
Helsinki University of Technology Institute of Mathematics Research Reports

Espoo 2008 A560

COMPUTATIONAL METHODS IN ELECTROMAGNETIC

BIOMEDICAL INVERSE PROBLEMS

Sampsa Pursiainen

AB TEKNILLINEN KORKEAKOULU

TEKNISKA HÖGSKOLAN

HELSINKI UNIVERSITY OF TECHNOLOGY

TECHNISCHE UNIVERSITÄT HELSINKI

UNIVERSITE DE TECHNOLOGIE D’HELSINKI





Helsinki University of Technology Institute of Mathematics Research Reports

Espoo 2008 A560

COMPUTATIONAL METHODS IN ELECTROMAGNETIC

BIOMEDICAL INVERSE PROBLEMS

Sampsa Pursiainen

Dissertation for the degree of Doctor of Science in Technology to be presented, with due permission of

the Faculty of Information and Natural Sciences, for public examination and debate in auditorium K at

Helsinki University of Technology (Espoo, Finland) on the 18th of December 2008, at 12 o’clock noon.

Helsinki University of Technology

Faculty of Information and Natural Sciences

Department of Mathematics and Systems Analysis



Sampsa Pursiainen

Department of Mathematics and Systems Analysis
Helsinki University of Technology
P.O. Box 1100, FI-02015 TKK, Finland
E-mail: sampsa.pursiainen@tkk.fi

ISBN 978-951-22-9679-8 (print)
ISBN 978-951-22-9680-4 (PDF)
ISSN 0784-3143 (print)
ISSN 1797-5867 (PDF)
TKK Mathematics, 2008

Helsinki University of Technology
Faculty of Information and Natural Sciences
Department of Mathematics and Systems Analysis
P.O. Box 1100, FI-02015 TKK, Finland

email: math@tkk.fi http://math.tkk.fi/



Sampsa Pursiainen: Computational methods in electromagnetic biomedical in-

verse problems; Helsinki University of Technology Institute of Mathematics Re-
search Reports A560 (2008).

Abstract: This work concerns computational methods in electromagnetic
biomedical inverse problems. The following biomedical imaging modalities are
studied: electro/magnetoencephalography (EEG/MEG), electrical impedance
tomography (EIT), and limited-angle computerized tomography (limited-angle
CT). The use of a priori information about the unknown feature is neces-
sary for finding an adequate answer to an inverse problem. Both classi-
cal regularization techniques and Bayesian methodology are applied to utilize
the a priori knowledge. The inverse problems specifically considered in this
work include determination of relatively small electric conductivity anoma-
lies in EIT, dipole-like sources in EEG/MEG, and multiscale X-ray absorb-
ing structures in limited-angle CT. Computational methods and techniques
applied for solving these have been designed case-by-case. Results concern,
among others, appropriate parametrization of inverse problems; two-stage re-
construction processes, in which a region of interest (ROI) is determined in
the first stage and the actual reconstruction is found in the second stage;
effective forward simulation through h- and p- versions of the finite element
method (FEM); localization of dipole-like electric sources through hierarchical
Bayesian models; implementation of the Kirsch factorization method for re-
construction of conductivity anomalies; as well as the use of a coarse-to-fine
reconstruction strategy in linear inverse problems.

AMS subject classifications: Primary 92C55; Secondary 78A70, 15A29, 35R30,
65R32

Keywords: inverse problems, electromagnetics, biomedical imaging, electroencep-
halography/magnetoencephalography (EEG/MEG), electrical impedance tomo-
raphy (EIT), limited-angle computerized tomography (limited-angle CT), regu-
larization, Bayesian methodology, Markov chain Monte Carlo (MCMC), factoriza-
tion method of Kirsch, forward modeling and simulation, h-FEM, p-FEM



Sampsa Pursiainen: Laskennallisia menetelmiä biolääketieteellisissä sähkömag-

neettisissa inversio-ongelmissa

Tiivistelmä: Tässä työssä käsitellään biolääketieteen sähkömagneettisia
käänteisongelmia. Sovelluskohteina ovat seuraavat biolääketieteen kuvanta-
mismenetelmät: elektro-/magnetoenkefalografia (EEG/MEG), impedanssito-
mografia (EIT) ja rajoitetun kulman tietokonetomografia (rajoitetun kulman
CT). Käänteisongelman ratkaisemisessa on välttämätöntä käyttää a priori
-tietoa kohteena olevasta tuntemattomasta. A priori -tiedon hyöntämiseen
käytetään tässä työssä sekä perinteisiä regularisointitekniikoita että Bayes-
laisia menetelmiä. Tässä työssä erityisesti käsiteltävät inversio-ongelmat ovat
pienten sähköisen johtavuuden poikkeamien (EIT), dipolin kaltaisten sähköis-
ten lähteiden (EEG/MEG) ja karkeiden röntgensäteitä absorboivien rakentei-
den (rajoitetun kulman CT) havaitseminen. Sovelletut laskennalliset mene-
telmät ja tekniikat ovat tapauskohtaisesti suunniteltuja. Tulokset käsittelevät
mm. käänteisongelmien parametrisointiin sopivia tapoja, kaksivaiheista re-
konstruointia määrittämällä kiinnostuksen kohteena oleva joukko (ROI) en-
simmäisessä vaiheessa ja varsinainen rekonstruktio toisessa vaiheessa, suo-
ran ongelman simulointia elementtimenetelmän (FEM) h- ja p-versioiden
avulla, dipolin kaltaisten sähkökentän lähteiden paikantamista Bayeslaisil-
la menetelmillä, Kirschin faktorointimenetelmän soveltamista johtavuus-ano-
malioiden rekonstruktiointiin sekä asteittain tarkennettavan rekonstruktion
laskemista lineaarisissa käänteisongelmissa.

Avainsanat: käänteisongelmat, sähkömagnetiikka, biolääketieteellinen kuvanta-
minen, elektroenkefalografia/magnetoenkefalografia (EEG/MEG), impedanssito-
mografia (EIT), rajoitetun kulman tietokonetomografia (rajoitetun kulman CT),
regularisointi, Bayeslaiset menetelmät, Markov-ketju Monte Carlo (MCMC), Kir-
schin faktorointimenetelmä, suoran ongelman mallinnus ja simulaatio, h-FEM, p-
FEM
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”I think it is good that books still exist, but they make me sleepy.”
— Frank Zappa (1940–1993), quoted from F Zappa and P Occhiogrosso.
The Real Frank Zappa Book. Poseidon Press, New York, 1989.
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1 Introduction

This work concerns computational methods in electromagnetic biomedical in-
verse problems. The term inverse problem [29] refers to a typically ill-posed
and ill-conditioned problem to estimate or reconstruct an unknown feature
(parameter) based on the available data. Generally, any question difficult to
answer to the full satisfaction can be considered as an inverse problem if the
process generating the data can be modeled mathematically. Inverse prob-
lems have applications in many fields of science, particularly in physics but
increasingly also in other fields from biology to linguistics. Electromagnetic
biomedical inverse problems belong to the field of biomedical engineering
[17] the goal being to retrieve information by non-invasive electromagnetic
measurements. These arise, for instance, in electro/magnetoencephalography
(EEG/MEG) [24], electrical impedance tomography (EIT) [11, 13], and limi-
ted-angle computerized tomography (limited-angle CT) [14, 22], which con-
stitute the biomedical imaging modalities studied in this work.

EEG/MEG, EIT, and limited-angle CT correspond to inverse problems
of source determination, sounding, and high-frequency imaging, respectively
[29]. In inverse source problems, the primary source of an electromagnetic
field is to be estimated based on measurements of some components of the
field outside the source domain. In EEG/MEG, the primary current density
generated by neural activity in the brain is to be reconstructed from external
potential/magnetic field measurements. In sounding problems, the electro-
magnetic field is generated artificially for measurement purposes and, based
on the measurements, some electromagnetic properties of the interacting tar-
get are to be recovered. This is the situation in EIT, in which a conductivity
distribution in an object is to be reconstructed from voltage measurement
data on the boundary. Again, in high-frequency imaging, an object is ex-
posed to high-frequency electromagnetic radiation, like X-rays in CT, and
the problem is to estimate the absorption properties of the target based on
the transmission data. In limited-angle CT, the estimate is computed from
a number of X-ray projection images with a limited range of directions of
illumination. In the present versions of EEG/MEG and limited-angle CT,
the inverse problems are linear, meaning that the dependence of the data on
the parameter to be estimated can be written as a linear system. The EIT
inverse problem is, in contrast, non-linear.

Due to the ill-posed and ill-conditioned nature of inverse problems a
unique solution seldom exists and erroneous estimates can result due to er-
rors in data or small uncertainties in the forward model. Consequently, to
find an adequate answer to an inverse problem the use of a priori information
about the unknown feature is necessary. Two popular approaches to utilize
a priori knowledge are classical regularization techniques [29] and Bayesian
methodology [29, 38], both of which are applied in this work. Although there
are some similarities between these approaches, they are philosophically dif-
ferent. Whereas a classical regularization technique is aimed at producing a
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single reasonable estimate for the unknown feature, the goal in the Bayesian
methodology is to define one or more subjective posterior probability dis-
tributions for the unknown and to make statistical inference based on the
posterior distributions. The posterior distribution is often used to derive
pointwise estimates, such as maximum a posteriori (MAP) or conditional
mean (CM) estimates. One of the advantages in the Bayesian approach is
that the a priori information is incorporated into the prior density, whose
product with the likelihood of the observed data is proportional to the pos-
terior.

