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1 Introduction

The purpose of this paper is to analyze finite element methods for the
Brinkman equations modeling porous media flow. The model is usually de-
rived by homogenization assuming a high porosity, cf. [11, 1, 2, 3, 15]. The
equations are, in fact, a whole range of equations with Darcy’s equations
and Stokes equations as limits. As a consequence, it is not trivial to design
efficient finite element methods. If they are efficient for the Darcy problem
that is not necessarily the case for Stokes, and vice versa. Tied to this are
the norms used in the analysis for the velocity and pressure, respectively.
Roughly speaking, they change place when going from one extreme to the
other.

The plan of the paper is as follows. In the next section we introduce
a framework using two scales of norms for analyzing the problem. We do
not use the approach of [12] since that does not include the Stokes limit.
In Section 3 we consider a family of classical mixed finite element methods.
We prove the stability (in the chosen norms) and derive both a priori and a
posteriori error estimates. Next, we perform the same analysis for a family
of stabilized finte element methods. In Section 5 we follow [8] and discuss
the enforcement of Dirichlet boundary conditions by Nitsche’s method.

In a forthcoming paper [9] we present the results of numerical tests with
the finite element methods.

2 The Brinkman problem

Let Ω ⊂ R
N be a domain with polygonal or polyhedral boundary. The

Brinkman problem is the parameter dependent equations

−t2Au + u + ∇p = f in Ω, (1)

div u = g in Ω, (2)

where the parameter 0 ≤ t ≤ C. Above we denote A = div ε(u) and
ε(u) = (∇u + ∇uT )/2. For t > 0 the equations are formally a Stokes
problem for which we assume homogeneous essential boundary conditions

u = 0 on ∂Ω. (3)

In the limit t = 0, we obtain the Darcy problem with the natural boundary
conditions

u · n = 0 on ∂Ω. (4)

Since the boundary conditions are homogenous, the compatibility condition
g ∈ L2

0(Ω) is required for the load in both cases. The same condition; p ∈
L2

0(Ω), is imposed in order to have a unique pressure.
The natural energy norm for the velocity is

‖v‖2
t = t2‖ε(v)‖2

0 + ‖v‖2
0, (5)
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and the natural solution space is V ; the completion of [C∞
0 (Ω)]N with respect

to this norm. For t > 0 we have

V = [H1
0 (Ω)]N , (6)

but the equivalence is not uniform, for 0 < t ≤ C it holds

C1t‖v‖1 ≤ ‖v‖t ≤ C2‖v‖1. (7)

(Here and in the sequel all constants C and Ci are assumed independent of
t and the mesh parameter h.) For t = 0 the space is

V = [L2(Ω)]N . (8)

Hence, when t > 0 is ”small”, the equations are best considered as a singu-
lar perturbation of the Darcy equations. Note that the essential boundary
conditions disappear from the energy space in the limit t = 0.

The space for the pressure is defined through the norm

|‖q‖|t = sup
v∈V

〈v,∇q〉

‖v‖t

, (9)

where 〈·, ·〉 denotes the duality pairing in V ×V ∗. In other words, the distri-
butional gradient of the pressure is required to lie in the dual V ∗. The space
is denoted by Q:

Q = { q ∈ L2
0(Ω) | |‖q‖|t < ∞}. (10)

Note that for (v, q) ∈ V × Q it holds

〈v,∇q〉 =

{

− (div v, q) for t > 0,

(v,∇q) for t = 0,
(11)

where (·, ·) denotes the L2-inner products. For t > 0 the Babuška-Brezzi
condition []

sup
v∈V

(div v, q)

‖v‖1

≥ C‖q‖0 ∀q ∈ L2
0(Ω) (12)

implies that Q = L2
0(Ω), but again the equivalence is not uniformly valid.

For 0 < t < C we have

C1‖q‖0 ≤ |‖q‖|t ≤ C2t
−1‖q‖0. (13)

For t = 0 we have
|‖q‖|t ≡ ‖∇q‖0 (14)

and Q = H1(Ω) ∩ L2
0(Ω).

Define the bilinear forms

a(u,v) = t2 (ε(u), ε(v)) + (u,v) , (15)

b(v, p) = 〈v,∇p〉 (16)
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and

B(u, p; v, q) = a(u,v) + b(v, p) + b(u, q). (17)

The weak formulation of the problem is then: Find (u, p) ∈ V ×Q such that

B(u, p; v, q) = L(v, q) ∀(v, q) ∈ V × Q, (18)

where

L(v, q) = (f ,v) − (g, q) . (19)

By definition of the norms and Korn’s inequality, Brezzi’s conditions for
a saddle point problem are satisfied, namely

a(v,v) ≥ C‖v‖2
t ∀v ∈ V and sup

v∈V

b(v, q)

‖v‖t

≥ |‖q‖|t ∀q ∈ Q. (20)

These two imply the stability condition

sup
(v,q)∈V×Q

B(w, r; v, q)

‖v‖t + |‖q‖|t
≥ C

(

‖w‖t + |‖r‖|t
)

∀(w, r) ∈ V × Q (21)

by which the solution is unique.

