all k = 1, . . . , s we have fk ∈ L2(Ω), γk ∈ L2(ΓN), gk = g∗k |ΓD
with

g∗k ∈ H1(Ω).

Remark 4.1 (i) Assumptions (47)-(48) imply

Vkk ≥ 0 (k = 1, . . . , s). (49)

(ii) One may consider additional terms on the Neumann boundary, see Re-
mark 4.4 later.

For the weak formulation of such problems, we define the Sobolev space

H1
D(Ω) := {z ∈ H1(Ω) : z|ΓD

= 0}. (50)

The weak formulation of problem (46) then reads as follows: find u ∈ H1(Ω)s

such that

〈A(u), v〉 = 〈ψ, v〉 (∀v ∈ H1
D(Ω)s) (51)

and u− g∗ ∈ H1
D(Ω)s, (52)

where

〈A(u), v〉 =
∫

Ω

(

s
∑

k=1

bk(x, u,∇u)∇uk · ∇vk +
s

∑

k,l=1

Vkl(x, u,∇u)ul vk

)

(53)

for given u = (u1, . . . , us) ∈ H1(Ω)s and v = (v1, . . . , vs) ∈ H1
D(Ω)s, further,

〈ψ, v〉 =
∫

Ω

s
∑

k=1

fkvk +
∫

ΓN

s
∑

k=1

γkvk (54)

for given v = (v1, . . . , vs) ∈ H1
D(Ω)s, and g∗ := (g∗1, . . . , g

∗
s).
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4.1.2 Finite element discretization

We define the finite element discretization of problem (46) in the following
way. First, let n̄0 ≤ n̄ be positive integers and let us choose basis functions

ϕ1, . . . , ϕn̄0 ∈ H1
D(Ω), ϕn̄0+1, . . . , ϕn̄ ∈ H1(Ω) \H1

D(Ω), (55)

which correspond to homogeneous and inhomogeneous boundary conditions
on ΓD, respectively. (For simplicity, we will refer to them as ’interior basis
functions’ and ’boundary basis functions’, respectively, thus adopting the
terminology of Dirichlet problems even in the general case.) These basis
functions are assumed to be continuous and to satisfy

ϕp ≥ 0 (p = 1, . . . , n̄),
n̄

∑

p=1

ϕp ≡ 1, (56)

further, that there exist node points Bp ∈ Ω (p = 1, . . . , n̄0) and Bp ∈ ΓD

(p = n̄0 + 1, . . . , n̄) such that

ϕp(Bq) = δpq (57)

where δpq is the Kronecker symbol. (These conditions hold e.g. for standard
linear, bilinear or prismatic finite elements.) Finally, we assume that any two
interior basis functions can be connected with a chain of interior basis func-
tions with overlapping support. By its geometric meaning, this assumption
obviously holds for any reasonable FE mesh.

We in fact need a basis in the corresponding product spaces, which we
define by repeating the above functions in each of the s coordinates and
setting zero in the other coordinates. That is, let n0 := sn̄0 and n := sn̄.
First, for any 1 ≤ i ≤ n0,

if i = (k − 1)n̄0 + p for some 1 ≤ k ≤ s and 1 ≤ p ≤ n̄0, then

φi := (0, . . . , 0, ϕp, 0, . . . , 0) where ϕp stands at the k-th entry, (58)

that is, (φi)m = ϕp if m = k and (φi)m = 0 if m 6= k. From these, we
let

V 0
h := span{φ1, ..., φn0} ⊂ H1

D(Ω)s. (59)

Similarly, for any n0 + 1 ≤ i ≤ n,

if i = n0 + (k − 1)(n̄− n̄0) + p− n̄0 for some 1 ≤ k ≤ s and n̄0 + 1 ≤ p ≤ n̄, then

φi := (0, . . . , 0, ϕp, 0, . . . , 0) where ϕp stands at the k-th entry, (60)

that is, (φi)m = ϕp if m = k and (φi)m = 0 if m 6= k. From (59) and
these, we let

Vh := span{φ1, ..., φn} ⊂ H1(Ω)s. (61)
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Using the above FEM subspaces, the finite element discretization of prob-
lem (46) leads to the task of finding uh ∈ Vh such that

〈A(uh), v〉 = 〈ψ, v〉 (∀v ∈ V 0
h ) (62)

and uh − gh ∈ V 0
h , i.e., uh = gh on ΓD (63)

(where gh =
n
∑

j=n0+1
gjφj ∈ Vh is the approximation of g∗ on ΓD). Then,

setting uh =
n
∑

j=1
cjφj and v = φi (i = 1, . . . , n0) in (51) (just as in

(29)-(31)), we obtain the n0 × n system of algebraic equations
n

∑

j=1

aij(c̄) cj = di (i = 1, ..., n0), (64)

where for any c̄ = (c1, ..., cn)T ∈ Rn (i = 1, ..., n0, j = 1, ..., n),

aij(c̄) :=
∫

Ω

(

s
∑

k=1

bk(x, u
h,∇uh) (∇φj)k·(∇φi)k+

s
∑

k,l=1

Vkl(x, u
h,∇uh) (φj)l (φi)k

)

(65)

and di :=
∫

Ω

s
∑

k=1

fk(φi)k +
∫

ΓN

s
∑

k=1

γk(φi)k . (66)

In the same way as for (36), we enlarge system (64) to a square one by adding
an identity block, and write it briefly as

Ā(c̄)c̄ = d . (67)

That is, for i = 1, ..., n0 and j = 1, ..., n, the matrix Ā(c̄) has the entry aij(c̄)
from (65).

In what follows, we will need notions of (patch-)regularity of the consid-
ered meshes, cf. [4].

Definition 4.1 Let Ω ⊂ Rd and let us consider a family of FEM subspaces
V = {Vh}h→0 constructed as above. The corresponding family of meshes will
be called

(a) regular from above if there exists a constant c0 > 0 such that for any
Vh ∈ V and basis function ϕp ∈ Vh,

meas(suppϕp) ≤ c0h
d (68)

(where meas denotes d-dimensional measure and supp denotes the support,
i.e. the closure of the set where the function does not vanish);

(b) regular if there exist constants c1, c2 > 0 such that for any Vh ∈ V
and basis function ϕp ∈ Vh,

c1h
d ≤ meas(suppϕp) ≤ c2h

d ; (69)

(c) quasi-regular w.r.t. problem (46) if (69) is replaced by

c1h
γ ≤ meas(suppϕp) ≤ c2h

d (70)

for some fixed constant
d ≤ γ < d+ 2. (71)
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4.1.3 Discrete maximum principle for systems with nonlinear co-

efficients

Our goal is to apply Theorem 3.1 to derive a DMP for problem (46). For
this, we first define the underlying operators as in subsection 3.1, and check
Assumptions 3.1.

Lemma 4.1 For any u ∈ H1(Ω)s, let us define the operators B(u) and R(u)
via

〈B(u)w, v〉 =
∫

Ω

s
∑

k=1

bk(x, u,∇u)∇wk·∇vk, 〈R(u)w, v〉 =
∫

Ω

s
∑

k,l=1

Vkl(x, u,∇u)wl vk

(72)
(w ∈ H1(Ω)s, v ∈ H1

D(Ω)s). Together with the operator A, defined in (53),
the operators B(u) and R(u) satisfy Assumptions 3.1 in the spaces H =
H1(Ω)s and H0 = H1

D(Ω)s.

