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Antti H. Niemi: Best bilinear shell element: flat, twisted or curved? ; Helsinki
University of Technology Institute of Mathematics Research Reports A564 (2009).

Abstract: This thesis concerns the accuracy of finite element models for
shell structures. The focus is on low-order approximations of layer and vibra-
tion modes in shell deformations with particular reference to problems with
concentrated loads. It is shown that parametric error amplification, or nume-
rical locking, arises in these cases when bilinear elements are used and the
formulation is based on the so-called degenerated solid approach. Further-
more, an alternative way for designing bilinear shell elements is discussed.
The procedure is based on a refined shallow shell model which allows for an
effective coupling between the membrane and bending strain in the energy
expression.

AMS subject classifications: 74S05, 74K25

Keywords: shell elements, locking, shell layers, shell vibration modes, asymptotic
behavior

Antti H. Niemi: Paras bilineaarinen kuorielementti: tasainen, kiero vai kaareva?

Tiivistelmä: Väitöskirjassa tarkastellaan kuorirakenteiden elementtiapprok-
simaatioiden tarkkuutta. Tutkimuksen kohteena on kuoren muodonmuutok-
sissa ilmenevien reunahäiriö- ja ominaisvärähtelymoodien mallinnus matala-
asteisilla elementeillä. Työssä näytetään, että näiden approksimoinnissa esiin-
tyy kuoren paksuusparametrista riippuvaa virheen vahvistumista eli numee-
rista lukkiutumista, mikäli laskennassa käytetään kahdeksansolmuisista tii-
lielementeistä degeneroituja nelisolmuisia bilineaarielementtejä. Työssä esi-
tellään lisäksi vaihtoehtoinen tapa nelisolmuisen kuorielementin muodosta-
miseksi. Menettely perustuu hienostuneeseen matalan kuoren malliin, joka
mahdollistaa kalvo- ja taipumavenymien tehokkaan kytkennän kuoren veny-
mäenergian lausekkeessa.

Avainsanat: kuorielementit, lukkiutuminen, kuoren reunahäiriöt, kuoren väräh-
telymoodit, asymptoottinen käytös
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1 Introduction

In the theory of elasticity, bodies which are bounded by two closely-spaced
curved surfaces are referred to as shells. Because such structures support
external loads very effectively, they are applied widely especially in naval
and aerospace engineering where the combination of light weight and high
strength is of uttermost importance. But thin elastic shells are rather com-
mon in nature as well. For instance, biomechanical models of artery walls in
the human cardiovascular system are receiving a great deal of attention at
the present time.

Since the equations of elasticity specialized to thin curved bodies cannot
be solved analytically in general, practical shell problems are usually solved
numerically by the finite element method. The exponential growth in raw
computer power during the last decades has enabled structural engineers to
address very complex problems with many interacting effects. Nevertheless,
modeling of thin-walled structures with three-dimensional continuum ele-
ments would require several elements through the thickness and might lead
to fairly expensive computations particularly when nonlinear and transient
analyses are performed, cf. [1]. Therefore, special structural elements known
as “shell elements” are often preferred in engineering applications. Among
these, certain low-order formulations based on the so-called degenerated solid
approach seem to be the most popular ones thanks to their relative simplicity
and excellent performance in many benchmark problems, see e.g. [2, 3, 4, 5].
Rather paradoxically, the mathematical understanding of parametric lock-
ing effects within these formulations is still fairly light albeit the “underlying
mathematical model” of the discretizations has been identified and studied
in several works, see [6, 7, 8, 9, 10] and the references therein.

The present thesis is a continuation of the earlier theory [11, 12, 13, 14]
(see also [15]) concerning the bilinear MITC4 shell element introduced by
Bathe and Dvorkin in [4, 16]. Our approach to MITC4 (and other bilinear
degenerated elements) is based on a reformulation of the original 3D element
in the context of a specific 2D shell model. This model was derived di-
rectly from the geometrically exact Reissner-Naghdi shell model by Malinen
in [11, 12] and may be viewed as a refined variant of the shallow shell models
found from the classical books on shell theory such as [17, 18, 19, 20, 21].
The model includes some geometric simplifications but it should be pre-
cise enough to study the accuracy of low-order finite element formulations
where rather crude geometric approximations are being performed anyway.
In fact, the numerical effect of the bilinear geometry representation involved
in MITC4 can be unfolded adequately when the formulation is understood
in this context [12]. Regarding the approximation of bending- and mem-
brane dominated deformations of a shell, the finite element error analysis
was performed by Havu and Pitkäranta in [13, 14].

This work completes the picture by analyzing the locking effects related
to the various boundary and interior layer modes appearing in shell defor-
mations [22]. Some of the obtained results apply to the approximation of

9



vibration modes as well since these modes involve locking effects similar in
nature to those found when approximating layers [23]. Moreover, the thesis
asserts that the usefulness of classical shell models is not limited to academic
purposes only. On the contrary, the refined shallow shell model can be used
as a solid basis for efficient and accurate computations using bilinear finite
elements.