3 Mixed finite element methods

We assume a partitioning Ch of the domain Ω into simplices. With K ∈ Ch

we denote an element of the partitioning, and the maximum size of K ∈ Ch is
denoted by h. With Γh we denote the internal edges/faces of the partitioning.

The finite element spaces are a generalization of the classical MINI ele-
ment [4] and they are defined as

Vh = {v ∈ V ∩ [C(Ω)]N | v|K ∈ [Pk(K) ∪ Bk+N(K)]N ∀K ∈ Ch }, (22)

Qh = {q ∈ L2
0(Ω) ∩ C(Ω) | q|K ∈ Pk(K) ∀K ∈ Ch }, (23)

where Pk(K) denotes the polynomials of degree k and

Bk+N(K) = Pk+N(K) ∩ H1
0 (K)

are the bubbles of degree k + N . In the analysis will also use the subspace
Vh ⊂ Vh where the ”bubbles” are left out:

Vh = {v ∈ V ∩ [C(Ω)]N | v|K ∈ [Pk(K)]N ∀K ∈ Ch }, (24)

The finite element formulations is: find (uh, ph) ∈ Vh × Qh such that

B(uh, ph; v, q) = L(v, q) ∀(v, q) ∈ Vh × Qh. (25)
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3.1 Stability

To prove the stability of our formulation we have to verify the two conditions,
the ellipticity and the inf-sup condition. For this we will utilize the following
discrete counterpart of the norm (9)

|‖q‖|2t,h =
∑

K∈Ch

h2
K

t2 + h2
K

‖∇q‖2
0,K . (26)

This norm is also important in practice, since it can be readily computed.

First, we prove the inf-sup condition with this norm.

Lemma 1. There is a constant C > 0 such that

sup
v∈Vh

b(v, q)

‖v‖t

≥ C|‖q‖|t,h ∀q ∈ Qh. (27)

Proof. For q ∈ Qh given, it holds ∇q|K ∈ [Pk−1(K)]N , and we can define
v ∈ Vh through

v|K =
( h2

K

t2 + h2
K

)

bK∇q|K , (28)

where bK is the cubic/quartic bubble on K. For v it holds

b(v, q) = (v,∇q) ≥ C
∑

K∈Ch

h2
K

t2 + h2
K

‖∇q‖2
0,K = C|‖q‖|2t,h (29)

and

‖v‖2
t = t2‖∇v‖2

0 + ‖v‖2
0 ≤ C

∑

K∈Ch

(t2h−2
K + 1)‖v‖2

0,K (30)

≤ C
∑

K∈Ch

(t2h−2
K + 1)

( h2
K

t2 + h2
K

)2
‖∇q‖2

0,K = C|‖q‖|2t,h.

Combining equations (29) and (30) completes the proof.

Next, we use the ’Pitkäranta-Verfürth’-trick (see [14, 17]) to prove the
stability in the continuous norm.

Lemma 2. There is a constant C > 0 such that

sup
v∈Vh

b(v, q)

‖v‖t

≥ C|‖q‖|t ∀q ∈ Qh. (31)

Proof. Due to the continuous inf-sup condition (20), there exist w ∈ V such
that

b(w, q) ≥ |‖q‖|2t and ‖w‖t ≤ |‖q‖|t ∀q ∈ Qh. (32)
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With w̃ ∈ Vh we denote the Clément-Scott-Zhang interpolant [6, 5] of w.
For this it holds

∑

K∈Kh

h−2
K ‖w − w̃‖2

0,K ≤ C‖∇w‖2
0, (33)

‖w̃‖0 ≤ C‖w‖0 and ‖∇w̃‖0 ≤ C‖∇w‖0. (34)

This gives

∑

K∈Ch

(t + hK

hK

)2
‖w̃ − w‖2

0,K ≤ 2
∑

K∈Ch

(

( t

hK

)2
+ 1

)

‖w̃ − w‖2
0,K

≤ C‖w‖2
t ≤ C‖w̃‖2

t . (35)

Using the estimates above, we obtain

b(w̃, q) = (w̃,∇q)

= (w,∇q) + (w̃ − w,∇q)

≥ |‖q‖|2t −
∑

K∈Ch

hK

t + hK

‖∇q‖0,K
t + hK

hK

‖w̃ − w‖0,K

≥ |‖q‖|2t − |‖q‖|t,h
(

∑

K∈Ch

(t + hK

hK

)2
‖w̃ − w‖2

0,K

)1/2

≥ |‖q‖|2t − C|‖q‖|t,h‖w‖t (36)

≥
(

|‖q‖|t − C|‖q‖|t,h
)

‖w‖t

≥
(

C1|‖q‖|t − C2|‖q‖|t,h
)

‖w̃‖t.