Proof. We define

‖v‖2 :=
s

∑

k=1

(
∫

Ω
|∇vk|

2 +
∫

ΓD

|vk|
2) (73)

on H1(Ω)s, which is a norm since ΓD 6= ∅. Then for v ∈ H1
D(Ω)s we have

‖v‖2 =
s

∑

k=1

∫

Ω
|∇vk|

2.

(i) It is obvious from (53) and (72) that A(u) = B(u)u+R(u)u.

(ii) Assumption 4.1 (iii) implies for all u ∈ H1(Ω)s, v ∈ H1
D(Ω)s that

〈B(u)v, v〉 =
∫

Ω

s
∑

k=1

bk(x, u,∇u) |∇vk|
2 ≥ m

∫

Ω

s
∑

k=1

|∇vk|
2 = m ‖v‖2 .

(74)

(iii) Let D ⊂ H1(Ω)s consist of the functions that have only one nonzero
coordinate that is nonnegative, i.e. v ∈ D iff v = (0, . . . , 0, z, 0, . . . , 0)
with z at the k-th entry for some 1 ≤ k ≤ s and z ∈ H1(Ω), z ≥ 0.
Further, let P ⊂ H1(Ω)s consist of the functions that have identical
nonnegative coordinates, i.e. v ∈ P iff v = (y, . . . , y) for some y ∈
H1(Ω), y ≥ 0. Now let u ∈ H1(Ω)s and v ∈ D. If w ∈ P , then

〈R(u)w, v〉 =
∫

Ω

(

s
∑

l=1

Vkl(x, u,∇u)
)

yz ≥ 0

by (48) and that y, z ≥ 0. If w = v, then

〈R(u)w, v〉 =
∫

Ω
Vkk(x, u,∇u) z

2 ≥ 0

by (49).
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(iv) Let Ṽ := max
k,l

‖Vkl‖L∞ , which is finite by Assumption 4.1 (ii), and let

us define the new norm

‖|v‖|2 := ‖v‖2
L2(Ω)s =

∫

Ω

s
∑

k=1

v2
k (75)

on H1(Ω)s. Then we have for all u,w, v ∈ H1(Ω)s

〈R(u)w, v〉 ≤ Ṽ
∫

Ω

s
∑

k,l=1

|wl| |vk| ≤ sṼ
∫

Ω
(

s
∑

k=1

|vk|
2 )1/2 (

s
∑

l=1

|wl|
2 )1/2 ≤ sṼ ‖|w‖| ‖|v‖|,

i.e. (16) holds with the constant function

MR(r) ≡ sṼ (r ≥ 0).
(76)

Now we consider a finite element discretization for problem (46), devel-
oped as in subsection 4.1.2. We can then prove the following nonnegativity
result for the stiffness matrix:

Theorem 4.1 Let problem (46) satisfy Assumptions 4.1. Let us consider
a family of finite element subspaces V = {Vh}h→0 satisfying the following
property: there exists a real number γ satisfying

d ≤ γ < d+ 2

(where d is the space dimension) such that for any p = 1, ..., n̄0, t = 1, ..., n̄ (p 6=
t), if meas(suppϕp ∩ suppϕt) > 0 then

∇ϕt · ∇ϕp ≤ 0 on Ω and
∫

Ω
∇ϕt · ∇ϕp ≤ −K0 h

γ−2 (77)

with some constant K0 > 0 independent of p, t and h. Further, let the family
of associated meshes be regular from above, according to Definition 4.1.

Then for sufficiently small h, the matrix Ā(c̄) defined in (65) is of gen-
eralized nonnegative type with irreducible blocks in the sense of Definition
2.4.

Proof. We wish to apply Theorem 3.1. With the operator A defined
in (53), our problem (51)-(52) coincides with (11)-(12). The FEM subspaces
(59) and (61) fall into the class (25). Using the operators B(u) and R(u)
in (72), the discrete problem (62)-(63) turns into the form (28) such that by
Lemma 4.1, B(u) andR(u) satisfy Assumptions 3.1 in the spacesH = H1(Ω)s

and H0 = H1
D(Ω)s. Our remaining task is therefore to check items (a)-(e) of

Theorem 3.1.
For this, we first need to define neighbouring basis functions as required in

Definition 3.1. Let φi, φj ∈ Vh. Using definitions (58) and (60), assume that
φi has ϕp at its k-th entry and φj has ϕt at its l-th entry. Then we call φi and
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φj neighbouring basis functions if k = l and meas(suppϕp ∩ suppϕt) > 0.
Let N := {1, . . . , n} as before. For any k = 1, . . . , s let

S0
k := {i ∈ N : i = (k − 1)n̄0 + p for some 1 ≤ p ≤ n̄0},

S̃k := {i ∈ N : i = n0 + (k − 1)(n̄− n̄0) + p− n̄0 for some n̄0 + 1 ≤ p ≤ n̄},

Sk := S0
k ∪ S̃k ,

i.e. by (58) and (60), the basis functions φi with index i ∈ Sk have a nonzero
coordinate ϕp for some p at the k-th entry, and in particular, i ∈ S0

k if
this ϕp is an ’interior’ basis function (i.e. 1 ≤ p ≤ n̄0) and i ∈ S̃k if this
ϕp is a ’boundary’ basis function (i.e. n̄0 + 1 ≤ p ≤ n̄). Clearly, the set
N = {1, . . . , n} can be partitioned into the disjoint sets S1, . . . , Ss, and we
have to check items (i)-(iii) of Definition 3.1. Let k ∈ {1, . . . , s}. By definition
S0

k = Sk ∩ {1, . . . , n0} and S̃k = Sk ∩ {n0 + 1, . . . , n}, and both S0
k and S̃k

are nonempty, hence item (i) holds. We have assumed in subsection 4.1.2
that any two ’interior’ basis functions ϕp, ϕt can be connected with a chain
of interior basis functions with overlapping support. Writing the terms of
this chain at the k-th entry of the vector basis function, this just means
that the graph of all neighbouring indices in S0

k is connected, i.e. item (ii)
holds. Finally, it follows from (56) that arbitrary two basis functions ϕp, ϕt

can be connected with a chain of basis functions with overlapping support.
(Namely, take the union of the supports of the basis functions in all possible
chains with overlapping supports from ϕp. If the obtained set Ωp were not
the entire Ω, then we would have

∑n̄
p=1 ϕp(x) = 0 for x ∈ ∂Ω in contrast to

(56). Therefore Ωp = Ω, hence one of the chains reaches ϕt as well.) Writing
the terms of this chain at the k-th entry of the vector basis function, this just
means as above that the graph of all neighbouring indices in Sk is connected,
i.e. item (iii) holds.

Now we are in the position to check assumptions (a)-(e) of Theorem 3.1.