The next section serves as an extended introduction for the thesis and
outlines the questions that will be addressed. A brief summary of the main
results is presented in the last section.

2 Numerical approach to the shell problem

Consider an elastic body occupying a domain Ω in 3-space and deformable
according to the laws of linear elasticity theory. Denote the displacements
along the coordinates x1, x2, x3 by u1, u2, u3 and the corresponding displace-
ment vector field by u = (u1, u2, u3). The strain energy of the body is then
proportional to the quadratic functional

A(u,u) =

∫

Ω

σ(u) : ε(u) dΩ (1)

where σ is the stress tensor and ε is the strain tensor. Assuming homogeneous
and isotropic material, the stress is related to the strain by the material law

of Hooke as
σ = λ tr(ε)I + 2µε (2)

Here λ, µ are the Lamé parameters of the material which are connected to
the Young modulus E and Poisson ratio ν by

λ =
Eν

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)

In a Cartesian coordinate system (x̄1, x̄2, x̄3) the strain tensor is defined as
the symmetric gradient, i.e.

ǫij =
1

2

(

∂ūi

∂x̄j

+
∂ūj

∂x̄i

)

(3)

but in the geometric description of a shell body it is more suitable to employ
curvilinear coordinates1.

More precisely, the position of any point in a shell may be determined by
three coordinates x, y, z so that x and y specify the position on the middle
surface, while z expresses the normal distance to the point from the middle
surface. The middle surface is assumed to be a parametric surface r(x, y),
where r is a smooth function that maps the parameter region ω ⊂ R

2 into
3-space. Denoting by n the unit normal vector to the middle surface, a shell

1This thesis relies on conventional notation in physical components, although more
general tensor notation is often preferred in modern presentations of shell theory.
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domain of constant thickness t can now be defined as Ω = Φ(ω×(−t/2, t/2)),
where Φ is a smooth map of the form

Φ(x, y, z) = r(x, y) + zn(x, y) (4)

In classical shell theories the displacement field u = (u1, u2, u3) at a point
(x, y, z) is defined so that u1, u2 are the tangential displacements to the mid-
dle surface and u3 is the normal displacement. Moreover, the variation of
the displacement field u with respect to the normal coordinate z is assumed
to be of the form

u1(x, y, z) = u(x, y) − zθ(x, y)

u2(x, y, z) = v(x, y) − zψ(x, y)

u3(x, y, z) = w(x, y)

(5)

where u, v and w are the displacements of the middle surface and θ and ψ
are the so-called rotations. In other words, straight material fibres which are
perpendicular to the middle surface before deformation remain straight after
deformation and do not change their length. Nowadays, this assumption is
probably best known as the Reissner-Mindlin kinematic assumption.

In addition, most of the classical shell models neglect the normal stress in
comparison with the remaining stresses. Together with (2), the plane stress

assumption σ33 = 0 implies that

ǫ33 = − ν

1 + ν
(ǫ11 + ǫ22) (6)

Obviously this contradicts assumption (5) which already implies that ǫ33 =
∂u3/∂z = 0. The conflict causes ultimately no problem, but a rigorous
justification of the plane stress hypothesis is actually a rather delicate matter.
The mathematical reasoning can be based on a quadratic expansion of u3 in
the normal coordinate z. As a matter of fact, the condition σ33 = 0 then
follows (approximatively, see e.g. [24]) from the minimization of the 3D strain
energy with respect to the linear and quadratic components in u3.

Anyway, substitution of ǫ33 from (6) back to (2), (1) yields the 3D strain
energy of a linear elastic problem with σ33 = 0 (homogeneous, isotropic
material):

A(u,u) =
E

1 − ν2

∫

Ω

[

ν(ǫ11 + ǫ22)
2 + (1 − ν)(ǫ211 + 2ǫ212 + ǫ222)

]

dΩ

2E

(1 + ν)

∫

Ω

(

ǫ213 + ǫ223
)

dΩ

(7)

Referring to the assumed expansion (5) of the displacement field, the remain-
ing strains in the expression (7) can be put in the approximative form

ǫij(x, y, z) = βij(x, y) − zκij(x, y), i, j = 1, 2,

2ǫi3(x, y, z) = ρi(x, y), i = 1, 2

Here βij are referred to as the membrane strains, κij as the bending strains

and ρi as the transverse shear strains. These are in general variable-coefficient
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linear combinations of the displacement components u, v, w, θ, ψ and their
first-order partial derivatives with respect to x, y. The actual form of the
coefficients depends on how the coordinates x, y have been chosen, but when
the coordinate lines are orthogonal, the coefficients can be written (see [19])
in terms of the two Lamé parameters2