1.1 Aims and scope

The aim of this work is to discover novel aspects of both inverse and for-
ward computations to effectively solve electromagnetic biomedical inverse
problems. Due to the diversity of problem types, several applications were
studied. The inverse problems specifically considered include the determina-
tion of relatively small electric conductivity anomalies in EIT, focal electric
sources in EEG/MEG, and multiscale X-ray absorbing structures in limited-
angle CT. Appropriate computational methods and techniques applied for
solving these were designed case-by-case.

The applied methods depend on whether the regularization or the Bayesian
approach is adopted. This work utilizes Markov chain Monte Carlo (MCMC)
integration [33], Tikhonov regularization [29] and preconditioning [42, 21],
wavelet filtering [34], quasi-Newton (Gauss-Newton) optimization [29], the
conjugate gradient (CG) method [19, 21], the focal underdetermined sys-
tem solver (FOCUSS) [20, 43], as well as the factorization method [30].
More methods developed for similar purposes can be found, for instance,
in [2, 3, 5, 7, 8, 28, 31, 39, 41, 43]. Together with computational inversion
methods, this work discusses effective techniques for EIT and EEG/MEG
forward simulation [6, 16, 27, 36, 48, 51, 54, 53, 55] through the application
of both low-order and high-order versions of the finite element method (h-
and p-FEM) [1, 9, 35, 44, 50] to the complete electrode model (CEM) [49].
Forward simulation, in general, is an important part of the numerical solu-
tion of inverse problems and is closely related to the researcher’s subjective
view of the process modeling of the data.

1.2 Structure and contents

This dissertation consists of two parts: (I) an overview covering an intro-
duction to the work, review of the literature, main results, discussion and
conclusions, as well as (II) six original papers [I]–[VI]. The mathematical
background of both regularization and Bayesian methodology as well as of
the computational methods and electromagnetic applications are briefly re-
viewed in the overview.
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Paper [I] considers two-stage reconstruction of a circular anomaly in EIT
from the Bayesian point of view. In the two-stage reconstruction process,
a region of interest (ROI) containing an anomaly is determined in the first
stage, and the actual reconstruction is found in the second stage by explor-
ing the ROI. It is shown that this approach yields good results, when the
parametrization of the unknown conductivity distribution is appropriate and
MCMC integration based CM estimation together with h-FEM type forward
simulation of the CEM are used. Reconstructions obtained this way are
compared against reconstructions yielded by quasi-Newton MAP estimation.

EIT forward simulation is studied further in [II] which is devoted for h-
and p-FEM simulations of the CEM. Paper [II] suggests that the p-version of
the FEM provides a more effective tool for EIT forward simulation than the
standard h-version. Numerical results supporting this view are presented.
Forward simulation through high-order finite elements is mentioned in [I]
as a topic for future work due to problems in h-FEM forward simulation
that occurred during the course of that study. In this sense, paper [II] is a
continuation for [I].

The forward simulation developed for [II] is successfully applied in [III],
in which a reconstruction algorithm based on the Kirsch factorization method
is implemented and tested. Paper [III] shows that the factorization method
can be applied for EIT and its functionality is demonstrated through results
of numerical experiments, in which both circular and kite-shaped anomalies
were successfully reconstructed.

Paper [IV] studies h- and p-FEM type EEG/MEG forward simulations,
both based on the CEM. A three-dimensional geometrically realistic finite
element mesh, specifically designed for this study, is utilized. Performances
are compared through direct measurement of the forward simulation error as
well as through reconstructions of multiple dipole-like sources computed using
a regularized FOCUSS algorithm. It is shown that in terms of the relative
discretization error the performance of the p-version FEM is superior to that
of the h-version.

Paper [V] utilizes the forward simulation and the realistic finite element
mesh implemented during the study of [IV]. The focus of [V] is on Bayesian
hypermodels for source localization applied to EEG/MEG; a generalized
gamma distribution is used as a hyperprior and computation of MAP and
CM estimates is considered. An iterative alternating sequential (IAS) al-
gorithm for MAP estimation is proposed and tested. It is shown that for
different choices of parameters, the IAS algorithm coincides or almost coin-
cides with a number of widely used estimation strategies, e.g. the FOCUSS.
MAP estimates produced via the IAS are compared against MCMC based
CM estimates in reconstruction of multiple dipole-like sources. The results
suggest, in general, that CM estimation is superior over MAP estimation for
measuring activity in different parts of the brain.

Finally, in [VI], a coarse-to-fine reconstruction procedure for linear in-
verse problems is proposed and studied. This procedure is partially based on
iterative regularization through CG optimization. A nearly block diagonal
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representation of a quadratic form to be optimized is obtained via wavelet
filtering and Tikhonov preconditioning. In the numerical experiments, the
proposed procedure is applied to limited-angle CT. The results show that a
combined use of wavelet filters and preconditioning can be effective within
the studied class of inverse problems.
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2 Literature review

2.1 Forward model and simulation

Existence of a mathematical forward model is necessary in both regularization
and Bayesian approaches to inverse problems. It is assumed in this work that
one can define a deterministic or probabilistic forward mapping [29] of the
form

y = F(x, z,n), (2.1)

in which y denotes the data; x, z denote parameters corresponding to un-
known interesting and uninteresting features affecting the data outcome, re-
spectively, and n describes the noise contamination of the data. It is also
assumed that recovery of x, given y, is an ill-posed and ill-conditioned prob-
lem independently of whether z and n are given or not. This means that x
is not uniquely solvable as well as that a minor uncertainty on F, z, or n
can lead to a major uncertainty on x. For these reasons, it is computation-
ally infeasible, for instance, to directly solve (2.1) or to search the classical
least-squares (LS) solution given by x̂ = arg minx ‖y − F(x, z,n)‖2

2.

2.1.1 Interpretation and construction

A mapping of the form (2.1) can be interpreted to represent a forward model,
or a forward simulation, depending on whether an abstract mathematical
model or a numerical simulation is in question. This work considers mainly
the latter interpretation, and therefore, all the variables in (2.1) are assumed
to be real and finite dimensional:

x ∈ R
n, y,n ∈ R

m, and z ∈ R
M . (2.2)

How a forward model or a forward simulation is constructed in practice,
is highly dependent on the application. In EEG/MEG and EIT, forward
models are usually based on the quasi-static approximation of the Maxwell’s
equations [24, 26, 29], which can be simulated numerically e.g. through the
FEM (Figure 2.1). In contrast, the forward model of the limited-angle CT
comprises the Radon transform and the forward simulation is usually based
on linear pixel or voxel sums approximating the line integrals of the Radon
transform [29].

2.2 Regularization

The goal in regularization is, through the use of a priori information, to pro-
duce a reasonable estimate of x that is in good agreement with y in the sense
of (2.1). Regularization is a non-probabilistic way to solve inverse problems
and it is, therefore, assumed in this section that the forward mapping does

6



Figure 2.1: The outer surface of a finite element mesh approximating a human
head. This mesh can be used in both EIT and EEG/MEG. The darkened
surface patches show locations of contact electrodes and the grey spheres over
the patches show locations of magnetic field sensors.

not involve any uncertainty, i.e. that it is a deterministic function of the form
y = F(x).

Classical regularization methods [29] are usually based on (i) use of regu-
larizing functions, (ii) use of iterative regularization, and (iii) projecting the
solution space to some subspace. Often two or more of these regularization
techniques are used together.

2.2.1 Regularizing functions

Incorporating a regularizing function into the reconstruction process usually
means finding the minimizer of

Ψ(x | y) = ‖W−1/2(y − F(x))‖2
2 +G(x), (2.3)

where W−1/2 is the inverse of the square-root of a symmetric and positive
definite weighting matrix, G(x) is a regularizing function and y is the data,
possibly corrupted by errors. In this regularization scheme, it is important
that the regularizing function is chosen so that x → Ψ(x | y) has a unique
minimizer and that a reasonable balance between the quality of the estimates
and the numerical stability of the minimization process is achieved.

The minimization of (2.3) is called generalized Tikhonov regularization,
if the regularizing function is of the form G(x) = α‖Gx‖2

2, where α > 0
is a regularization parameter to be chosen appropriately. If G(x) = α‖x‖2

2,
this approach is often called the classical Tikhonov regularization. In linear
inverse problems, where F(x) = Fx, Tikhonov regularization is widely used
as the corresponding function to be minimized is a quadratic form, i.e.

Ψ(x | y) = xTQx − 2xTb + cTc (2.4)

with Q = FTW−1F + GTG, b = FTW−1y, and c = W−1/2y, and the
minimizer can be obtained directly by solving the linear system

Qx = b, (2.5)
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whose solution is unique if G is appropriately chosen. In typical applications,
the Tikhonov regularization tends to produce blurred estimates and, there-
fore, it is often not preferred, when the feature to be estimated is known a
priori to contain sharp-edged structures.