Thus, we have

sup
v∈Vh

b(v, q)

‖v‖t

≥ C1|‖q‖|t − C2|‖q‖|t,h. (37)

Combining this estimate and Lemma 1, with 0 < α < 1, we get

sup
v∈Vh

b(v, q)

‖v‖t

= α sup
v∈Vh

b(v, q)

‖v‖t

+ (1 − α) sup
v∈Vh

b(v, q)

‖v‖t

≥ αC1|‖q‖|t − αC2|‖q‖|t,h + (1 − α)C|‖q‖|t,h

= αC1|‖q‖|t + (C − α(C + C2))|‖q‖|t,h. (38)

Choosing α such that 0 < α < C/(C + C2) proves the assertion.

Lemmas 1 and 2 give the two stability results.

Theorem 3. There is a constant C > 0 such that

sup
(v,q)∈Vh×Qh

B(w, r; v, q)

‖v‖t + |‖q‖|t
≥ C

(

‖w‖t + |‖r‖|t
)

∀(w, r) ∈ Vh × Qh. (39)

Theorem 4. There is a constant C > 0 such that

sup
(v,q)∈Vh×Qh

B(w, r; v, q)

‖v‖t + |‖q‖|t,h
≥ C

(

‖w‖t + |‖r‖|t,h
)

∀(w, r) ∈ Vh × Qh. (40)
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3.2 A priori estimate

The stability estimate of Theorem 3 and the consistency gives the following
quasioptimality result.

Theorem 5. There exists a constant C > 0 such that

‖u − uh‖t + |‖p − ph‖|t ≤ C
{

inf
v∈Vh

‖u − v‖t + inf
q∈Qh

|‖p − q‖|t
}

. (41)

Standard interpolation estimates then give.

Theorem 6. Assume that the problem has a smooth solution. Then it holds

‖u − uh‖t + |‖p − ph‖|t,h = O(hk). (42)

When measuring the error in the computable mesh dependent norm for
the pressure we get the following theorem.

Theorem 7. There exists C > 0 such that

‖u−uh‖t + |‖p−ph‖|t,h ≤ C
(

inf
v∈Vh

{

‖u−v‖t + t
(

∑

K∈Ch

h−2
K ‖u−v‖2

0,K

)1/2
}

+ inf
q∈Qh

{

|‖p − q‖|t,h + |‖p − q‖|t
})

. (43)

Proof. By the triangle inequality

‖u−uh‖t+|‖p−ph‖|t,h ≤ ‖u−v‖t+|‖p−q‖|t,h+‖uh−v‖t+|‖ph−q‖|t,h. (44)

Hence, we have to bound

‖uh − v‖t + |‖ph − q‖|t,h.

Using the stability estimate of Theorem 4 we know there exists (w, r) ∈
Vh × Qh, with

‖w‖t + |‖r‖|t,h ≤ C (45)

such that

‖uh − v‖t + |‖ph − q‖|t,h ≤ B(uh − v, ph − q; w, r). (46)

By the consistency we have

B(uh − v, ph − q; w, r) = B(u − v, p − q; w, r), (47)

Using Schwartz inequality we then get

B(u − v, p − q; w, r)

= t2 (∇(u − v),∇w) + (u − v,w) + 〈w, p − q〉 + (u − v,∇r)

≤ t‖∇(u − v)‖0 t‖∇w‖0 + ‖u − v‖0‖w‖0 + ‖w‖t|‖p − q‖|t

+
(

∑

K∈Ch

(t + hK

hK

)2
‖u − v‖2

0,K

)1/2( ∑

K∈Ch

( hK

t + hK

)

‖∇r‖2
0,K

)1/2

(48)

≤ C
(

‖u − v‖t + |‖p − q‖|t + t
(

∑

K∈Ch

h−2
K ‖u − v‖2

0,K

)1/2
)

.