A1 =

∣

∣

∣

∣

∂r

∂x

∣

∣

∣

∣

, A2 =

∣

∣

∣

∣

∂r

∂y

∣

∣

∣

∣

and the three radii of curvature3

1

R11

= − 1

A2
1

n · ∂
2r

∂x2
,

1

R22

= − 1

A2
2

n · ∂
2r

∂y2
,

1

R12

= − 1

A1A2

n · ∂2r

∂x∂y

The quantities A1 and A2 (also referred to as scale factors) determine the
differential of the arc length on the middle surface by

ds2 = A2
1dx

2 + A2
2dy

2

whereas the quantities 1/R11 and 1/R22 represent the normal curvatures
of the middle surface along the coordinate lines. The geometric depiction
of the twist 1/R12 is more complex, but it can be related to the principal

curvatures 1/R1 and 1/R2, from which one is the maximum and the other
one a minimum of the normal curvature, as

1

R12

=

(

1

R2

− 1

R1

)

sinα cosα

where α is the angle between the x-coordinate line and the direction of the
principal curvature 1/R1.

2.1 Refined shallow shell model

In what follows, the coordinates x, y are identified as the projections of points
of the shell’s middle surface on a plane K ↔ ω ⊂ R

2 so that the middle
surface may be represented as

r(x, y) = xi + yj + f(x, y)k, (x, y) ∈ K (8)

Here i, j,k are the basis vectors of the Cartesian coordinates x̄1, x̄2, x̄3 and
f is a smooth function. Let us denote the smallest radius of curvature of
r(x, y) over K by R = min{R11, R22, R12} and the diameter of K by hK =
diam(K). We will assume that |∇f | = O(hK/R) which implicates that the
plane K is (approximatively) tangent to the middle surface. It follows that

2Gabriel Lamé (1795–1870) made substantial contributions to both elasticity theory
and general theory of curvilinear coordinates.

3We follow the usual convention in shell theory, where the normal curvature at a point
(x, y) ∈ ω is positive when the corresponding center of curvature lies in the direction
−n(x, y) from r(x, y).
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the coordinate lines on the middle surface are orthogonal within the accuracy
of O(h2

K/R
2). Up to this accuracy, the scale factors may be written as

A1 =

√

1 +

(

∂f

∂x

)2

≈ 1, A2 =

√

1 +

(

∂f

∂y

)2

≈ 1 (9)

and the curvatures may be taken to be the second derivatives of f in (8), i.e.

1

R11

≈ ∂2f

∂x2
,

1

R22

≈ ∂2f

∂y2
,

1

R12

≈ ∂2f

∂x∂y

However, an attractive option is to compute these directly from the unit
normal vector n as

1

R11

≈ ∂n

∂x
· i, 1

R22

≈ ∂n

∂y
· j, 1

R12

≈ ∂n

∂x
· j ≈ ∂n

∂y
· i (10)

The strain-displacement4 relations over K can now be written for the
membrane strains as

β11 =
∂u

∂x
+

w

R11

, β22 =
∂v

∂y
+

w

R22

, β12 =
1

2

(

∂u

∂y
+
∂v

∂y

)

+
w

R12

(11)

for the transverse shear strains as

ρ1 = θ − ∂w

∂x
+

u

R11

+
v

R12

, ρ2 = ψ − ∂w

∂y
+

u

R12

+
v

R22

(12)

and for the bending strains as

κ11 =
∂θ

∂x
+

1

2

1

R12

(

∂u

∂y
− ∂v

∂x

)

, κ22 =
∂ψ

∂y
− 1

2

1

R12

(

∂u

∂y
− ∂v

∂x

)

κ12 =
1

2

[

∂θ

∂y
+
∂ψ

∂y
− 1

R11

(

∂u

∂y
− w

R12

)

− 1

R22

(

∂v

∂x
− w

R12

)] (13)

where the curvatures 1/Rij are the only visible geometric parameters. The
above forms have been obtained by admitting a truncation error of O(hK/R)
which arises from the substitution of (9) into the usual 2D strain expressions
as given by Gol’denveizer in [19, Eqs. (19.1)–(19.5)].

By writing dΩ = dx dy dz, the three-dimensional deformation energy (7)
may be integrated over z within the adopted accuracy . The resulting two-
dimensional strain energy functional of the shell over K takes the form

AK(u,u) =
Et

1 − ν2

∫

K

[

ν(β11 + β22)
2 + (1 − ν)(β2

11 + 2β2
12 + β2

22)
]

dxdy

+
Et

2(1 + ν)

∫

K

[

ρ2
1 + ρ2

2

]

dxdy

+
Et3

12(1 − ν2)

∫

K

[

ν(κ11 + κ22)
2 + (1 − ν)(κ2

11 + 2κ2
12 + κ2

22)
]

dxdy

(14)

4Note that here the displacement components do not follow the coordinate axes
x̄1, x̄2, x̄3, but are tangents to the middle surface in planes parallel to the coordinate
planes (u, v, θ, ψ) and normal to the middle surface (w).
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The shell model (11)–(14) whose derivation is outlined above serves as the
starting point of our study. The model was originally presented by Malinen
in [12] using general coordinates and tensorial notation. Actually the bending
strains proposed in [12] differ from the ones in (13) by the relations

κM
11 = κ11 −

1

R12

β12, κM
22 = κ22 −

1

R12

β12

but like any modification of the bending strains by an added linear combina-
tion of βij’s, this causes an insignificant perturbation of the energy (14) when
t is small. On the other hand, the effect of the tangential displacements u
and v in the expressions of the bending strains is neglected completely in the
classical engineering theory of shells (also known as the Donnell-Musthari-
Vlasov theory of thin shells, see [21]). From the modern perspective, this type
of simplification is reasonable e.g. when the goal is to understand locking of
finite element algorithms because the bending strains are not so critical in
this respect.