Sharp structured estimates can be produced, for instance, by choosing
G(x) = α‖x‖1, which leads to a non-linear minimization problem. This
is the choice in the regularized FOCUSS algorithm [20, 43], in which the
minimizer is found through a relatively simple iterative relaxation process
described by x(0) = (1, 1, . . . , 1)T , Wk = diag(|x(k)

1 |, |x(k)
2 |, . . . , |x(k)

n |)1/2, Fk =
W−1/2FWk, and

x(k+1) = Wk(F
T
k Fk +

α

2
I)−1FT

k W−1/2y, k = 0, 1, . . . , n, (2.6)

where n ∈ N is the user specified number of iterations. The regularized
FOCUSS tends to find a sparse estimate, which is focused in terms of non-
zero entries. Therefore, it is a suitable reconstruction strategy for finding
sparsely distributed and well-localized sources.

When the forward mapping is non-linear, one potentially applicable op-
timization method is the following quasi-Newton (Gauss-Newton) iteration
[29]:

x(k+1) = x(k) − λ[D∇Ψ(x(k) | y)]−1∇Ψ(x(k) | y),

where λ is a step size control parameter to be specified by the user. This
iteration can be described as Newton’s method applied for finding the zero
of ∇Ψ(x | y). Since quasi-Newton optimization is based on the assumption
that Ψ(x | y) is two times differentiable, it is particularly well suited for cases
in which the reconstruction needs to be smooth.

Reconstruction via factorization method

The reconstruction algorithm below, suitable for localization of anomalies, is
based on the factorization method introduced by Kirsch [30]. It constitutes
an example of how regularizing functions can be used in a different way.

Given the data y, the matrix F corresponding to the linear forward map-
ping, a discrepancy parameter δ > 0, as well as a thresholding parameter
β > 0; set k = 1 and S = ∅, and while k < n, repeat the following steps:

• Pick the kth standard basis vector ek = (0, . . . , 0, 1, 0, . . . , 0) and find
τ > 0 such that [52] the equations (τI+(FTF)1/2)xδ = (FTF)1/4ek and
‖(FTF)1/4xδ − ek‖ = δ‖xδ‖ are satisfied with some xδ.

• If τ < β, substitute S → {S, k}, otherwise do nothing.

• Substitute k → k + 1.

The resulting S describes the set of potentially non-zero vector entries and
can, for instance, be used as a reconstruction to represent one or more anoma-
lies. Here, the regularizing function is δ‖xδ‖; the larger is δ, the stronger is
the effect of the regularization.
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2.2.2 Projections in regularization

The use of projections is a part of classical regularization [32, 42] methods.
As an example of how projections can be used in linear inverse problems,
consider the singular value truncation [29], in which one first computes the
singular value decomposition (SVD) [19] given by

F = UΣVT , (2.7)

where UTU = I, VTV = I, and Σ = diag(σ1, σ2, . . . , σn) with σ1 ≥ σ2 ≥
. . . σn ≥ 0, and after that replaces the matrix F with

F̃ = UΣ̃VT , (2.8)

in which Σ̃ = diag(σ̃1, σ̃2, . . . , σ̃n) with σ̃i = σi, if σi ≥ ε > 0, and σ̃i = 0,
otherwise, for i = 1, 2, . . . , n. The parameter ε defines the level of truncation.
With a large enough ε, the matrix F̃ is well-conditioned and the reconstruc-
tion can be obtained, for instance, by computing the classical LS solution.
Again, a too large ε leads to blurred reconstructions. In practice, an appro-
priate choice for ε depends both on the singular values of F and on the noise
level.

The singular value truncation process can be interpreted as a projection
of the space of possible solutions, formed by the two orthogonal subspaces

S+
ε = {x : ‖Fx‖ > ε‖x‖ } ∪ {0} and S−

ε = {x : ‖Fx‖ ≤ ε‖x‖ }, (2.9)

onto the former one (S+
ε ). With a very small ε, the subspace S−

ε can be
regarded as the numerical null space [32] of F. Namely, in S−

ε , the product
Fx can be numerically insensitive to variation of x and, therefore, recovery of
the component of the source vector lying in S−

ε can be practically impossible,
even in a noiseless case.

In some applications, approximations of the subspaces (2.9) can be also
obtained based on a priori information. For example, wavelets that are well-
localized in the frequency domain can be applicable for such a purpose, if
according to a priori knowledge, the subspaces S+

ε and S−
ε contain mainly

low- and high-frequencies, respectively.

2.2.3 Iterative regularization

In iterative regularization, typically the minimizer of

Ψ(x | y) = ‖W−1/2(y − F(x))‖2
2, (2.10)

is approximated by using some iteration with a stopping criterion based on
the noise level of the data as well as on how ill-conditioned the problem is.
When used for regularization purposes, iterations that converge very rapidly
can produce erroneous reconstructions, and, consequently, even very simple
and slow converging methods can be advantageous [29].
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This work considers minimization of (2.10) through iterative regulariza-
tion in connection with linear inverse problems. When F(x) is linear, the
function Ψ(x | y) is of the quadratic form (2.4) with Q = FTW−1F, b =
FTW−1y, and c = W−1/2y, meaning that iterative methods for solving the
linear system (2.5), e.g. CG [9, 19], can be utilized. The CG based regulariza-
tion method for regularization purposes can be written explicitly as follows:
Choose a stopping parameter δ, an initial guess x0, set p0 = r0 = b−Qx(0),
k = 0, and while ‖rk‖ ≥ δ repeat the steps

αk = −(r(k))T r(k)/(p(k))TQp(k), (2.11)

x(k+1) = x(k) + αkp
(k), (2.12)

r(k+1) = r(k) + αkQp(k), (2.13)

βk = (r(k+1))T r(k+1)/(r(k))T r(k), (2.14)

p(k+1) = r(k+1) + βkp
(k). (2.15)

The reconstruction is the final approximation x(k+1).

Preconditioning

In linear inverse problems, results obtained using standard iterative regular-
ization methods can often be enhanced through preconditioning [12, 21, 42].
In contrast to the traditional goal of preconditioning, which is to speed up
the convergence rate, the objective of preconditioning inverse problems is
to reorganize the problem into a better conditioned form in order to obtain
better reconstructions or to produce estimates with desired features.

Often, the objective is to choose the weighting matrix W so that the
singular values of Q are either exactly zero or close to one, which means that
Q almost or exactly satisfies the equation

VTQV =

(
I 0
0 0

)
, (2.16)

where V is a matrix containing the right singular vectors of F as in (2.7). This
can be explained by examining iterative minimization of a two-dimensional
quadratic form with contour ellipses (Figure 2.2) that are very eccentric,
i.e. the semimajor axes are much longer than the semiminor axes. Due to
the eccentricity, the graph of the quadratic form is flat or almost flat in
the direction of the semimajor axes, in which case even a well implemented
minimization algorithm can fail to find the minimum, especially if the graph
is almost flat in the direction of each basis vector (Figure 2.2). The imbalance
between the axes lengths does not exist, at least in theory, if an appropriate
preconditioning is applied to scale the axes.

One possible preconditioning method is Tikhonov preconditioning, which
is based on the classical Tikhonov regularization. In this preconditioning
scheme, the weighting matrix is of the form

W = (FFT + δI)−1, (2.17)

10



Figure 2.2: Contour ellipses of a two-dimensional quadratic form and three
different vector bases in which the quadratic form is diagonal (left), a nearly
diagonal (center) and a non-diagonal (right). In the non-diagonal case the
graph of the quadratic form can be flat or almost flat in the direction of each
basis vector.

where δ is a suitably chosen parameter. It can be shown via the singular
value decomposition (SVD) of F that when δ is small enough, the matrix Q
corresponding to W almost satisfies (2.16).

2.3 Bayesian inversion

In Bayesian inversion, the goal is to define and study a posterior probability
density, as well as to make inferences based on that or on posterior derived
estimates. The posterior is even called the Bayesian solution of the specific
inverse problem.

Given a prior p(x, z,n) containing the a priori information; a likelihood
function p(y | x, z,n), i.e. a conditional density of measuring y; and a
marginal likelihood function p(y) =

∫∫
p(x, z,n) p(y | x, z,n) dn dz dx, the

posterior density is of the form

p(x | y) =
1

p(y)

∫ ∫
p(x, z,n) p(y | x, z,n) dn dz. (2.18)

This is a consequence of the classical Bayes formula p(a | b) = p(a)p(b |
a)/p(b) [29, 38]. If, as is typical, the nuisance parameter z is not present, the
posterior can be written as

p(x | y) =
1

p(y)

∫
p(x,n) p(y | x,n) dn. (2.19)

Note that for a given data y, the product of the prior and the likelihood
integrated with respect to n constitutes the posterior density. Also note that
here the data y is assumed to only affect on the likelihood, not the prior.
This is known as the likelihood principle.

2.3.1 Subjective probability and calibration

Probabilities in Bayesian methodology can, in general, be interpreted to be
subjective [38]. A subjective probability measures one person’s degree of
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belief, and it can vary from person to person. In Bayesian inversion, this
means that the prior and the likelihood can be chosen freely by the researcher
according to the best available knowledge on the inverse problem.

For example, if one performs two similar and consecutive experiments pro-
ducing data vectors y1 and y2, respectively, the posterior p(x | y1), obtained
after the first experiment, can be used as a prior in the second one, which
results into a posterior of the form p(x | y1,y2). This idea of constructing
the posterior sequentially in two stages can be effectively applied in Bayesian
inversion, since for instance, it is often advantageous to first compute a coarse
estimate for x and then construct the final prior based on that.