Combining equations (44) – (48) proves equation (43).
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3.3 A posteriori estimate

In this section we will introduce and analyze a residual based a posteri-
ori estimator. In an earlier paper we have done this for the related scalar
reaction-diffusion [10]. The element wise estimator is defined by

EK(uh, ph)
2 =

h2
K

t2 + h2
K

‖t2Auh−uh−∇ph+f‖2
0,K+(t2+h2

K)‖div uh−g‖2
0,K

+
hK

t2 + h2
K

‖[[t2εn(uh)]]‖
2
0,∂K\∂Ω +

t2 + h2
K

hK

‖uh · n‖2
0,∂K∩∂Ω (49)

and the global estimator is

η =
(

∑

K∈Ch

EK(uh, ph)
2
)1/2

. (50)

Here εn(·) denotes the normal derivative and [[·]] is the jump. Note, that the
last term in (49) vanishes when t > 0.

In the limit t = 0 (or as t < h) the a posteriori estimator becomes

EK(uh, ph)
2 ≈ ‖uh +∇ph − f‖2

0,K + h2
K‖div uh − g‖2

0,K + hE‖uh ·n‖2
0,∂K∩∂Ω,

which is the estimator for the Darcy problem. On the other hand, if t ≥ C >
0, the estimator can be expressed as (since uh|∂Ω = 0)

EK(uh, ph)
2 ≈ h2

K‖t2Auh − uh −∇ph + f‖2
0,K + ‖div uh − g‖2

0,K

+ hE‖[[εn(uh)]]‖
2
0,∂K\∂Ω,

which is the standard Stokes estimator.
For our analysis we will need a saturation assumption. The partitioning

Ch is refined into Ch/2 by dividing each triangle/tetrahedron K into four/eight
elements with mesh size less or equal to hK/2. By (uh/2, ph/2) ∈ Vh/2 ×Qh/2

we denote the finite element solution on the refined mesh.

Assumption 8. There exists a positive constant β < 1 such that

‖u − uh/2‖t + |‖p − ph/2‖|t,h ≤ β
(

‖u − uh‖t + |‖p − ph‖|t,h
)

. (51)

The main result is the following theorem.

Theorem 9. Let Assumption 8 hold. Then there exists C > 0 such that

‖u − uh‖t + |‖p − ph‖|t,h ≤ Cη. (52)

Proof. By the triangle inequality the saturation assumption gives

‖u − uh‖t + |‖p − ph‖|t,h ≤
1

1 − β

(

‖uh/2 − uh‖t + |‖ph/2 − ph‖|t,h
)

. (53)
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From the stability, Theorem 4, there exists (v, q) ∈ Vh/2 × Qh/2, with

‖v‖t + |‖q‖|t,h ≤ C, (54)

such that

‖uh/2 − uh‖t + |‖ph/2 − ph‖|t,h ≤ B(uh/2 − uh, ph/2 − ph; v, q). (55)

Let now (ṽ, q̃) ∈ Vh × Qh be the normal Lagrange interpolants to (v, q).
Since Vh ⊂ Vh and Vh ⊂ Vh/2 (and Qh/2 ⊂ Qh) it holds

B(uh/2 − uh, ph/2 − ph; ṽ, q̃) = 0.

Hence we have

B(uh/2 − uh, ph/2 − ph; v, q) = B(uh/2 − uh, ph/2 − ph; v − ṽ, q − q̃). (56)

Writing out the right hand side, using the fact that (uh/2, ph/2) satisfies

B(uh/2, ph/2; v − ṽ, q − q̃) = (f ,v − ṽ) − (g, q − q̃) (57)

and integrating by parts, we have

B(uh/2 − uh, ph/2 − ph; v − ṽ, q − q̃)

= (f ,v − ṽ) − (g, q − q̃) − t2 (ε(uh), ε(v − ṽ)) − (uh,v − ṽ)

− (v − ṽ,∇ph) − (uh,∇(q − q̃))

=
∑

K∈Ch

{

(

t2Auh − uh −∇ph + f ,v − ṽ
)

K
+ t2 〈εn(uh),v − ṽ〉∂K

+ (div uh − g, q − q̃)K − 〈uh · n, q − q̃〉∂K∩∂Ω

}

. (58)

Since, v, ṽ, q and q̃, all are in finite element subspaces, scaling arguments
give

(

∑

K∈Ch

(t + hK

hK

)2
‖v − ṽ‖2

0,K

)1/2

≤ C
(

∑

K∈Ch

(

t2‖∇v‖2
0,K + ‖v‖2

0,K

)

)1/2

≤ C‖v‖t ≤ C, (59)