However, when the model is used in realistic computations to represent
the strain energy of a single element K, there are generally two possibilities
as, according to [22], the omission of the middle surface displacements from
(13) effectively attaches the displacement component w to the k-direction.
Either all terms in the expression (13) are retained or the direction of the
third displacement component is defined differently within each element. In
any event, the strain energy of the entire shell may be expressed formally as

A(u,u) =
∑

K

AK(u,u)

where the sum is taken over all elements used in the representation of the
structure.

2.2 Membrane and shear constraints, MITC4S

The difficulties in linear shell finite element models originate mainly in the
approximation of inextensional deformations with vanishing membrane and
transverse shear strains. Such deformations may occur when the kinematic
constraints along the edge of the shell are weak enough to allow pure bend-
ing of the curved structure. To illustrate the problems with the associated
displacement modes, we consider a simple example in the spirit of [25].

Assume a four-node isoparametric quadrilateral element occupying a rect-
angular domain aligned with the coordinate axes x, y. The element expan-
sions of u and w take then the bilinear form

u(x, y) = αu + βux+ γuy + δuxy, w(x, y) = αw + βwx+ γwy + δwxy

where the constants αu, βu, etc. depend on the values of u and w at the
element nodes. The requirement β11 = 0 implies according to (11) that

(

βu +
αw

R11

)

+
βw

R11

x+

(

δu +
γw

R11

)

y +
δw
R11

xy = 0

14



so that four constraints are imposed on u and w. In particular, w is not
allowed to vary with respect to x which is a rather heavy requirement from the
viewpoint of approximation theory. Moreover, each of the conditions β12 =
β22 = 0 and ρ1 = ρ2 = 0 satisfied by an inextensional deformation restricts
the bilinear displacement field with additional four constraints. Note that
when the element is a part of a large rectangular mesh, it has approximatively
one degree of freedom per displacement component5. In other words, the
element is heavily over-constrained which results in a severe underestimation
of the displacements, or locking, see [24].

As a quick device for estimating an element’s tendency to over-stiffness,
Hughes has introduced the so-called constraint ratio

r =
Neq

Nc

(15)

where Neq is the total number of discrete equilibrium equations and Nc is
the total number of harmful constraints, see [25]. Ideally, the value of r
should approach rideal, the ratio of equilibrium equations to constraints for
the continuous problem, as the mesh is refined. If r < rideal, locking is
expected, whereas r > rideal might indicate that the element is too flexible.
In our case the ideal value is rideal = 5

5
= 1 while for the bilinear element we

have r = 5
20

= 0.25.
We have seen that if the convenient bilinear interpolations for the dis-

placements are to be used, some kind of reduction of constraints is necessary
in order to suppress the locking effect. In mathematical terms, such reduction
can be carried out in many ways like by using strain projections (assumed
strain approach) or by resorting to mixed methods where the membrane and
transverse shear stresses are approximated as independent unknowns. The
schemes become unavoidably rather elaborate for isoparametric elements of
irregular shape, but there exists a canonical projection rule valid for rectan-
gular elements which we shall describe next. In the thesis, this formulation
is referred to as MITC4S because of its close relation with the MITC4 shell
element used in actual engineering computations.

The procedure begins with evaluation of the components of membrane
and transverse shear strains tangent to each of the element’s four edges at the
midpoint of the edge in question. In other words, the components β11, ρ1 are
evaluated at the midpoints of the horizontal edges and the components β22, ρ2

are evaluated at the midpoints of the vertical edges. Moreover, the membrane
shear strain β12 is evaluated at the center of the element, see Figure 1. The
nine values so obtained are then used to determine the constants c1, . . . , c9
in the expressions

βh =

[

c1 + c2y c5
c5 c3 + c4x

]

, ρh =

[

c6 + c7y
c8 + c9x

]

(16)

5For a N × N mesh of rectangular elements, the ratio of number of nodes to number

of elements approaches unity as N → ∞ because limN→∞

(N+1)2

N2 = 1

15



• •β22, ρ2 β22, ρ2

•

•

β11, ρ1

β11, ρ1

• β12

Figure 1: The evaluation points for the membrane and the transverse shear
strains in the projection rule.