This work studies an analogous but not fully Bayesian two-stage approach
to posterior construction, which differs from the above described strategy
only by that the vectors y1 and y2 are assumed to represent the same data.
This kind of approach, in which the same data is used twice, can be inter-
preted as Bayesian bootstrapping; it often works even though it may be in
contradiction with the likelihood principle.

2.3.2 Model of independent and additive noise

In the construction of the likelihood function, the role of the applied noise
model is central. It is often assumed that the noise n is independent of x
and z, meaning that the prior is of the form p(x, z,n) = p(x, z) pnoise(n). It
is also typical to assume that the noise is additive,

y = F(x, z) + n, (2.20)

where F(x, z) is a deterministic function. If both of these assumptions are
made, then (2.18) can be rewritten as

p(x | y) =
1

p(y)

∫
p(x, z)

∫
pnoise(n) δ(y − F(x, z) − n) dn dz (2.21)

=
1

p(y)

∫
p(x, z) pnoise(y − F(x, z)) dz (2.22)

where δ denotes the Dirac delta function. Again, if the nuisance parameter
z is not present, then (2.19) is valid and the posterior is given by

p(x | y) = p(x) pnoise(y − F(x))/p(y), (2.23)

where p(x) constitutes the prior and pnoise(y − F(x)) the likelihood.
In models of independent and additive noise, for example, Poisson and

Gaussian densities are popular choices for pnoise(n). This work studies the
Gaussian case, that is

pnoise(n) ∝ exp(−1

2
‖Γ−1/2

noise(n − µnoise)‖2
2), (2.24)

with µnoise denoting the mean and Γnoise a symmetric and positive definite
covariance matrix. When pnoise(n) is of the form (2.24) and the posterior is
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given by (2.23), the likelihood is a Gaussian density with the mean F(x) +
µnoise and covariance matrix Γnoise. It is often assumed that n is Gaussian
white noise, meaning that the components are identically distributed zero
mean Gaussian random variables, mutually independent.

2.3.3 Priors

In Bayesian inversion, all a priori information about x is assumed to be
encoded into the prior density. The choice of the prior has, therefore, an
essential influence on the characteristics of the posterior. There exists no
simultaneously general and practical strategy to construct a prior. On one
hand, incorporating the available prior knowledge into any probability den-
sity can be very difficult. On the other hand, there may be several possible
alternatives that may perform well. Some extensively used choices are briefly
introduced below.

Exponential families

This work considers mainly priors belonging to exponential families, in which
all the distributions share a certain exponential form and each individual prior
is specified by one or more so-called hyperparameters. Denoting the set of
hyperparameters by the vector α = (α1, α2, . . . , αK), a member p(x;α) of an
exponential family is given by

p(x;α) = h(x) exp

(
K∑

i=1

ηi(α)Ti(x) − A(α)

)
. (2.25)

where the functions h(x), ηi(α), Ti(x), and A(α) specify the family. Expo-
nential families include e.g. Gaussian, gamma, inverse gamma, Bernoulli,
binomial, negative binomial, and Poisson distributions.

A practical example of a prior belonging to an exponential family is a
Gaussian smoothness prior,

p(x;µ, γ,L) ∝ exp(− 1

2γ
‖L(x − µ)‖2

2), (2.26)

where the hyperparameter µ denotes the mean, γ > 0 controls the variance
(peakedness) of the prior, and L is a symmetric and positive definite matrix
that is a discrete approximation of the Laplacian operator. This kind of a
prior tends to favor vectors that correspond to spatially smooth structured
functions around µ, since for such vectors ‖L(x − µ)‖2

2 is likely to be small.
A prior of the form (2.25) is closely related to regularizing functions.

Namely, denoting the prior by p(x) ∝ exp(−G(x)) results into a posterior
(2.23) of the form

p(x | y) ∝ exp(−1

2
‖Γ−1/2

noise(y − F(x) − µnoise)‖2
2 −G(x)), (2.27)

in which the argument of the exponential function is essentially of the form
(2.3).
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Double exponential priors

Priors that do not belong to an exponential family can produce a posterior of
the form (2.27). The example of such a prior is a family of double-exponential
priors, the members being

p(x;µ, κ) ∝ exp (−κ‖x− µ‖1) . (2.28)

These are fat-tailed densities not forming an exponential family, but which
are frequently used as priors when the a priori knowledge suggests that x
has only few essentially non-zero entries.

Conjugate priors

Often, it is algebraically advantageous to rely on an existing conjugate prior
family. A family F of prior densities is said to be conjugate to a given
likelihood p(y | x), if a posterior distribution of the form p(x | y) ∝ p(x)p(y |
x) belongs to F whenever p(x) belongs to F .

If the likelihood belongs to an exponential family, there exists a conjugate
prior which also often is a member of some exponential family. Especially,
the family of Gaussian densities is self-conjugate, i.e. Gaussian priors are
conjugate to a Gaussian likelihood. For example, Gaussian priors of the
form

p(x;µpr ,Γpr) ∝ exp(−1

2
‖Γ−1/2

pr (x − µpr)‖2
2) (2.29)

are conjugate to the likelihood function of (2.23) when the noise prior is a
Gaussian density of the form (2.24) and F(x) = Fx with some matrix F.
The corresponding family of Gaussian posterior densities is specified by the
mean and covariance matrix

µpost = µpr + ΓprF
T (FΓprF

T + Γnoise)
−1(y − Fµpr − µnoise),(2.30)

Γpost = Γpr − ΓprF
T (FΓprF

T + Γnoise)
−1FΓpr. (2.31)

That is, both µpost and Γpost can be obtained through straightforward lin-
ear algebra, which is advantageous with respect to the exploration of the
posterior.

Hyperpriors

In some applications, priors can be constructed hierarchically. In a hierar-
chical model free of nuisance parameters, it is assumed that the parameter
of primary interest is of the form (x1,x2) and the actual prior is a joint den-
sity p(x1,x2) formed by the product of a conditional prior p(x1 | x2) and a
hyperprior p(x2). The corresponding likelihood p(y | x1,x2) is hierarchical
in the sense that it does not depend on x2. Therefore, it can be written as
p(y | x1), and the resulting posterior is given by

p(x1,x2 | y) ∝ p(y | x1,x2)p(x1 | x2)p(x2), (2.32)

= p(y | x1)p(x1 | x2)p(x2). (2.33)
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The number of hierarchy levels can be greater than two, since also the hy-
perprior can be constructed hierarchically.

A hierarchical model can be applicable, for instance, if according to the
a priori information, the random vector x is Gaussian with an unknown
diagonal covariance matrix. Candidate for the prior could be p(x, γ) ∝ p(x |
γ)p(γ) with

p(x | γ) ∝ exp(−
n∑

ℓ=1

1

2γℓ

(xℓ − µpr,ℓ)
2), (2.34)

p(γ) = p(γ;α, β) ∝ exp(−
n∑

ℓ=1

β

γℓ

− (α+ 1)
n∑

ℓ=1

log γℓ). (2.35)

Here, the conditional prior of x is a Gaussian density with the covariance
matrix Γpr = diag(γ1, γ2, . . . , γn), and the variance vector γ = (γ1, γ2, . . . , γn)
is distributed according to the inverse gamma hyperprior specified by the
hyperparameters α and β. The family of inverse gamma densities of the
form p(γ;α, β) is conjugate to p(x | γ), which means that p(γ | x) is also an
inverse gamma density, a fact that can be useful in posterior exploration.

In contrast to the Gaussian smoothness prior (2.26) that favors vectors
corresponding to spatially smooth structured functions, the posterior ob-
tained as a product of (2.34) and (2.35) tends to favor vectors having essen-
tially only few non-zero entries, like the double-exponential density (2.28).
This is caused by the fat-tailedness of the inverse gamma density, which al-
lows outliers to the variance vector. A posterior with similar characteristics
can be obtained, if the inverse gamma hyperprior is replaced with a gamma
hyperprior given by

p(γ;α, β) ∝ exp(−
n∑

ℓ=1

γℓ

β
+ (α− 1)

n∑

ℓ=1

log γℓ). (2.36)

However, this hyperprior is not conjugate to the conditional prior (2.34).

Weak priors

A prior is called weak, or uninformative, when estimates or inferences based
on the posterior are insensitive to perturbations of the prior. In inverse
problems, a weak prior leads to a posterior, which is difficult to handle nu-
merically. Therefore, in Bayesian inversion, it is not preferable to apply a
weak prior.

For instance, a Gaussian prior with a very large variance is weak. To
see this, consider the mean of a Gaussian posterior given by (2.30) with
Γpr = γprI, Γnoise = γnoiseI, and µpr = µpost = 0. It holds that

lim
γpr→∞

µpost = F+y with F+ = lim
δ→0

FT (FFT + δI)−1, (2.37)

where F+ is the Moore-Penrose pseudoinverse of the matrix F. This means,
on one hand, that the posterior mean µpost would be entirely determined
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by the data in the limit. On the other hand, in the limit, numerical evalu-
ation of µpost would be difficult, since computation of the pseudoinverse is
problematic when the matrix is ill-conditioned.

Improper priors

A prior that is not normalizable is called improper. Improper priors are
widely used in Bayesian methodology, since the posterior can be normalizable
even though the prior is not.