(

∑

K∈Ch

t2 + h2
K

hK

‖v − ṽ‖2
0,∂K

)1/2

≤ C
(

∑

K∈Ch

t2 + h2
K

hK

h−1
K ‖v − ṽ‖2

0,K

)1/2

= C
(

∑

K∈Ch

( t2

h2
K

+ 1
)

‖v − ṽ‖2
0,K

)1/2

≤ C
(

∑

K∈Ch

(

t2‖∇v‖2
0,K + ‖v‖2

0,K

)

)

(60)

= C‖v‖t ≤ C
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and

(

∑

K∈Ch

( hK

(t + hK)2
‖q − q̃‖2

0,∂K + (t + hK)−2‖q − q̃‖2
0,K

)

)1/2

≤ C
(

∑

K∈Ch

( hK

t + hK

)2
‖∇q‖2

0,K

)1/2

≤ C|‖q‖|t,h ≤ C. (61)

Using the Schwartz inequality and the properties above in equation (58)
completes the proof.

We show that the a posteriori estimator also gives a lower bound to the
error. In this sense the estimator is sharp.

3.4 Efficiency of the a posteriori estimate

We show that the a posteriori upper bound is also a lower bound to the error.
In this sense the estimator is sharp.

Theorem 10. There exist C > 0 such that

Cη2 ≤ ‖u − uh‖
2
t + |‖p − ph‖|

2
t,h (62)

+
∑

K∈Ch

( h2
K

t2 + h2
K

‖f − fh‖
2
0,K + (t2 + h2

K)‖g − gh‖
2
0,K

)

,

where the projections fh ∈ Vh and gh ∈ Qh.

We use suitable cut-off functions to prove the above theorem, we refer to
[18] for more details. The first cut-off function is ΨK ; the support of ΨK is
element K and 0 ≤ ΨK ≤ 1. The second cut-off function is ΨE; the support
of ΨE is ωE and 0 ≤ ΨE ≤ 1. The domain ωE is the elements sharing edge
(in 3D face) E. For the edge (or face) E we also need an extension mapping
χ : L2(E) → L2(ωE) such that in E χ is the identity operator. The proof
of the lemma below follows with scaling arguments; note that p and σ are
polynomials, cf. [18].

Lemma 11. For an arbitrary element K, having edge/face E, and for arbi-
trary polynomials p and σ it holds:

‖ΨKp‖0,K ≤ ‖p‖0,K ≤ C‖Ψ1/2
K p‖0,K (63)

‖∇(ΨKp)‖0,K ≤ Ch−1
K ‖ΨKp‖0,K (64)

‖σ‖0,E ≤ C‖Ψ1/2
E σ‖0,E (65)

Ch
1/2
E ‖σ‖0,E ≤ ‖ΨEχσ‖0,E ≤ Ch

1/2
E ‖σ‖0,E (66)

‖∇(ΨEχσ)‖0,K ≤ Ch−1
K ‖ΨEχσ‖0,K . (67)
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Proof. We bound the terms of EK(uh, ph) separately. We begin with the first
internal residual term and introduce

R1
K = t2Auh − uh −∇ph + f , R1

K,red = t2Auh − uh −∇ph + fh,

w = ΨKR1
K,red.

We have, using Lemma 11,

‖R1
K,red‖

2
0,K ≤ C‖Ψ1/2

K R1
K,red‖

2
0,K = C

(

R1
K,red,w

)

K

= C
(

(

R1
K ,w

)

K
+ (fh − f ,w)K

)

= C
(

t2 (∇(u − uh),∇w)K + (uh − u,w)K

+ (∇(ph − p),w)K + (fh − f ,w)K

)

≤ C
(

t2h−1
K ‖∇(u − uh)‖0,K + ‖u − uh‖0,K

+ ‖∇(p − ph)‖0,K + ‖f − fh‖0,K

)

‖R1
K,red‖0,K . (68)

Combining the above result with ‖R1
K‖0,K ≤ ‖R1

K,red‖0,K + ‖f −fh‖0,K gives

hK

t + hK

‖t2Auh − uh −∇ph + f‖0,K (69)

≤ C
(

‖u − uh‖t,K + |‖p − ph‖|t,h,K +
hK

t + hK

‖f − fh‖0,K

)

.

Next bound the second internal residual term and introduce

R2
K = div uh − g, R2

K,red = div uh − gh,

w = ΨKR2
K,red.