Accordingly, on a large rectangular mesh we will have two constraints
per each side and one constraint per each element, i.e. five constraints per
element on average6 so that r = 1, the ideal value. In addition, the weakened
constraints may be viewed as straightforward finite difference approxima-
tions of the corresponding constraints arising from the continuous problem.
For instance, the condition β11,h = 0 written in terms of the (global) nodal
displacement degrees of freedom reads

u(xi+1, yj) − u(xi, yj)

xi+1 − xi

+
1

2R11(xi+1/2, yj)
(w(xi+1, yj) + w(xi, yj)) = 0

which turns out to be a second order scheme with respect to x for the equation
∂u/∂x+w/R11 = 0. The complete 5× 5 system which arises in the approx-
imation of bending-dominated deformations has been analyzed under strong
assumptions about the geometry of the problem by Havu and Pitkäranta
in [13].

On the other hand, the use of βij,h in place of βij breaks the Rayleigh-Ritz
code obeyed by standard finite elements, cf. [26]. The violation, which arises
locally in the computation of the strain energy (14), requires careful analysis
of the consistency error functional

A(u,v) −Ah(u,v) = δh(v) (17)

especially when the displacement field u to be approximated is not bending-
dominated. Note that here v denotes an arbitrary trial function from the
finite element space where the kinematic constraints of the problem have
been replaced by their homogeneous versions (see e.g. [27] for more details).
Concerning membrane-dominated deformations, i.e. situations where pure
bending of the shell is prevented for instance by kinematic constraints, sharp
bounds for the consistency error functional have been derived in [14], but
again under rather strong assumptions about the problem set-up.

6For a N × N mesh of rectangular elements, the ratio of number of nodes to number

of sides approaches one half as N → ∞ because limN→∞

(N+1)2

2N(N+1) = 1
2 .
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The analysis in [13, 14] left open two questions in particular. Firstly, the
ability of MITC4S to capture boundary and interior layers was not addressed
in these works. Secondly, the necessity of the highly specific assumptions
made in the error analysis remained unclear. These questions have been
answered to some extent in papers [A] and [B] of this thesis.

Paper [A] begins our study on the approximation of shell layers by intro-
ducing a set of academic model problems where the shell is under a concen-
trated point load. In the paper, the problem set was solved by MITC4S along
with standard (i.e. no projection rule is applied whatsoever) high-order finite
finite elements and the results were compared with analytical reference solu-
tions. Note that while point loads are not admissible in the variational sense
within the Reissner-Mindlin framework, they are anyway rather common
in engineering practice. Point loads ought not to be overlooked by mathe-
maticians either because the corresponding solution represents the Green’s
function for the problem.

Nevertheless, layers and concentrated loads are left in the background in
paper [B] where the reduced strain scheme is investigated under more gen-
eral circumstances. First of all, the paper examines different extensions of
the above projection rule so as to allow more general quadrilateral element
shapes. The performance of the alternative formulations was then evaluated
in both membrane- and bending-dominated problems with different shell ge-
ometries. The dual nature of the problem become very clear in the work
as, on a general mesh, it turned out to be very difficult to obtain a reason-
able bound for the consistency error functional (17) in membrane-dominated
deformations and circumvent the locking effect in bending-dominated defor-
mations at the same time.

The rest of the thesis concentrates again on the layer problem. The moti-
vation for this comes from certain differences between MITC4S and MITC4
that have been anticipated in [11, 12] where the inter-element connection
was established in the first place. These differences will be highlighted in the
following section.

2.3 Bilinear degenerated 3D FEM, MITC4F

The majority of shell finite elements used in engineering practice are not de-
rived from 2D shell models basically because the mapping (4) defining the
shell geometry is not readily available in computer-aided design programs.
Instead, the geometric initial data consists of nodes located on the shell
middle surface in conjunction with their associated unit normal vectors and
thickness parameters, see e.g. [10]. The shell geometry is then approximated
using isoparametric finite element techniques and the previously discussed
kinematic and mechanical assumptions of the Reissner-Mindlin type are im-
posed in that context. This hinders numerical error analysis of such formu-
lations, since the mathematical understanding of shell deformations is based
predominantly on the geometrically exact 2D shell models. In particular, the
question pertains to bilinear formulations where the geometry approxima-
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tion involving straight-sided elements becomes rather crude. To see this, we
follow [12] and examine how the leading terms of the usual two-dimensional
strains are represented by bilinear degenerated elements.

For this purpose, we analyze a single element K̄ which is thought to
be given in terms of (4) and (8) by replacing f and n by their bilinear
interpolants f̃ and ñ, respectively7. In our notation, the Reissner-Mindlin
kinematic assumption at a node i reads

ui = (ui − zθi)e
(i)
1 + (vi − zψi)e

(i)
2 + wie

(i)
3

where e
(i)
3 = ñ(xi, yi) is the nodal director and e

(i)
1 , e

(i)
2 are two orthogonal di-

rections to it. Let us assume that these are constructed so that e
(i)
1 and e

(i)
2 are

(approximatively) orthogonal to j and i, respectively, so that ui, vi, wi, θi, ψi

can be regarded directly as the degrees of freedom for the geometrically com-
patible shell model of Section 2.1. Resolving ui into components parallel to
the directions i, j,k used in the geometry representation yields

ui = ūii + v̄ij + w̄ik

where
ūi = ui + wi(e

(i)
3 · i) − zθi

v̄i = vi + wi(e
(i)
3 · j) − zψi

w̄i = wi − ui(e
(i)
3 · i) − vi(e

(i)
3 · j)