For example, a subset constraint of the form

p(x) ∝
{

1, if x ∈ S,

0, otherwise,
(2.38)

constitutes an improper prior, if
∫

S
dx = ∞. This piecewise flat prior restricts

the possible values of x to some subset S of the domain of definition of
p(x). When using this kind of a subset constraint as a prior, one should pay
attention on what S is. If this subset is too large, the corresponding prior can
be weak. As an example, a completely flat prior p(x) ≡ 1 is weak. A subset
constraint as a prior can be useful, for example, when the inverse problem
needs to be solved only in a relatively small region of interest (ROI).

2.3.4 Posterior exploration

In addition to the construction of one or more posterior densities, another
goal in the use of Bayesian methodology is to make inferences on x based
on posterior probabilities. There exist a variety of different ways to evaluate
and compare posteriors as well as to compute and evaluate estimates based
on a single posterior.

Estimation of an unknown parameter requires exploration of a posterior.
This work considers maximum a posteriori (MAP) and conditional mean
(CM) estimates, which refer to numerical estimates of

xMAP = arg max
x

p(x | y) and xCM =

∫
x p(x | y) dx, (2.39)

respectively. Assuming that these are well defined finding either one can
be a computationally challenging problem that requires the use of advanced
optimization and numerical integration algorithms.

Difficulties arise whenever the shape of the posterior distribution is such
that the algorithms tend to proceed to peculiar directions or get stuck into
local minima. These difficulties can be caused e.g. by the general ill-posed
and ill-conditioned nature of inverse problems, multimodality of the posterior,
weakness of the prior density, and complexity of the forward model.

Once an estimate has been computed, its quality needs to be analyzed.
Again, there are many applicable approaches. One strategy is simply to qual-
itatively compare the estimate to other estimates yielded by other models,
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e.g. using other prior densities. Another strategy is to compute credible (or
credibility) intervals, i.e. intervals in which the unknown parameter lies with
some given posterior probability values. A credible interval can be centered,
for instance, at the posterior mean, or at the point corresponding to the nar-
rowest possible interval, that is, the highest density interval. Third possible
strategy is to visualize and analyze the convergence or behavior of the applied
posterior exploration algorithm. Other strategies exist as well, including so-
phisticated methods of model comparison such as the use of Bayes factors
[38], but these are not studied in this work.

MAP estimation

A comparison of the equations (2.3) and (2.23) reveals that finding a MAP es-
timate is closely connected with regularization; the same optimization meth-
ods that can be used to find the minimizer of (2.3) are applicable also for
maximizing the argument of the exponential function in (2.23). Therefore,
methods that are frequently used in MAP estimation include, for example,
quasi-Newton and CG iterations.

For some distributions, like Gaussian distributions, the vectors xMAP and
xCM coincide, but in general, they are distinct. It is often computationally
less demanding to produce an estimate of xMAP than of xCM, since the
latter procedure requires multidimensional numerical integration. However,
it is very typical that xMAP is less robust with respect to perturbation of
the posterior. Namely, even a relatively small perturbations of the posterior
can considerably change the maximizer of a probability density whereas the
mean, which can be interpreted as the center of the probability mass, is more
likely to stay relatively stable under perturbations.

Since MAP estimation algorithms are concentrated solely on finding the
maximizer, they typically do not generate a representative sample from the
posterior distribution. Therefore, based on a MAP estimation process, it
can be difficult to infer, what the credibility of the estimate obtained is, or
what the global characteristics of the posterior are. For these reasons, if the
posterior is explored only through MAP estimation, it can remain unclear,
e.g. whether the posterior is uni- or multimodal, or whether the prior is weak.

CM estimation

The central challenge in conditional mean estimation is that it necessitates
multi-dimensional numerical integration. Traditional quadratures, such as
Gaussian quadratures and Simpson’s rule, do not scale well as the number
n of the components of x increases. For example, according to the error
analysis of the traditional quadratures, in numerical integration over the
n-dimensional unit square [0, 1]n using a regular grid, one would have to
evaluate the integrand ∝ Nn grid points in order to achieve an estimate
of accuracy ∝ 1/Nρ with ρ being a quadrature specific constant. For this
reason, MCMC sampling based numerical integration methods, in which the
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rate of convergence, in principle, does not depend on n, are extensively used
in CM estimation.

MCMC sampling methods are algorithms that enable exploration of an
arbitrary probability distribution. An MCMC algorithm produces a Monte
Carlo estimate [33] of the conditional mean,

1

N
(x(1) + · · · + x(N)) ≈

∫
x p(x | y) dx, (2.40)

where {x(i)}∞i=1 is an ergodic Markov chain with the posterior p(x |y) as
the invariant density. Convergence of the estimate follows from the law of
large numbers and the central limit theorem for ergodic Markov chains [37].
According to the central limit theorem, the estimation error is asymptotically
Gaussian with the covariance matrix proportional to 1/N .

The goal in MCMC sampling is to produce an ergodic Markov chain
such that a reasonable convergence rate is achieved in practice. The rate of
convergence in terms of central processing unit (CPU) time is affected by
several factors, such as the complexity of the applied sampling strategy.

Even though consecutive sample points produced by the Markov Chain
can be heavily correlated, points far from each other can be regarded as
mutually independent and distributed according to the posterior. Once a
sample has been generated, it not only enables CM estimation through (2.40),
but it can be applied for error analysis of the CM estimate as well. Namely,
based on the sample, one can estimate e.g. credibility intervals, marginal
densities of the components of x, as well as the sample quality.

There are several MCMC algorithms, such as the Metropolis-Hastings al-
gorithm and the Gibbs sampler, that in general work well with slight adapta-
tion. Given a posterior p(x | y) together with a proposal probability density
f(x, z) satisfying f(x, z) > 0 if and only if f(z,x) > 0, the Metropolis-
Hastings algorithm can be written into the following form:

• Given the current state x(k), draw z from the proposal distribution
determined by z → f(x(k), z).

• Draw u ∼ Uniform[0, 1] and update

x(k+1) =

{
z, if u ≤ r(x(k), z),

x(k), otherwise,
(2.41)

where

r(x, z) = min
{

1,
p(z | y)f(z,x)

p(x | y)f(x, z)

}
. (2.42)

• Proceed to the next state (k → k + 1).

Again, the simplest version of the Gibbs sampler, the systematic scan Gibbs
sampler, is given by the following:
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• Given the current state x(k) = (x
(k)
1 , . . . , x

(k)
n ), for i = 1, 2, . . . , n, draw

x
(k+1)
i from the conditional distribution

p(xi | y, x(k+1)
1 , . . . , x

(k+1)
i−1 , x

(k)
i+1, . . . , x

(k)
n ). (2.43)

• Proceed to the next state (k → k + 1).

However, despite the simplicity of the algorithms, it is commonly agreed
that producing a rapidly convergent sampling sequence is an art: Various
factors, such as multimodality of the posterior and weakness of the applied
prior, can slow down the convergence. Also, the computational complexity
of the forward simulation is an important factor that affects the convergence
rate in terms of CPU time. Namely, generation of a single sample point
requires usually one or more evaluations of the forward mapping, and if the
applied forward simulation is computationally heavy, sample generation can
turn out to be a rather time-consuming process.

2.4 Electromagnetic biomedical applications

This section briefly reviews the electromagnetic applications studied in this
work. Below, the mathematical notation slightly differs from what has been
used above and there are some notational differences between the applications
as well.

2.4.1 Electro/Magnetoencephalography

The EEG/MEG inverse problem [24] is to recover a primary current den-
sity Jp in an open two- or three-dimensional domain Ω, given an array of
noisy external electric potential/magnetic field (u/B) measurement data.
The present inverse problem is linear; when discretized, the problem reduces
to finding a vector x satisfying an underdetermined and ill-conditioned linear
system of the form

y = Lx + n, (2.44)

where L is a so-called lead-field matrix, the vector y contains the measured
data, and n is an error term caused by the noise in the measurements.

Forward model

In the standard EEG/MEG forward model, the electric field is assumed to
be conservative, that is, E = −∇u and the total current density is given by

J = Jp + Js = Jp − σ∇u, (2.45)

where σ is the conductivity distribution of the target, and Js = −σ∇u is
the secondary or a volume current density. In this work, the CEM [49,
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40] is applied for computation of u. The CEM assumes that contact elec-
trodes e1, e2, . . . , eL with contact impedances z1, z2, . . . , zL are attached on
the boundary ∂Ω. Electrodes are assumed to be present during both the
electric and magnetic field measurements. The electrode potentials form a
voltage vector U = (U1, U2, . . . , UL) and the electric potential field u satisfies
the equation

∇ · (σ∇u) = ∇ · Jp, in Ω, (2.46)

as well as the boundary conditions

σ
∂u

∂n

∣∣∣
∂Ω\∪ℓeℓ

= 0,

∫

eℓ

σ
∂u

∂n
ds = 0, and

(
u+ zℓσ

∂u

∂n

)∣∣∣
eℓ

= Uℓ, (2.47)

with ℓ = 1, 2, . . . , L. Additionally, the Kirchoff’s voltage law
∑L

ℓ=1 Uℓ = 0 is
assumed to hold. The weak form [49, 18] of (2.46) and (2.47) can be formu-
lated by requiring that u ∈ H1(Ω) = {w ∈ L2(Ω) : ∂w/∂ri ∈ L2(Ω), i =
1, 2, 3 } and Jp ∈ H(div; Ω) = {w ∈ L2(Ω)3 : ∇ · w ∈ L2(Ω) }. The space
H1(Ω) is the standard Sobolev space [9] and H(div; Ω) [1, 35] is a space
consisting of functions with a square integrable divergence. Note that the
dipole current density [24] does not have a square integrable divergence.