(a) Let φi ∈ V 0
h , φj ∈ Vh, and let φi have ϕp at its k-th entry and φj have

ϕt at its l-th entry. We must prove that either (37) or (38)-(40) holds.
If k 6= l then φi and φj have no common nonzero coordinates, hence
〈B(uh)φj, φi〉 = 0; further, by (47) and (56),

〈R(uh)φj, φi〉 =
∫

Ω
Vkl(x, u

h,∇uh)ϕt ϕp ≤ 0 (78)

i.e. (37) holds. If k = l, then Assumption 4.1 (iii) and (77) yield

〈B(uh)φj, φi〉 =
∫

Ω
bk(x, u

h,∇uh)∇ϕt · ∇ϕp ≤ m
∫

Ωpt

∇ϕt · ∇ϕp (79)

where Ωpt := suppϕp ∩ suppϕt. If meas(Ωpt) = 0 then 〈B(uh)φj, φi〉 =
0 and we have (78) similarly as before, hence (37) holds again. If
meas(Ωpt) > 0 then (77) implies

〈B(uh)φj, φi〉 ≤ −mK0h
γ−2 ≡ −ĉ1 h

γ−2 =: −MB(h) (80)
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and we must check (40). Here the norm (75) of the basis functions
satisfies the following estimate, where φj has ϕt at its l-th entry as
before, and we use (68) and that (56) implies ϕt ≤ 1:

‖|φj‖|
2 = ‖φj‖

2
L2(Ω)s = ‖ϕt‖

2
L2(Ω) ≤

∫

supp ϕt

1 = meas(suppϕt) ≤ c2h
d ,

(81)
hence (39) gives T (h)2 ≤ hd. From this, using (80) and that γ < d+ 2
(as defined for (70)), we obtain

lim
h→0

MB(h)

T (h)2
≥
ĉ1
c2

lim
h→0

hγ−2−d = +∞. (82)

(b) Let φi ∈ V 0
h and φj ∈ Vh be neighbouring basis vectors, i.e, as defined

before in the proof, k = l and meas(suppϕp ∩ suppϕt) > 0. Then, as
seen just above, we obtain (80) and (82), which coincide with (38)-(40).

(c) We have obtained the constant bound MR(r) ≡ sṼ in (76) for Assump-
tion 3.1 (iii), hence MR(‖uh‖) ≡ sṼ is trivially bounded as h→ 0.

(d) For all u ∈ H1(Ω)s and h > 0, the definition of the functions φj and
assumption (56) imply

n
∑

j=1

φj =

























n̄
∑

p=1
ϕp

n̄
∑

p=1
ϕp

. . .
n̄
∑

p=1
ϕp

























=











1
1
. . .
1











=: 1 . (83)

Then by (72)

〈B(u)(
n

∑

j=1

φj), v〉 = 〈B(u)1, v〉 =
∫

Ω

s
∑

k=1

bk(x, u,∇u)∇1 · ∇vk = 0

for all v ∈ H1
D(Ω)s, i.e.

n
∑

j=1
φj ∈ kerB(u).

(e) Let h > 0 and i = 1, ..., n be arbitrary. We must prove that φi ∈ D

and
n
∑

j=1
φj ∈ P for the sets D,P defined in the proof of Lemma 4.1,

paragraph (iii). First, by definition, φi has only one nonzero coordinate
function ϕp that is nonnegative by (56), i.e. φi ∈ D. Second, as seen

in (83), we have
n
∑

j=1
φj = 1 which belongs to P .

We immediately obtain
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Corollary 4.1 Let the assumptions of Theorem 4.1 hold and let fk ≤ 0,
γk ≤ 0 (k = 1, . . . , s). For sufficiently small h, if c̄ = (c1, ..., cn)T ∈ Rn is
the solution of (64) with matrix Ā(c̄) defined in (65), then

max
i=1,...,n

ci ≤ max{0, max
i=n0+1,...,n

ci}. (84)

Proof. By (66) we have di ≤ 0 (i = 1, ..., n0), hence Corollary 3.1 can
be used.

The meaning of (84) is as follows. Let us split the vector c̄ = (c1, ..., cn)T ∈
Rn as in (35), i.e. c̄ = [c, c̃]T , where c = (c1, ..., cn0)

T and c̃ = (cn0+1, ..., cn)T .
Following the notions introduced after (55), the vectors c and c̃ contain the
coefficients of the ’interior basis functions’ and ’boundary basis functions’,
respectively. Then (84) states that the maximal coordinate is nonpositive or
arises for a boundary basis function.

Our main interest is the meaning of Corollary 4.1 for the FEM solution
uh = (uh

1 , . . . , u
h
s ) itself.

Theorem 4.2 Let the basis functions satisfy (56)-(57). If (84) holds for the
FEM solution uh = (uh

1 , . . . , u
h
s ), then uh satisfies

max
k=1,...,s

max
Ω

uh
k ≤ max

k=1,...,s
max{0,max

ΓD

gh
k}. (85)

Proof. Let us refine the above splitting c̄ = [c, c̃]T of the vector c̄ =
(c1, ..., cn) ∈ Rn as

c̄ = ( c
(1)
1 , . . . , c

(1)
n̄0

; c
(2)
1 , . . . , c

(2)
n̄0

; . . . ; c
(s)
1 , . . . , c

(s)
n̄0

;
(86)

c
(1)
n̄0+1, . . . , c

(1)
n̄ ; c

(2)
n̄0+1, . . . , c

(2)
n̄ ; . . . ; c

(s)
n̄0+1, . . . , c

(s)
n̄ ),

that is, c has the n0 = sn̄0 entries from c
(1)
1 to c

(s)
n̄0

belonging to the interior

points, and c̃ has the n−n0 = s(n̄−n̄0) entries from c
(1)
n̄0+1 to c

(s)
n̄ belonging to

the boundary points, such that the upper index from 1 to s gives the number
of coordinate in the elliptic system. Here for all k = 1, . . . , s we have

uh
k =

n̄
∑

p=1

c(k)
p ϕp .

Now let k∗ ∈ {1, . . . , s} and p∗ ∈ {1, . . . , n̄} be indices such that

c
(k∗)
p∗ = max

i=1,...,n
ci .

For all k = 1, . . . , s, using (56),

max
Ω

uh
k = max

Ω

n̄
∑

p=1

c(k)
p ϕp ≤ c

(k∗)
p∗

n̄
∑

p=1

ϕp = c
(k∗)
p∗ ,

22



further, using (57),

u h
(k∗)(Bp∗) =

n̄
∑

p=1

c(k
∗)

p ϕp(Bp∗) =
n̄

∑

p=1

c(k
∗)

p δp,p∗ = c
(k∗)
p∗ .

These together mean that

max
k=1,...,s

max
Ω

uh
k = u h

(k∗)(Bp∗).

By (84), either c
(k∗)
p∗ ≤ 0 or p∗ ∈ {n0 +1, . . . , n̄} (i.e. p∗ is a ’boundary index’,

for which Bp∗ ∈ ΓD). In the first case

max
k=1,...,s

max
Ω

uh
k = u h

(k∗)(Bp∗) = c
(k∗)
p∗ ≤ 0,

and in the second case

max
k=1,...,s

max
Ω

uh
k = u h

(k∗)(Bp∗) ≤ max
ΓD

u h
(k∗) ≤ max

k=1,...,s
max
ΓD

uh
k = max

k=1,...,s
max
ΓD

gh
k .

(In fact, there is of course equality in the above estimate.) These two relations
just mean that (85) holds.

Thus we obtain the discrete maximum principle for system (46):

Corollary 4.2 Let the assumptions of Theorem 4.1 hold and let

fk ≤ 0, γk ≤ 0 (k = 1, . . . , s).