(18)

within the relative error of O(h2
K/R

2).
Concerning the implementation of the plane stress hypothesis, we note

that slightly different directions for which the stresses vanish have been pro-
posed in the literature, see e.g. [28, 29]. Here, as in [12], the normal stress in
the x̄3-direction will be neglected by using the assumption (6). Consequently,
the strain energy functional takes then the form (7) where the rectangular
Cartesian components of the strain tensor are given by (3):

ǫ11 =
∂ū

∂x̄1

, ǫ22 =
∂v̄

∂x̄2

, ǫ12 =
1

2

(

∂ū

∂x̄2

+
∂v̄

∂x̄1

)

and

ǫ13 =
1

2

(

∂ū

∂x̄3

+
∂w̄

∂x̄1

)

, ǫ23 =
1

2

(

∂v̄

∂x̄3

+
∂w̄

∂x̄2

)

Still following [12], we define the corresponding membrane and bending strains
of the approximative middle surface x̄3 = f̃ as

β̄ij = ǫij(x̄1, x̄2, f̃), κ̄ij = −∂ǫij
∂x̄3

(x̄1, x̄2, f̃) i, j = 1, 2

and the transverse shear strains as

ρ̄i = 2ǫi3(x̄1, x̄2, f̃), i = 1, 2

7Note that when the four nodes of K̄ are coplanar, f̃ may be taken to be identically
zero.
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Referring to the xyz-coordinate system we may write then

β̄11 =
∂ū

∂x̄1

∣

∣

∣

∣

x̄3=f̃

=
∂ū

∂x

∣

∣

∣

∣

z=0

+ O(hK/R) (19)

Assume now that K is a rectangle so that the interpolated normal vector at
a node (xi, yi) can be expanded as

e
(i)
3 = ñ(0, 0) +

∂ñ

∂x
(xi, yi)xi +

∂ñ

∂y
(0, 0)yi, i = 1, 2, 3, 4

where the origin of the coordinates x, y coincides with the element center.
Using this expansion together with (19), (18) and (10) yields

β̄11 =
∂u

∂x
+ Πx

(

w

R11

)

+
Ry(w)

R12(0, 0)
(20)

where Πx and Ry are generalized interpolation operators defined as

Πx(q) =
4

∑

i=1

∂Ni

∂x
xiqi, Ry(q) =

4
∑

i=1

∂Ni

∂x
yiqi (21)

Here Ni denotes the standard isoparametric bilinear shape function which
attains the value one at the node (xi, yi) and vanishes at the other nodes.
Similar calculations show that

β̄22 =
∂v

∂y
+ Πy

(

w

R22

)

+
Rx(w)

R12(0, 0)
(22)

and

β̄12 =
1

2

(

∂u

∂y
+
∂v

∂x
+

Πxw

R12(0, 0)
+

Πyw

R12(0, 0)

)

+
1

2

[

Rx

(

w

R11

)

+Ry

(

w

R22

)] (23)

where

Πy(q) =
4

∑

i=1

∂Ni

∂y
yiqi, Rx(q) =

4
∑

i=1

∂Ni

∂y
xiqi (24)

in analogy with (21).
We see that the above computed β̄11 and β̄22 agree with β11,h and β22,h

obtained in (16) if the last terms were omitted from (20) and (22). However,
by utilizing the additional terms involving Rx, Ry, it can be shown as in [12]
that

β̄11 = β̄22 = 0 ⇒ β̄12 = β12,h + O(h2
K/R

2) (25)

This means that when bilinear degenerated elements are used to approximate
inextensional displacement modes, the underlying difference equations for the
constraints βij = 0 are almost identical with those arising from the utilization
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of (16). As a matter of fact, the above analysis provides a slight generalization
of the original result in [12]. Namely, we did not assume that the element-
wise defined geometric curvatures are constant parameters as in [12] where
these were computed from a quadratic expansion of f in (8). It should be
noted that the formal accuracy is not any better when the curvatures are
derived from the interpolated normal vector ñ by using (10), but in order
to keep the constraint ratio (15) at the optimal value, only one membrane
constraint per each side of the mesh is allowed8.

On the other hand, in the MITC4 element of Bathe & Dvorkin, the trans-
verse shear strains are modified explicitly by using reduced strain techniques
into the covariant strain components ǫ1z, ǫ2z. Using tensor transformation
rules, it can be shown that the mixed interpolation of the tensorial com-
ponents leads (approximatively, see [12]) to transverse shear strains of the
form

ρ̄1,h = Πxθ −
∂w

∂x
+ Πx

(

u

R11

)

+ Πx

(

v

R12

)

ρ̄2,h = Πyψ − ∂w

∂y
+ Πy

(

u

R12

)

+ Πy

(

v

R22

)

which are readily in agreement with those obtained from (16). We note that
the geometry approximation leads generally to a modification of the bending
strains as well, see [12]. However, as the bending strains are not very prone
to parametric effects, it seems that the numerical effect of this modification
is rather marginal (although undesirable).