The magnetic field point values, that are measured in MEG, can be ob-
tained through a straightforward differentiation and integration procedure
given the electric potential. Namely, the Biot-Savart law [26] combined with
(2.45) states that the magnetic field at the point r0 outside the target Ω is
given by the formula

B(r0) =
µ0

4π

∫

Ω

(Jp − σ∇u) × r0 − r

|r0 − r|3 dr. (2.48)

Forward simulation

In this work, the discretized fields uT and Jp
T corresponding to u ∈ H1(Ω)

and Jp ∈ H(div; Ω) and their coordinate vectors are defined by

uT =
Nu∑

i=1

ζiψi, and Jp
T =

NJ∑

i=1

xiψi, (2.49)

as well as ζ = (ζ1, ζ2, . . . , ζNu
)T and x = (x1, x2, . . . , xNJ

)T , respectively.
Here, the functions ψ1, ψ2, . . . , ψNu

∈ H1(Ω) andψ1,ψ2, . . . ,ψNJ
∈ H(div; Ω)

are scalar and vector valued finite element basis functions, respectively, de-
fined on a finite element mesh T [9]. The number of basis functions (number
of degrees of freedom) is denoted by Nu and NJ , respectively. How the basis
functions can be constructed in practice, is described e.g. in [1].

Furthermore, since in the CEM the sum of the electrode potentials is
assumed to be zero, it is postulated that the finite element approximation of
the electrode potential vector is given by

UT = Rξ, (2.50)
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where ξ is an auxiliary vector and R ∈ R
L×(L−1) is a matrix with entries

given by R1,j = −Rj+1,j = 1 for j = 1, 2, . . . , L − 1, and Ri,j = 0 otherwise.
The vectors x, ζ, and ξ are linked through the linear system

(
A C
CT G

)(
ζ

ξ

)
=

(
Fx
0

)
, (2.51)

where the submatrix entries are given by

Fi,k =

∫

Ω

(∇ ·ψk)ψi dΩ, (2.52)

Ai,j =

∫

Ω

σ∇ψi · ∇ψj dΩ +
L∑

ℓ=1

1

zℓ

∫

eℓ

ψiψj dS, (2.53)

Ci,j = − 1

z1

∫

e1

ψi dS +
1

zj+1

∫

ej+1

ψi dS, (2.54)

Gi,j =
1

zj

∫

ej

dS +
δi,j
zj+1

∫

ej+1

dS, (2.55)

with δi,j denoting the Kronecker delta [9]. The system (2.51) arises from
the Ritz-Galerkin discretization [9] of the weak form of (2.46) and (2.47).
Similarly, a discretized version of (2.48) can be expressed as

B = Wx − Vζ, (2.56)

where B is a vector containing the magnetic field values at the measurement
locations and the matrices are defined by

Wi,3(j−1)+k =

∫

Ω

ek ·ψj×(ri − r)

|ri − r|3 dr, (2.57)

Vi,3(j−1)+k =

∫

Ω

ek · σ∇ψj×(ri − r)

|ri − r|3 dr, (2.58)

with rj denoting the jth measurement location and ek denoting the kth
natural basis vector.

The dependences of UT and B on the vector x are described by the
electric and magnetic lead field matrices Le and Lm, respectively. These are
given by

Le = R(CTB−1C − G)−1CTB−1F, (2.59)

Lm = W − V(B − CG−1CT )−1F, (2.60)

as can be verified through straightforward linear algebra [19]. The formula
for Le can be found by solving (2.51) with respect to ξ and multiplying the
result with R to obtain UT as defined in (2.50). Again, the matrix Lm can
be obtained by solving (2.51) with respect to ζ and substituting the result
to (2.56). Note that the expressions (2.59) and (2.60) are valid only if a
set of contact electrodes is attached to the head during the magnetic field
measurement.
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2.4.2 Electrical impedance tomography

In the present model for EIT, a current pattern I = (I1, I2, . . . , IL) is injected
into the domain Ω through the contact electrodes e1, e2, . . . , eL. The injected
currents induce a potential field u in the domain and respective voltages
U = (U1, U2, . . . , UL) on the electrodes. The measurement data are gathered
by injecting a set of linearly independent current patterns and measuring
the corresponding electrode voltages. The conductivity distribution σ in Ω
is to be reconstructed from these voltage measurements. This is a non-linear
inverse problem.

Forward model

Considering again the CEM, the electrode voltage vector U induced by the
current pattern I can be found by solving the elliptic boundary value problem
described by the equation

∇ · (σ∇u) = 0 (2.61)

in the domain Ω, by the boundary conditions

σ
∂u

∂n

∣∣∣
∂Ω\∪eℓ

= 0,

∫

eℓ

σ
∂u

∂n
ds = Iℓ, and

(
u+ zℓσ

∂u

∂n

)∣∣∣
eℓ

= Uℓ, (2.62)

on ∂Ω, with ℓ = 1, 2, . . . , L, as well as by Kirchoff’s current and voltage laws∑L
ℓ=1 Iℓ = 0 and

∑L
ℓ=1 Uℓ = 0. According to [49], with certain assumptions

made on the domain and on the conductivity distribution, there exists a
unique pair u ∈ H1(Ω) and U ∈ R

L that solve this problem in the weak
sense.

Forward simulation

The finite element approximations of u and U, found as solutions of the
CEM, are given by

uT =
Nu∑

i=1

ζiψi, and UT = Rξ, (2.63)

where the coefficients are obtained by solving the linear system

(
B C
CT G

)(
ζ

ξ

)
=

(
0

RT I

)
(2.64)

similar to (2.51). Note that in (2.64) the dependence of the unknown vector
on σ is highly non-linear. This means that each time σ is updated, the linear
system has to be solved again. Note also that the matrix in (2.64) is, as a
symmetric and positive definite FEM system matrix, well-conditioned despite
the fact that the inverse problem itself is ill-conditioned.
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2.4.3 Limited-angle computerized tomography

Computerized tomography (CT) is a discretized version of X-ray tomog-
raphy [15, 14]. This work considers the linear inverse problem of the two-
dimensional limited angle X-ray tomography, where the goal is to reconstruct
an absorption distribution f : R

2 → R from its tomographic projections (ra-
diographs), which constitute the measurement data.

Forward model

The forward model of two-dimensional limited-angle X-ray tomography is
described by the Radon transform

Rf(t, θ) =

∫

R2

f(x1, x2)δ(x1 cos θ + x2 sin θ − t) dx1dx2, (2.65)

where t ∈ R, δ is Dirac’s delta function [18] and the projection angle θ is
limited to some sub-interval of [−π/2, π/2). The Radon transform is linear
and the value of Rf(t, θ) represents an integral of the absorption distribution
over a straight line parametrized by t and the projection angle θ.

Forward simulation

In two-dimensional limited-angle CT, the data and solution spaces are pix-
elized, the number of radiographs is finite, each radiograph is approximated
as a weighted sum of pixel values, and the data are assumed to contain ad-
ditive noise. The resulting measurement model can be written as a linear
system of the form

y = Ax + n, (2.66)

where x is the unknown consisting of the pixel values of the discretized f
as its elements, y is the measurement data containing noisy readings of the
discrete approximations of the integrals (2.65), A is the matrix corresponding
to the discretized Radon transform, and n is the error term representing the
measurement noise.

2.5 Forward simulation through p-FEM

The development of effective EIT and EEG/MEG forward simulations through
application of h-FEM and p-FEM for electromagnetic fields is one of the main
concerns of this work. The difference between these two versions of the FEM
is in how the number of degrees of freedom is extended; in an h-version ex-
tension, the polynomial order p of the basis functions is relatively low and
the element size h is reduced, whereas in the p-version, the polynomial order
is increased and the mesh size is kept constant. The motivation for the use of
p-FEM in addition to the traditional h-FEM in EIT and EEG/MEG forward
simulations is that the solution of the CEM equations can be smooth in the
interior domain and that the p-version is typically very efficient for problems
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with smooth solutions. The shape function (element basis function) types ap-
plied in this work for p-FEM forward simulation are briefly reviewed in this
section considering both H1(Ω)- and H(div; Ω)-conforming shape functions.

2.5.1 Constant shape functions

In EIT and EEG/MEG, the conductivity distribution is to be approximated
via the FEM. The only requirement for σ is that it must be square integrable,
i.e. an L2(Ω)-function. Therefore, one can choose σ to be constant over
each element of the finite element mesh, which results into globally piecewise
constant conductivity distribution. This choice is used for its simplicity in
this work; the simplest possible shape function is the one that is constant.

2.5.2 Lowest order Raviart-Thomas shape functions

In EEG/MEG, the approximation of the primary current density Jp
T ∈

H(div; Ω) is represented using the lowest order Raviart-Thomas elements
[9]; for each tetrahedral element, the ith shape function ϕi is linear, vanishes
precisely at one of the ith vertex of the element, and the direction of ϕi is
constant and given by the normal vector of the face opposite to the ith vertex
(Figure 2.3). As a result, the number of degrees of freedom per element is
four and the global finite element space is a subspace of H(div; Ω), i.e. this
element is H(div; Ω)-conforming.