Let the basis functions satisfy (56)-(57). Then for sufficiently small h, if
uh = (uh

1 , . . . , u
h
s ) is the FEM solution of system (46), then

max
k=1,...,s

max
Ω

uh
k ≤ max

k=1,...,s
max{0,max

ΓD

gh
k}. (87)

Remark 4.2 (i) Let fk ≤ 0, γk ≤ 0 for all k. The result (87) can be divided
in two cases, both of which are remarkable: if at least one of the functions
gh

k has positive values on ΓD then

max
k=1,...,s

max
Ω

uh
k = max

k=1,...,s
max
ΓD

gh
k (88)

(which can be called more directly a discrete maximum principle than (87)),
and if gk ≤ 0 on ΓD for all k, then we obtain the nonpositivity property

uh
k ≤ 0 on Ω for all k . (89)

(ii) Analogously, if fk ≥ 0, γk ≥ 0 for all k, then (by reversing signs) we can
derive the corresponding discrete minimum principles instead of (87) and
(88), or the corresponding nonnegativity property instead of (89).
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Remark 4.3 The key assumption for the meshes in the above results is
property (77). A simple but stronger sufficient condition to satisfy (77) is
the following: if for any p = 1, ..., n̄0, t = 1, ..., n̄ (p 6= t)

∇ϕt · ∇ϕp ≤ −
σ

h2
< 0 (90)

on supp ϕp∩supp ϕt with some constant σ > 0 independent of p, t and Vh, and
in addition, if the family of meshes is quasi-regular according to Definition
4.1, then (77) is satisfied. For simplicial FEM, assumption (90) corresponds
to acute triangulations. These properties and less strong assumptions to
satisfy (77) will be discussed in subsection 4.4.

Remark 4.4 The results of this section may hold as well if there are addi-

tional terms
s
∑

l=1
ωkl(x, u,∇u)ul on the Neumann boundary ΓN , which we did

not include for technical simplicity. Then ωkl must satisfy similar properties
as assumed for Vkl in (47)-(48).

4.2 Systems with general reaction terms of sublinear

growth

It seems somewhat restrictive in (46) that both the principal and lower-order
parts of the equations are given as containing products of coefficients with
∇uk and ul, respectively. Whereas this is widespread in real models for the
principal part (and often the coefficient of ∇uk depends only on x, or x and
|∇u|), on the contrary, the lower order terms are usually not given in such
a coefficient form. Now we consider problems where the dependence on the
lower order terms is given as general functions of x and u. In this section
these functions are allowed to grow at most linearly, in which case one can
reduce the problem to the previous one (46) directly. (Superlinear growth of
qk will be dealt with in the next section.)

Accordingly, let us now consider the system

−div
(

bk(x, u,∇u)∇uk

)

+ qk(x, u1, . . . , us) = fk(x) in Ω,

bk(x, u,∇u)
∂uk

∂ν
= γk(x) on ΓN ,

uk = gk(x) on ΓD























(k = 1, . . . , s)

(91)
under the following assumptions:

Assumptions 4.2.

(i) Ω ⊂ Rd is a bounded piecewise C1 domain; ΓD,ΓN are disjoint open
measurable subsets of ∂Ω such that ∂Ω = ΓD ∪ ΓN .

(ii) (Smoothness and boundedness.) For all k, l = 1, . . . , s we have bk ∈
(C1 ∩ L∞)(Ω × Rs × Rs×d) and qk ∈W 1,∞(Ω × Rs).
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(iii) (Ellipticity.) There exists m > 0 such that bk ≥ m holds for all k =
1, . . . , s.

(iv) (Cooperativity.) We have

∂qk
∂ξl

(x, ξ) ≤ 0 (k, l = 1, . . . , s, k 6= l; x ∈ Ω, ξ ∈ Rs). (92)

(v) (Weak diagonal dominance for the Jacobians.) We have

s
∑

l=1

∂qk
∂ξl

(x, ξ) ≥ 0 (k = 1, . . . , s; x ∈ Ω, ξ ∈ Rs). (93)

(vi) For all k = 1, . . . , s we have fk ∈ L2(Ω), γk ∈ L2(ΓN), gk = g∗k |ΓD
with

g∗ ∈ H1(Ω).

Remark 4.5 Similarly to (49), assumptions (92)-(93) now imply

∂qk
∂ξk

(x, ξ) ≥ 0 (k = 1, . . . , s; x ∈ Ω, ξ ∈ Rs). (94)

The basic idea to deal with problem (91) is to reduce it to (46) via suitably
defined functions Vkl : Ω × Rs → R. Namely, let

Vkl(x, ξ) :=
∫ 1

0

∂qk
∂ξl

(x, tξ) dt (k, l = 1, . . . , s; x ∈ Ω, ξ ∈ Rs). (95)

Then the Newton-Leibniz formula yields

qk(x, ξ) = qk(x, 0) +
s

∑

l=1

Vkl(x, ξ) ξl (k = 1, . . . , s; x ∈ Ω, ξ ∈ Rs). (96)

Defining
f̂k(x) := fk(x) − qk(x, 0) (k = 1, . . . , s), (97)

problem (91) then becomes

−div
(

bk(x, u,∇u)∇uk

)

+
s
∑

l=1
Vkl(x, u)ul = f̂k(x) in Ω,

bk(x, u,∇u)
∂uk

∂ν
= γk(x) on ΓN ,

uk = gk(x) on ΓD



























(k = 1, . . . , s),

(98)
which is a special case of (46). Here the assumption qk ∈W 1,∞(Ω×Rs) yields
that Vkl ∈ L∞(Ω×Rs) (k, l = 1, . . . , s). Clearly, assumptions (92) and (93)
imply that the functions Vkl defined in (95) satisfy (47) and (48), respectively.
The remaining items of Assumptions 4.1 and 4.2 coincide, therefore system
(98) satisfies Assumptions 4.2.

Consequently, for a finite element discretization developed as in subsec-
tion 4.1.2, Theorem 4.2 yields the discrete maximum principle (85) for suit-
able discretizations of (98), provided f̂k ≤ 0 and γk ≤ 0 (k = 1, . . . , s). For
the original system (91), we thus obtain
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Corollary 4.3 Let problem (91) satisfy Assumptions 4.2, and let its FEM
discretization satisfy the corresponding conditions of Theorem 4.1. If

fk ≤ qk(x, 0), γk ≤ 0 (k = 1, . . . , s)

and uh = (uh
1 , . . . , u

h
s ) is the FEM solution of system (91), then for sufficiently

small h,
max

k=1,...,s
max

Ω
uh

k ≤ max
k=1,...,s

max{0,max
ΓD

gh
k}. (99)

4.3 Systems with general reaction terms of superlinear

growth

In the previous section we have required the functions qk to grow at most
linearly via the condition qk ∈ W 1,∞(Ω × Rs). However, this is a strong re-
striction and is not satisfied even by (nonlinear) polynomials of uk that often
arise in reaction-diffusion problems. In this section we extend the previous
results to problems where the functions qk may grow polynomially. This
generalization, however, needs stronger assumptions in other parts of the
problem, because we now need the monotonicity of the corresponding oper-
ator in the proof of the DMP. For this to hold, the row-diagonal dominance
for the Jacobians.in assumption 4.2 (v) must be strengthened to diagonal
dominance w.r.t. both rows and columns. (In addition, the principal part
must be more specific too, but this is not so much restrictive since in practice
it is even linear.)

Accordingly, let us now consider the system

−div
(

bk(x,∇uk)∇uk

)

+ qk(x, u1, . . . , us) = fk(x) in Ω,

bk(x,∇uk)
∂uk

∂ν
= γk(x) on ΓN ,

uk = gk(x) on ΓD























(k = 1, . . . , s)

(100)
under the following assumptions:

Assumptions 4.3.