Using Lemma 11 we get

‖R2
K,red‖

2
0,K ≤ C‖Ψ1/2

K R2
K,red‖

2
0,K = C

(

R2
K,red,w

)

K

= C
(

(

R2
K ,w

)

K
+ (g − gh,w)K

)

= C
(

(div (uh − u),w)K + (g − gh,w)K

)

= C
( t

t + hK

(div (uh − u),w)K

+
hK

t + hK

(uh − u, div w)K + (g − gh,w)K

)

≤ C
(

(t + hK)−1‖u − uh‖t,K + ‖g − gh‖0,K

)

‖R2
K,red‖0,K . (70)

Combining the result with ‖R2
K‖0,K ≤ ‖R2

K,red‖0,K + ‖g − gh‖0,K gives

(t + hK)‖div uh − g‖0,K ≤ C
(

‖u − uh‖t,K + (t + hK)‖g − gh‖0,K

)

. (71)
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Next we bound the internal jumps. We introduce

R1
E = t2[[εn(uh)]], w = ΨEχR1

E

and continue with Lemma 11

‖R1
E‖

2
0,E ≤ C‖Ψ1/2

E R1
E‖

2
0,E = C

(

R1
E,w

)

E

= C
(

(

R1
K ,w

)

ωE

− t2 (∇(u − uh),∇w)ωE

− (u − uh,w)ωE
− (∇(p − ph),w)ωE

)

≤ C
(

t2h
−1/2
K ‖∇(u − uh)‖0,ωE

+ h
1/2
K ‖u − uh‖ωE

+ h
1/2
K ‖∇(p − ph)‖ωE

+ h
1/2
K ‖f − fh‖ωE

)

‖R1
E‖0,E. (72)

Thus, we have

h
1/2
E

t + hE

‖t2[[εn(uh)]]‖0,E ≤ C
(

‖u − uh‖t,ωE
+

hK

t + hK

‖f − fh)‖ωE

)

. (73)

Lastly we bound the boundary residual. We define

R2
E = (u − uh) · n, w = ΨEχR2

E

and continue with Lemma 11

‖R2
E‖

2
0,E ≤ C‖Ψ1/2

E R2
E‖

2
0,E = C

(

R2
E,w

)

E

= C
(

(

R2
K ,w

)

ωE

+ (uh − u,∇w)ωE

)

(74)

≤ C
( h

1/2
K

t + hK

‖u − uh‖t,ωE
+ h

1/2
K ‖g − gh‖ωE

+ h
−1/2
K ‖u − uh‖ωE

)

‖R2
E‖0,E.

Hence we get

t + hK

h
1/2
K

‖u − uh‖0,E ≤ C
(

‖u − uh‖t,ωE
+ (t + hK)‖g − gh‖ωE

)

. (75)

Now we have bounded all the terms of the a posteriori estimator and
combining equations (69), (71), (73) and (75) completes the proof.

4 Stabilized methods

Stabilized methods enable us to use the standard finite elements without
bubble degrees of freedom. Thus, the subspaces are

Vh = {v ∈ V ∩ [C(Ω)]N |v|K ∈ [Pk(K)]N ∀K ∈ Ch }, (76)

Qh = {q ∈ L2
0(Ω) ∩ C(Ω) | q|K ∈ Pk(K) ∀K ∈ Ch }, (77)
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The stabilized method is: Find (uh, ph) ∈ Vh × Qh such that

Bh(uh, ph; v, q) = Lh(v, q) ∀(v, q) ∈ Vh × Qh, (78)

with

Bh(uh, ph; v, q) = B(uh, ph; v, q) (79)

− α
∑

K∈Ch

h2
K

t2 + h2
K

(

t2Auh − uh −∇ph, t
2Av − v −∇q

)

K

and

Lh(v, q) = L(v, q) − α
∑

K∈Ch

h2
K

t2 + h2
K

(

f , t2Av − v −∇q
)

K
, (80)

with a parameter α > 0. For the method to be consistent we assume that

t2Au − u −∇p = f ∈ [L2(Ω)]N . (81)

Then it holds

Bh(u − uh, p − ph; v, q) = 0 ∀(v, q) ∈ Vh × Qh. (82)

Note, that one does not have to assume that t2Au ∈ [L2(Ω)]2, and ∇p ∈
L2(Ω) (contrary to some quite widespread belief).

4.1 Stability

For the analysis it is convenient to introduce the constant CI in the following
inverse inequality

h2
K‖Aw‖2

0,K ≤ CI‖∇w‖2
0,K ∀w ∈ [Pk(K)]N . (83)

The stability result is then.