In the thesis, the above interpretation of the MITC4 shell element is
referred to as MITC4F. We have seen that on rectangular meshes, the leading
terms of the membrane and transverse shear strains of MITC4F and MITC4S
are closely related, the chief difference being the additional terms in the
expressions of the membrane strains of MITC4F. If K is of size hx × hy, we
have

Rx(q) ∼ hx
∂q

∂y
, Ry(q) ∼ hy

∂q

∂x
(26)

and

q − Πx(q) ∼ hx
∂q

∂x
, q − Πy(q) ∼ hy

∂q

∂y
(27)

so that the use of either element causes formally an effect of relative order
O(hK/L) to the relevant consistency error functional when the displacement
field to be approximated is uniformly smooth with respect to t in the length
scale L. However, the anisotropic character of the estimates (26) may change
the situation rather dramatically if the displacement field varies in different
length scales in different coordinate directions. To observe this, we let the
length scales characterizing the deformation mode be L and H in the x- and
y-direction, respectively, and assume that L≪ H. Then Ry(w) ∼ hy/L by
(26) so that if MITC4F is used, some terms in (17) may become amplified

8This is crucial also in practice if the computations are based on the refined shallow
shell model and the curvatures of the shell are rapidly varying.
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by the ratio of anisotropy r = H/L ≫ 1 as compared with the approxima-
tion theoretically optimal order hy/H. Note that anisotropically varying dis-
placement modes are rather common among shell deformations in the form
of boundary and interior layers but vibration modes arising in dynamical
problems may also exhibit similar behavior, cf. [23].

In addition to the possibly harmful amplification of the consistency er-
ror functional, the energy formulation of layer and vibration problems may
enforce membrane constraints that can be problematic for MITC4F. The rea-
son for this lies in the fact that in order for β̄12 to reduce to the midpoint
evaluation, β̄11 and β̄22 must vanish. Because this is not the case for layer
and vibration modes (see [22, 23]), MITC4F may become over-constrained
in their approximation.

In paper [C], a detailed error analysis is carried out concerning the ap-
proximation of Fourier layer modes of the form

u(x, y) = U cos(ky)e−λ(t)x

using different bilinear elements on rectangular grids. Here H = k−1 = R is
the (fixed) length scale of variation along the layer generator and L = L(t) =
1/Re λ(t) is the characteristic decay length scale of the layer mode such that
L(t) → 0 as t→ 0. Three possibilities were investigated where

L(t) =











√
Rt, Case 1

3
√
R2t, Case 2

4
√
R3t, Case 3

depending on the shell geometry. It was shown that when MITC4F is used,
parametric locking arises as a rule. Namely, the derived a priori error es-
timates predict error magnification by factors R/L (Cases 1,3) and (R/L)2

(Case 2) from the optimal convergence rate when the relative error is mea-
sured in the (modified) energy norm. The error amplification effect is also
observed in numerical experiments.

A sceptical reader may have doubts about our simplified theory where
certain small-looking terms are neglected while some other terms, which are
formally of the same order, are kept. In order to assure the applicability of
the theory, the thesis culminates in paper [E] where MITC4S is compared
directly with the bilinear elements of the commercial codes ABAQUS and
ADINA in benchmark tests involving layer and vibration modes. Moreover,
the formulation of MITC4S in paper [E] is suitable for rather general (linear)
shell analyses as it allows elements of arbitrary quadrilateral shape to be used
and requires only the nodal positions and normals as geometric initial data.

This extended introduction for the thesis ends up with a practical example
which should put things in perspective.
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2.4 Case study: Vibration analysis of a fan blade

A shell problem of considerable practical importance is that of the vibra-
tion of curved fan blades. Such fan blades are quite common in jet engines
powering aircraft around the globe. A cylindrical compressor blade depicted
in Figure 2 serves as a representative example. Some time ago, Olson and
Lindberg constructed an experimental model of this blade which was made
of steel and built-in to a rigid foundation along the other curved edge as
indicated in Figure 2. The vibration modes of the shell were then excited
by a sinusoidal magnetic force and the first twelve vibration frequencies have
been reported in [30] together with an initial finite elements analysis.

Properties of the blade:

Young modulus9: 3 · 107 psi

Poisson ratio: 0.3

Mass density: 0.28 lb/in3

Thickness: 0.12 in

Radius of curvature (R): 24 in

Developed width (W ): 12 in

Height (H): 12 in

Figure 2: A cylindrical compressor blade made of steel.

Here we perform the finite element analysis by using two kinds of bilinear
isoparametric representations of the blade as shown in Figure 3. Some of
the lowest vibration frequencies (cycles per second) have been computed by
using MITC4S as formulated in paper [E] and the original MITC4 element
of ADINA together with its generalization MITC4IM, where the in-plane
displacements are supplemented by the so-called incompatible displacement
modes, cf. [29].