(i) Ω ⊂ Rd is a bounded piecewise C1 domain; ΓD,ΓN are disjoint open
measurable subsets of ∂Ω such that ∂Ω = ΓD ∪ ΓN .

(ii) (Smoothness and growth.) For all k, l = 1, . . . , s we have bk ∈ (C1 ∩
L∞)(Ω × Rd) and qk ∈ C1(Ω × Rs). Further, let

2 ≤ p < p∗, where p∗ := 2d
d−2

if d ≥ 3 and p∗ := +∞ if d = 2;
(101)

then there exist constants β1, β2 ≥ 0 such that

∣

∣

∣

∣

∣

∂qk
∂ξl

(x, ξ)

∣

∣

∣

∣

∣

≤ β1 + β2|ξ|
p−2 (k, l = 1, . . . , s; x ∈ Ω, ξ ∈ Rs). (102)
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(iii) (Ellipticity.) There exists m > 0 such that bk ≥ m holds for all k =
1, . . . , s. Further, defining ak(x, η) := bk(x, η)η for all k, the Jacobian
matrices ∂

∂η
ak(x, η) are uniformly spectrally bounded from both below

and above.

(iv) (Cooperativity.) We have

∂qk
∂ξl

(x, ξ) ≤ 0 (k, l = 1, . . . , s, k 6= l; x ∈ Ω, ξ ∈ Rs). (103)

(v) (Weak diagonal dominance for the Jacobians w.r.t. rows and columns.)
We have

s
∑

l=1

∂qk
∂ξl

(x, ξ) ≥ 0,
s

∑

l=1

∂ql
∂ξk

(x, ξ) ≥ 0 (k = 1, . . . , s; x ∈ Ω, ξ ∈ Rs).

(104)

(vi) For all k = 1, . . . , s we have fk ∈ L2(Ω), γk ∈ L2(ΓN), gk = g∗k |ΓD
with

g∗ ∈ H1(Ω).

Remark 4.6 (i) Similarly to (49), assumptions (103)-(104) now imply

∂qk
∂ξk

(x, ξ) ≥ 0 (k = 1, . . . , s; x ∈ Ω, ξ ∈ Rs). (105)

(ii) Similarly to Remark 4.4, one may include additional terms sk(x, u1, . . . , us)
on the Neumann boundary ΓN , which we omit here for technical simplicity;
then sk must satisfy similar properties as assumed for qk.

To handle system (100), we start as in the previous subsection by reducing
it to a system with nonlinear coefficients: if the functions Vkl and f̂k (k, l =
1, . . . , s) are defined as in (95) and (97), respectively, then (100) takes a form
similar to (98):

−div
(

bk(x,∇u)∇uk

)

+
s
∑

l=1
Vkl(x, u)ul = f̂k(x) in Ω,

bk(x, u,∇u)
∂uk

∂ν
= γk(x) on ΓN ,

uk = gk(x) on ΓD



























(k = 1, . . . , s).

(106)
The difference compared to the previous subsection is the superlinear growth
allowed in (102), which does not let us apply Theorem 4.2 directly as we did
for system (91). Instead, we must reprove Theorem 4.1 under Assumptions
4.3.

First, when considering a finite element discretization developed as in
subsection 4.1.2, we need a strengthened assumption for the quasi-regularity
of the mesh.
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Definition 4.2 Let Ω ⊂ Rd and let us consider a family of FEM subspaces
V = {Vh}h→0 constructed as in subsection 4.1.2. The corresponding mesh
will be called quasi-regular w.r.t. problem (100) if

c1h
γ ≤ meas(suppϕp) ≤ c2h

d , (107)

where the positive real number γ satisfies

d ≤ γ < γ∗d(p) := 2d−
(d− 2)p

2
(108)

with p from Assumption 4.3 (ii).

Remark 4.7 Assumption (108) makes sense for γ since by (101),

d < d+ d(1 − p
p∗

) = γ∗d(p) . (109)

Note on the other hand that γ∗d(p) ≤ γ∗d(2) = d + 2, which is in accordance
with (71). Further, we have, in particular, in 2D: γ∗2(p) ≡ 4 for all 2 ≤ p <
∞, and in 3D: γ∗3(p) = 6 − (p/2) (where 2 ≤ p ≤ 6, and accordingly
3 ≤ γ∗3(p) ≤ 5).

Next, as an analogue of Lemma 4.1, we need a technical result for problem
(100):

Lemma 4.2 Let Assumptions 4.3 hold. Analogously to (72), for any u ∈
H1(Ω)s let us define the operators B(u) and R(u) via

〈B(u)w, v〉 =
∫

Ω

s
∑

k=1

bk(x,∇u)∇wk·∇vk, 〈R(u)w, v〉 =
∫

Ω

s
∑

k,l=1

Vkl(x, u)wl vk

(w ∈ H1(Ω)s, v ∈ H1
D(Ω)s). Together with A(u) := B(u)u + R(u)u, the

operators B(u) and R(u) satisfy Assumptions 3.1-Assumptions 3.2.

Proof. First, we must verify Assumptions 3.1. The stronger growth
(102) causes a difference only in proving Assumption 3.1 (iv), i.e. to fulfil
(16). Hence we only verify this property, the proof of the other items of
Assumption 3.1 is the same as in Lemma 4.1.

Consider p∗ as defined in (101). Then by [1]) we have the Sobolev em-
bedding estimate

‖h‖Lp∗(Ω) ≤ k1‖h‖H1 (h ∈ H1(Ω)) (110)

with a constant k1 > 0, where ‖h‖2
H1 :=

∫

Ω
|∇h|2 +

∫

ΓD

|h|2. This is inherited

for v ∈ H1(Ω)s too under the product norm ‖.‖ on H1(Ω)s defined in (73).
Here, by (95) and (102),

|〈R(u)w, v〉| = |
∫

Ω

s
∑

k,l=1

Vkl(x, u)wl vk| ≤
∫

Ω

s
∑

k,l=1

(β1 + β2|u|
p−2) |wl| |vk| .

(111)
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Letting |v|2 :=
s
∑

k=1
v2

k (v ∈ H1(Ω)s), we have
s
∑

k,l=1
|wl| |vk| ≤ s|w| |v|, hence

|〈R(u)w, v〉| ≤ s
∫

Ω
(β1 + β2|u|

p−2) |w| |v| . (112)

For vector functions v ∈ Lp(Ω)s, we define

‖v‖Lp :=
∥

∥

∥|v|
∥

∥

∥

Lp(Ω)
(113)

with |v| defined as above. Let us now fix a real number r satisfying

1 < r ≤
p∗

p− 2
. (114)

If q > 1 is chosen to have
1

r
+

1

q
= 1, (115)

then Hölder’s inequality implies
∫

Ω

|u|p−2 |w| |v| ≤
∥

∥

∥|u|p−2
∥

∥

∥

Lr(Ω)
‖w‖L2q ‖v‖L2q = ‖u‖p−2

L(p−2)r ‖w‖L2q ‖v‖L2q .