Theorem 12. Assume that 0 < α < min{1/(2CI), 1/2}. Then there exists
a constant C > 0 such that

sup
(v,q)∈Vh×Qh

Bh(w, r; v, q)

‖v‖t + |‖q‖|t,h
≥ C

(

‖w‖t + |‖r‖|t,h
)

∀(w, r) ∈ Vh × Qh. (84)

Proof. For (w, r) ∈ Vh × Qh arbitrary we have

Bh(w, r; w,−r) = t2‖∇w‖2
0 + ‖w‖2

0 (85)

− α
∑

K∈Ch

h2
K

t2 + h2
K

{

‖t2Aw − w‖2
0,K − ‖∇r‖2

0,K

}

.

From this we get

Bh(w, r; w,−r) ≥ t2‖∇w‖2
0 + ‖w‖2

0 + α|‖r‖|2t,h (86)

− 2α
∑

K∈Ch

h2
K

t2 + h2
K

t4‖Aw‖2
0,K − 2α

∑

K∈Ch

h2
K

t2 + h2
K

‖w‖2
0,K .
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Applying the inverse inequality gives

Bh(w, r; w,−r) ≥ (1 − 2αCI)t
2‖∇w‖2

0 + (1 − 2α)‖w‖2
0 + α|‖r‖|2t,h. (87)

The assumption 0 < α < min{1/(2CI), 1/2} implies the asserted stability.

Remark 13. Using the Pitkäranta-Verfürth technique is also possible to
prove the stability with the continuous norm for the pressure

sup
(v,q)∈Vh×Qh

Bh(w, r; v, q)

‖v‖t + |‖q‖|t
≥ C

(

‖w‖t + |‖r‖|t
)

∀(w, r) ∈ Vh × Qh. (88)

See [7] where this is done for the Stokes problem.

4.2 A priori estimate

In the spirit of stabilized methods and a posteriori estimates we will formu-
late the a priori estimate as a quasi-optimality result that contain a term
measuring the residual.

Theorem 14. Assume that 0 < α < min{1/(2CI), 1/2}. Then it holds

‖u − uh‖t + |‖p − ph‖|t,h

≤ C inf
(v,q)∈Vh×Qh

{

‖u − v‖t + t
(

∑

K∈Ch

h−2
K ‖u − v‖2

0,K

)1/2

+ |‖p − q‖|t,h + |‖p − q‖|t (89)

+
(

∑

K∈Ch

h2
K

t2 + h2
K

‖t2Av − v −∇q + f‖2
0,K

)1/2
}

.

Proof. The proof is very similar to the proof of Theorem 7 and here we only
consider the additional terms arising from the added stabilizing term.

For equation (89) to hold, all we need to bound is

I =
∑

K∈Ch

h2
K

t2 + h2
K

(

t2A(u − v) − (u − v) −∇(p − q), t2Aw − w −∇r
)

K
.

(90)
Assumption (81) gives

I =
∑

K∈Ch

h2
K

t2 + h2
K

(

−t2Av + v + ∇q − f , t2Aw − w −∇r
)

K

≤
(

∑

K∈Ch

h2
K

t2 + h2
K

‖t2Av − v −∇q + f‖2
0,K

)1/2

(91)

×
(

∑

K∈Ch

h2
K

t2 + h2
K

‖t2Aw − w −∇r‖2
0,K

)1/2

.
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Using the inverse inequality (83) we have

∑

K∈Ch

h2
K

t2 + h2
K

‖t2Aw − w −∇r‖2
0,K

≤ C
∑

K∈Ch

( t2

t2 + h2
K

t2h2
K‖Aw‖2

0,K +
h2

K

t2 + h2
K

‖w‖2
0,K +

h2
K

t2 + h2
K

‖∇q‖2
0,K

)

≤ C(‖w‖t + |‖r‖|t,h) ≤ C. (92)

The relations (90) – (92) prove (93).

Again, standard interpolation estimates give

Theorem 15. Assume that 0 < α < min{1/(2CI), 1/2} and that the problem
has a smooth solution. Then it holds

‖u − uh‖t + |‖p − ph‖|t,h = O(hk).

4.3 A posteriori estimate

The a posteriori estimator is defined exactly as for the mixed method, i.e.
by (50).

Theorem 16. Let Assumption 8 hold. Then there exist constants C1, C2 > 0
such that

C1η ≤ ‖u − uh‖t + |‖p − ph‖|t,h ≤ C2η. (93)

Proof. In addition to the terms estimated in Theorem 9 we get the term

∣

∣

∣
α

∑

K∈Ch

h2
K

t2 + h2
K

(

−t2Auh+uh+∇ph−f , t2A(v− ṽ)−(v− ṽ)−∇(q− q̃)
)

K

∣

∣

∣
.