Figure 2.3: Two visualizations of a lowest-order Raviart-Thomas shape func-
tion in a tetrahedral element. The vector field in the tetrahedron is illustrated
by the cones.

2.5.3 Hierarchic shape functions

The computation of the discretized electric potential field uT ∈ H1(Ω) through
p-FEM requires the use of higher-order elements, i.e. elements with shape
functions of relatively high polynomial degree. Because numerical instability
can occur in connection with higher-order elements, it is generally agreed that
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the shape functions should be hierarchic, i.e., the shape functions of maxi-
mal degree p are also shape functions of maximal degree p+1, and moreover,
the number of shape functions not vanishing at the vertices and the sides of
the elements is minimal. Hierarchic shape functions are constructed using
Legendre polynomials

pk(x) =
1

2kk!

dk

dxk
(x2 − 1)k, k ≥ 0, (2.67)

and the lowest order hierarchic shape functions are defined simply as the
standard linear or bilinear nodal shape functions used in the h-FEM.

One dimensional case

In the one-dimensional case, the reference element is the interval [−1, 1]. For
this element, the one-dimensional hierarchic shape functions of polynomial
order p are defined as

ϕ1(ξ) =
1 − ξ

2
, ϕ2(ξ) =

1 + ξ

2
, ϕn(ξ) = φn−1(ξ), n=3,4,. . . ,p+1, (2.68)

where φn is defined as φn(ξ) =
√
n− 1/2

∫ ξ

−1
pn−1(ξ) dt. The shape functions

are organized into two categories. The first one is formed by the polynomials
ϕ1 and ϕ2, that are called the nodal shape functions, the external shape
functions, or the vertex modes. The higher order polynomials ϕ3, ϕ4, . . . , ϕp+1

form the second category. These vanish at the endpoints of the interval [−1, 1]
and they are called the bubble functions, the internal shape functions, or the
internal modes.

Quadrilateral elements

The two-dimensional quadrilateral reference element is the square [−1, 1] ×
[−1, 1]. The corresponding two-dimensional hierarchical shape functions of
polynomial order p are formed as products of one-dimensional shape functions
as follows:

ϕnm(ξ, η) =
1

4
(1+(−1)nξ)(1+(−1)mη), n=1,2, m=1,2, (2.69)

ϕ(0)
nm(ξ, η) =φn(ξ)φm(η), n=2,3,. . . ,p, m=2,3,. . . ,p, (2.70)

ϕ(1)
n (ξ, η) =

1

2
(1−η)φn(ξ), n=2,3,. . . ,p, (2.71)

ϕ(2)
n (ξ, η) =

1

2
(1−ξ)φn(η), n=2,3,. . . ,p. (2.72)

These are organized to three categories: vertex modes ϕnm, internal modes
ϕ

(0)
nm, and side modes ϕ

(1)
n , ϕ

(2)
n . In this work, only quadrilateral elements are

used in the two-dimensional case.
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Tetrahedral elements

In order to make indexing of three dimensional hierarchic shape functions
convenient, this work adopts the notation [1] in which a tetrahedron with
oriented edges is denoted by t = [t1, t2, t3, t4] with t1, t2, t3, and t4 indexing the
vertices. Again, the sets containing the vertex, edge, and face indices of t are
denoted by V(t), E(t), and F(t), respectively, and can be written explicitly
as: V(t) = {t1, t2, t3, t4}, E(t) = {[t1, t2], [t1, t3], [t1, t4], [t2, t3], [t2, t4], [t3, t4]},
and F(t)={[t1, t2, t3], [t1, t2, t4], [t1, t3, t4], [t2, t3, t4]}.

The hierarchic shape functions for tetrahedral elements can be constructed
using two reference tetrahedra t̂1 = [1, 2, 3, 4] (Figures 2.4) and t̂2 = [1, 3, 2, 4]
(Figure 2.5) as proposed in [1]. Each of these share the same vertices v̂1 =
(−1, 0, 0), v̂2 = (1, 0, 0), v̂3 = (0,

√
3, 0), and v̂4 = (0, 1/

√
3, 2

√
2/
√

3), but
their edges and faces are oriented differently. The reason for the use of more
than one standard reference element is to minimize the difficulty of enforcing
the conformity (global continuity), which can be problematic with hierarchic
shape functions. Any tetrahedron with oriented edges in an unstructured
tetrahedral finite element mesh can be reduced to either of the present two
reference tetrahedra through cyclic rotations of the first three or the last
three vertex indices, which are equivalent to rotations of two different faces
[1].

Figure 2.4: Reference tetrahe-
dron t̂1 = [1, 2, 3, 4].

Figure 2.5: Reference tetrahe-
dron t̂2 = [1, 3, 2, 4].

Hierarchic shape functions of H1(Ω)-conforming tetrahedral elements are
divided into vertex, edge, face, and internal functions. The first three function
types vanish at all but one of the vertices, edges, or faces, respectively, and
the internal functions vanish on element boundaries. The vertex functions
are first degree polynomials, and the other function types, also known as
bubbles, are of higher degree.

The vertex functions of a tetrahedron t = [t1, t2, t3, t4] are defined as
ϕ(v) = λv for v ∈ V(t), where λi denotes a barycentric coordinate, i.e. it is
a linear polynomial that assumes the value one at the vertex i and vanishes
on the opposite face. The corresponding edge, face, and internal modes of
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maximal degree p are defined as

ϕ
(e)
j = λe1

λe2
pj(λe2

− λe1
), (2.73)

ϕ
(f)
k1k2

= λf1
λf2

λf3
pk1

(λf2
− λf1

)pk2
(λf3

− λf1
), (2.74)

ϕ
(t)
ℓ1ℓ2ℓ3

= λt1

3∏

d=1

[λtd+1
pℓd

(λtd+1
− λt1)] (2.75)

respectively. Here, the superscript e denotes an edge [e1, e2] ∈ E(t) and f
denotes a face [f1, f2, f3] ∈ F(t), and the subscripts determining the Legendre
polynomial degrees are positive or zero integers such that j ≤ p−2, k1+k2 ≤
p− 3, and ℓ1 + ℓ2 + ℓ3 ≤ p− 4.

A scalar shape function ϕ supported on t and the corresponding reference
element shape function ϕ̂ are related through the transformation ϕ = ϕ̂◦F−1

t ,
where Ft is an invertible affine mapping from the corresponding reference
tetrahedron onto t. Using this transformation, the H1(Ω)-conforming hier-
archic basis functions for unstructured tetrahedral meshes can be constructed
in the usual way using the reference element shape functions.

2.5.4 Practical aspects of implementation

There are a few differences in implementation of h- and p-version FEM solvers
on a general level. A central difference is that the construction of the system
matrix is computationally more requiring in p-FEM; due to the relatively
high polynomial order of the basis functions, high-order Gaussian quadra-
tures [50] are needed when computing the integrals of the p-FEM system
matrix. Moreover, the percent of the resulting system matrix non-zero en-
tries is higher due to the large number of p-FEM basis functions belonging
to one element.

Since the p-FEM lies on the use of Legendre polynomials, point evaluation
of the basis functions is not as straightforward as in the case of h-FEM. An
efficient algorithm to evaluate Legendre polynomials and their derivatives at
a given point can be constructed, e.g. through the recursion

(n+ 1)pn+1(x) = (2n+ 1)xpn(x) − npn−1(x) (2.76)

based iterations [10] or by computing all the values at the quadrature points
in advance.
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3 Results

This chapter summarizes the results and findings of the papers [I]–[VI].

3.1 [I]

This study investigated EIT and the two-stage reconstruction process, in
which a ROI is determined in the first stage and the actual reconstruction is
found in the second stage through MCMC sampling. This two-stage approach
was found to be applicable for detection of circular anomalies. An effective
FEM based smoothness prior was discovered. An anomaly prior constructed
using a four-dimensional parametrization of the EIT inverse problem together
with a piecewise constant interpolation scheme was successfully applied. The
performance of the MCMC was found to be superior when the FEM was
used in the forward simulation as opposed to the linearized approximation.
Additionally, an enhanced noise model incorporating a priori information
about the forward simulation error into the measurement error model was
found to be superior over the white noise model when the linearized FEM
forward simulation was used. This study also revealed a need to study more
sophisticated MCMC sampling as well as more rigorous forward simulation
techniques.

3.2 [II]

In this study, the p-FEM was applied to EIT forward simulation as motivated
by [I]. It was shown numerically by using the unit square as the computational
domain that the performance of the p-FEM is better than that of the h-
version FEM when uniform mesh refinement is used. It was also found that
the characteristic difference between the h- and p-versions of the FEM is that
a lot more computational effort is spent on construction of a system matrix
in the p-version. Consequently, finding computationally tractable ways to
obtain system matrices needed in EIT reconstruction, e.g. through the use
of a priori information, is mentioned as a future work topic. Based on the
results, as a potential target for future work, the paper also proposes the hp-
FEM, in which both the mesh size and the polynomial degree of the shape
functions can be varied simultaneously.

3.3 [III]

This study concerned again EIT and conductivity anomalies. An efficient
reconstruction algorithm based on the Kirsch factorization method was pre-
sented for two-dimensional polygonal domains. Through numerical experi-
ments, in which the p-FEM forward simulation developed for [II] was used,
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the algorithm was shown to provide information about shapes and locations
for a wide class of conductivity anomalies. Both circular and kite-shaped
anomalies were successfully recovered in the numerical experiments.