(116)
Here (p− 2)r ≤ p∗ and (110) imply

‖u‖p−2

L(p−2)r(Ω)
≤ k2‖u‖

p−2
Lp∗ (Ω)

≤ k3‖u‖
p−2 (117)

with some constants k2, k3 > 0. Setting u ≡ 1 in (116) and using (117), we
obtain ∫

Ω

|w| |v| ≤ k4 ‖w‖L2q ‖v‖L2q (118)

with some constant k4 > 0. Then (112), (118) and (116) imply

|〈R(u)w, v〉| ≤ s (β1 k4 + β2 k3 ‖u‖
p−2) ‖w‖L2q ‖v‖L2q . (119)

That is, if we define the new norm ‖| . ‖| as

‖|v‖| := ‖v‖L2q (v ∈ H1(Ω)s), (120)

then (16) holds with

MR(t) := s(β1 k4 + β2 k3 t
p−2) (t ≥ 0). (121)

Now we have to verify Assumptions 3.2. Note first that we have

〈A(u), v〉 =
∫

Ω

(

s
∑

k=1

bk(x,∇u)∇uk · ∇vk +
s

∑

k,l=1

Vkl(x, u)ul vk

)

(122)

(u ∈ H1(Ω)s, v ∈ H1
D(Ω)s). Using the notation ak in Assumption 4.3 (iii)

and from (96), we obtain

〈A(u), v〉 = 〈F (u), v〉 + 〈G(u), v〉 (123)
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where

〈F (u), v〉 =
∫

Ω

s
∑

k=1

ak(x,∇u)·∇vk, 〈G(u), v〉 =
∫

Ω

(

s
∑

k=1

qk(x, u) vk−
s

∑

k=1

qk(x, 0) vk

)

(124)
(u ∈ H1(Ω)s, v ∈ H1

D(Ω)s). Here, by Assumption 4.3 (iii), there exist con-
stants M ≥ m > 0 such that

∂ak

∂η
(x, η) ξ · ξ ≥ m|ξ|2,

∂ak

∂η
(x, η) ξ · ζ ≤ M |ξ| |ζ| (125)

(x ∈ Ω, η, ξ, ζ ∈ Rd). We can now check properties (i)-(iv) of Assumptions
3.2.

(i) Under Assumptions 4.3, it follows e.g. from [13, Theorem 6.2] that the
operators F,G in (124) are Gateaux differentiable, further, that F ′ and
G′ are bihemicontinuous. In fact, the latter have the form

〈F ′(u)w, v〉 =
∫

Ω

s
∑

k=1

∂ak

∂η
(x,∇u)∇wk·∇vk, 〈G′(u)w, v〉 =

∫

Ω

s
∑

k,l=1

∂qk
∂ξl

(x, u)wl vk .

(126)

(ii) Let u ∈ H1(Ω)s, w, v ∈ H1
D(Ω)s. We obtain from (125) and (126) that

〈F ′(u)w, v〉 ≤M‖w‖ ‖v‖ (127)

where ‖h‖2 :=
s
∑

k=1

∫

Ω |∇hk|
2 is the product norm ‖.‖ on H1

D(Ω)s. Fur-

ther, by (126) and (102),

|〈G′(u)w, v〉| ≤
∫

Ω

s
∑

k,l=1

(β1 + β2|u|
p−2) |wl| |vk| . (128)

This means that G′(u) has the same bound as R(u) in (111), but the
latter has been estimated above by (119), hence G′(u) also has the
bound (119). If we now choose r = p

p−2
in (114), then (115) yields

q = p
2
, and setting the latter in the bound in (119) thus gives

|〈G′(u)w, v〉| ≤ (β1 k4 + β2 k3 ‖u‖
p−2) ‖w‖Lp ‖v‖Lp . (129)

Using (110) and that p < p∗, we obtain ‖w‖Lp ≤ k5‖w‖Lp∗ ≤ k6‖w‖ on
H1

D(Ω)s, hence

|〈G′(u)w, v〉| ≤ k6(β1 k4 + β2 k3 ‖u‖
p−2) ‖w‖ ‖v‖ . (130)

Finally, from A′(u) = F ′(u) +G′(u), using (127) and (130), we obtain

|〈A′(u)w, v〉| ≤
(

M + k6(β1 k4 + β2 k3 ‖u‖
p−2)

)

‖w‖ ‖v‖ ,

i.e. the required estimate (18) with MA(t) := M +k6(β1 k4 +β2 k3 t
p−2)

(t ≥ 0).
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(iii) We obtain immediately from (125) and (126) that

〈F ′(u)v, v〉 ≥ m‖v‖2 (u ∈ H1(Ω)s, v ∈ H1
D(Ω)s). (131)

(iv) By Assumptions 4.3 (iv)-(v), for all x ∈ Ω and ξ ∈ Rs the Jacobians
∂qk

∂ξl
(x, ξ) are M -matrices and weakly diagonally dominant w.r.t. both

rows and columns. It is well-known that such matrices are positive
semidefinite. Therefore

〈G′(u)v, v〉 =
∫

Ω

s
∑

k,l=1

∂qk
∂ξl

(x, u) vl vk ≥ 0 (u ∈ H, v ∈ H0).

(132)

Now we can prove the desired nonnegativity result for the stiffness matrix,
i.e. the analogue of Theorem 4.1 for system (100). Here the entries of Ā(c̄)
are

aij(c̄) =
∫

Ω

(

s
∑

k=1

bk(x,∇u
h) (∇φj)k ·(∇φi)k+

s
∑

k,l=1

Vkl(x, u
h) (φj)l (φi)k

)

, (133)

where by (95),

Vkl(x, u
h(x)) =

∫ 1

0

∂qk
∂ξl

(x, tuh(x)) dt (k, l = 1, . . . , s; x ∈ Ω). (134)

Theorem 4.3 Let problem (100) satisfy Assumptions 4.3. Let us consider
a family of finite element subspaces Vh (h→ 0) satisfying the following prop-
erty: there exists a real number γ satisfying (108) such that for any indices
p = 1, ..., n̄0, t = 1, ..., n̄ (p 6= t), if meas(suppϕp ∩ suppϕt) > 0 then

∇ϕt · ∇ϕp ≤ 0 on Ω and
∫

Ω
∇ϕt · ∇ϕp ≤ −K0 h

γ−2 (135)

with some constant K0 > 0 independent of p, t and h. Further, let the family
of meshes be regular from above, according to Definition 4.1.

Then for sufficiently small h, the matrix Ā(c̄) defined in (133) is of gen-
eralized nonnegative type with irreducible blocks in the sense of Definition
2.4.

Proof. We follow the proof of Theorem 4.1 and wish to apply Theorem
3.1. Most of the arguments are identical, corresponding to the conditions
that coincide in Assumptions 4.1 and 4.3. We will concentrate on the differ-
ent parts. Since Assumptions 3.1 hold by Lemma 4.1, we are left to check
assumptions (a)-(e) of Theorem 3.1.