(94)
Using the Schwarz inequality this is bounded by

(

∑

K∈Ch

h2
K

t2 + h2
K

‖t2Auh − uh −∇ph + f‖2
0,K

)1/2

(95)

×
(

∑

K∈Ch

h2
K

t2 + h2
K

‖t2A(v − ṽ) − (v − ṽ) −∇(q − q̃)‖2
0,K

)1/2

.

Noticing that

∑

K∈Ch

h2
K

t2 + h2
K

‖t2A(v − ṽ) − (v − ṽ) −∇(q − q̃)‖2
0,K

≤ C
∑

K∈Ch

( t2

t2 + h2
K

t2h2
K‖A(v − ṽ)‖2

0,K +
h2

K

t2 + h2
K

‖v − ṽ‖2
0,K

+
h2

K

t2 + h2
K

‖∇(q − q̃)‖2
0,K

)

≤ C
(

t2‖∇v‖2
0 + ‖v‖2

0 + |‖q‖|2t,h

)

≤ C (96)
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completes the proof of the upper bound.
The proof of the lower bound does not use the bilinear form. Hence the

proof of Theorem 10 also holds in the present case.

5 Imposing boundary conditions using

Nitsche’s method

In this section we will outline the modified finite element methods when
the Dirichlet boundary conditions are imposed in a weak sense using the
technique of Nitsche [13]. Using this, we obtain formulations that uses the
same finite element spaces both for t > 0 and in the limit t = 0. The
finite element space Qh used for the pressure is unaltered, i.e. (23) and (77).
The spaces for the velocity are altered so that no boundary conditions are
assumed; a spaces including ”bubbles” for the mixed formulation:

Vh = {v ∈ [C(Ω)]N | v|K ∈ [Pk(K) ∪ Bk+N(K)]N ∀K ∈ Ch }, (97)

and a clean polynomial space for the stabilized method:

Vh = {v ∈ [C(Ω)]N | v|K ∈ [Pk(K)]N ∀K ∈ Ch }. (98)

The discrete variational formulations are modified by changing the bilinear
form a(·, ·) in (17) to

ah(u,v) = t2
(

(ε(u), ε(v))

+
∑

E∈Γh

(

− 〈εn(u),v〉E − 〈εn(v),u〉E + γh−1
E 〈u,v〉E

)

)

+ (u,v) , (99)

where we denote with Γh the edges/faces on the boundary ∂Ω. The bilinear
forms obtained we denote by Nh. The right hand sides, given by (19) and
(80), respectively, we denote by Fh. The weak formulation of the problem is
then: find (uh, ph) ∈ Vh × Qh such that

Nh(uh, ph; v, q) = Fh(v, q) ∀(v, q) ∈ Vh × Qh. (100)

This formulation is clearly consistent. For the analysis one uses the following
norms for the velocity

‖v‖2
t,h = t2

(

‖∇v‖2
0 +

∑

E∈Γh

h−1
E ‖v‖2

0,E

)

+ ‖v‖2
0, (101)

⌊⌉v⌊⌉2
t,h = ‖v‖2

t,h + t2
∑

E∈Γh

hE‖εn(v)‖2
0,E. (102)

By the discrete trace inequality (when E ⊂ ∂K we have hE ≈ hK)

hK‖εn(v)‖2
0,∂K ≤ C ′

I‖∇v‖2
0,K ∀v ∈ Vh|K (103)

the two norms are equivalent in Vh. From which the coercivity of ah easily
follows using Schwartz and Young’s inequalities [13, 16].
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Lemma 17. For γ > C ′
I it holds

ah(v,v) ≥ C‖v‖2
t,h ∀v ∈ Vh. � (104)

The proofs of the stability of the original methods carry over the the
present modifications with the norm ‖ · ‖t changed to ‖ · ‖t,h.

Theorem 18. Assume that the stability parameters satisfy γ > C ′
I and 0 <

α < min{1/(2CI), 1/2}. Then there exists a constant C > 0 such that

sup
(v,q)∈Vh×Qh

Bh(w, r; v, q)

‖v‖t,h + |‖q‖|t,h
≥ C

(

‖w‖t,h + |‖r‖|t,h
)

∀(w, r) ∈ Vh × Qh.

(105)

The previous a priori estimates are now valid with ‖u−uh‖t replaced by
‖u−uh‖t,h on the left hand sides, and with ‖u−v‖t,h replaced by ⌊⌉u−v⌊⌉t,h

on the right hand side, respectively. As before, for a smooth solution we
obtain an O(hk) convergence rate.

The modification needed for the a posteriori estimate is to add the term
t2h−1

K ‖uh‖
2
0,∂K∩∂Ω to EK(uh, ph)

2.
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