As a future work topic, the development of a systematic method for taking
the measurement noise into account is proposed. It is also mentioned that a
study of potentially rapid computational forward simulation methods would
be needed for the future development of the algorithm.

3.4 [IV]

This study compared the performances of h- and p-type finite elements in
EEG/MEG forward simulation. Both forward simulation types were de-
scribed and implemented based on the complete electrode model. The per-
formance comparison was done by analyzing direct measurement of the rel-
ative discretization error as well as via reconstruction of multiple dipole-like
electric sources applying the regularized FOCUSS algorithm. It was found
that in terms of the relative discretization error the performance of the p-type
FEM was superior to that of the h-type. In contrast, the comparison of the
reconstructions revealed only small differences.

Mesh generation for the p-FEM, based on the a priori knowledge of what
is a good choice for a dipole-like source diameter, is proposed as a topic for
future work. Another topic proposed for the future is to investigate whether
p-FEM forward simulation provides a suitable way to recover both dipole
moment and depth at the same time. Additionally, it is proposed that there
is a need to study the hp-FEM and different element types, such as prism
elements.

3.5 [V]

This study considered the MEG/EEG inverse problem through hierarchical
Bayesian models, in which the variance of the primary current density was
assumed to be distributed according to the generalized gamma hyperprior
density. The paper proposes an iterative alternating sequential (IAS) al-
gorithm for computing the MAP estimate simultaneously for the primary
current density and its variance. The IAS algorithm was found to be very
fast and easy to implement. It is also shown in the paper, that for particular
choices of the scalar hyperparameters specifying the hyperprior, the algo-
rithm effectively approximates popular regularization strategies. The MAP
estimates produced by IAS were compared against MCMC based CM esti-
mates. Like in the study of [I], a ROI was used in the computation of the
CM estimates.

Both a planar geometry and a realistic geometry were used in the numer-
ical experiments employing multiple dipole-like currents as sources. Forward
simulation techniques developed in [IV] were applied in the case of the real-
istic geometry. The results suggest that the CM estimate is most effective in
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combination with the inverse gamma prior, and that the MAP estimate, on
the other hand, is most effective when applied in connection with the gamma
prior. The results also suggest that, in general, CM estimation is superior
over MAP estimation of the focal activity in different parts of the brain.

As topics for future work, the paper proposes a hierarchical extension of
the model, where the values of the hypermodel parameters would be chosen
based on the data, as well as an extension of the formalism to include time
dependent sources with a longitudinal correlation structure.

3.6 [VI]

This study considered linear inverse problems. It proposed and tested an iter-
ative coarse-to-fine reconstruction procedure based on iterative regularization
via the CG method, on Tikhonov preconditioning, as well as on wavelet low-
pass filtering. The numerical experiments concerning this procedure showed
that a combined use of wavelet filters and preconditioning can be effective
in limited-angle CT reconstruction. The reconstructions obtained by using
the proposed coarse-to-fine reconstruction procedure were superior to the re-
constructions produced by other reconstruction strategies only when both
wavelet filtering and preconditioning were applied simultaneously.

The paper suggests a future work to design sophisticated multiresolu-
tion filters that decompose the solution space to detectable and undetectable
parts. Another future study suggested is an effort to develop a regulariza-
tion technique, which would render the proposed coarse-to-fine strategy less
sensitive to the measurement noise. Moreover, finding a reasonable method
for choosing the adjustable parameters is mentioned as an important future
work.

30



4 Discussion and conclusions

This work discusses computational methods in electromagnetic biomedical in-
verse problems. The applications include EIT, EEG/MEG and limited-angle
CT. These correspond to inverse problems of sounding, source determina-
tion, and high-frequency imaging, respectively. Both classical regularization
techniques and Bayesian methodology have been applied in solution of these
inverse problems.

The focus of this work is more on development of a variety of case-by-
case computational methods and techniques than of a single computational
strategy that would cover all the applications. Papers [II]–[V] can be seen to
be partially motivated by [I], which is chronologically the first one. Namely,
the importance of effective forward simulation is emphasized in [I], and in
[II]–[V], effective forward simulation strategies are developed and applied.
However, also inversion methods are studied in these. Paper [VI] can be
regarded as complementary, since it discusses linear inverse problems from a
general point of view, a combined use of preconditioning and projections in
iterative regularization, a priori information in general, as well as a forward
model not requiring numerical simulation of Maxwell’s equations.

The results obtained in this work suggest that the use of p-FEM in EIT
and EEG/MEG forward simulations is advantageous as compared to the h-
FEM. Furthermore, the overall experience from this work suggests that FEM,
in general, can be regarded as favorable. The advantage of the FEM is that
the system matrices, even though often large, are relatively sparse and the
number of the systems to be solved depends on the amount of the gathered
data, which for instance in EIT and EEG/MEG corresponds to the number
of data channels.

Another important finding of this work is, that in EIT and EEG/MEG,
two-stage reconstruction of anomalies utilizing Bayesian methodology can
be advantageous, when the first-stage reconstruction is produced through
MAP estimation and the second stage is computed employing MCMC in-
tegration together with a ROI. The resulting reconstruction process is not
fully Bayesian, since it violates the likelihood principle according to which
one should not use the data in the construction of the prior. However, both
reconstruction stages are fully Bayesian when considered individually and,
moreover, the likelihood principle itself is commonly agreed to be somewhat
controversial.

There are other findings concerning Bayesian methodology as well, cov-
ering among others, construction of different prior densities. For instance in
[I], a smoothness prior is constructed using a FEM based stiffness matrix,
and a locally uninformative anomaly prior based on a specific parametriza-
tion of the inverse problem is introduced. Again, in [V], generalized gamma
densities are used as a hyperpriors and the IAS algorithm is proposed for
MAP estimation. Based on the results it is suggested in [V], that the CM
estimate is preferable in combination with the inverse gamma prior while the
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MAP estimate is preferable when the standard gamma prior is applied. Fur-
thermore, the results of [V] suggest that the performance of CM estimation
can be, in general, superior over that of MAP estimation.

Numerical results obtained through different regularization strategies are
presented in [III], [IV], and [VI]. In [III], it is shown that the Kirsch factor-
ization method can be successfully used in EIT for recovery of both convex
and non-convex anomalies. In [IV], a regularized FOCUSS algorithm is used
in evaluation of the forward simulation effectiveness. Again, in [VI], it is
shown that a combined use of wavelet filtering and preconditioning can be
necessary in iterative regularization of linear inverse problems.

Since progress has been made regarding both regularization and Bayesian
methodology, there seems to be no need to concentrate the future work in
just one of these approaches. Which one is the preferable depends largely
on the target application as well as on the nature of the available a priori
knowledge. However, as it has been shown in this work and elsewhere in the
literature [29], a variety of regularization methods can be given a Bayesian
interpretation, and therefore, it seems obvious that the interest towards the
Bayesian approach to inverse problems [12, 25, 29] will continue to grow in
the future.

In the future studies on the EIT and EEG/MEG forward simulations, the
next step would be to perform numerical experiments using data obtained
from real measurements to provide practical experience of forward simulation
accuracy. It would also be interesting to apply p-FEM forward simulation to
other biomedical imaging modalities involving diffusion (Poisson-type) equa-
tions like (2.46) and (2.61). These applications could include electrocardio-
graphy/magnetocardiography (ECG/MCG) [46, 47], in which the potential
distribution of the heart is to be determined, as well as diffuse optical tomog-
raphy (DOT) [4, 45], in which optical absorption properties of a body are
estimated from the transmission and scattering data of near infrared light.

Considering the future work in general, an important aspect is that the
computational power of personal computers has increased tremendously dur-
ing the course of this work. It is currently possible to solve partial differential
equations numerically in realistic three dimensional geometries using a reg-
ular PC. Consequently, simulation of realistic models has become feasible in
many senses while rough simplifications, i.e. spherical cows [23], have become
decreasingly necessary. The future work should, therefore, be as much as pos-
sible concentrated on the use of realistic or authentic models, geometries, and
measurement data.

Obviously, development of algorithms that would take all the advantages
of the growing computational power is a challenging task. However, with
regard to regular personal computers, it is clear in a number of cases how some
additional computational power could be used. For example, when MCMC
sampling is applied to the EIT inverse problem, in the generation of each
sample point, there is a need to solve one or more linear systems, the sizes
of which are determined by the accuracy of the applied forward simulation.
At the moment, the computation must either be restricted into a ROI, as
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has been done in this work, or the quality of the forward simulation must
be compromised in order to achieve a reasonable sampling rate in practice.
Implementation of a fast sampler in a realistic geometry without compromises
can easily require a computer many times faster than the fastest existent
personal computers. Again, the amount of measurement data gathered in
EIT can easily be so large that there can be a need to make compromises
due to practical limitations in computational capabilities. For example, if 100
electrodes are used together with 99 linearly independent current patterns,
the length of the resulting data vector will be 99 × 100 = 9900 and the
corresponding likelihood covariance matrix will be a 9900-by-9900 full matrix,
which can currently be regarded as very large to be handled rapidly in a
reconstruction process.
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A551 István Faragó, Janos Karatson, Sergey Korotov

Discrete maximum principles for the FEM solution of some nonlinear parabolic

problems

August 2008
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