(a) Let φi ∈ V 0
h , φj ∈ Vh, and let φi have ϕp at its k-th entry and φj have

ϕt at its l-th entry. We obtain similarly as in the proof of Theorem
4.1 that (37) holds if either k 6= l, or k = l and meas(Ωpt) = 0, where
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Ωpt := suppϕp∩suppϕt. The stronger growth (102) causes a difference
only in verifying (38)-(40) in the case k = l and meas(Ωpt) > 0. Here,
in the same way as in (80), we obtain

〈B(uh)φj, φi〉 ≤ −ĉ1 h
γ−2 =: −MB(h) (136)

and we must check (40). Let us now choose a real number r satisfying

d

2 + d− γ
< r ≤

p∗

p− 2
. (137)

Here γ ≥ 2 implies d/(2 + d − γ) ≥ 1, hence (137) is a special case of
(114). Such an r exists since

d

2 + d− γ
<

p∗

p− 2
, (138)

which holds for the following reason. If d = 2 then p∗ = +∞, hence
there is nothing to prove. If d ≥ 3 then we first observe that the fact
p ≥ 2 and (108) imply

γ < 2d− (d−2)p
2

= d+ 2 − (d−2)(p−2)
2

≤ d+ 2 , (139)

hence the denominator of d/(2 + d− γ) is positive. Hence we can take
the reciprocal of (138) and use the definition p∗ := 2d

d−2
to obtain

2(2 + d− γ) > (d− 2)(p− 2)

to be proved, but this just follows from the first inequality of (139).
Now let q > 1 be chosen to satisfy (115), and by (120), let us define
the corresponding norm

‖|v‖| := ‖v‖L2q (v ∈ H1(Ω)s), (140)

for which, as seen in Lemma 4.2, estimate (16) holds with (121). Here
(113) yields

‖|v‖|2 =
∥

∥

∥

s
∑

k=1

v2
k

∥

∥

∥

Lq(Ω)
(v ∈ H1(Ω)s). (141)

Hence we obtain the following estimate, where φj has ϕt at its l-th
entry as before, and we use (69) and that (56) implies ϕt ≤ 1:

‖|φj‖|
2 =

∥

∥

∥ |ϕt|
2
∥

∥

∥

Lq(Ω)
= ‖ϕt‖

2
Lq(Ω) ≤

(

∫

supp ϕt

1
)1/q

= meas(suppϕt)
1/q ≤ c2h

d/q ,

(142)
hence (39) gives T (h)2 ≤ hd/q. Here (115) and (137) imply γ − 2 −
(d/q) = γ − 2 − d+ (d/r) < 0. From this, using (136) we obtain

lim
h→0

MB(h)

T (h)2
≥
ĉ1
c2

lim
h→0

hγ−2−(d/q) = +∞. (143)
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(b) This assumption is proved identically to that in Theorem 4.1, using the
same definition of neighbouring basis vectors.

(c) By (121), we must verify that MR(‖uh‖) = s(β1 k4 + β2 k3 ‖u
h‖p−2) is

bounded as h→ 0. Note that Assumptions 3.2 hold by Lemma 4.1, and
the functions gh ∈ Vh in (63) (that are the Vh-interpolants of g on ΓD)
are bounded in H1(Ω)s-norm as h → 0. From these two properties, as
pointed out in Remark 3.1, it follows that ‖uh‖ is bounded as h → 0,
and then obviously MR(‖uh‖) is bounded too.

(d)-(e) These assumptions are independent of the growth conditions on qk, and
are proved identically to those in Theorem 4.1.

Similarly as in Corollary 4.3, using Theorem 4.3, Corollary 3.1 and The-
orem 4.2, respectively, we obtain the discrete maximum principle for system
(100):

Corollary 4.4 Let problem (100) satisfy Assumptions 4.3, and let its FEM
discretization satisfy the conditions of Theorem 4.3. If

fk ≤ qk(x, 0), γk ≤ 0 (k = 1, . . . , s)

then for sufficiently small h, the FEM solution uh = (uh
1 , . . . , u

h
s ) of system

(100) satisfies

max
k=1,...,s

max
Ω

uh
k ≤ max

k=1,...,s
max{0,max

ΓD

gh
k}. (144)

Remark 4.8 As pointed out in Remark 4.2, the result (144) can be divided
in two cases: a ’more direct’ DMP (88) or the nonpositivity property (89).
Further, if fk ≥ qk(x, 0), γk ≥ 0 for all k, then (by reversing signs) one
can derive the corresponding discrete minimum principle or nonnegativity
property. We formulate the latter below for its practical importance.

Corollary 4.5 Let problem (100) satisfy Assumptions 4.3, and let its FEM
discretization satisfy the conditions of Theorem 4.3. If

fk ≥ qk(x, 0), γk ≥ 0, gk ≥ 0 (k = 1, . . . , s)

then for sufficiently small h, the FEM solution uh = (uh
1 , . . . , u

h
s ) of system

(100) satisfies

uh
k ≥ 0 on Ω (k = 1, . . . , s). (145)

4.4 Sufficient conditions and their geometric meaning

The key assumption for the FEM subspaces Vh and the associated meshes in
the above results has been the following property, see (77) in Theorem 4.1
and (135) in Theorem 4.3. There exists a real number γ satisfying (71) or
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(108), respectively, such that for any indices p = 1, ..., n̄0, t = 1, ..., n̄ (p 6= t),
if meas(suppϕp ∩ suppϕt) > 0 then

∇ϕt · ∇ϕp ≤ 0 on Ω and (146)
∫

Ω
∇ϕt · ∇ϕp ≤ −K0 h

γ−2 (147)

with some constant K0 > 0 independent of p, t and h. (The family of meshes
must also be regular from above as in (68), but that requirement obviously
holds for the usual definition of the mesh parameter h as the maximal diam-
eter of elements.)

A classical way to satisfy such conditions is a pointwise inequality like
(90) together with suitable mesh regularity, see Remark 4.3. However, one
can ensure (146)-(147) with less strong conditions as well. We summarize
some possibilities below.

Proposition 4.1 Let the family of FEM discretizations V = {Vh}h→0 satisfy
either of the following conditions, where ϕt, ϕp are arbitrary basis functions
such that p = 1, ..., n̄0, t = 1, ..., n̄, p 6= t, we let

Ωpt := suppϕp ∩ suppϕt ,

further, let
σ > 0 and c1, c2, c3 > 0

denote constants independent of the indices p, t and the mesh parameter h,
and finally, d is the space dimension and γ satisfies (108).

(i) Let the basis functions satisfy

∇ϕt · ∇ϕp ≤ −
σ

h2
< 0 on Ωpt, (148)

and the family of meshes be quasi-regular as in (107):

c1h
γ ≤ meas(suppϕp) ≤ c2h

d . (149)

(ii) Let there exist 0 < ε ≤ γ − d such that the basis functions satisfy

∇ϕt · ∇ϕp ≤ −
σ

h2−ε
< 0 on Ωpt, (150)

but let the quasi-regularity (107) of the family of meshes be now strength-
ened to

c1h
γ−ε ≤ meas(suppϕp) ≤ c2h

d . (151)

(iii) Let there exist subsets Ω+
pt ⊂ Ωpt for all p, t such that the basis functions

satisfy

∇ϕt · ∇ϕp ≤ −
σ

h2
< 0 on Ω+

pt and ∇ϕt · ∇ϕp ≤ 0 on Ωpt \ Ω+
pt

(152)
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and we have
meas(Ω+

pt)

meas(Ωpt)
≥ c3 > 0 , (153)

further, let the family of meshes be quasi-regular as in (107):

c1h
γ ≤ meas(suppϕp) ≤ c2h

d . (154)

Then (146)-(147) holds.

Proof is obvious.

In view of well-known results (see e.g. [3, 10, 22, 33]), the conditions (146)
and (148) have a nice geometric interpretations. Namely, in order to satisfy
condition (146) in the case of a simplicial mesh, it is sufficient if the employed
mesh is nonobtuse, further, condition (148) is satisfied if the employed family
of simplicial meshes is uniformly acute [22, 5]. We note that these conditions
are sufficient but not necessary: as shown by [18, Remark 6] , the DMP
may still hold if some obtuse interior angles occur in the simplices of the
meshes. This is analogous to the case of linear problems [21, 29]. In the case
of bilinear elements, condition (146) is equivalent to the so-called condition
of non-narrow mesh, see [8]. The case of prismatic finite elements is treated
in [14].