9It should be noted that the “gravitational” factor 32.17405 (lb · ft)/(lbf · s2) is required
here to arrive at a coherent system of units.
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Figure 3: Two bilinear finite element models of the compressor blade.

The frequencies in Table 1 contrast sharply with laboratory test results
which indicates that the mesh is too coarse. On the other hand, the few
lowest frequencies in Table 2 are already in a rather good agreement with
the experimental values. Note that the fundamental frequency, i.e. the lowest
frequency, is approximated within the engineering accuracy of 2% by MITC4S
whereas the error of MITC4 is about 8%. Our claim is that this occurs
because the energy formulation of the corresponding vibration mode enforces
the membrane constraints10 β22 = 0 and β12 = 0, but not the constraint β11 =
0, see [23]. Consequently, the implication (25) is not disposable and MITC4
becomes slightly over-constrained via the constraint β̄12 = 0. Apparently,
the incompatible displacement modes in MITC4IM are able to relax this
constraint.

Mode MITC4S MITC4 MITC4IM [30]
1 66.3 68.6 68.6 86.6
2 157.7 125.5 112.3 135.5
3 261.4 481.3 380.5 258.9

Table 1: The vibration frequencies (Hz) of the first three modes: 1× 2 mesh.

Mode MITC4S MITC4 MITC4IM [30]
1 87.9 93.5 89.5 86.6
2 145.4 148.1 142.2 135.5
3 249.7 266.4 262.7 258.9
4 391.5 410.5 394.2 350.6
5 443.6 452.2 439.8 395.2
6 579.7 601.1 600.1 531.1
7 801.5 857.1 842.2 743.2

Table 2: The vibration frequencies (Hz) of the first seven modes: 4×8 mesh.

10Here 1 refers to the axial direction and 2 to the angular direction.
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3 Concluding remarks

The main results of the thesis can be summarized as follows:

[A] The paper sheds light on both mechanical behavior of shells, partic-
ularly in view of concentrated point loads, and performance of corre-
sponding finite element schemes. An honest comparison of standard
hp-type finite elements and MITC4S is presented. The results confirm
the robustness of high-order finite elements and show that the numer-
ical modifications in MITC4S improve the standard bilinear scheme
considerably also when approximating layers.

[B] The paper evaluates bilinear shell elements based on classical shell the-
ory and 2D finite element framework. A couple of different formulations
are presented and their accuracy is studied in membrane- and bending-
dominated deformations. Although none of the studied formulations
can be called as “locking-free” on a general quadrilateral mesh, it ap-
pears that on distorted meshes certain explicit reductions of the usual
2D membrane strains might work better than the implicit modifications
arising from the use of bilinear degenerated 3D elements.

[C] The paper analyzes the effect of boundary and interior layers on the
accuracy of the simplest quadrilateral shell elements with four nodes.
The theoretical results predict that formulations, where the membrane
strains are computed using the degenerated solid approach, suffer from
parametric locking effects when capturing shell layers. In particular, the
approximation of the characteristic layers in hyperbolic shells seems to
be the most challenging task. On the other hand, the paper asserts that
the optimal accuracy of bilinear finite elements can be maintained if the
membrane strains are first computed locally as suggested by shallow
shell theory and then modified carefully in order to avoid locking.

[D] The paper deals again with point loaded shell structures, both in the-
oretical and in numerical sense. The analysis and computations recall
and extend the results of the full length paper [A] in view of the theory
of paper [C]. Namely, a study of the fundamental solution of a shal-
low shell and corresponding finite element computations is presented.
Firstly, the kinematics of the shell model is simplified by imposing
the classical Kirchhoff-Love constraints. Secondly, the solution of the
resulting Euler equations is given as a Fourier expansion for elliptic,
hyperbolic and parabolic geometries. Then, the behavior of the solu-
tion, in particular the length scales of the characteristic line layers, are
carefully analyzed and illustrated by contour plots in different cases.
Finally, the approximation capability of finite elements is tested by
comparing the p- and h-strategies. As the main result of the bench-
marking, one can see the inferior capability of the h-strategy, which
is based on an interpretation of the degenerated solid procedure, in
resolving the line layer for the hyperbolic shell geometry.
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[E] The final paper of the thesis pulls together the observations made in pa-
pers [A]–[D] and introduces a four-node shell element which is based on
classical shell theory but should be applicable also to practical compu-
tations. The benchmark computations of the paper show that, in cases
where shell layers or vibration modes are approximated on anisotropi-
cally refined meshes, the accuracy of the proposed formulation is indeed
superior to that of the popular bilinear elements in commercial codes
ABAQUS and ADINA.
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[20] Flügge W. Stresses in Shells. Springer-Verlag: Germany, 1973.

[21] Lukasiewicz S. Local loads in plates and shells. Sijthoff & Noordhoff:
The Netherlands, 1979.
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