The weaker conditions (150) and (152) allow in theory easier refinement
procedures. First, (150) may allow the acute angles to deteriorate (i.e. tend
to 90◦) as h → 0. Namely, if a family of simplicial meshes is regular then
|∇ϕt| = O(h−1) for all linear basis functions: hence, considering two basis
functions ϕp, ϕt and letting α denote the angle of their gradients on a given
simplex, the sufficient condition

cosα ≤ −σhε (155)

(with some constant σ > 0 independent of h) implies

∇ϕt · ∇ϕp = |∇ϕt| |∇ϕp| cosα ≤ −
σ hε

h2
,

i.e. (150) holds. Clearly, if h→ 0 then (155) allows cosα→ 0, i.e. α→ 90◦.
(In particular, for problem (46), when (108) coincides with d ≤ γ < d+ 2 as
in (71), then γ − d can be chosen arbitrarily close to 2. Hence the exponent
2 − ε in (150) can be arbitrarily close to 0, i.e. the decay of angles to 90◦

may be fast as h→ 0.)

Second, (152) means that one can allow some right angles, but each Ωpt,
which consists of a finite number of elements, must contain some elements
with acute angles and the measure of these must not asymptotically vanish.
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5 Some applications

5.1 Reaction-diffusion systems in chemistry

The steady states of certain reaction-diffusion processes in chemistry are
described by systems of the following form:

−bk∆uk + Pk(x, u1, . . . , us) = fk(x) in Ω,

bk
∂uk

∂ν
= γk(x) on ΓN ,

uk = gk(x) on ΓD























(k = 1, . . . , s).

(156)
Here, for all k, the quantity uk describes the concentration of the kth species,
and Pk is a polynomial which characterizes the rate of the reactions involving
the k-th species. A common way to describe such reactions is the so-called
mass action type kinetics [15, 16], which implies that Pk has no constant
term for any k, in other words, Pk(x, 0) ≡ 0 on Ω for all k. Further, the
reaction between different species is often proportional to the product of
their concentration, in which case

Pk(x, u1, . . . , us) = akk(x)u
α
k +

∑

k 6=l

akl(x)ukul .

The function fk ≥ 0 describes a source independent of concentrations.

We consider system (156) under the following conditions, such that it
becomes a special case of system (100). As pointed out later, such chemical
models describe processes with cross-catalysis and strong autoinhibiton.

Assumptions 5.1.

(i) Ω ⊂ Rd is a bounded piecewise C1 domain, where d = 2 or 3, and
ΓD,ΓN are disjoint open measurable subsets of ∂Ω such that ∂Ω =
ΓD ∪ ΓN .

(ii) (Smoothness and growth.) For all k, l = 1, . . . , s, the functions Pk are
polynomials of arbitrary degree if d = 2 and of degree at most 4 if
d = 3, further, Pk(x, 0) ≡ 0 on Ω.

(iii) (Ellipticity.) bk > 0 (k = 1, . . . , s) are given numbers.

(iv) (Cooperativity.) We have

∂Pk

∂ξl
(x, ξ) ≤ 0 (k, l = 1, . . . , s, k 6= l; x ∈ Ω, ξ ∈ Rs). (157)

(v) (Weak diagonal dominance for the Jacobians w.r.t. rows and columns.)
We have
s

∑

l=1

∂Pk

∂ξl
(x, ξ) ≥ 0,

s
∑

l=1

∂Pl

∂ξk
(x, ξ) ≥ 0 (k = 1, . . . , s; x ∈ Ω, ξ ∈ Rs).

(158)
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(vi) For all k = 1, . . . , s we have fk ∈ L2(Ω), γk ∈ L2(ΓN), gk = g∗k |ΓD
with

g∗ ∈ H1(Ω).

Similarly to (94), assumptions (157)-(158) now imply

∂Pk

∂ξk
(x, ξ) ≥ 0 (k = 1, . . . , s; x ∈ Ω, ξ ∈ Rs). (159)

Returning to the model described by system (156), the chemical meaning
of the cooperativity (157) is cross-catalysis, whereas (159) means autoin-
hibiton. Cross-catalysis arises e.g. in gradient systems [30]. Condition (158)
means that autoinhibition is strong enough to ensure both weak diagonal
dominances.

By definition, the concentrations uk are nonnegative, therefore a proper
numerical model must produce such numerical solutions. We can use Corol-
lary 4.5 to obtain the required property:

Corollary 5.1 Let problem (156) satisfy Assumptions 5.1, and let its FEM
discretization satisfy the conditions of Theorem 4.3. If

fk ≥ 0, γk ≥ 0, gk ≥ 0 (k = 1, . . . , s)

then for sufficiently small h, the FEM solution uh of system (156) satisfies

uh
k ≥ 0 on Ω (k = 1, . . . , s). (160)

5.2 Linear elliptic systems

Maximum principles or nonnegativity preservation for linear elliptic systems
have attracted great interest, as mentioned in the introduction. Hence it is
worthwile to derive the corresponding DMPs from the previous results. Let
us therefore consider linear elliptic systems of the form

−div (bk(x)∇uk) +
s
∑

l=1
Vkl(x)ul = fk(x) in Ω,

bk(x)
∂uk

∂ν
= γk(x) on ΓN ,

uk = gk(x) on ΓD























(k = 1, . . . , s)

(161)
where for all k, l = 1, . . . , s we have bk ∈ W 1,∞(Ω) and Vkl ∈ L∞(Ω).

Let Assumptions 4.1 hold (where in fact we do not need assumption (ii)).
Then (161) is a special case of (46), hence Corollary 4.2 holds, as well as the
analogous results mentioned in Remark 4.2. Here we formulate two of these
that follow the most studied CMP results:

Corollary 5.2 Let problem (161) satisfy Assumptions 4.1, let its FEM dis-
cretization satisfy the conditions of Theorem 4.1 and let h be sufficiently
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small. If uh = (uh
1 , . . . , u

h
s ) is the FEM solution of system (161), then the

following properties hold.

(1) If fk ≤ 0, γk ≤ 0 (k = 1, . . . , s) and max
k=1,...,s

max
ΓD

gh
k > 0, then

max
k=1,...,s

max
Ω

uh
k = max

k=1,...,s
max
ΓD

gh
k . (162)

(2) If fk ≥ 0, γk ≥ 0 and gk ≥ 0 (k = 1, . . . , s), then

uh
k ≥ 0 on Ω (k = 1, . . . , s). (163)
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[15] Hárs, V., Tóth, J., On the inverse problem of reaction kinetics, In:
Qualitative Theory of Differential Equations (Szeged, Hungary, 1979),
Coll. Math. Soc. János Bolyai 30, ed. M. Farkas, North-Holland - János
Bolyai Mathematical Society, Budapest, 1981, pp. 363-379.

[16] Horn, F., Jackson, R., General mass action kinetics, Arch. Rat.
Mech. Anal. 47 (1972), 81–116.

[17] Ishihara, K., Strong and weak discrete maximum principles for matri-
ces associated with elliptic problems, Linear Algebra Appl. 88/89 (1987),
431–448.
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